JPH0584656A - Magnetic fluid polishing method - Google Patents

Magnetic fluid polishing method

Info

Publication number
JPH0584656A
JPH0584656A JP3248833A JP24883391A JPH0584656A JP H0584656 A JPH0584656 A JP H0584656A JP 3248833 A JP3248833 A JP 3248833A JP 24883391 A JP24883391 A JP 24883391A JP H0584656 A JPH0584656 A JP H0584656A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
magnetic fluid
sphere
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3248833A
Other languages
Japanese (ja)
Inventor
Seiji Tanaka
誠嗣 田中
Shinichi Mizuguchi
信一 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3248833A priority Critical patent/JPH0584656A/en
Publication of JPH0584656A publication Critical patent/JPH0584656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a polishing speed and to improve accuracy further polishing efficiency by polishing a spherical body with magnetic fluid. CONSTITUTION:Balls 1, which are workpieces, are interposed between two sheets of lapping disks 3, 4, and the one lapping disk 3 is fixed to the outside by a non-rigid material support 7. The other lapping disk 4 is constituted so as to make rotary motion with a spindle serving as the center. A magnet 5 or electromagnet is arranged on the reverse side to a polishing surface of the lapping disk 3, that is, on the upper external side so as to apply a magnetic field vertically to a polised surface of the ball 1. On the other hand, a magnet 6 or electromagnet is similarly arranged on the reverse side to a polishing surface of the lapping disk 4, that is, on the lower external side to direct magnetic polarity in the same direction to the magnet 5. Further, the magnet 6 is fixed to the lapping disk 4 and preferably not rotated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボールベアリングやその
他に利用される球体を研磨する方法で、特に砥粒を含有
する磁性流体を利用して球体表面を研磨する磁性流体研
磨方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing spheres used in ball bearings and the like, and more particularly to a magnetic fluid polishing method for polishing the surface of a sphere using a magnetic fluid containing abrasive grains. ..

【0002】[0002]

【従来の技術】現在、球体を精密球体にする方法とし
て、図5に示すように、同心円状又は渦巻きV型に溝5
3を彫られたラップ盤51及び52を上下に対抗させ、
前記のV型溝に粗製球体1を荷重をかけて挟み込み、両
ラップ盤51,52を相対的に回転運動させることによ
りラップ盤51,52が球体1を回転させ、球体1の表
面をまんべんなく研磨する。球体1とラップ盤51,5
2との接触面には砥粒が混入されている研磨材により満
たされている。
2. Description of the Related Art At present, as a method for converting a spherical body into a precision spherical body, as shown in FIG.
Lap machines 51 and 52 engraved with 3 are opposed vertically,
The coarse sphere 1 is sandwiched by applying a load to the V-shaped groove, and the laps 51 and 52 rotate the sphere 1 by rotating the laps 51 and 52 relative to each other, and the surface of the sphere 1 is evenly polished. To do. Sphere 1 and lapping machine 51,5
The contact surface with 2 is filled with an abrasive containing abrasive grains.

【0003】一方、磁性流体に砥粒を分散させた研磨溶
液を磁場の作用下で使用して研磨する方法として各種の
提案がなされている。これらの一例である磁性流体に砥
粒を分配させた研磨材を磁場の作用下で使用して研磨す
る装置を図6で説明する。容器61の下部に磁石63が
配置され磁場を形成し、容器61の上部には駆動用治具
62が設置されており、容器61内には砥粒を含有した
磁性流体64が充填されている。この磁石63は隣合う
磁石が互いに極性が異なるように組み合わせて配置して
いる。被研磨物の球体1は砥粒を含有する磁性流体64
中に浸漬し、磁石63により生じる磁場の作用により磁
気浮揚がおこり、駆動用工具62の下面に押しつける。
この状態で研磨工具(ラップ盤)でもある駆動用工具6
4を回転させると、球体1は転動し駆動用工具64の研
磨両側に形成された同心円上のV型溝65に沿って引き
ずられて、球体1表面が一様に研磨される。
On the other hand, various proposals have been made as a method of polishing by using a polishing solution in which abrasive grains are dispersed in a magnetic fluid under the action of a magnetic field. An example of an apparatus for polishing by using an abrasive in which abrasive grains are distributed in a magnetic fluid under the action of a magnetic field will be described with reference to FIG. A magnet 63 is arranged in the lower part of the container 61 to form a magnetic field, a driving jig 62 is installed in the upper part of the container 61, and the container 61 is filled with a magnetic fluid 64 containing abrasive grains. .. The magnets 63 are arranged so that adjacent magnets have different polarities from each other. The spherical object 1 to be polished is a magnetic fluid 64 containing abrasive grains.
It is dipped therein, and magnetic levitation occurs due to the action of the magnetic field generated by the magnet 63, and it is pressed against the lower surface of the driving tool 62.
Drive tool 6 which is also a polishing tool (lap machine) in this state
When 4 is rotated, the sphere 1 rolls and is dragged along concentric V-shaped grooves 65 formed on both polishing sides of the driving tool 64, and the surface of the sphere 1 is uniformly polished.

【0004】[0004]

【発明が解決しようとする課題】しかしながら図5に示
すような研磨方法の場合では、ラップ盤51,52が硬
く、又軸受けに剛体支持されているために、被研磨物で
ある粗形球体1との接触面に応力集中が大きく働く。そ
のため、ラップ盤51,52に高回転、高加工荷重を与
えると粗形球体1の表面に脆性破壊が生じる。従って、
研磨効率にはおのずと限界がある。
However, in the case of the polishing method as shown in FIG. 5, since the lapping machines 51 and 52 are hard and are rigidly supported by the bearings, the rough sphere 1 which is the object to be polished is used. The stress concentration largely acts on the contact surface with. Therefore, when a high rotation and a high processing load are applied to the lapping machines 51 and 52, brittle fracture occurs on the surface of the coarse sphere 1. Therefore,
The polishing efficiency is naturally limited.

【0005】一方、図6に示すように磁性流体に砥粒を
分散させた研磨溶液を磁場の作用下で研磨する方法の場
合では、被研磨物である粗形球体1にかかる磁気浮力の
作用により研磨工具である駆動用工具64に押さえつけ
られるが、効率良く研磨されるのに充分な加工圧が得ら
れない。つまり研磨制度の目的は達し得るが、研磨率が
非常に小さく研磨効率が悪いという問題点を有してい
た。
On the other hand, as shown in FIG. 6, in the case of a method of polishing a polishing solution in which abrasive grains are dispersed in a magnetic fluid under the action of a magnetic field, the action of magnetic buoyancy acting on the rough sphere 1 which is the object to be polished. As a result, it is pressed against the driving tool 64, which is a polishing tool, but a processing pressure sufficient for efficient polishing cannot be obtained. That is, the purpose of the polishing system can be achieved, but there is a problem that the polishing rate is very small and the polishing efficiency is poor.

【0006】そこで、本発明は従来の研磨制度を保ちな
がら、上記従来方法で問題となった研磨効率を向上させ
るための研磨方法を提案するものである。
Therefore, the present invention proposes a polishing method for improving the polishing efficiency which has been a problem in the conventional method while maintaining the conventional polishing accuracy.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の磁性流体研磨方法の主要構成は以下に示
すような構成になる。
In order to solve the above-mentioned problems, the magnetic fluid polishing method of the present invention has the following main configuration.

【0008】被研磨物である粗形球体を複数個、同心円
状又は渦巻状に溝が彫られたラップ盤にわずかな荷重か
けて挟み込み、被研磨物と両ラップ盤が接触する研磨部
に、磁性流体中に非磁性砥粒を含有している研磨材が充
填されている。この時ラップ盤の研磨面に対してなるべ
く垂直になるように研磨材に外部磁場を作用させる。こ
の状態で両ラップ盤を相対回転運動させることにより球
体を研磨する。
A plurality of coarse spheres to be polished are sandwiched between concentric or spiral grooves on a lapping machine with a slight load, and the lapping section where the lapping machine contacts the lapping machine, The magnetic fluid is filled with an abrasive containing non-magnetic abrasive grains. At this time, an external magnetic field is applied to the polishing material so as to be as perpendicular as possible to the polishing surface of the lapping machine. In this state, the spheres are polished by relatively rotating both lapping machines.

【0009】磁性流体中に含有される非磁性砥粒は、公
知の研磨用砥粒Al23,SiC,CeO2,ダイヤモ
ンド等を使用することができる。粒径は1μm以下のも
のが好ましく使用される。
As the non-magnetic abrasive grains contained in the magnetic fluid, known abrasive grains Al 2 O 3 , SiC, CeO 2 , diamond, etc. can be used. A particle size of 1 μm or less is preferably used.

【0010】研磨材を保持されるための磁界は、被研磨
面と垂直な方向に磁界がかかるようにする。例えば、ラ
ップ盤の研磨面の外部の一方の面に円筒状の磁石をその
磁極の方向がラップ盤の回転軸に対して平行になるよう
に設置し、他方のラップ盤にも同じ向きに磁極が向くよ
うに円筒状の磁石を設置する。但し、回転駆動用の働き
を持つラップ盤側は、上記の円筒状の磁石がラップ面と
共に回転しないようにすることが望ましい。外部磁場を
発生させる磁石は、単一円筒磁石や電磁石であっても良
い。例えば、磁石としてサマリュームーコバルト系等の
強磁性磁石を使用できる。
The magnetic field for holding the polishing material is such that the magnetic field is applied in the direction perpendicular to the surface to be polished. For example, a cylindrical magnet is installed on one surface outside the polishing surface of the lapping machine so that the direction of its magnetic pole is parallel to the rotation axis of the lapping machine, and the magnetic poles are aligned in the same direction on the other lapping machine. Place a cylindrical magnet so that However, on the side of the lapping machine that has the function of rotating drive, it is desirable that the cylindrical magnet does not rotate with the lapping surface. The magnet that generates the external magnetic field may be a single cylindrical magnet or an electromagnet. For example, a ferromagnetic magnet such as a Samaleumu cobalt system can be used as the magnet.

【0011】磁性体の球体を研磨する場合は、ラップ盤
に非磁性体を用いた方が良い。つまり、ラップ盤が外部
に設置された磁石より磁化されないため、被研磨物の球
体とラップ盤が強く引きつけられない。しかも、この
時、磁力線は一方のラップ盤に設置される磁石から出
て、磁性体である球体を通り、他のラップ盤側の磁石に
到る。この磁石線により、研磨材が研磨物とラップ盤の
間に入り、保持される。
When polishing a spherical body of a magnetic material, it is better to use a non-magnetic material for the lapping machine. That is, since the lapping machine is not magnetized by the magnet installed outside, the sphere of the object to be polished and the lapping machine cannot be strongly attracted. Moreover, at this time, the magnetic force lines exit from the magnets installed on one of the lapping machines, pass through the spherical body that is a magnetic body, and reach the magnets on the other lapping machine side. The magnet wire causes the abrasive material to be held between the abrasive and the lapping machine.

【0012】次に非磁性の球体を研磨する場合は、ラッ
プ盤に磁性体を用いた方が良い。非磁性体を用いても良
いが、球体の研磨面にかかる磁界の強度が著しく弱ま
る。これを防ぐために、磁性体のラップ盤を用い、球体
の研磨面にかかる磁界の強度を保つようにする。この事
により、研磨材をラップ盤表面に保つことができ、ラッ
プ盤と研磨物との間にも充分研磨材が入り込み保持され
る。
When polishing non-magnetic spheres next, it is better to use a magnetic material for the lapping machine. A non-magnetic material may be used, but the strength of the magnetic field applied to the polished surface of the sphere is significantly weakened. In order to prevent this, a magnetic lapping machine is used to maintain the strength of the magnetic field applied to the polished surface of the spherical body. As a result, the abrasive can be kept on the surface of the lapping machine, and the abrasive can be sufficiently held and held between the lapping machine and the polishing object.

【0013】[0013]

【作用】本発明の方法により、球体の研磨を行う場合、
磁性流体に非磁性砥粒を分散させた研磨材をラップ盤か
ら垂直にかかる磁界により被研磨物である球体とラップ
盤の間に保持する。もし、この時研磨部に磁場がなけれ
ば、図4(a)に見られる状態で被研磨面41(被研磨
物の球体)の下にある磁性流体44中にある非磁性砥粒
43は、被研磨面41と研磨面42(ラップ盤)の間に
押さえつけられ被研磨物が回転するなどして、図4
(b)のように非磁性砥粒43が横に排斥される。その
結果、研磨面での非磁性砥粒43が減り、効率良く研磨
されない。この状態は、従来例の研磨方法と同じ状態で
あり、研磨効率も従来のものと殆ど変わらない。
When the spheres are polished by the method of the present invention,
An abrasive material in which non-magnetic abrasive grains are dispersed in a magnetic fluid is held between a sphere as an object to be polished and a lapping machine by a magnetic field applied vertically from the lapping machine. If there is no magnetic field in the polishing section at this time, the non-magnetic abrasive grains 43 in the magnetic fluid 44 under the surface 41 to be polished (sphere of the object to be polished) in the state shown in FIG. When the object to be polished is rotated by being pressed between the surface 41 to be polished and the surface 42 to be polished (lap machine), as shown in FIG.
The non-magnetic abrasive grains 43 are laterally rejected as shown in FIG. As a result, the non-magnetic abrasive grains 43 on the polishing surface are reduced, and the polishing is not performed efficiently. This state is the same as the conventional polishing method, and the polishing efficiency is almost the same as the conventional polishing method.

【0014】しかし、図4(c)に見られるように研磨
部に垂直に磁界をかけてやると非磁性砥粒43は回りの
磁性流体44に引きつけられて排斥されない。また、磁
性流体44中の非磁性砥粒43は、垂直磁界が働いてい
るところでは、砥粒43同士の間に斥力が働き均一な分
散状態になる。そのため被研磨面41が研磨面42に当
接すると、図4(d)に見られるように、非磁性砥粒4
3が研磨面に均一に散らばった状態になる。その結果、
効率よく研磨することが可能になる。つまり、非磁性砥
粒43が均一に存在するようになり研磨効率は垂直磁界
がかかってない場合に較べて数倍良くなる。又、研磨面
42,被研磨面41のどちらか一方が磁性体であり、他
方が非磁性体でなければ非磁性砥粒43が入るのに充分
な間隔を保つことができない。つまり、共に磁性体であ
れば、磁性体同士に働く引力が強く非磁性砥粒43を排
斥し、共に非磁性体であれば、充分な磁界が研磨部に得
られず非磁性砥粒43が均一に分布しない。
However, as shown in FIG. 4C, when a magnetic field is applied perpendicularly to the polishing portion, the non-magnetic abrasive grains 43 are attracted by the surrounding magnetic fluid 44 and are not rejected. Further, the non-magnetic abrasive grains 43 in the magnetic fluid 44 are in a uniformly dispersed state where a repulsive force is exerted between the abrasive grains 43 when the vertical magnetic field is acting. Therefore, when the surface 41 to be polished comes into contact with the surface 42 to be polished, as shown in FIG.
3 is evenly scattered on the polished surface. as a result,
It becomes possible to polish efficiently. That is, the non-magnetic abrasive grains 43 are evenly present, and the polishing efficiency is several times better than in the case where no vertical magnetic field is applied. Further, if either the polishing surface 42 or the surface 41 to be polished is a magnetic substance and the other is a non-magnetic substance, it is not possible to maintain a sufficient distance for the non-magnetic abrasive grains 43 to enter. That is, if both are magnetic bodies, the attractive force acting between the magnetic bodies is strong and the non-magnetic abrasive grains 43 are repelled. If both are non-magnetic bodies, a sufficient magnetic field cannot be obtained in the polishing portion, and the non-magnetic abrasive grains 43 are Not evenly distributed.

【0015】[0015]

【実施例】以下本発明の一実施例の磁性流体を用いた研
磨装置について図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A polishing apparatus using a magnetic fluid according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】図1は本発明の第1の実施例における磁性
流体を用いた研磨装置を示したものであり、磁性体の球
体を研磨する方法である。被研磨物である球体1は2枚
のラップ盤3と4に挟まれており、一方のラップ盤3は
非剛体支持7で外部に固定されている。他方のラップ盤
4は主軸を中心として回転運動を行うように構成されて
いる。ラップ盤3の研磨面の裏面側、つまり上外部側に
磁石5又は電磁石が配置されており、球体1の被研磨面
に垂直に磁界がかかるようになっている。一方で、ラッ
プ盤4の研磨面の裏面側つまり下外部側に同様に磁石6
または電磁石が配置されており、磁石5と同じ向きに磁
極が向いている。なお、磁石6はラップ盤4に固定れ
さ、回転しない方が望ましい。
FIG. 1 shows a polishing apparatus using a magnetic fluid according to the first embodiment of the present invention, which is a method for polishing a spherical body of a magnetic material. A sphere 1 as an object to be polished is sandwiched between two lapping machines 3 and 4, and one lapping machine 3 is fixed to the outside by a non-rigid support 7. The other lapping machine 4 is constructed so as to perform a rotary motion about the main axis. A magnet 5 or an electromagnet is arranged on the back surface side of the lapping surface of the lapping machine 3, that is, on the upper outer side, and a magnetic field is applied perpendicularly to the surface to be polished of the spherical body 1. On the other hand, the magnet 6 is similarly provided on the back side of the polishing surface of the lapping machine 4, that is, on the lower outer side.
Alternatively, an electromagnet is arranged, and the magnetic pole faces the same direction as the magnet 5. The magnet 6 is preferably fixed to the lapping machine 4 and should not rotate.

【0017】図2は図1の駆動用の研磨工具(ラップ
盤)4を上方から見た平面図である。このラップ盤4
は、上面が円盤状で、この円盤面9に同心円状のV型溝
8が設けてある。被研磨物である球体1はV型溝の両側
の斜面の壁面に押しつけられ運動が伝達され、V型溝8
上を研磨されながら転がる。なお、非研磨物である球体
1が磁性体であるものを研磨する場合には、ラップ盤
3,4は非磁性体の部材(例えばSUS304)を用い
る。
FIG. 2 is a plan view of the driving polishing tool (lapping machine) 4 of FIG. 1 seen from above. This lapping machine 4
Has a disk-shaped upper surface, and a concentric V-shaped groove 8 is provided on the disk surface 9. The sphere 1 which is the object to be polished is pressed against the wall surfaces of the slopes on both sides of the V-shaped groove to transmit the motion, and the V-shaped groove 8
Roll while being polished on the top. When the non-abrasive sphere 1 is a magnetic substance, the lapping machines 3 and 4 use a non-magnetic member (for example, SUS304).

【0018】以上の構成で磁性体の球体1を研磨する方
法において、磁石5と時磁石6により磁界が磁性体の球
体1と非磁性のラップ盤3,4の接触表面の間に形成さ
れ、研磨材2が保持される。研磨材2は磁性流体中に非
磁性砥粒を分散させた研磨材である。研磨材2には垂直
な磁界がかかっているため、保持されている研磨材2中
の非磁性砥粒は均一に分散する。この状態でラップ盤4
を回転すると、球体1自体は自ら回転移動しラップ盤
3,4と接触し研磨が行われる。この時、研磨面での非
磁性砥粒は垂直な磁界により均一に分布した状態で保持
されているため、研磨効率は磁界がない場合に較べて、
数倍良くなる。
In the method of polishing the magnetic sphere 1 having the above structure, a magnetic field is formed between the magnetic sphere 1 and the non-magnetic lapping disks 3, 4 by the magnet 5 and the hour magnet 6. The abrasive 2 is held. Abrasive material 2 is an abrasive material in which non-magnetic abrasive grains are dispersed in a magnetic fluid. Since a vertical magnetic field is applied to the abrasive material 2, the non-magnetic abrasive grains in the held abrasive material 2 are uniformly dispersed. Lap board 4 in this state
When is rotated, the sphere 1 itself moves rotationally and comes into contact with the lapping machines 3 and 4 to perform polishing. At this time, since the non-magnetic abrasive grains on the polishing surface are held in a state of being uniformly distributed by the vertical magnetic field, the polishing efficiency is higher than that when there is no magnetic field.
It will be several times better.

【0019】図3は本発明の第2の実施例における磁性
流体を用いた研磨方法を示したものであり、非磁性体の
球体を研磨する方法である。構成はラップ盤の素材が非
磁性体から磁性体に変わった事を除いて、本発明の第一
の実施例と同じであるので省略する。以上の構成で非磁
性体の球体31を研磨する。磁石5がラップ盤33を磁
石化し、また磁石6がラップ盤34を磁石化する。研磨
材2を磁石化したラップ盤34とラップ盤33の間に充
填する。ラップ盤34とラップ盤33の間には磁界が生
じているためラップ盤34,33の表面に研磨材が付着
する。ラップ盤4を回転すると非磁性の球体31は溝を
転がりながら研磨するが、その時、非磁性の球体31と
ラップ盤33,34との間には、常に研磨材2が入り込
む、また、研磨材2には垂直方向に磁場がかかってるた
め、研磨材中の砥粒は分散する。上記に示した通り理想
的な状態を保って研磨が行えるので、研磨効率は磁場が
ない時に較べて数倍も効率が良い。
FIG. 3 shows a polishing method using a magnetic fluid according to the second embodiment of the present invention, which is a method of polishing a non-magnetic sphere. The structure is the same as that of the first embodiment of the present invention except that the material of the lapping machine is changed from a non-magnetic material to a magnetic material, and therefore the description thereof is omitted. The non-magnetic sphere 31 is polished with the above configuration. The magnet 5 magnetizes the lapping machine 33, and the magnet 6 magnetizes the lapping machine 34. The abrasive 2 is filled between the magnetized lapping machine 34 and the lapping machine 33. Since a magnetic field is generated between the lapping machine 34 and the lapping machine 33, the polishing material adheres to the surfaces of the lapping machines 34 and 33. When the lapping machine 4 is rotated, the non-magnetic sphere 31 is polished while rolling in the groove. At that time, the abrasive 2 is always inserted between the non-magnetic sphere 31 and the lapping machines 33 and 34. Since a magnetic field is applied to 2 in the vertical direction, the abrasive grains in the abrasive are dispersed. As described above, since polishing can be performed while maintaining the ideal state, the polishing efficiency is several times better than when there is no magnetic field.

【0020】以上のように研磨工具と被研磨物の部材の
組み合わせは、磁性/非磁性の組み合わせがよい。ま
た、ラップ盤上の溝を非研磨物の形状に応じて適宜変え
る事により、例えは円柱状の溝にすればローラ状の表面
の研磨が可能である。
As described above, the combination of the polishing tool and the member to be polished is preferably a magnetic / nonmagnetic combination. Further, by appropriately changing the groove on the lapping machine according to the shape of the non-polished material, for example, a cylindrical groove can be used to polish the roller-shaped surface.

【0021】図1に示した構成を有した研磨装置にて、
以下に記載する条件で研磨を行った。ダイヤモンド(平
均粒径0.5μm)の砥粒を磁性流体(フェリコロイド
W−45)、に対して4.0vol%の割合で混入し、
直径10mmのSUJ2の硬球を8個ほどラップ盤との間
に挟み、ラップ盤(大きさ直径φ300、ステンレス
鋼)を100〜200rpmで回転させ、15分間研磨
した後の研磨率を磁場をかけた場合とかけなった場合に
ついて調べると、磁場を用いてないときの数倍も研磨効
率がよいことがわかった。更に研磨表面の面粗さ精度が
数倍にも良くなっている。
With the polishing apparatus having the structure shown in FIG.
Polishing was performed under the conditions described below. Abrasive grains of diamond (average particle size 0.5 μm) were mixed with the magnetic fluid (ferricolloid W-45) at a ratio of 4.0 vol%,
About 8 SUJ2 hard spheres having a diameter of 10 mm were sandwiched between the lapping machine and the lapping machine (size diameter φ300, stainless steel) was rotated at 100 to 200 rpm, and the polishing rate after polishing for 15 minutes was applied with a magnetic field. When the case and the case where it did not apply were examined, it was found that the polishing efficiency was several times better than when the magnetic field was not used. Further, the surface roughness accuracy of the polished surface is several times better.

【0022】[0022]

【発明の効果】本発明の研磨方法は、従来のボール盤を
用いた研磨方法と同じ回転速度で研磨した場合よりも研
磨効率は数倍も良くなり、かつ研磨面の粗さも向上す
る。又、従来の磁性流体を用いた研磨方法より充分な面
圧が研磨部にかかるため、この場合に対しても数十倍以
上研磨効率が上がる。この結果セラミックなどの硬質の
材料等も損傷させる事なく、効率良く研磨できる。
According to the polishing method of the present invention, the polishing efficiency is several times better than that when polishing is performed at the same rotation speed as in the conventional polishing method using a drilling machine, and the roughness of the polishing surface is also improved. Further, since a sufficient surface pressure is applied to the polishing portion as compared with the conventional polishing method using magnetic fluid, the polishing efficiency is increased several tens of times more than in this case. As a result, it is possible to polish efficiently without damaging hard materials such as ceramics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における研磨装置の側断
面図
FIG. 1 is a side sectional view of a polishing apparatus according to a first embodiment of the present invention.

【図2】第1における駆動用ラップ盤と研磨物の関係を
示した平面図
FIG. 2 is a plan view showing the relationship between the first drive lapping machine and the polishing object.

【図3】本発明は第2の実施例における研磨装置の側面
FIG. 3 is a side view of a polishing apparatus according to a second embodiment of the present invention.

【図4】従来のボール盤を用いた研磨装置の説明図FIG. 4 is an explanatory diagram of a polishing device using a conventional drilling machine.

【図5】従来の磁性流体を用いた研磨装置の説明図FIG. 5 is an explanatory view of a conventional polishing apparatus using a magnetic fluid.

【図6】従来の研磨装置の動作説明図FIG. 6 is an operation explanatory view of a conventional polishing apparatus.

【符号の説明】[Explanation of symbols]

1 球体 3,4 ラップ盤 5 磁石 1 sphere 3,4 lapping machine 5 magnets

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被研磨物である球体を荷重をかけて挟み
込み対向する第1の研磨工具と第2の研磨工具と非磁性
の砥粒を含有する磁性流体を前記第1の研磨工具と前記
第2の研磨工具と前記球体との間に浸漬し外部磁界によ
り前記磁性流体を保持するとともに、前記第1の研磨工
具と前記第2の研磨工具のどちらか一方を回転させるこ
とにより前記球体の表面を研磨する磁性流体研摩方法。
1. A first polishing tool, a second polishing tool, and a magnetic fluid containing non-magnetic abrasive grains, which oppose each other by sandwiching a sphere, which is an object to be polished, with a load therebetween, and a magnetic fluid containing non-magnetic abrasive grains. The magnetic fluid is held by an external magnetic field by being immersed between the second polishing tool and the sphere, and at least one of the first polishing tool and the second polishing tool is rotated to rotate the sphere. Magnetic fluid polishing method for polishing the surface.
【請求項2】 非研磨物が水平に転動回転するように同
心円状または渦巻状に彫られたガイド用の溝を持つ研磨
工具を備えた請求項1記載の磁性流体研磨方法。
2. The magnetic fluid polishing method according to claim 1, further comprising a polishing tool having a guide groove engraved in a concentric or spiral shape so that the non-polishing object rolls and rotates horizontally.
【請求項3】 磁性流体に作用させる磁界が研磨面と垂
直な方法にかけられるように磁石または電磁石を研磨工
具の外部に備えた請求項1記載の磁性流体研磨方法。
3. The magnetic fluid polishing method according to claim 1, wherein a magnet or an electromagnet is provided outside the polishing tool so that a magnetic field acting on the magnetic fluid can be applied in a direction perpendicular to the polishing surface.
【請求項4】 研磨工具が主軸を中心とする回転運動を
する請求項1記載の磁性流体研磨方法。
4. The magnetic fluid polishing method according to claim 1, wherein the polishing tool makes a rotary motion about the main axis.
【請求項5】 被研磨物である球体が磁性体の時、研磨
工具が非磁性体である請求項1記載の磁性流体研磨方
法。
5. The magnetic fluid polishing method according to claim 1, wherein when the sphere to be polished is a magnetic body, the polishing tool is a non-magnetic body.
【請求項6】 被研磨物である球体が非磁性の時、研磨
工具が磁性体である請求項1記載の磁性流体研磨方法。
6. The magnetic fluid polishing method according to claim 1, wherein the polishing tool is a magnetic body when the sphere to be polished is non-magnetic.
JP3248833A 1991-09-27 1991-09-27 Magnetic fluid polishing method Pending JPH0584656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248833A JPH0584656A (en) 1991-09-27 1991-09-27 Magnetic fluid polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248833A JPH0584656A (en) 1991-09-27 1991-09-27 Magnetic fluid polishing method

Publications (1)

Publication Number Publication Date
JPH0584656A true JPH0584656A (en) 1993-04-06

Family

ID=17184105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248833A Pending JPH0584656A (en) 1991-09-27 1991-09-27 Magnetic fluid polishing method

Country Status (1)

Country Link
JP (1) JPH0584656A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712140A2 (en) 1994-11-08 1996-05-15 MASCHINENFABRIK REINHAUSEN GmbH Tap changer
KR100914008B1 (en) * 2007-11-27 2009-08-28 (주)디나옵틱스 Apparatus for polishing super-precision micro balls
JP2011104696A (en) * 2009-11-16 2011-06-02 Jtekt Corp Sphere polishing device
CN108527014A (en) * 2018-06-05 2018-09-14 辽宁科技大学 A kind of non-contact type magnetic transmission magnetic abrasive finishing device and application method
CN109732472A (en) * 2017-10-31 2019-05-10 上海新昇半导体科技有限公司 Polissoir and method
CN110340742A (en) * 2019-07-18 2019-10-18 浙江科惠医疗器械股份有限公司 A kind of double rubbing head polishing processing devices of bioceramic spherical surface
WO2020062701A1 (en) * 2018-09-29 2020-04-02 大连理工大学 Float polishing device and method for small-size complex surface part
CN114789378A (en) * 2022-05-31 2022-07-26 福建福晶科技股份有限公司 Polishing device and method with ultrahigh damage threshold on surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712140A2 (en) 1994-11-08 1996-05-15 MASCHINENFABRIK REINHAUSEN GmbH Tap changer
KR100914008B1 (en) * 2007-11-27 2009-08-28 (주)디나옵틱스 Apparatus for polishing super-precision micro balls
JP2011104696A (en) * 2009-11-16 2011-06-02 Jtekt Corp Sphere polishing device
CN109732472A (en) * 2017-10-31 2019-05-10 上海新昇半导体科技有限公司 Polissoir and method
CN108527014A (en) * 2018-06-05 2018-09-14 辽宁科技大学 A kind of non-contact type magnetic transmission magnetic abrasive finishing device and application method
WO2020062701A1 (en) * 2018-09-29 2020-04-02 大连理工大学 Float polishing device and method for small-size complex surface part
CN110340742A (en) * 2019-07-18 2019-10-18 浙江科惠医疗器械股份有限公司 A kind of double rubbing head polishing processing devices of bioceramic spherical surface
CN114789378A (en) * 2022-05-31 2022-07-26 福建福晶科技股份有限公司 Polishing device and method with ultrahigh damage threshold on surface
CN114789378B (en) * 2022-05-31 2024-02-27 福建福晶科技股份有限公司 Polishing device and method for ultrahigh damage threshold of surface

Similar Documents

Publication Publication Date Title
KR950004923B1 (en) Method and tool of grinding
JPS6138863A (en) Polishing apparatus
JP4185987B2 (en) Magnetic-assisted fine polishing apparatus and magnetic-assisted fine polishing method
CN108544305A (en) A kind of device of the magnetorheological auxiliary V-groove high-efficiency high-accuracy polishing Ceramic Balls of cluster
JPH0584656A (en) Magnetic fluid polishing method
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JPS62173166A (en) Sphere polishing method using magnetic fluid and polishing device
JPH0249868B2 (en)
JPS63221965A (en) Method and device for polishing pipe material
JPH08257897A (en) Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP3027673B2 (en) Surface treatment method using moving magnetic field
Umehara et al. Internal polishing of tube with magnetic fluid grinding. Part 2, fundamental polishing properties with rotating balls and with oscillating balls
JPH06143127A (en) Magnetic rolishing of round groove surface and device thereof and magnetic polishing member
JPS63196368A (en) Polishing method using magnetic fluid
JPH03117558A (en) Ceramic ball machining method and device
JPH01271163A (en) Polishing device using magnetic fluid
JPS624562A (en) Magnetic polishing device
JPS5828754Y2 (en) Lap processing equipment
JPH0310643Y2 (en)
JP2584945B2 (en) Apparatus and method for polishing true sphere of ceramics
JPH01234160A (en) Polishing and polishing device
JPS60186368A (en) Polishing method utilizing magnetic fluid
JPS5936365Y2 (en) Double-sided polishing equipment