JP3027673B2 - Surface treatment method using moving magnetic field - Google Patents

Surface treatment method using moving magnetic field

Info

Publication number
JP3027673B2
JP3027673B2 JP21224993A JP21224993A JP3027673B2 JP 3027673 B2 JP3027673 B2 JP 3027673B2 JP 21224993 A JP21224993 A JP 21224993A JP 21224993 A JP21224993 A JP 21224993A JP 3027673 B2 JP3027673 B2 JP 3027673B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
polishing
magnetic material
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21224993A
Other languages
Japanese (ja)
Other versions
JPH0740226A (en
Inventor
敏志己 飯塚
義憲 新保
武男 進村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoei Denko Co Ltd
Original Assignee
Kyoei Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoei Denko Co Ltd filed Critical Kyoei Denko Co Ltd
Priority to JP21224993A priority Critical patent/JP3027673B2/en
Publication of JPH0740226A publication Critical patent/JPH0740226A/en
Application granted granted Critical
Publication of JP3027673B2 publication Critical patent/JP3027673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は移動磁場による表面処理
方法に係り、特に、非磁性体の表面を高効率に研磨する
ための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method using a moving magnetic field, and more particularly to a technique for polishing a surface of a non-magnetic material with high efficiency.

【0002】[0002]

【従来の技術】従来の磁気研磨方法としては、例えば異
なる磁極を対向させた一組の永久磁石を非磁性管の両側
に配置し、非磁性管の内面上に磁性砥粒を供給し又は管
内に磁性体研磨工具を配置しながら永久磁石又は非磁性
管を回転させることにより、非磁性管の内面を研磨する
方法がある。この方法では、管の周囲に異なる磁極を内
向させた4以上の永久磁石を交互に配置する場合もあ
る。一方、非磁性管の周りに複数の電磁コイルを配置
し、電磁コイルに異なる位相の交流電力を供給すること
により、非磁性管の内部に回転磁界を形成し、この回転
磁界により磁性砥粒や磁性体研磨工具を回転駆動する方
法もある。
2. Description of the Related Art As a conventional magnetic polishing method, for example, a set of permanent magnets having different magnetic poles facing each other is disposed on both sides of a non-magnetic tube, and magnetic abrasive grains are supplied onto the inner surface of the non-magnetic tube or the inside of the tube is supplied. There is a method in which a permanent magnet or a non-magnetic tube is rotated while a magnetic material polishing tool is arranged, thereby polishing the inner surface of the non-magnetic tube. In this method, four or more permanent magnets having different magnetic poles inward may be alternately arranged around the tube. On the other hand, a plurality of electromagnetic coils are arranged around the non-magnetic tube, and alternating-current power of different phases is supplied to the electromagnetic coil to form a rotating magnetic field inside the non-magnetic tube. There is also a method of rotating and driving a magnetic polishing tool.

【0003】[0003]

【発明が解決しようとする課題】上記の磁気研磨方法は
機械的研磨の困難な非磁性管の内面を非接触で研磨でき
るので大変好ましいものであるが、加工量を確保するに
はある程度大きな磁力を印加する必要がある。また、研
磨量や表面粗さの均一性を確保するには、非磁性管の軸
線方向の移動サイクルや移動速度等を多数回の試行を重
ねて調整する必要がある。そこで、本発明は上記現状に
鑑み、磁力の増大以外の方法で従来よりも加工量を増加
させ、しかも研磨量や表面粗さの均一性を高めることの
できる表面処理方法を提供することを目的とする。
The above-mentioned magnetic polishing method is very preferable because the inner surface of the non-magnetic tube, which is difficult to mechanically polish, can be polished in a non-contact manner. Must be applied. Further, in order to ensure the uniformity of the polishing amount and the surface roughness, it is necessary to adjust the moving cycle and the moving speed of the non-magnetic tube in the axial direction by repeating a number of trials. In view of the above situation, it is an object of the present invention to provide a surface treatment method capable of increasing the amount of processing compared to the conventional method by a method other than increasing the magnetic force and increasing the uniformity of the polishing amount and the surface roughness. And

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が講じた手段は、複数の磁極を非磁性体の周囲
において相互に内側に向き合うように配設し、非磁性体
の内表面上に磁性材を付与した状態で前記磁極を非磁性
体に対して相対的に移動させることにより非磁性体の表
面を処理する移動磁場による表面処理方法であって、複
数の前記磁極を相互に間隔を隔てて前記非磁性体の周囲
に配置するとともに、複数の前記磁極を全て同磁極とし
たことを特徴とする。また、前記非磁性体は非磁性管で
あり、複数の前記磁極を非磁性管に対しその軸線を中心
にして相対的に回転させながら、非磁性管の軸線方向へ
移動させることが好ましい。さらに、前記磁極は、非磁
性体を挿通する貫通孔を備えた回転部材に対し前記貫通
孔の内周面上に取り付けられた永久磁石の磁極であるこ
とが望ましい。
Means taken by the present invention to achieve the above object is to dispose a plurality of magnetic poles so as to face each other inward around a non-magnetic material, A surface treatment method using a moving magnetic field for treating a surface of a non-magnetic material by moving the magnetic pole relative to a non-magnetic material in a state where a magnetic material is provided on the surface, wherein a plurality of the magnetic poles are interconnected. The magnetic poles are arranged around the non-magnetic body at an interval, and the plurality of magnetic poles are all the same. Preferably, the non-magnetic member is a non-magnetic tube, and the plurality of magnetic poles are moved in the axial direction of the non-magnetic tube while rotating relative to the non-magnetic tube about the axis thereof. Further, it is preferable that the magnetic pole is a magnetic pole of a permanent magnet mounted on an inner peripheral surface of the through-hole with respect to a rotating member having a through-hole through which a nonmagnetic material is inserted.

【0005】[0005]

【作用】本発明の特徴は同磁極を対向又は隣接させた磁
極配置により形成される磁場(以下、反発磁場とい
う。)にあり、異なる磁極を対向又は隣接させた従来の
配置により形成される磁場(以下、吸引磁場という。)
に対して、以下のような差があると考えられる。一般に
磁性材に作用する力は磁場強度と磁場の変化率との積で
表される。加工部位における磁場強度は吸引磁場の方が
一般に大きいと考えられるが、磁場の変化率は反発磁場
の方がはるかに大きい。その結果、両者の積で表される
加工圧は反発磁場の方が大きくなる。また、磁束分布の
変化により、非磁性体の表面近傍に磁性材が集中すると
ともに磁性材の接触面積も増大するため、磁性材の非磁
性体表面に対する作用量と作用面積が増大する。さら
に、磁場を非磁性体表面に対して移動させる場合、磁性
材には磁気力と接触抵抗が作用する。加工時において
は、磁性材は接触抵抗により非磁性体表面に引きずられ
て移動する現象を生じ、磁性材が非磁性体表面とともに
移動するようになると加工は行われなくなる。この接触
抵抗に抗するものは磁気力における非磁性体表面の接線
方向分力であり、この接線方向分力についても、上記加
工圧と同様の理由により反発磁場の方が大きいと考えら
れる。
A feature of the present invention resides in a magnetic field formed by a magnetic pole arrangement in which the same magnetic poles are opposed or adjacent to each other (hereinafter referred to as a repulsive magnetic field), and a magnetic field formed by a conventional arrangement in which different magnetic poles are opposed or adjacent to each other. (Hereinafter, it is called an attraction magnetic field.)
Is considered to have the following differences. Generally, the force acting on a magnetic material is represented by the product of the magnetic field strength and the rate of change of the magnetic field. The magnetic field strength at the processing site is generally considered to be larger in the case of the attracted magnetic field, but the rate of change of the magnetic field is much larger in the case of the repelling magnetic field. As a result, the processing pressure represented by the product of the two is larger in the repulsive magnetic field. In addition, the change in the magnetic flux distribution causes the magnetic material to be concentrated near the surface of the non-magnetic material and also increases the contact area of the magnetic material. Further, when a magnetic field is moved relative to the surface of a non-magnetic material, a magnetic force and a contact resistance act on the magnetic material. At the time of processing, a phenomenon occurs in which the magnetic material is dragged and moved to the surface of the non-magnetic material due to contact resistance, and the processing is stopped when the magnetic material moves together with the surface of the non-magnetic material. What resists this contact resistance is the tangential component of the surface of the non-magnetic material due to the magnetic force, and it is considered that the repulsive magnetic field is also larger for this tangential component for the same reason as the processing pressure.

【0006】[0006]

【実施例】次に図面を参照して本発明に係る移動磁場に
よる表面処理方法の実施例を説明する。図1に示すよう
に、非磁性管1を回転部材2に形成された断面円形の貫
通孔2a内に挿通し、貫通孔2aの内周面上における対
向位置に磁性体の支持ブロック3A,3Bを固着する。
この支持ブロック3A,3Bの端面上に永久磁石4A,
4Bを貼着し、その磁極面を相互に対向させる。従来の
研磨方法では永久磁石4Aと4Bは、互いに逆極(例え
ばN極とS極)を向けて取付けられていたが、本実施例
では永久磁石4Aと4Bは同極を対向させた状態に取付
けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a surface treatment method using a moving magnetic field according to the present invention will be described with reference to the drawings. As shown in FIG. 1, a non-magnetic tube 1 is inserted into a through-hole 2a having a circular cross section formed in a rotating member 2, and support blocks 3A and 3B of magnetic material are placed at opposing positions on the inner peripheral surface of the through-hole 2a. Is fixed.
On the end faces of the support blocks 3A, 3B, permanent magnets 4A,
4B, and the magnetic pole faces thereof are opposed to each other. In the conventional polishing method, the permanent magnets 4A and 4B are mounted with their opposite poles (eg, N pole and S pole) facing each other, but in the present embodiment, the permanent magnets 4A and 4B are in a state where the same poles face each other. Mounted.

【0007】回転部材2は図示しない支持フレームに回
転自在に支持され、同じく支持フレームに取付けられた
駆動モータにより回転させられるようになっている。支
持フレーム自体は、非磁性管1の延長方向(非磁性管1
は後述のスラリーを供給するために好ましくは垂直方向
に支持される。)に沿って設けられたガイドにより移動
するようになっている。
The rotating member 2 is rotatably supported by a support frame (not shown), and is rotated by a drive motor also mounted on the support frame. The support frame itself extends in the direction in which the non-magnetic tube 1 extends (the non-magnetic tube 1
Is preferably supported in the vertical direction to supply the slurry described below. ) Is moved by a guide provided along the line.

【0008】図2は上記構成による磁気研磨を直径25
mm、肉厚1mmのアルミニウムパイプに施した場合の
表面粗さと加工量を、異極を対向させた従来例(吸引磁
場)及び同極を対向させた本実施例(反発磁場)につい
て示したものである。磁石とパイプ外面の間隔(ギャッ
プ量)は1.8mm、両例ともに同一の希土類磁石を用
い、パイプ中央で計測した透過磁力は従来例で4500
G、本実施例で3500Gであった。
FIG. 2 shows that the magnetic polishing with the above-described structure is performed by using a diameter of 25 mm.
The surface roughness and the processing amount when applied to an aluminum pipe with a thickness of 1 mm and a thickness of 1 mm are shown for the conventional example (attraction magnetic field) in which different poles are opposed and the present embodiment (repulsive magnetic field) in which the same poles are opposed. It is. The gap (gap amount) between the magnet and the outer surface of the pipe is 1.8 mm, the same rare earth magnet is used in both cases, and the transmitted magnetic force measured at the center of the pipe is 4500 in the conventional example.
G, 3500 G in this example.

【0009】用いた磁性砥粒は#1200のパウダーで
あり、このパウダー200gを2000ccのオイル中
に分散させたものをスラリーとして5cc/minの割
合でパイプ内に供給した。回転部材2の回転数は150
0rpm、支持フレームは非磁性管の軸線方向に周期1
Hz・ストローク28mmで往復動させながら、一方に
50mm/minの移動速度で移動させた。
The magnetic abrasive used was # 1200 powder, and 200 g of this powder dispersed in 2000 cc of oil was fed into a pipe at a rate of 5 cc / min as a slurry. The rotation speed of the rotating member 2 is 150
0 rpm, the support frame has a period of 1 in the axial direction of the non-magnetic tube.
While being reciprocated at an Hz stroke of 28 mm, one was moved at a moving speed of 50 mm / min.

【0010】図2に示すように、加工量は本実施例と従
来例の双方ともに加工時間に比例して増加しているが、
本実施例では従来例に対して約4倍というきわめて大き
な加工量が得られている。一方、表面粗さについては両
者間には有意の差が認められない。これは、本実施例の
加工量は大きいので処理前の表面粗さは迅速に除去され
ているはずであるが、粗粒研磨材を用いたためと被加工
物が軟質のアルミパイプであるためであると考えられ
る。
As shown in FIG. 2, the amount of processing increases in both the present embodiment and the conventional example in proportion to the processing time.
In this embodiment, an extremely large processing amount of about four times that of the conventional example is obtained. On the other hand, no significant difference is observed between the two. This is because the surface roughness before processing should have been quickly removed because the processing amount of this example was large, but because the coarse-grained abrasive was used and the workpiece was a soft aluminum pipe. It is believed that there is.

【0011】次に、図3(a)に示す装置を用いて、従
来例と本実施例による加工圧の測定を行った。2枚のス
テンレス鋼板(SUS304)10a,10bを上板1
1の固定部11aと下板12の固定部12aに取付け、
互に平行に配置する。ステンレス鋼板10aの表面上に
は歪ゲージ13を形成する。上板11の下面と下板12
の上面には永久磁石14A,14Bを対向して取付け、
永久磁石14Aと14Bに挟まれたステンレス鋼板(S
US304)10aと10bの間に鉄粉15を供給し
た。
Next, using the apparatus shown in FIG. 3A, the processing pressure was measured according to the conventional example and the present embodiment. Two stainless steel plates (SUS304) 10a, 10b
1 fixed part 11a and fixed part 12a of lower plate 12,
They are arranged parallel to each other. A strain gauge 13 is formed on the surface of the stainless steel plate 10a. Lower surface of upper plate 11 and lower plate 12
Permanent magnets 14A and 14B are attached to the upper surface of
Stainless steel plate (S) sandwiched between permanent magnets 14A and 14B
(US304) Iron powder 15 was supplied between 10a and 10b.

【0012】上記構成において、ステンレス鋼板10
a,10bの外面と磁極面との間隔(ギャップ量)gp
を変えて、永久磁石14A,14Bの対向磁極を異極に
した場合(従来例)と同極にした場合(本実施例)とで
歪ゲージ13の出力を各々測定した。ここで、永久磁石
14Aと14Bを吸引配置とした場合には、図3(b)
に示すように鉄粉は両ステンレス鋼板10aと10bの
間に縦に分布するが、永久磁石14Aと14Bを反発配
置とした場合には、図3(c)に示すように鉄粉は両ス
テンレス鋼板10aと10bの内面上にそれぞれが分離
し、広がった状態で分布する。反発配置の場合における
鉄粉の平面分布は、図3(d)に示すように、磁極の直
上位置を中心として周囲に分散配置されている。
In the above structure, the stainless steel plate 10
a, gap (gap amount) gp between the outer surface of 10b and the pole face
The output of the strain gauge 13 was measured when the opposite magnetic poles of the permanent magnets 14A and 14B were changed to different polarities (conventional example) and when the permanent magnets 14A and 14B were set to the same polarity (this embodiment). Here, when the permanent magnets 14A and 14B are arranged in the attraction position, FIG.
As shown in FIG. 3, iron powder is distributed vertically between the stainless steel plates 10a and 10b. However, when the permanent magnets 14A and 14B are arranged in a repulsive arrangement, as shown in FIG. Each is separated on the inner surfaces of the steel plates 10a and 10b and distributed in a spread state. As shown in FIG. 3D, the planar distribution of the iron powder in the case of the repulsion arrangement is distributed around the position immediately above the magnetic pole.

【0013】上記測定によれば、図4に示すように、吸
引磁場の加工圧よりも反発磁場による加工面への圧力の
方が全体として大きく、しかもギャップ量が増大するに
従って両者の加工圧の差が大きくなっている。したがっ
て、反発磁場によればギャップ量を大きくしても加工圧
の低下量が少なく、磁極配置の研磨への影響が弱いこと
になる。また、吸引磁場における磁性砥粒の分布は磁束
の分布に従ってパイプ内部全体に広がるが、反発磁場に
おいては、磁性砥粒はパイプの内部に留まらずにパイプ
内面上(すなわち加工部位)に集まり、研磨材の多くが
有効に作用する。これは上記図3の鉄粉の分布をみれば
理解されよう。つまり、反発磁場の方が研磨材の加工面
に対する接触量及び接触面積が大きいので効率的に研磨
できるのであり、図2の加工量の増大は、上記加工圧の
増大とともに、研磨剤作用量の増大にも起因するのであ
る。
According to the above measurement, as shown in FIG. 4, the pressure on the processing surface due to the repulsive magnetic field is larger than the processing pressure of the attractive magnetic field as a whole. The difference is getting bigger. Therefore, according to the repulsive magnetic field, even if the gap amount is increased, the reduction amount of the processing pressure is small, and the influence of the magnetic pole arrangement on the polishing is weak. In addition, the distribution of the magnetic abrasive grains in the attraction magnetic field spreads throughout the inside of the pipe according to the distribution of the magnetic flux, but in the repulsive magnetic field, the magnetic abrasive grains do not stay inside the pipe but gather on the inner surface of the pipe (that is, the processing portion) and polish. Many of the materials work effectively. This can be understood from the distribution of the iron powder in FIG. In other words, since the repulsive magnetic field has a larger contact amount and contact area of the abrasive with the processing surface, it can be polished more efficiently. The increase in the processing amount in FIG. It is also due to the increase.

【0014】図5は本実施例の磁極配置による磁束分布
を示したものである。反発磁場においては、永久磁石の
磁力線が互いに他の磁力線を排除するように分布するの
で、パイプ中央部の磁力は弱くなるがパイプ内面を透過
する磁束は増加する。このことは、反発磁場においては
一方の磁極へ接近すると急激に磁場強度が増大すること
を示しており、研磨面上の磁場の変化率が大きいため、
磁場の研磨面への加工圧及び接線方向の移動に対する抵
抗力(以下、この2つを加工力という。)が大きくな
る。また、反発磁場は、パイプ内の磁性砥粒の分布を研
磨面上に集中させるために研磨砥粒の作用量が大きくな
り、しかも磁束分布に従って磁性砥粒の分布も研磨面上
に広がることから作用面積も増加する。
FIG. 5 shows a magnetic flux distribution according to the magnetic pole arrangement of this embodiment. In the repulsive magnetic field, since the magnetic lines of force of the permanent magnet are distributed so as to exclude each other, the magnetic force at the center of the pipe is weakened, but the magnetic flux passing through the inner surface of the pipe increases. This indicates that in the repulsive magnetic field, the magnetic field strength increases rapidly when approaching one of the magnetic poles, and the rate of change of the magnetic field on the polished surface is large,
The processing pressure on the polished surface of the magnetic field and the resistance to movement in the tangential direction (hereinafter, these two are referred to as processing forces) are increased. In addition, the repulsive magnetic field increases the amount of action of the polishing abrasive grains in order to concentrate the distribution of the magnetic abrasive grains in the pipe on the polishing surface, and the distribution of the magnetic abrasive grains also spreads on the polishing surface according to the magnetic flux distribution. The working area also increases.

【0015】したがって、全体として加工量を大幅に増
加させることができるとともに、磁束がパイプ内部へ入
る部分と磁束が再びパイプ外部へ出る部分の双方におい
て研磨が行われるなど、研磨面積が大きく且つ研磨面上
における加工力の変化が緩いため、例えばパイプ軸線方
向へ往復動作を充分に行わなくても、均一な研磨面が容
易に得られる。すなわち、研磨速度の増加と研磨の均一
性の向上の双方を図ることができる。
Therefore, the amount of machining can be greatly increased as a whole, and the polishing area is large and the polishing is performed. For example, the polishing is performed in both the portion where the magnetic flux enters the inside of the pipe and the portion where the magnetic flux exits the outside of the pipe again. Since the change in the processing force on the surface is gentle, a uniform polished surface can be easily obtained even if the reciprocating operation is not sufficiently performed, for example, in the pipe axis direction. That is, it is possible to increase both the polishing rate and the polishing uniformity.

【0016】図6はパイプの周囲においてS極とN極を
交互に内側へ向けた4つの永久磁石を配置した場合
(a)と、4つ全てのN極を内側へ向けた場合(b)に
ついて、磁力線分布を示したものである。図6(a)に
示す配置では、上記と同様に磁場の変化率が小さい上に
研磨部位は円周上の8か所にすぎず、磁束も隣接した磁
石の異極の方向に集中するため、パイプの円形断面上及
び軸線を含む断面の双方に関して研磨部分が狭くかつ非
研磨部との境界部分が急峻である。これに対し、図6
(b)に示す配置では、パイプ内面上における磁場の変
化率が大きいために加工圧も高くなり、しかも16か所
で研磨が行われるから研磨面積も大きく、さらにパイプ
内面の広い範囲にわたってゆるやかに研磨領域が形成さ
れる。
FIG. 6 shows a case in which four permanent magnets having S poles and N poles are alternately directed inward around the pipe (a), and a case in which all four N poles are directed inward (b). 3 shows the distribution of the lines of magnetic force. In the arrangement shown in FIG. 6A, similarly to the above, the rate of change of the magnetic field is small, and the polished portion is only eight places on the circumference, and the magnetic flux is also concentrated in the direction of the opposite pole of the adjacent magnet. In both the circular section of the pipe and the section including the axis, the polished portion is narrow and the boundary portion with the non-polished portion is steep. In contrast, FIG.
In the arrangement shown in (b), the processing pressure increases due to the large rate of change of the magnetic field on the inner surface of the pipe, and the polishing area is large because polishing is performed at 16 locations. A polishing region is formed.

【0017】上記実施例と同様の方法により、図7に示
すステンレス鋼(SUS304)製のフレキシブルチュ
ーブ(蛇腹管又はベローズ)の内面を研磨した。図1と
同様の装置により、回転部材の回転数2700rpm、
往復動の周波数2Hz、往復動のストローク28mm、
スラリー点滴5cc/min、スラリー構成(2〜4μ
m径の磁性砥粒0.05gを10ccのオイル中に分
散、研磨補強剤として330μm径の鉄粉を0.8g加
えたもの)、回転部材の移動速度50mm/min、加
工時間30minで研磨を行った。
The inner surface of a stainless steel (SUS304) flexible tube (bellows tube or bellows) shown in FIG. 7 was polished in the same manner as in the above embodiment. With the same device as in FIG. 1, the rotation speed of the rotating member is 2700 rpm,
Reciprocating frequency 2Hz, reciprocating stroke 28mm,
Slurry drip 5cc / min, slurry composition (2-4μ
Polishing is performed by dispersing 0.05 g of magnetic abrasive grains of m diameter in 10 cc of oil, adding 0.8 g of iron powder of 330 μm diameter as a polishing reinforcing agent), moving speed of the rotating member 50 mm / min, and processing time 30 min. went.

【0018】上記結果としては、同条件で行った従来例
の方法では全体的に加工が不十分であり、ベローズの波
形断面の山部Pのみが鏡面になったに過ぎず、特に波形
断面の傾斜部Sがほとんど研磨されなかった。これに対
し、本実施例では加工量も充分であり全体的に鏡面研磨
を施すことができた。波形断面の傾斜部Sや谷部Vにお
いても、山部Pと同様に充分に研磨されていた。
As a result of the above, the conventional method performed under the same conditions is insufficiently processed as a whole, and only the peak P of the corrugated cross section of the bellows has a mirror surface. The inclined portion S was hardly polished. On the other hand, in this example, the processing amount was sufficient, and mirror polishing could be performed as a whole. The sloping portion S and the valley portion V of the corrugated cross section were sufficiently polished similarly to the peak portion P.

【0019】吸引磁場ではベローズ内部全体に磁性砥粒
が充填され、山部Pが研磨される傾向があるが、谷部V
までは磁性砥粒は入りにくい。磁性砥粒の量を増やして
みてもそのために磁場分布は一様分布に近くなり、必要
な磁場分布(磁場の変化率)が得られず、加工力が小さ
い。一方、反発磁場では本来磁極へ接近する方向に磁場
が急激に増大しているため磁場の変化率は谷部Vできわ
めて大きく、したがって適切な量の磁性砥粒を供給すれ
ば山部Pに限らず、傾斜部S及び谷部Vにおいても充分
に研磨される。
In the attracting magnetic field, the whole inside of the bellows is filled with magnetic abrasive grains, and the peak P tends to be polished.
Until the magnetic abrasive grains are hard to enter. Even if the amount of the magnetic abrasive grains is increased, the magnetic field distribution becomes close to a uniform distribution, the required magnetic field distribution (change rate of the magnetic field) cannot be obtained, and the processing force is small. On the other hand, in the repulsive magnetic field, the rate of change of the magnetic field is extremely large at the valley V because the magnetic field is sharply increased in the direction of approaching the magnetic pole. Therefore, if an appropriate amount of magnetic abrasive is supplied, the magnetic field is limited to the peak P. However, the sloping portion S and the valley portion V are sufficiently polished.

【0020】以上のように、本実施例は簡易な方法であ
るけれども極めて大きな効果を奏するものであり、本発
明は加工量と均一性の双方を充足する新規な表面処理方
法である。本実施例では非磁性管の内面研磨を行う方法
を示したが、平面板や球面部等の他の非磁性体の表面研
磨に適用できることは明らかである。例えば平面板の表
面を研磨する場合には平面板を対向する磁極間のいずれ
か一方に近接させて表面上にスラリーを供給すればよ
い。移動磁場は上記実施例のように回転運動により形成
する必要はなく、単なる往復動作等の他の動作により形
成してもよい。
As described above, the present embodiment is a simple method, but has an extremely large effect. The present invention is a novel surface treatment method that satisfies both the processing amount and the uniformity. In this embodiment, the method for polishing the inner surface of the non-magnetic tube has been described. However, it is apparent that the present invention can be applied to the surface polishing of other non-magnetic materials such as a flat plate and a spherical portion. For example, when polishing the surface of a flat plate, the slurry may be supplied onto the surface by bringing the flat plate close to one of the opposing magnetic poles. The moving magnetic field does not need to be formed by rotational movement as in the above embodiment, but may be formed by another operation such as a simple reciprocating operation.

【0021】研磨用の磁性材としては上記磁性砥粒以外
でも表面に研磨布を貼着した磁性体からなる研磨工具を
配置し、これを磁力によって駆動するものでもよい。本
発明は研磨以外にも研削や表面エッチング等の他の表面
処理に広く適用できるものであり、これらの他の処理に
おいても加工力と加工面積の増大は有効に作用する。磁
石は種々の永久磁石を用いることができ、永久磁石の変
わりに電磁石を用いてもよい。磁石の数は2以上であれ
ばよいが、多数の磁石を用いる場合には配置間隔や被研
磨面とのギャップ量を適宜設定する必要がある。
As the magnetic material for polishing, other than the above-mentioned magnetic abrasive grains, a polishing tool made of a magnetic material with a polishing cloth adhered to the surface may be arranged and driven by a magnetic force. The present invention can be widely applied to other surface treatments such as grinding and surface etching besides polishing, and in these other treatments, the increase in the processing power and the processing area effectively acts. Various permanent magnets can be used as the magnet, and an electromagnet may be used instead of the permanent magnet. The number of magnets may be two or more. When a large number of magnets are used, it is necessary to appropriately set the arrangement interval and the gap amount with the surface to be polished.

【0022】[0022]

【発明の効果】以上説明したように本発明は、複数の磁
極を非磁性体の周囲において相互に内側に向き合うよう
に配設し、非磁性体の内表面上に磁性材を付与した状態
で前記磁極を非磁性体に対して相対的に移動させること
により非磁性体の表面を処理する移動磁場による表面処
理方法であって、複数の前記磁極を相互に間隔を隔てて
前記非磁性体の周囲に配置するとともに、複数の前記磁
極を全て同磁極としたものであるから、磁極配置の変更
のみにより加工量を増加させることができ、しかも均一
性の高い表面処理を容易に施すことができる。
As described above, according to the present invention, a plurality of magnetic poles are disposed so as to face each other around a non-magnetic material, and a magnetic material is provided on the inner surface of the non-magnetic material. A surface treatment method using a moving magnetic field that treats a surface of a non-magnetic material by moving the magnetic poles relative to the non-magnetic material, wherein a plurality of the magnetic poles are spaced apart from each other by Since the plurality of magnetic poles are arranged around the same magnetic pole, the processing amount can be increased only by changing the magnetic pole arrangement, and a highly uniform surface treatment can be easily performed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例である非磁性管の内面研磨
方法を示すための研磨装置の主要部を示す説明図であ
る。
FIG. 1 is an explanatory view showing a main part of a polishing apparatus for illustrating a method for polishing the inner surface of a non-magnetic tube according to an embodiment of the present invention.

【図2】同実施例による研磨後の非磁性管の内面の表面
粗さと研磨加工量とを、従来例と比較して示すグラフで
ある。
FIG. 2 is a graph showing the surface roughness of the inner surface of the non-magnetic tube after polishing and the amount of polishing processing according to the example in comparison with a conventional example.

【図3】(a)は研磨加工圧を測定するための実験装置
の構造を示す概念図、(b)は従来の吸引磁場による鉄
粉の分布を示す断面図、(c)は実施例の反発磁場によ
る鉄粉の分布を示す断面図、(d)は実施例の反発磁場
による鉄粉の分布を示す平面図である。
3A is a conceptual diagram showing a structure of an experimental device for measuring a polishing pressure, FIG. 3B is a cross-sectional view showing a distribution of iron powder by a conventional attractive magnetic field, and FIG. FIG. 3D is a cross-sectional view illustrating the distribution of iron powder due to a repulsive magnetic field, and FIG.

【図4】磁極とステンレス鋼板との間のギャップ量と歪
ゲージの出力電圧との間の関係を従来例と比較して示す
グラフである。
FIG. 4 is a graph showing a relationship between a gap amount between a magnetic pole and a stainless steel plate and an output voltage of a strain gauge in comparison with a conventional example.

【図5】(a)及び(b)は本実施例における磁束分布
を示す説明図である。
FIGS. 5A and 5B are explanatory diagrams showing a magnetic flux distribution in the present embodiment.

【図6】(a)は従来の異極を交互に内向させた4つの
磁石からなる系の磁束分布を示す説明図、(b)は4つ
の同磁極を全て内向させた場合の磁束分布を示す説明図
である。
FIG. 6A is an explanatory diagram showing a magnetic flux distribution of a conventional system composed of four magnets in which different poles are alternately inwardly directed, and FIG. 6B is a diagram illustrating a magnetic flux distribution when all four same magnetic poles are inwardly directed; FIG.

【図7】内面研磨の被加工物として用いたフレキシブル
チューブの断面図である。
FIG. 7 is a sectional view of a flexible tube used as a workpiece for inner surface polishing.

【符号の説明】[Explanation of symbols]

1 非磁性管 2 回転部材 2a 貫通孔 3A,3B 支持ブロック 4A,4B 永久磁石 DESCRIPTION OF SYMBOLS 1 Non-magnetic tube 2 Rotating member 2a Through hole 3A, 3B Support block 4A, 4B Permanent magnet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−41172(JP,A) 特開 昭61−244456(JP,A) 実開 昭62−113952(JP,U) (58)調査した分野(Int.Cl.7,DB名) B24B 31/112 B24B 37/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-41172 (JP, A) JP-A-61-244456 (JP, A) JP-A-62-113952 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) B24B 31/112 B24B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の磁極を非磁性体の周囲において相
互に内側に向き合うように配設し、非磁性体の内表面上
に磁性材を付与した状態で前記磁極を非磁性体に対して
相対的に移動させることにより非磁性体の表面を処理す
る移動磁場による表面処理方法であって、複数の前記磁
極を相互に間隔を隔てて前記非磁性体の周囲に配置する
とともに、複数の前記磁極を全て同磁極としたことを特
徴とする移動磁場による表面処理方法。
A plurality of magnetic poles are formed around a non-magnetic material.
Arranged so that they face each other inside, and on the inner surface of the non-magnetic material
With the magnetic material applied to the magnetic pole,
Treat the surface of non-magnetic material by moving it relatively
A surface treatment method using a moving magnetic field,
The poles are arranged around the non-magnetic material at a distance from each other
In addition, a surface treatment method using a moving magnetic field , wherein all of the plurality of magnetic poles are the same magnetic pole .
【請求項2】 請求項1において、前記非磁性体は非磁
性管であり、複数の前記磁極を非磁性管に対しその軸線
を中心にして相対的に回転させながら、非磁性管の軸線
方向へ移動させることを特徴とする移動磁場による表面
処理方法。
2. The non-magnetic material according to claim 1, wherein the non-magnetic material is a non-magnetic material.
A plurality of said magnetic poles, the axis of which is
Relative to the axis of the non-magnetic tube
A surface treatment method using a moving magnetic field, wherein the surface is moved in a direction .
【請求項3】 請求項1又は請求項2において、前記磁
極は、非磁性体を挿通する貫通孔を備えた回転部材に対
し前記貫通孔の内周面上に取り付けられた永久磁石の磁
極であることを特徴とする移動磁場による表面処理方
法。
3. The magnetic recording medium according to claim 1, wherein
The pole corresponds to a rotating member having a through hole through which a non-magnetic material is inserted.
The magnet of the permanent magnet attached on the inner peripheral surface of the through hole
A surface treatment method using a moving magnetic field, which is a pole .
JP21224993A 1993-08-04 1993-08-04 Surface treatment method using moving magnetic field Expired - Fee Related JP3027673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21224993A JP3027673B2 (en) 1993-08-04 1993-08-04 Surface treatment method using moving magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21224993A JP3027673B2 (en) 1993-08-04 1993-08-04 Surface treatment method using moving magnetic field

Publications (2)

Publication Number Publication Date
JPH0740226A JPH0740226A (en) 1995-02-10
JP3027673B2 true JP3027673B2 (en) 2000-04-04

Family

ID=16619448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21224993A Expired - Fee Related JP3027673B2 (en) 1993-08-04 1993-08-04 Surface treatment method using moving magnetic field

Country Status (1)

Country Link
JP (1) JP3027673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162123A (en) 1997-11-26 1999-06-18 Kyoei Denko Kk Magnetic head carriage of hard disk drive
JP4733794B2 (en) * 2000-12-26 2011-07-27 共栄電工株式会社 Method and apparatus for surface treatment of inner surface of member
DE102006059017A1 (en) * 2006-12-14 2008-06-26 Stahab Gmbh Method for processing inner surface of pipe, particularly inner surfaces of small diameter pipes, involves guiding pipe with magnetic grinding agent from stator to workpiece to be processed

Also Published As

Publication number Publication date
JPH0740226A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
CN108311961B (en) Circulation static pressure type magnetorheological polishing device
KR950004923B1 (en) Method and tool of grinding
JP6601909B2 (en) Magnetic polishing apparatus and magnetic polishing method
JP3027673B2 (en) Surface treatment method using moving magnetic field
CN210099706U (en) Grinding device
JPS63221965A (en) Method and device for polishing pipe material
JPH0584656A (en) Magnetic fluid polishing method
WO1998018597A1 (en) A method and device for magneto-abrasive machining
JP4843780B2 (en) Electrical and magnetic combined machining method
JP4185985B2 (en) Magnetically assisted processing
JP2002192453A (en) Magnetism applied machining method and device for the same
EP0856380A3 (en) Method for processing using beam of magnetic line of force, apparatus for carrying out said method, and carriage member for hard disk drive processed by said method
JPS6213143B2 (en)
JPH06143127A (en) Magnetic rolishing of round groove surface and device thereof and magnetic polishing member
JP2619740B2 (en) Magnetic polishing equipment
KR102206609B1 (en) Ultra-precision magnetic abrasive finishing device using rotational magnetic field
CN216504294U (en) Deep hole polishing device based on magnetorheological fluid
JP2022162416A (en) Surface treatment device
JPH08257896A (en) Manufacture of polishing article and vibration magnetic polishing work device
JP3296247B2 (en) Magnetic polishing equipment
JP2794862B2 (en) Magnetic grinding device
SU1240561A1 (en) Method of cleaning abrasive wheel when grinding ferromagnetic materials
JP2005177894A (en) Magnetic polishing method and magnetic polishing device
SU428927A1 (en) DEVICE FOR CLEANING PROCESSING OF FERROMAGNETIC DETAIL CYLINDRICAL FORM
JP2515177B2 (en) Magnetic polishing machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees