JP2007098490A - Combined electric and magnetic machining method and apparatus and tool used in the method - Google Patents

Combined electric and magnetic machining method and apparatus and tool used in the method Download PDF

Info

Publication number
JP2007098490A
JP2007098490A JP2005288894A JP2005288894A JP2007098490A JP 2007098490 A JP2007098490 A JP 2007098490A JP 2005288894 A JP2005288894 A JP 2005288894A JP 2005288894 A JP2005288894 A JP 2005288894A JP 2007098490 A JP2007098490 A JP 2007098490A
Authority
JP
Japan
Prior art keywords
machining
tool
magnetic
electric
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005288894A
Other languages
Japanese (ja)
Other versions
JP4843780B2 (en
Inventor
Yanhua Zou
艶華 鄒
Takeo Suzumura
武男 進村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2005288894A priority Critical patent/JP4843780B2/en
Publication of JP2007098490A publication Critical patent/JP2007098490A/en
Application granted granted Critical
Publication of JP4843780B2 publication Critical patent/JP4843780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new machining method, micro-machining the inner surface difficult to machine in the prior art, and an apparatus and a tool used in the method. <P>SOLUTION: A machining tool 1 where a current I flows is disposed in a magnetic field, electromagnetic force F is applied to the machining tool 1 according to the Fleming's rule, and the electromagnetic force is varied to apply motion to the machining tool 1. Thus, the problem is solved by the combined electric and magnetic machining method of machining a workpiece 1 utilizing the above motion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気・磁気複合加工方法並びにこれに用いられる装置及び工具に関し、更に詳しくは、通電状態にある導線に磁場が作用して発生するフレミングの左手の法則に従う電磁力を工具の加工力とした新規な電気・磁気複合加工方法、並びにこれに用いられる装置及び工具に関するものである。   The present invention relates to an electric / magnetic combined machining method and an apparatus and tool used therefor, and more specifically, an electromagnetic force in accordance with Fleming's left-hand rule generated by a magnetic field acting on a conducting wire in an energized state is applied to the machining force of the tool. The present invention relates to a novel electric / magnetic combined machining method, and an apparatus and tool used therefor.

従来、磁場の作用を取り込んだ精密加工技術である「磁気研磨法」が知られている。この加工法は、磁力線を媒介にして磁性砥粒に加工力と運動力を与えて精密な表面加工を実現するものである。例えば、この磁気研磨法による円管内面の研磨は、磁性砥粒を永久磁石で円管内面に引きつけながら回転させることにより行われ、円管内面を精密に仕上げることができる。こうした磁気研磨法は実用化され、半導体製造産業で応用されている。   Conventionally, a “magnetic polishing method”, which is a precision processing technique incorporating the action of a magnetic field, is known. This processing method realizes precise surface processing by applying a processing force and a kinetic force to magnetic abrasive grains through the lines of magnetic force. For example, the polishing of the inner surface of the circular tube by this magnetic polishing method is performed by rotating the magnetic abrasive grains while attracting the inner surface of the circular tube with a permanent magnet, and the inner surface of the circular tube can be finished precisely. Such a magnetic polishing method has been put into practical use and applied in the semiconductor manufacturing industry.

しかし、例えば、円管径が3mm以下になると円管内の加工域の磁場が一様化して集中しないため磁性砥粒に働く磁気力が低くなり、研磨圧力が著しく低下すると共に、回転する永久磁石に対して磁性砥粒が追従して回転せず、研磨が不能になることがあった。   However, for example, when the diameter of the circular tube becomes 3 mm or less, the magnetic field acting on the magnetic abrasive grains is reduced because the magnetic field in the processing region in the circular tube is not uniform and concentrated, and the polishing pressure is significantly reduced and the rotating permanent magnet On the other hand, the magnetic abrasive grains did not rotate and could not be polished.

一方で、例えば、内径0.05〜1mmで長さ100〜200mm程度のキャピラリー(毛細管)の内面や、スリット幅0.1〜1mmで長さ10〜30mm程度の櫛歯状スリットの内面を鏡面に仕上げる社会ニーズは非常に多い。特に、最近の精密部品の微細化・複雑化に伴い、この種の加工技術に対する必要性が高まってきている。しかし、上述したように、従来の研磨技術ではとてもこのような微細加工の実現は不可能であった。なお、従来、研磨技術にフレミング法則を適用した研究は全く知られていない。   On the other hand, for example, the inner surface of a capillary (capillary tube) having an inner diameter of 0.05 to 1 mm and a length of about 100 to 200 mm, or the inner surface of a comb-like slit having a slit width of 0.1 to 1 mm and a length of about 10 to 30 mm is mirror-finished. There are many social needs to finish. In particular, with the recent miniaturization and complexity of precision parts, the need for this type of processing technology is increasing. However, as described above, it has been impossible to realize such fine processing with the conventional polishing technique. Heretofore, there has been no known study of applying the Fleming law to the polishing technique.

本発明は、上記課題を解決するためになされたものであって、その目的は、従来技術では加工困難な狭い内面等の微細加工を可能とする新規な加工方法並びにこれに用いられる装置及び工具を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its object is to provide a novel processing method that enables fine processing of a narrow inner surface and the like, which are difficult to be processed by conventional techniques, and an apparatus and a tool used therefor. Is to provide.

本発明者らは、上記課題を解決するために鋭意研究・検討を行った過程において、加工力として応用可能な原理として、磁場と電流との組み合わせにより電磁力が発生するフレミングの左手の法則を用い得るとの着想を得た。例えば、被加工部となる細長くて狭い箇所に導線を挿入し、側面から強力な磁場を印加すれば、磁場の方向と電流の方向とが直交する方向に導線に力(force)が生じ、これを加工力として利用できることを見出し本発明に至った。   In the process of earnestly researching and studying to solve the above problems, the present inventors have applied Fleming's left-hand rule in which electromagnetic force is generated by a combination of a magnetic field and current as a principle that can be applied as a machining force. I got the idea that it could be used. For example, if a conducting wire is inserted into a narrow and narrow part to be processed and a strong magnetic field is applied from the side, a force is generated in the conducting wire in a direction in which the direction of the magnetic field and the direction of the current are orthogonal to each other. Has been found to be usable as a processing force, leading to the present invention.

すなわち、本発明の電気・磁気複合加工方法は、電流を流した加工工具を磁場中に配して当該加工工具にフレミングの法則に従う電磁力を与え、当該電磁力を変動させて前記加工工具に運動を与え、当該運動を利用して工作物の加工を行うことを特徴とする。   That is, in the electric / magnetic combined machining method of the present invention, a machining tool in which an electric current is passed is placed in a magnetic field, an electromagnetic force is applied to the machining tool according to Fleming's law, and the electromagnetic force is varied to the machining tool. It is characterized by giving a motion and machining the workpiece using the motion.

本発明の電気・磁気複合加工方法においては、前記電磁力の変動が、(1)前記電流の変化により行われること、又は、(2)磁場の変化により行われること、に特徴を有するものである。   The electrical / magnetic combined machining method of the present invention is characterized in that the variation of the electromagnetic force is (1) performed by a change in the current, or (2) performed by a change in a magnetic field. is there.

本発明の電気・磁気複合加工方法においては、(a)前記加工工具の少なくとも表面には、耐摩耗性層が形成されていることが好ましく、また、(b)前記加工工具の表面には、砥粒が固定されていることが好ましく、また、(c)前記加工工具は、遊離研磨材の存在下で用いられることが好ましい。   In the electric / magnetic combined machining method of the present invention, it is preferable that (a) an abrasion resistant layer is formed on at least the surface of the machining tool, and (b) the surface of the machining tool, Abrasive grains are preferably fixed, and (c) the processing tool is preferably used in the presence of a loose abrasive.

また、本発明の電気・磁気複合加工方法においては、(i)前記加工工具は、前記工作物の加工箇所に応じて、形状、寸法及び硬さの少なくともいずれかが選定されることが好ましく、(ii)前記加工工具は、前記工作物に対する吸引・反発運動、回転運動、振動運動、又は波動運動によって当該工作物を加工することが可能であり、(iii)前記工作物の狭小部、間隙部、内表面部又は隠蔽部の精密加工に用いられることが可能である。   Further, in the electric / magnetic combined machining method of the present invention, (i) the machining tool is preferably selected at least one of shape, size and hardness according to the machining location of the workpiece, (ii) The machining tool is capable of machining the workpiece by suction / repulsion motion, rotational motion, vibration motion, or wave motion with respect to the workpiece, and (iii) a narrow portion or gap of the workpiece. It can be used for precision machining of the part, inner surface part or concealing part.

また、本発明の電気・磁気複合加工方法においては、(イ)前記加工工具として比較的軟質の工具を用い、前記工作物の自由曲面又は軟質な工作物の表面加工を行うことが可能であり、(ロ)前記工作物が金型であり、プレートコイル型の加工工具を用いて、当該金型面の精密加工を行うことが可能であり、(ハ)前記加工工具に波動的運動を与え、前記遊離研磨材の流動特性を促進して加工を行うことが可能である。   In the combined electric / magnetic machining method of the present invention, (a) a relatively soft tool can be used as the machining tool, and the free-form surface of the workpiece or the surface machining of a soft workpiece can be performed. (B) The workpiece is a mold, and it is possible to perform precision machining of the mold surface using a plate coil type machining tool, and (c) a wave motion is given to the machining tool. It is possible to carry out processing by promoting the flow characteristics of the free abrasive.

さらに、本発明の電気・磁気複合加工方法においては、前記加工工具にフレミングの法則に従う電磁力を与える電流の波形を交流又はパルス波形とし、当該導電工具の固有振動数と共振し得る周波数の変動電磁力を前記導電工具に作用させ、与えられた変動電磁力により前記導電工具に共振現象を生じさせて振幅の大きな振動を起こしながら加工を行うことをが好ましい。   Furthermore, in the electric / magnetic combined machining method of the present invention, the waveform of the current that gives electromagnetic force to the machining tool in accordance with Fleming's law is an alternating current or pulse waveform, and the fluctuation of the frequency that can resonate with the natural frequency of the conductive tool. It is preferable to perform machining while applying an electromagnetic force to the conductive tool and causing a resonance phenomenon in the conductive tool by the applied variable electromagnetic force to cause a vibration having a large amplitude.

また、上記課題を解決するための本発明の電気・磁気複合加工装置は、上述した本発明の電気・磁気複合加工方法に用いられる電気・磁気複合加工装置であって、通電可能な加工工具と、当該加工工具に電流を流す電源と、前記加工工具が通電された際に当該加工工具にフレミングの法則に従う電磁力を与え得る磁場を形成する磁場形成手段と、を有することを特徴とする。   An electric / magnetic combined machining apparatus of the present invention for solving the above-mentioned problems is an electric / magnetic combined machining apparatus used in the above-described electric / magnetic combined machining method of the present invention, And a power source for supplying a current to the machining tool, and a magnetic field forming means for forming a magnetic field capable of applying an electromagnetic force in accordance with Fleming's law to the machining tool when the machining tool is energized.

また、上記課題を解決するための本発明の加工工具は、上述した本発明の電気・磁気複合加工方法に用いられる加工工具であって、通電可能に形成されていることを特徴とする。   In addition, a processing tool of the present invention for solving the above-mentioned problems is a processing tool used in the above-described electric / magnetic composite processing method of the present invention, and is characterized in that it can be energized.

本発明の電気・磁気複合加工方法並びにこれに用いられる装置によれば、通電された加工工具を磁場中に配置することによって、加工工具にフレミングの法則に従う電磁力を与える。電磁力は電流の正負とその波形及び磁場の相互作用によって、加工工具に様々な加工力を生じさせることができる。加工工具は、電流密度の許容範囲において微細化や薄肉化が可能であるため、従来の加工方法では実現不可能であった溝や微細穴内面等の精密加工技術の実現が可能となる。   According to the electric / magnetic combined machining method and the apparatus used therefor of the present invention, an electromagnetic force is applied to the machining tool in accordance with Fleming's law by placing the energized machining tool in a magnetic field. The electromagnetic force can generate various machining forces on the machining tool by the interaction of the positive / negative of the current and its waveform and magnetic field. Since the machining tool can be miniaturized and thinned within the allowable range of current density, it is possible to realize precision machining technology such as grooves and inner surfaces of fine holes, which could not be realized by conventional machining methods.

以下、本発明の電気・磁気複合加工方法並びにこれに用いられる装置及び工具につき、具体的実施形態に基づき詳細に説明する。   Hereinafter, the electric / magnetic combined machining method of the present invention and the apparatus and tool used therefor will be described in detail based on specific embodiments.

本発明の電気・磁気複合加工方法は、電流を流した加工工具を磁場中に配してその加工工具にフレミングの法則に従う電磁力を与え、その電磁力を変動させて加工工具に運動を与え、そうした運動を利用して工作物の加工を行うことを特徴とする。なお、このように、加工技術に電磁気学のフレミングの法則を適用することは、従来全く行われておらず、本発明によって初めて提唱される極めて新規な技術である。   In the electric / magnetic combined machining method of the present invention, a machining tool through which an electric current is passed is placed in a magnetic field, an electromagnetic force is applied to the machining tool according to Fleming's law, and the machining force is moved by changing the electromagnetic force. It is characterized by processing a workpiece using such movement. In this way, the application of the framing law of electromagnetics to the processing technique has not been performed at all so far, and is a very new technique proposed for the first time by the present invention.

電流を流した加工工具が磁場中に置かれると、その加工工具はフレミングの法則に従う電磁力を受ける。この電磁力は電流の正負とその波形及び磁場の相互作用により変動し、そうした電磁力の変動によって、加工工具に様々な運動を与えることができる。その加工工具の運動は工作物に対する加工力となり、その加工挙動としては、特に限定されるものではないが、例えば、工作物に対する吸引・反発運動、回転運動、振動運動、又は波動運動等が挙げられる。さらに、場合によっては、後述するように、加工工具の振動共振現象による運動も挙げられる。   When a machining tool with an electric current is placed in a magnetic field, the machining tool receives an electromagnetic force according to Fleming's law. This electromagnetic force varies depending on the interaction between the positive / negative of the current and its waveform and the magnetic field, and various movements can be given to the machining tool by the variation of the electromagnetic force. The movement of the machining tool becomes a machining force on the workpiece, and the machining behavior is not particularly limited, and examples thereof include suction / repulsion motion, rotational motion, vibration motion, or wave motion on the workpiece. It is done. Furthermore, depending on the case, as will be described later, there is also a motion due to the vibration resonance phenomenon of the machining tool.

電磁力の変動は、加工工具に通電する電流を変化させることにより行うことができるし、磁場を変化させることにより行うこともできる。また、これら双方を組み合わせることも可能である。   The fluctuation of the electromagnetic force can be performed by changing the current supplied to the machining tool, or can be performed by changing the magnetic field. It is also possible to combine both of these.

加工工具に通電する電流としては、直流、交流、パルス電流、高周波電流、超音波電流等、種々の波形と時間的変動速度が適用可能である。電流制御による電磁力の変化は、電源があれば容易に行うことができるので、磁場を変化させる場合よりも利点がある。   Various currents such as direct current, alternating current, pulse current, high frequency current, ultrasonic current, etc., and temporal fluctuation speed can be applied as current to be applied to the machining tool. The change of the electromagnetic force by the current control can be easily performed if there is a power source, and therefore has an advantage over the case of changing the magnetic field.

一方、磁場としては、静磁場、変動磁場、回転磁場等を用いることができる。しかし、電磁コイルを利用する場合には、コイルのインダクタンスによる通電電流の変動に対する時間応答性に制限がある。また、永久磁石を機械的に回転して変動磁場を発生する場合にも、回転数の高速化に機械的な制約がある。   On the other hand, a static magnetic field, a variable magnetic field, a rotating magnetic field, or the like can be used as the magnetic field. However, when an electromagnetic coil is used, there is a limit to the time responsiveness to fluctuations in the energization current due to the coil inductance. In addition, even when a permanent magnet is mechanically rotated to generate a variable magnetic field, there is a mechanical restriction on increasing the rotational speed.

したがって、本発明においては、加工工具側の電流を制御する方式を採用しつつ、磁場の変化がないか低速磁場変化の条件下において電磁力に変動を与えることが好ましい。   Therefore, in the present invention, it is preferable to vary the electromagnetic force under the condition of no change in the magnetic field or low-speed magnetic field change while adopting a method of controlling the current on the processing tool side.

次に、本発明に係る電気・磁気複合加工方法の種々の実施形態につき、図面を参照しつつ具体的に説明する。まず、磁場として静磁場を用いた場合の加工原理について説明する。   Next, various embodiments of the electric / magnetic composite machining method according to the present invention will be specifically described with reference to the drawings. First, the processing principle when a static magnetic field is used as the magnetic field will be described.

図1は、静磁場中に、直流電流を流した加工工具を配置した場合における加工原理の説明図である。図1(A)に示すように、永久磁石3,3により形成される磁束密度B〔T〕からなる図中垂直方向の静磁場中に置かれた長さL〔m〕の導線1に、図示のようにX方向である右側に向かって電流I〔A〕が流れているとき、この導線1に働くフレミング則に従う電磁力の方向はY方向であり、大きさはF〔N〕となる。ここで、Fは次式で与えられる。   FIG. 1 is an explanatory diagram of a machining principle when a machining tool in which a direct current is passed in a static magnetic field. As shown in FIG. 1 (A), a lead wire 1 having a length L [m] placed in a static magnetic field in the vertical direction in the figure consisting of a magnetic flux density B [T] formed by permanent magnets 3 and 3; As shown in the figure, when the current I [A] flows toward the right side that is the X direction, the direction of the electromagnetic force that follows the Fleming law acting on the conducting wire 1 is the Y direction, and the magnitude is F [N]. . Here, F is given by the following equation.

Figure 2007098490
Figure 2007098490

上式のθは、磁界と導線の間の角度である。磁場の方向を変えれば、電流を流した加工工具に作用する電磁力(加工力)の方向を変えることができる。従って、図1(B)に示すように、永久磁石3,3の配置を変え、図中の水平方向に働く磁場を与えれば、加工力Fは垂直方向に向かうものとなり、導線1直下に配された工作物2の表面に垂直に働く加工力Fを与えることができる。そして、導線1に流す直流電流に、オン・オフないし強弱の時間的変動をなす電流制御を行えば、加工工具(導線1)によって工作物2の加工が可能となる。もちろん、この際の磁場方向としては、加工力Fが工作物2に対して適当な角度で加わるものであれば、図1(B)に示すものに何ら限定されるものではない。また、加工工具(導線1)に対する工作物2の配置位置を変えれば、図1(A)に示すような磁場方向を形成した場合においても、所定の加工を行うことが可能であることは容易に理解できる。   In the above equation, θ is the angle between the magnetic field and the conducting wire. By changing the direction of the magnetic field, it is possible to change the direction of the electromagnetic force (machining force) acting on the machining tool through which a current is passed. Accordingly, as shown in FIG. 1B, if the arrangement of the permanent magnets 3 and 3 is changed and a magnetic field acting in the horizontal direction in the figure is applied, the machining force F is directed in the vertical direction, and is arranged immediately below the conductor 1. A machining force F acting perpendicularly to the surface of the workpiece 2 can be applied. Then, if current control is performed on the direct current flowing through the conducting wire 1 so as to vary on / off or strength with time, the workpiece 2 can be machined by the machining tool (conducting wire 1). Of course, the magnetic field direction at this time is not limited to that shown in FIG. 1B as long as the machining force F is applied to the workpiece 2 at an appropriate angle. Further, if the arrangement position of the workpiece 2 with respect to the machining tool (conductor 1) is changed, it is easy to perform predetermined machining even when the magnetic field direction as shown in FIG. 1A is formed. Can understand.

図2は、静磁場中に、交流電流を流した加工工具を配置した場合における加工原理の説明図である。図1(A)について説明したのと同様に、永久磁石3,3により形成される磁束密度B〔T〕からなる図中垂直方向の静磁場中に置かれた長さL〔m〕の導線1に、交流電流I〔A〕が流れているとき、この導線に働く力の方向は+Y方向と−Y方向で振動する。加工力Fの大きさは上記式(1)に表れる。この場合も、図1について説明したのと同様に、磁場の方向を変化すれば、電流を流した加工工具の振動運動の方向を変えることができる。   FIG. 2 is an explanatory diagram of a machining principle when a machining tool in which an alternating current is passed in a static magnetic field. As described with reference to FIG. 1 (A), a lead wire having a length L [m] placed in a static magnetic field in the vertical direction in the figure, comprising a magnetic flux density B [T] formed by the permanent magnets 3 and 3. First, when an alternating current I [A] is flowing, the direction of the force acting on the conducting wire vibrates in the + Y direction and the -Y direction. The magnitude of the processing force F appears in the above formula (1). In this case as well, as described with reference to FIG. 1, if the direction of the magnetic field is changed, the direction of the oscillating motion of the machining tool through which an electric current is passed can be changed.

図3は、磁場として変動磁場を用い、この変動磁場中に直流電流を流した加工工具を配置した場合における加工原理の説明図である。図3に示すように、交流電流を流した電磁石4、4によって形成される変動磁場中に置かれた長さL〔m〕の導線1に、図示のように直流電流I〔A〕が流れているとき、この導線1に働く力の方向は+Y方向と−Y方向で変動し、導線1に振動する挙動を与えることができる。この振動方向も磁場の置かれた方向に関係する。従って、図1において説明したのと同様に、磁場の方向を調整すれば、電流を流した加工工具の振動方向を制御できる。   FIG. 3 is an explanatory diagram of the machining principle when a variable magnetic field is used as the magnetic field and a machining tool in which a direct current is passed in the variable magnetic field. As shown in FIG. 3, a direct current I [A] flows through a conducting wire 1 having a length L [m] placed in a variable magnetic field formed by electromagnets 4 and 4 through which an alternating current flows. The direction of the force acting on the conducting wire 1 varies in the + Y direction and the −Y direction, and the conducting wire 1 can be vibrated. This vibration direction is also related to the direction in which the magnetic field is placed. Therefore, similarly to the case described with reference to FIG. 1, if the direction of the magnetic field is adjusted, it is possible to control the vibration direction of the machining tool through which a current is passed.

図4は、磁場として回転磁場を用い、この回転磁場中に直流電流を流した加工工具を配置した場合における加工原理の説明図である。図4に示すように、長さL〔m〕の導線1に、直流電流I〔A〕が流れているとき、導線1の半径方向に配置された永久磁石ないし電磁石(図示せず)を導線1の軸回りに回転させ、磁束密度B〔T〕からなる回転磁場を与えると、導線1は、フレミング則に従う回転する電磁力を受けて回転運動をする。従って、例えば、導線1と同軸的に円筒状の工作物5を配置しておけば、その工作物5の内面加工が可能となる。   FIG. 4 is an explanatory diagram of a machining principle when a rotating magnetic field is used as a magnetic field and a machining tool in which a direct current is passed in the rotating magnetic field is arranged. As shown in FIG. 4, when a direct current I [A] flows through a conductor 1 having a length L [m], a permanent magnet or an electromagnet (not shown) arranged in the radial direction of the conductor 1 is connected to the conductor 1. When rotating around the axis of 1 and applying a rotating magnetic field consisting of magnetic flux density B [T], the conducting wire 1 rotates by receiving rotating electromagnetic force according to the Fleming law. Therefore, for example, if a cylindrical workpiece 5 is arranged coaxially with the conductive wire 1, the inner surface of the workpiece 5 can be processed.

図5は、磁石の所定配置により形成される変動磁場中に、直流電流を流した加工工具を配置した場合における加工原理の説明図である。図5に示すように、直流電流I〔A〕が流れる導線1に対し、その側面方向に極性を交互に逆としたN磁石/S磁石3を何箇所かに配置し、N/S方向を変えて変動磁場をかけると、導線1は、図5中の下方に表したように、極性が交互に逆になっている箇所で波動し、導線1が振れる加工挙動を得ることができる。   FIG. 5 is an explanatory diagram of a machining principle when a machining tool in which a direct current flows is arranged in a variable magnetic field formed by a predetermined arrangement of magnets. As shown in FIG. 5, with respect to the conducting wire 1 through which the direct current I [A] flows, N magnets / S magnets 3 having polarities alternately reversed in the side surface direction are arranged in several places, and the N / S direction is When a variable magnetic field is applied by changing, the conductive wire 1 can be waved at places where the polarities are alternately reversed, as shown in the lower part of FIG.

なお、上述した図1〜図5に示す実施形態は、本発明に係る電気・磁気複合加工方法の加工原理の一部を示したものにすぎず、本発明はこれらの例示した実施形態に何ら限定されるものではなく、前述した加工工具に与えられる電流特性に合わせて適当な磁場を加えることにより、加工工具の加工挙動を自由に選ぶことができる。   The above-described embodiments shown in FIGS. 1 to 5 show only a part of the processing principle of the electric / magnetic composite processing method according to the present invention, and the present invention is not limited to these illustrated embodiments. The present invention is not limited, and the machining behavior of the machining tool can be freely selected by applying an appropriate magnetic field in accordance with the current characteristics given to the machining tool.

さらに、本発明においては、上述したように、フレミング則にしたがう電磁力を加工工具に与えることによって工作物の加工を行うが、この電磁力(フレミング力)の変動の周波数を、用いられる加工工具の固有振動数と同じ周波数に設定して変動させることが望ましい。このように、加工工具の固有振動数と共振し得る周波数の変動電磁力を加工工具に作用させると、加工工具は電磁力と共振現象を起こして加工に必要な十分な振幅を生ずるため、電気エネルギーを効率的に使用でき、効果的な微細加工が実現できる。   Furthermore, in the present invention, as described above, a workpiece is machined by applying an electromagnetic force according to the Fleming law to the machining tool, and the frequency of fluctuation of this electromagnetic force (framing force) is used as the machining tool to be used. It is desirable to set and fluctuate the same frequency as the natural frequency. In this way, when a fluctuating electromagnetic force having a frequency that can resonate with the natural frequency of the machining tool is applied to the machining tool, the machining tool generates a sufficient amplitude necessary for machining by causing a resonance phenomenon with the electromagnetic force. Energy can be used efficiently and effective microfabrication can be realized.

本発明において用いられる加工工具の形状としては、上述した図1〜図5に示す実施形態に示されるような線状のものに限られず、板状、線束、巻線コイル型、プレートコイル等の各種の形状とすることが可能であり、また、加工箇所に応じて、加工工具の形状、寸法、硬さを適宜選択することができる。ここで、加工工具の太さとしては、電流値を高める意味では板状等の幅太のものであってもよく、一方、電流密度の許容範囲において細く又は薄肉なものとすることができる。具体的には、例えば、直径2mm以下、より好ましくは0.02〜1mm程度の細線とすることができ、溝や微細穴等の精密加工技術と精密バリ取りの実現が可能となる。さらに、その材質についても、良好な導電性を有する限りにおいて特に限定されるわけではなく、上記したような加工工具の太さに応じて適当な材質を選択することができると共に、工作物の材質及び加工工具の加工挙動に応じた任意の硬さに設定することができる。特に限定されるわけではないが、加工工具を構成する材質としては、例えば、導線の周りに電着ダイヤモンドを付けること等を例示することができる。   The shape of the processing tool used in the present invention is not limited to the linear shape as shown in the above-described embodiment shown in FIGS. 1 to 5, but includes a plate shape, a wire bundle, a winding coil type, a plate coil, and the like. Various shapes can be used, and the shape, size, and hardness of the processing tool can be appropriately selected according to the processing location. Here, the thickness of the processing tool may be a plate-like width in the sense of increasing the current value, and on the other hand, it may be thin or thin within the allowable range of current density. Specifically, for example, it can be a fine wire having a diameter of 2 mm or less, more preferably about 0.02 to 1 mm, and it is possible to realize precision processing technology such as grooves and fine holes and precision deburring. Further, the material is not particularly limited as long as it has good conductivity, and an appropriate material can be selected according to the thickness of the processing tool as described above, and the material of the workpiece. And it can set to the arbitrary hardness according to the processing behavior of a processing tool. Although not particularly limited, examples of the material constituting the processing tool include attaching electrodeposited diamond around the conductive wire.

なお、本発明においては、上記したように加工工具にフレミング則に従う電磁力を与えて運動させ、その運動を利用して工作物の加工を行うが、この加工は、加工工具が直接工作物に接触することによって行われるものであってもよいし、又は、加工工具の周辺に配置された例えば研磨材等の加工媒体に加工工具の運動を伝え、その加工媒体が工作物に接触することによって行われるものであってもよい。もちろん、これらの双方を組み合わせて行うものであってもよい。   In the present invention, as described above, the machining tool is moved by applying electromagnetic force in accordance with the Fleming law, and the workpiece is machined using the movement. In this machining, the machining tool is directly applied to the workpiece. It may be performed by contact, or the movement of the processing tool is transmitted to a processing medium such as an abrasive disposed around the processing tool, and the processing medium comes into contact with the workpiece. It may be performed. Of course, it may be performed by combining both of these.

加工工具が直接工作物に接触して加工を行う実施形態においては、加工工具の少なくとも表面には、耐摩耗性層が形成されていること、又は、砥粒が固定化ないし反固定化されていることが望ましい。耐摩耗性層及び砥粒には、従来公知の各種の材質からなるものを用いることができる。砥粒としては、例えば、JIS表示でA、WA、GC、SA、MA、C、MD、CBNといったものを含む、Al、SiC、ZrO、BC、ダイヤモンド、立方晶窒化ホウ素、MgO、CeO、又はヒュームドシリカ等を例示することができる。また、耐摩耗性層としては、上記した砥粒と同様の材質からなる溶射層、又は、タングステン等の高硬度金属又は合金の溶射層等を、非限定的に例示することができる。 In an embodiment in which the machining tool performs machining by directly contacting the workpiece, an abrasion-resistant layer is formed on at least the surface of the machining tool, or abrasive grains are fixed or anti-fixed. It is desirable that As the wear-resistant layer and the abrasive grains, those made of various conventionally known materials can be used. As an abrasive grain, for example, Al 2 O 3 , SiC, ZrO 2 , B 4 C, diamond, cubic boron nitride including A, WA, GC, SA, MA, C, MD, CBN in JIS display MgO, CeO 2 , fumed silica, or the like can be exemplified. Further, examples of the wear resistant layer include, but are not limited to, a sprayed layer made of the same material as the above-described abrasive grains, or a sprayed layer of a hard metal such as tungsten or an alloy.

また、加工媒体が工作物に接触して加工を行う実施形態においては、加工媒体として、上記した公知の砥粒(研磨材)等を用いることが可能である。なお、加工媒体に粉体状のものを用いることも可能であるが、好ましくは、スラリー状のものや液体中への分散体を用いることが、加工工具の運動を加工媒体に伝播し易いために望ましい。   Moreover, in the embodiment in which the processing medium is in contact with the workpiece to perform processing, the above-described known abrasive grains (abrasive material) or the like can be used as the processing medium. Although it is possible to use a powdery processing medium, it is preferable to use a slurry or a dispersion in a liquid because the movement of the processing tool is easily transmitted to the processing medium. Is desirable.

本発明に係る電気・磁気複合加工方法は、上記したように、加工工具にフレミング則に従う電磁力を与えて運動させ、その運動を利用して工作物の加工を行うことができる。そして、加工工具に印加する電流方向に対する磁場方向を所定方向に変えることで、加工工具の運動方向を任意の方向に変動させることができる。そのため、磁場が作用する場所であれば、工作物の狭小部、間隙部、内表面部又は隠蔽部といった、従来の加工方法では加工困難であった部位の精密加工を好適に行うことができるという利点がある。   As described above, the electric / magnetic combined machining method according to the present invention can move a machining tool by applying an electromagnetic force according to the Fleming law, and can machine the workpiece using the movement. And the movement direction of a processing tool can be fluctuate | varied to arbitrary directions by changing the magnetic field direction with respect to the electric current direction applied to a processing tool to a predetermined direction. Therefore, if it is a place where a magnetic field acts, it is possible to suitably perform precision machining of parts that are difficult to machine by conventional machining methods such as narrow parts, gap parts, inner surface parts or concealed parts of workpieces. There are advantages.

また、さらに、後述する実施例に示すように、加工工具として比較的軟質の工具を用いれば、工作物の自由曲面又は軟質な工作物の表面加工を行うことも可能である。また、後述する実施例に示すように、プレートコイル型の加工工具を用いて、工作物としての金型の型面の精密加工を行うことも可能である。   Furthermore, as shown in the examples described later, if a relatively soft tool is used as the processing tool, it is possible to perform a free-form surface of a workpiece or surface processing of a soft workpiece. Moreover, as shown in the Example mentioned later, it is also possible to perform the precision process of the die surface as a workpiece using a plate coil type processing tool.

このように本発明の電気・磁気複合加工方法は、微細部品の狭い箇所に対する新しい精密研磨技術として各種分野において応用されることが期待でき、例えば、次世代半導体や医療分野の製造プロセス等に用いられるスーパークリーンパイプ等のように、精密研磨が要求される製品やパイプ内のような微小空間の高精度の研磨が要求される製品等の研磨に有効である。また、例えば、ハードディスク装置のハードディスク基板表面のテクスチャ加工への応用が挙げられる。また、例えば、半導体基板に銅配線を形成するダマシン工程で使用される化学的機械的研磨(CMP)の代替工程としての応用が期待できる。ダマシン工程とは、絶縁膜上の配線溝にバリア層と銅めっき層を形成した後、表面の不要な銅を取り除く工程である。もちろん、本発明の電気・磁気複合加工方法は、これら例示した分野における応用に限定されず、各種の用途に広く適用可能である。   As described above, the electric / magnetic composite processing method of the present invention can be expected to be applied in various fields as a new precision polishing technique for narrow portions of fine parts. For example, it is used for manufacturing processes in the next-generation semiconductor and medical fields. It is effective for polishing products such as super clean pipes that require precision polishing and products that require high-precision polishing of a minute space such as in a pipe. In addition, for example, application to texture processing of a hard disk substrate surface of a hard disk device can be mentioned. Further, for example, application as an alternative process of chemical mechanical polishing (CMP) used in a damascene process for forming a copper wiring on a semiconductor substrate can be expected. The damascene process is a process of removing unnecessary copper on the surface after forming a barrier layer and a copper plating layer in a wiring groove on an insulating film. Of course, the electric / magnetic composite machining method of the present invention is not limited to the applications in the fields exemplified above, and can be widely applied to various uses.

以下に、実施例を挙げて本発明を更に具体的に説明する。なお、以下に示す実施例は、本発明の内容の理解を容易とするために示した本発明の具体的な例示の一部に過ぎず、本発明は何らこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the Example shown below is only a part of the specific illustration of this invention shown in order to make the understanding of the content of this invention easy, and this invention is not limited to these at all.

(実施例1:微細管の内面精密仕上げ)
図6に示すように、工作物5である微細管の内部に、加工工具となる導線1を同軸的に配置する。さらに、導線1の半径方向に配置された永久磁石3,3を導線1の軸回りに回転させて回転磁場を形成し、導線1に直流電流を流すと、加工工具(導線1)に、回転運動の加工挙動が生じる。こうした加工挙動によって、微細管の内面精密研磨を実現できる。実際に、図7に示すような実験装置を組み立て、モーターのステーターを用いた回転磁界中に導線を挿入し、導線に直流2Aを通電した結果、導線は50Hzで激しく振動することが分かり、本発明の方法が実現できることを確認した。
(Example 1: Precision finishing of the inner surface of a fine tube)
As shown in FIG. 6, a conductive wire 1 serving as a processing tool is coaxially arranged inside a fine tube that is a workpiece 5. Furthermore, when the permanent magnets 3 and 3 arranged in the radial direction of the conducting wire 1 are rotated around the axis of the conducting wire 1 to form a rotating magnetic field and a direct current is passed through the conducting wire 1, the permanent magnet 3 is rotated to the machining tool (conducting wire 1). The machining behavior of the movement occurs. With such processing behavior, it is possible to achieve fine internal polishing of the fine tube. Actually, the experimental device as shown in Fig. 7 was assembled, the conductor was inserted into the rotating magnetic field using the motor stator, and the direct current 2A was passed through the conductor. As a result, the conductor vibrated vigorously at 50Hz. It was confirmed that the method of the invention can be realized.

(実施例2:微細管の内面精密仕上げ)
図8に示すように、工作物5である微細管の内部に、加工工具となる導線1を同軸的に配置する。さらに、導線1の半径方向に固定的に永久磁石3,3を配置して静磁場を形成する。交流電流を導線1に流すと、静磁場の中で脈動する電磁力を受け、導線1には図8の下方に表すような振動的な加工挙動が生じる。こうした加工挙動によって、微細管の内面精密研磨を実現できる。なお、この加工挙動は、導線1周辺、すなわち微細管内部に配されたスラリー状ないし液状の研磨剤、又は磁性流体等の流動を促進でき、微細管内面の精密加工を実現し易くなる特徴をもつ。
(Example 2: Precision finishing of the inner surface of a fine tube)
As shown in FIG. 8, a conducting wire 1 serving as a processing tool is coaxially arranged inside a fine tube that is a workpiece 5. Furthermore, permanent magnets 3 and 3 are fixedly arranged in the radial direction of the conducting wire 1 to form a static magnetic field. When an alternating current is passed through the conducting wire 1, an electromagnetic force pulsating in a static magnetic field is received, and the conducting wire 1 has a vibrational machining behavior as shown in the lower part of FIG. With such processing behavior, it is possible to achieve fine internal polishing of the fine tube. This processing behavior is characterized in that it can promote the flow of slurry-like or liquid abrasive or magnetic fluid disposed around the conductor 1, that is, inside the micropipe, and facilitates precise machining of the inner surface of the micropipe. Have.

(実施例3:面の精密仕上げ−外面研磨)
自由曲面を有する工作物、又は柔らかい工作物2の表面仕上げについては、このような工作物の表面に局部的に接触することなく、比較的広い領域に追従性よく均一に接触することができるように、図9に示すように、所定面積以上、例えば1mm以上の面積を有するフレキシブルな板状加工工具6を用いる。こうした板状加工工具を用い、且つ電磁力(加工力)を制御することによって、工作物表面の精密加工を実現する。なお、板状加工工具6の作動原理としては、先に、図1〜3ないし図5等において説明したもののいずれかを利用することが可能である。
(Example 3: Precision finishing of surface-external polishing)
As for the surface finishing of a workpiece having a free-form surface or a soft workpiece 2, it is possible to uniformly contact a relatively wide area with good follow-up without locally contacting the surface of such a workpiece. Furthermore, as shown in FIG. 9, a flexible plate-like processing tool 6 having a predetermined area or more, for example, an area of 1 mm 2 or more is used. By using such a plate-like processing tool and controlling the electromagnetic force (machining force), precise machining of the workpiece surface is realized. In addition, as an operation principle of the plate-like processing tool 6, any of those described above with reference to FIGS. 1 to 3 and the like can be used.

また、図10に示すように、所定面積以上、例えば、1mm以上の面積となるフレキシブルな導線束7を用いてもよく、電磁力(加工力)を制御することによって、自由曲面を有する工作物、又は柔らかい工作物2の表面精密加工が実現できる。 Further, as shown in FIG. 10, a flexible wire bundle 7 having a predetermined area or more, for example, an area of 1 mm 2 or more may be used, and a machine having a free curved surface by controlling electromagnetic force (working force). Surface precision machining of a workpiece or soft workpiece 2 can be realized.

(実施例4:内面研磨)
図11に示すような比較的口径の大きな工作物2の内面の研磨を行う場合には、加工工具として、例えば図11(A)及び図11(C)に示すようなコイル工具8を用いて、これに図11(C)に示すように直流電流を流す。そして、工作物2の外側に配置した磁石3で変動磁場又は回転磁場を形成し、コイル工具8に電磁力を与えることによって内面研磨加工を効率よく実現できる。また、図11(B)に示すような導線束工具7を用いて、これに直流電流を流す。そして、工作物2の内側と外側に配置した磁石3,3で変動磁場又は回転磁場を形成し、導線束工具7に電磁力を与えることによって内面研磨加工を効率よく実現できる。
(Example 4: Internal polishing)
When polishing the inner surface of the workpiece 2 having a relatively large diameter as shown in FIG. 11, for example, a coil tool 8 as shown in FIGS. 11A and 11C is used as a processing tool. Then, a direct current is allowed to flow as shown in FIG. Then, the inner surface polishing process can be efficiently realized by forming a fluctuating magnetic field or a rotating magnetic field with the magnet 3 arranged outside the workpiece 2 and applying an electromagnetic force to the coil tool 8. Also, a direct current is passed through the wire bundle tool 7 as shown in FIG. Then, the inner surface polishing process can be efficiently realized by forming a variable magnetic field or a rotating magnetic field with the magnets 3 and 3 disposed inside and outside the workpiece 2 and applying an electromagnetic force to the wire bundle tool 7.

(実施例5:金型研磨)
工作物2としての金型の型面の研磨を行う場合には、図12に示すように、金型の型面に応じた様々な形のフレキシブルなプレートコイル9を加工工具として用い、変動磁場中に置く。プレートコイル9に直流電流を流すと、コイル面の垂直方向に磁場が発生する。プレートコイル9で発生した磁場は変動磁場の中にいるから、吸引、反発の繰り返し運動をする。プレートコイル9の吸引、反発によってプレートコイルに振動運動が発生することによって、工作物2である金型にプレートコイルを繰り返し接触させることができ、精密加工を実現することができる。この実施例によれば、比較的狭い箇所で磁場を発生し易く、コイルはいくらでも薄く小さくできるので、この実施例の方法は、微細金型の研磨加工に有効であると考えられる。
(Example 5: Mold polishing)
When polishing the mold surface of the mold as the workpiece 2, as shown in FIG. 12, a flexible plate coil 9 having various shapes corresponding to the mold surface of the mold is used as a processing tool, and a variable magnetic field is used. Put in. When a direct current is passed through the plate coil 9, a magnetic field is generated in the direction perpendicular to the coil surface. Since the magnetic field generated by the plate coil 9 is in a variable magnetic field, it repeatedly moves in a suction and repulsion manner. Since the plate coil 9 is vibrated by suction and repulsion of the plate coil 9, the plate coil can be repeatedly brought into contact with the mold that is the workpiece 2, and precise machining can be realized. According to this embodiment, a magnetic field is easily generated in a relatively narrow portion, and the coil can be made thin and small as much as possible. Therefore, the method of this embodiment is considered to be effective for polishing a fine mold.

(実施例6:隙間加工)
工作物2の隙間加工に関しても、実施例5と同様に、加工工具としてプレートコイル9を用いることで容易に行うことが可能である。すなわち、図13に示すように、プレートコイル9を工作物2の隙間に入れ、変動磁場中に置く。プレートコイル9に直流電流を流すと、プレートコイル9の先端に磁場が発生する。プレートコイル9の磁場は変動磁界中で、吸引、反発で変動磁界と同周期に変化する。このようにして、プレートコイル9に振動運動が発生することによって、隙間を形成する工作物2の両側面にプレートコイル9を繰り返し接触させ、精密加工を実現することができる。この実施例によれば、特に、小さい箇所に磁場をかけ易く、プレートコイル9はいくらでも薄くできるので、この実施例の方法は微細な隙間加工に有効であると考えられる。
(Example 6: Clearance processing)
The clearance machining of the workpiece 2 can be easily performed by using the plate coil 9 as a machining tool as in the fifth embodiment. That is, as shown in FIG. 13, the plate coil 9 is placed in the gap between the workpieces 2 and placed in a variable magnetic field. When a direct current is passed through the plate coil 9, a magnetic field is generated at the tip of the plate coil 9. The magnetic field of the plate coil 9 changes in the same period as the changing magnetic field by attraction and repulsion in the changing magnetic field. In this way, when the plate coil 9 is vibrated, the plate coil 9 is repeatedly brought into contact with both side surfaces of the workpiece 2 forming a gap, thereby realizing precision machining. According to this embodiment, a magnetic field can be easily applied to a small portion, and the plate coil 9 can be made as thin as possible. Therefore, it is considered that the method of this embodiment is effective for fine gap processing.

本発明に係る電気・磁気複合加工方法の一実施形態における加工原理の説明図である。It is explanatory drawing of the processing principle in one Embodiment of the electric / magnetic composite processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の別の実施形態における加工原理の説明図である。It is explanatory drawing of the processing principle in another embodiment of the electric / magnetic composite processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法のさらに別の実施形態における加工原理の説明図である。It is explanatory drawing of the process principle in another embodiment of the electric / magnetic composite processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法のさらに別の実施形態における加工原理の説明図である。It is explanatory drawing of the process principle in another embodiment of the electric / magnetic composite processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法のさらに別の実施形態における加工原理の説明図である。It is explanatory drawing of the process principle in another embodiment of the electric / magnetic composite processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の一実施例として行う微細管の内面加工に用いた装置構成の説明図である。It is explanatory drawing of the apparatus structure used for the inner surface process of the microtube performed as one Example of the electrical / magnetic compound processing method which concerns on this invention. 同実施例において、用いた実験装置を示す図である。It is a figure which shows the experimental apparatus used in the Example. 本発明に係る電気・磁気複合加工方法の別の実施例として行う微細管の内面加工に用いた装置構成の説明図である。It is explanatory drawing of the apparatus structure used for the inner surface process of the microtube performed as another Example of the electrical / magnetic compound processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の一実施例における外表面加工方法に用いた装置構成の説明図である。It is explanatory drawing of the apparatus structure used for the outer surface processing method in one Example of the electrical / magnetic compound processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の同実施例における外表面加工方法に用いた別の装置構成の説明図である。It is explanatory drawing of another apparatus structure used for the outer surface processing method in the Example of the electrical / magnetic compound processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の一実施例における内表面加工方法に用いた各装置構成の説明図である。It is explanatory drawing of each apparatus structure used for the inner surface processing method in one Example of the electrical / magnetic compound processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の一実施例における金型表面加工方法に用いた装置構成の説明図である。It is explanatory drawing of the apparatus structure used for the metal mold | die surface processing method in one Example of the electrical / magnetic compound processing method which concerns on this invention. 本発明に係る電気・磁気複合加工方法の一実施例における隙間加工方法に用いた装置構成の説明図である。It is explanatory drawing of the apparatus structure used for the clearance gap processing method in one Example of the electrical / magnetic compound processing method which concerns on this invention.

符号の説明Explanation of symbols

1 導線(加工工具)
2 工作物
3 磁石
4 電磁石
5 工作物(微細管)
6 板状加工工具(加工工具)
7 導線束(加工工具)
8 コイル工具(加工工具)
9 プレートコイル(加工工具)
1 Lead wire (machining tool)
2 Workpiece 3 Magnet 4 Electromagnet 5 Workpiece (fine tube)
6 Plate processing tool (machining tool)
7 Conductor bundle (processing tool)
8 Coil tool (machining tool)
9 Plate coil (processing tool)

Claims (15)

電流を流した加工工具を磁場中に配して当該加工工具にフレミングの法則に従う電磁力を与え、当該電磁力を変動させて前記加工工具に運動を与え、当該運動を利用して工作物の加工を行うことを特徴とする電気・磁気複合加工方法。   A machining tool through which an electric current is passed is placed in a magnetic field, an electromagnetic force is applied to the machining tool in accordance with Fleming's law, the electromagnetic force is varied to impart motion to the machining tool, and the motion is used to An electric / magnetic composite processing method characterized by performing processing. 前記電磁力の変動が、前記電流の変化により行われることを特徴とする請求項1に記載の電気・磁気複合加工方法。   The electric / magnetic combined machining method according to claim 1, wherein the fluctuation of the electromagnetic force is performed by the change of the current. 前記電磁力の変動が、磁場の変化により行われることを特徴とする請求項1に記載の電気・磁気複合加工方法。   2. The combined electrical and magnetic processing method according to claim 1, wherein the electromagnetic force is changed by a magnetic field change. 前記加工工具の少なくとも表面には、耐摩耗性層が形成されていることを特徴とする請求項1〜3のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic combined machining method according to claim 1, wherein a wear-resistant layer is formed on at least a surface of the machining tool. 前記加工工具の表面には、砥粒が固定されていることを特徴とする請求項1〜4のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic combined machining method according to claim 1, wherein abrasive grains are fixed to a surface of the machining tool. 前記加工工具は、遊離研磨材の存在下で用いられることを特徴とする請求項1〜4のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic composite machining method according to claim 1, wherein the machining tool is used in the presence of a loose abrasive. 前記加工工具は、前記工作物の加工箇所に応じて、形状、寸法及び硬さの少なくともいずれかが選定されることを特徴とする請求項1〜6のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic component according to any one of claims 1 to 6, wherein at least one of a shape, a size, and a hardness is selected as the processing tool according to a processing portion of the workpiece. Compound processing method. 前記加工工具は、前記工作物に対する吸引・反発運動、回転運動、振動運動、又は波動運動によって当該工作物を加工することを特徴とする請求項1〜7のいずれか1項に記載の電気・磁気複合加工方法。   8. The electric machine according to claim 1, wherein the machining tool processes the workpiece by suction / repulsion motion, rotational motion, vibration motion, or wave motion with respect to the workpiece. Magnetic composite processing method. 前記工作物の狭小部、間隙部、内表面部又は隠蔽部の精密加工に用いられることを特徴とする請求項1〜8のいずれか1項に記載の電気・磁気複合加工方法。   9. The electric / magnetic combined machining method according to claim 1, wherein the machining method is used for precision machining of a narrow part, a gap part, an inner surface part or a concealing part of the workpiece. 前記加工工具として比較的軟質の工具を用い、前記工作物の自由曲面又は軟質な工作物の表面加工を行うことを特徴とする請求項1〜8のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic composite according to any one of claims 1 to 8, wherein a relatively soft tool is used as the processing tool, and a free-form surface of the workpiece or a surface processing of a soft workpiece is performed. Processing method. 前記工作物が金型であり、プレートコイル型の加工工具を用いて、当該金型面の精密加工を行うことを特徴とする請求項1〜8のいずれか1項に記載の電気・磁気複合加工方法。   The electrical / magnetic composite according to any one of claims 1 to 8, wherein the workpiece is a mold, and precision processing of the mold surface is performed using a plate coil type processing tool. Processing method. 前記加工工具に波動的運動を与え、前記遊離研磨材の流動特性を促進して加工を行うことを特徴とする請求項6〜8のいずれか1項に記載の電気・磁気複合加工方法。   The electric / magnetic combined machining method according to any one of claims 6 to 8, wherein the machining tool is subjected to a wave motion to promote flow characteristics of the free abrasive material. 前記加工工具にフレミングの法則に従う電磁力を与える電流の波形を交流又はパルス波形とし、当該導電工具の固有振動数と共振し得る周波数の変動電磁力を前記導電工具に作用させ、与えられた変動電磁力により前記導電工具に共振現象を生じさせて振幅の大きな振動を起こしながら加工を行うことを特徴とする請求項1〜12のいずれか1項に記載の電気・磁気複合加工方法。   A waveform of a current that gives an electromagnetic force in accordance with Fleming's law to the machining tool is set to an alternating current or a pulse waveform, and a frequency fluctuation electromagnetic force that can resonate with the natural frequency of the conductive tool is applied to the conductive tool. 13. The electric / magnetic combined machining method according to claim 1, wherein machining is performed while causing a resonance phenomenon in the conductive tool by electromagnetic force and causing vibration with a large amplitude. 請求項1〜13のいずれか1項に記載の電気・磁気複合加工方法に用いられる電気・磁気複合加工装置であって、通電可能な加工工具と、当該加工工具に電流を流す電源と、前記加工工具が通電された際に当該加工工具にフレミングの法則に従う電磁力を与え得る磁場を形成する磁場形成手段と、を有することを特徴とする電気・磁気複合加工装置。   An electrical / magnetic composite machining apparatus used in the electrical / magnetic composite machining method according to any one of claims 1 to 13, wherein the machining tool can be energized, a power source for supplying current to the machining tool, An electric / magnetic combined machining apparatus, comprising: a magnetic field forming unit configured to form a magnetic field capable of applying an electromagnetic force in accordance with Fleming's law to the machining tool when the machining tool is energized. 請求項1〜13のいずれか1項に記載の電気・磁気複合加工方法に用いられる加工工具であって、通電可能に形成されていることを特徴とする加工工具。   A machining tool used in the electric / magnetic composite machining method according to claim 1, wherein the machining tool is formed to be energized.
JP2005288894A 2005-09-30 2005-09-30 Electrical and magnetic combined machining method Active JP4843780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288894A JP4843780B2 (en) 2005-09-30 2005-09-30 Electrical and magnetic combined machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288894A JP4843780B2 (en) 2005-09-30 2005-09-30 Electrical and magnetic combined machining method

Publications (2)

Publication Number Publication Date
JP2007098490A true JP2007098490A (en) 2007-04-19
JP4843780B2 JP4843780B2 (en) 2011-12-21

Family

ID=38025936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288894A Active JP4843780B2 (en) 2005-09-30 2005-09-30 Electrical and magnetic combined machining method

Country Status (1)

Country Link
JP (1) JP4843780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637883A (en) * 2018-05-21 2018-10-12 浙江工业大学 A kind of continually changing liquid metal burnishing device of electric field and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106312796B (en) * 2016-10-20 2018-05-15 广东工业大学 Two-sided planarization system of processing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256969A (en) * 1993-03-05 1994-09-13 Mitsubishi Alum Co Ltd Inside surface-ground pipe and method and device for grinding inside surface and device
JPH07227755A (en) * 1994-02-17 1995-08-29 Kyoei Denko Kk Method and device for treating surface using magnetic force
JPH07282735A (en) * 1994-04-01 1995-10-27 Toshiba Corp Cathode structure for electron tube operating in magnetic field and its manufacture
JPH0899224A (en) * 1994-10-04 1996-04-16 Nisshin Steel Co Ltd Electrolytic magnetic polishing method of pipe inside surface
JPH11195366A (en) * 1998-01-07 1999-07-21 Toshiba Electronic Engineering Corp Cathode structure, electron tube and manufacture of cathode structure
JP2001062700A (en) * 1999-08-31 2001-03-13 Nippei Toyama Corp Wire saw
JP2003117798A (en) * 2002-09-06 2003-04-23 Ricoh Co Ltd Wire tool
JP2003165050A (en) * 2001-11-29 2003-06-10 Sony Corp Cmp unit and polishing method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256969A (en) * 1993-03-05 1994-09-13 Mitsubishi Alum Co Ltd Inside surface-ground pipe and method and device for grinding inside surface and device
JPH07227755A (en) * 1994-02-17 1995-08-29 Kyoei Denko Kk Method and device for treating surface using magnetic force
JPH07282735A (en) * 1994-04-01 1995-10-27 Toshiba Corp Cathode structure for electron tube operating in magnetic field and its manufacture
JPH0899224A (en) * 1994-10-04 1996-04-16 Nisshin Steel Co Ltd Electrolytic magnetic polishing method of pipe inside surface
JPH11195366A (en) * 1998-01-07 1999-07-21 Toshiba Electronic Engineering Corp Cathode structure, electron tube and manufacture of cathode structure
JP2001062700A (en) * 1999-08-31 2001-03-13 Nippei Toyama Corp Wire saw
JP2003165050A (en) * 2001-11-29 2003-06-10 Sony Corp Cmp unit and polishing method using the same
JP2003117798A (en) * 2002-09-06 2003-04-23 Ricoh Co Ltd Wire tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637883A (en) * 2018-05-21 2018-10-12 浙江工业大学 A kind of continually changing liquid metal burnishing device of electric field and method

Also Published As

Publication number Publication date
JP4843780B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4423425B2 (en) Vibration magnetic polishing method and apparatus, and tool
Khan et al. Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper
JP4139906B2 (en) Polishing method and magnetic polishing apparatus for thin plate with opening pattern
JP6601909B2 (en) Magnetic polishing apparatus and magnetic polishing method
US5404680A (en) Method for polishing slight area of surface of workpiece and tool therefor
JPH0777704B2 (en) Micro polishing method
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2006224227A (en) Magnetic polishing method
JP4843780B2 (en) Electrical and magnetic combined machining method
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JP3761791B2 (en) Magnetically assisted polishing method and apparatus for bent pipe inner surface
JP2007245325A (en) Ultrasonic grinding device and grindstone for use therein
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JP2007045878A (en) Magnetic abrasive grain
JP2007167969A (en) Scratch machining method and machining device
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
JP4185985B2 (en) Magnetically assisted processing
JPH07136925A (en) Grinding method and grinding device
WO2011162893A2 (en) Finishing technique
JP2005177894A (en) Magnetic polishing method and magnetic polishing device
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
Singh et al. Magnetic abrasive finishing process
JP3027673B2 (en) Surface treatment method using moving magnetic field
RU2764538C1 (en) Method for combined processing of complex channels and apparatus for implementation thereof
JP2006088283A (en) Method and device for polishing and coating mirror surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150