JPH08257897A - Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain - Google Patents

Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain

Info

Publication number
JPH08257897A
JPH08257897A JP9455295A JP9455295A JPH08257897A JP H08257897 A JPH08257897 A JP H08257897A JP 9455295 A JP9455295 A JP 9455295A JP 9455295 A JP9455295 A JP 9455295A JP H08257897 A JPH08257897 A JP H08257897A
Authority
JP
Japan
Prior art keywords
sphere
float
hole
magnetic fluid
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9455295A
Other languages
Japanese (ja)
Inventor
Tokuji Umehara
徳次 梅原
Hiroshi Nishiyama
博 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9455295A priority Critical patent/JPH08257897A/en
Publication of JPH08257897A publication Critical patent/JPH08257897A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To continuously supply an abrasive grain to a sphere, so that the sphere can be polished in good sphericity, by opening a hole in the center of a float, increasing a work load by the float when made a motion of the sphere in a magnetic fluid, also to increase a speed of the sphere in rotation on its own axis and revolving around, and so as to circulate the magnetic fluid containing the abrasive grain through this hole. CONSTITUTION: A hole 8A is opened in the center part of a float 3. A negative pressure in a lower surface of the float 3, generated in the case of rotating this float 3, is made to escape from the hole 8A, thus to suppress a vertical vibration of the float 3, also to stabilize a motion of a ceramic ball 2 in rotation on its own axis and revolution around. Since a magnetic fluid 9 containing an abrasive grain is circulated through this hole 8A, the abrasive grain is continuously supplied to this ball 2. By action of the hole 8A of the float 3 thus performed, when performed a motion of the ceramic ball 2 in rotating on its own axis and revolving around along inside a vessel 4A together with rotary motion of a drive shaft 1, the float 3 presses the ball 2 by magnetic levitating force to the vessel 4A and a slope of the drive shaft further rotated, consequently to efficiently polish the ball 2 into a spherical shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁性流体を用いた球体
の研磨方法及びその装置に関し、更に詳しくは砥粒を含
有する磁性流体を磁場の作用下で使用し、ボ−ルベアリ
ング等に使用される眞球度の高い球体を量産的に得るた
めの研磨方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a spherical body using a magnetic fluid and an apparatus therefor. More specifically, the magnetic fluid containing abrasive grains is used under the action of a magnetic field and is used for ball bearings and the like. The present invention relates to a polishing method and an apparatus therefor for mass-producing spheres with high sphericity.

【0002】さらに詳しくは、中心に穴を有する浮力
(浮力板)を具備し、さらに砥粒を含有する磁性流体を
循環せしめることに有る。
More specifically, it is provided with a buoyancy (buoyancy plate) having a hole at the center, and further circulating a magnetic fluid containing abrasive grains.

【0003】[0003]

【従来の技術】非磁性材料例えば(セラミツク)の硬く
脆い球体を研磨する場合、従来のV溝ラップ盤による研
磨方法では、ダイヤモンド等の高価な超砥粒を用い、な
おかつ長い加工時間を要することから、その加工コスト
は非常に高く、工業界において広く利用されるための障
害となつている。
2. Description of the Related Art When polishing a hard and brittle sphere of a non-magnetic material such as (ceramic), the conventional V-groove lapping method uses expensive superabrasive grains such as diamond and requires a long processing time. Therefore, its processing cost is very high, which is an obstacle to its wide use in the industrial field.

【0004】この問題を解決すべく、磁性流体研磨方法
及びその装置、特公平5−41394号が開発された。
しかしこの方法をセラミック球の量産化を前提として用
いる場合、未だその研磨機構に不明な部分があり、多数
の球の高精度、高能率の研磨は今日まで安定して達成出
来ていない。
In order to solve this problem, a magnetic fluid polishing method and its device, Japanese Patent Publication No. 5-41394, have been developed.
However, when this method is used on the premise of mass production of ceramic spheres, there is still an unclear part in the polishing mechanism, and high-precision and high-efficiency polishing of a large number of spheres has not been stably achieved to date.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は量産化
を前提として、研磨時間を短縮すること、真球度の
高いセラミック球を得ること、面粗さの良いセラミッ
ク球を得ることの三点を安定して得る研磨方法及び研磨
装置を開発したものである。
Therefore, the present invention has three points of shortening the polishing time, obtaining a ceramic sphere having a high sphericity, and obtaining a ceramic sphere having a good surface roughness, on the premise of mass production. A polishing method and a polishing apparatus for stably obtaining the above are developed.

【0006】[0006]

【問題点を解決するための手段】[Means for solving problems]

1.下方に磁石が配置された内壁面が低い2重円筒状容
器内に還流している砥粒を含有する磁性流体中に、球体
と中心に穴の開いた浮子(浮力板)を浸漬し、該磁石に
より形成される磁場の作用により球体及び浮子に生ずる
磁気浮揚現象により、球体と容器の上部に設置された駆
動軸の下端が、パイプの片端を頂角900の円錐面にカ
ツトされた面に押しつけて駆動軸の運動を球体に伝達し
て球体を砥粒を含有する磁性流体中で運動させる時、中
心に穴を開けた浮子は加工荷重を増すばかりでなく、自
身の回転に伴う上下振動を抑制し、球体の自転、公転速
度を高め、またこの穴を通じて砥粒を含む磁性流体が循
環するため球体に連続して砥粒が供給される研磨方法。 2.下方に磁石が配置された内壁面が低い2重円筒状容
器内に還流している砥粒を含有する磁性流体中に、球体
と上面に環状V字形溝を設け、その中心に穴の開いた浮
子(浮力板)を浸漬し、その溝に球体を配置し、該磁石
により形成される磁場の作用により球体及び浮子に生じ
る磁気浮揚現象により球体を、容器の上部に設置された
駆動軸の平面状の下面に押しつけて駆動軸の運動を、球
体に伝達して球体を砥粒を含有する磁性流体中で運動さ
せる時、中心に穴を開けた浮子は加工荷重を増すばかり
でなく、自身の回転に伴う上下振動を抑制し球体の自
転、公転速度を高め、またこの穴を通じて砥粒を含む磁
性流体が循環するため球体に連続して砥粒が供給される
研磨方法。 3.球体がセラミツク球体である請求項第1項または第
2項に記載の方法。 4.内壁面が低い2重円筒状容器の外壁間の溝に外部貯
蔵タンクとの間を循環する砥粒を含有する磁性流体を排
出する穴を有し、該容器の下部に磁石が配置され、その
磁石群の中心部に外部貯蔵タンクとの間を循環する砥粒
を含有する磁性流体を導入する穴を具備し、該容器の上
部に下端がパイプの片端を頂角900の円錐面にカツト
された駆動軸が設置され、該磁性流体中に浸漬する被研
磨球体とその下部に浸漬する浮子は中心に穴を有し、該
磁石により形成される磁場の作用により生じる磁気浮揚
現象によって球体は容器の上部に設置された駆動軸の下
面に押しつけられ駆動軸のの運動が球体に伝達されて球
体が砥粒を含む磁性流体中で運動するように構成されて
いる球体の研磨装置。 5.内壁面が低い2重円筒状容器の外壁間の溝に外部貯
蔵タンクとの間を循環する砥粒を含有する磁性流体を排
出する穴を有し、該容器の下部に磁石が配置され、その
磁石群の中心部に外部貯蔵タンクとの間を循環する砥粒
を含有する磁性流体を導入する穴を具備し、該容器の上
部に下面が平面状の駆動軸が設置され、該磁性流体中に
浸漬する球体とその下部に浸漬する浮子は環状V字形溝
の複数個を有し、かつ中心部に穴が開けられ、該磁石に
より形成される磁場の作用により生じる磁気浮揚現象に
よって球体は容器の上部に設置された駆動軸の下面に押
しつけられ、駆動軸の運動が球体に伝達されて球体が砥
粒を含む磁性流体中で運動するように構成されている球
体の研磨装置。
1. A spherical body and a float (a buoyancy plate) having a hole at the center are immersed in a magnetic fluid containing abrasive grains that are refluxed in a double cylindrical container having a low inner wall surface in which a magnet is arranged below, Due to the magnetic levitation phenomenon that occurs in the sphere and the float due to the action of the magnetic field formed by the magnet, the lower end of the drive shaft installed on the sphere and the upper part of the container has one end of the pipe cut into a conical surface with an apex angle of 90 0. When the sphere is made to move in a magnetic fluid containing abrasive grains by transmitting the motion of the drive shaft to the sphere by pushing it against the sphere, the float with a hole in the center not only increases the processing load, but also moves vertically due to its rotation. A polishing method in which vibration is suppressed, the rotation and revolution speed of the sphere is increased, and the magnetic fluid containing the abrasive circulates through the hole so that the abrasive is continuously supplied to the sphere. 2. An annular V-shaped groove was provided on the sphere and the upper surface in a magnetic fluid containing abrasive grains that was circulating in a double cylindrical container having a low inner wall surface in which a magnet was arranged below, and a hole was opened in the center. A float (buoyancy plate) is dipped, a sphere is placed in the groove, and the sphere is formed by the magnetic levitation phenomenon that occurs in the sphere and the float due to the action of the magnetic field formed by the magnet, and the plane of the drive shaft installed above the container. When the movement of the drive shaft is transmitted to the sphere by pressing it against the lower surface of the sphere and the sphere is moved in the magnetic fluid containing abrasive grains, the float with a hole in the center not only increases the processing load, but also A polishing method in which the vertical vibration associated with rotation is suppressed to increase the rotation and revolution speed of the sphere, and because magnetic fluid containing abrasive grains circulates through this hole, the abrasive grains are continuously supplied to the sphere. 3. The method according to claim 1 or 2, wherein the sphere is a ceramic sphere. 4. A groove between the outer walls of a double cylindrical container having a low inner wall surface is provided with a hole for discharging a magnetic fluid containing abrasive grains circulating between the container and an external storage tank, and a magnet is arranged at the bottom of the container. A hole for introducing a magnetic fluid containing abrasive grains that circulates between the magnet group and an external storage tank is provided in the center of the magnet group, and the lower end is at the upper part of the container and one end of the pipe is cut on a conical surface having an apex angle of 90 0. The sphere to be polished immersed in the magnetic fluid and the float immersed in the lower part of the sphere have a hole in the center, and the sphere is formed by the magnetic levitation phenomenon caused by the action of the magnetic field formed by the magnet. A sphere polishing apparatus configured to be pressed against the lower surface of a drive shaft installed at the upper part of a container so that the motion of the drive shaft is transmitted to the sphere so that the sphere moves in a magnetic fluid containing abrasive grains. 5. A groove between the outer walls of a double cylindrical container having a low inner wall surface is provided with a hole for discharging a magnetic fluid containing abrasive grains circulating between the container and an external storage tank, and a magnet is arranged at the bottom of the container. A hole for introducing a magnetic fluid containing abrasive grains that circulates between the magnet group and an external storage tank is provided at the center of the magnet group, and a drive shaft having a flat lower surface is installed above the container. The sphere to be dipped in and the float to be dipped below have a plurality of annular V-shaped grooves, and a hole is made in the center, and the sphere is formed by a magnetic levitation phenomenon caused by the action of a magnetic field formed by the magnet. A polishing apparatus for a spherical body, which is pressed against the lower surface of a drive shaft installed on the upper part of the drive shaft, and the motion of the drive shaft is transmitted to the spherical body so that the spherical body moves in a magnetic fluid containing abrasive grains.

【0007】本発明の基礎にある磁性流体を用いる球体
の研磨方法は、下法に磁石が配置された容器内に充填さ
れた砥粒を含有する磁性流体中に、セラミック球と浮子
を浸漬し、前記磁石により形成される磁場の作用によ
り、セラミック球及び浮子に生じる磁気浮揚現象により
セラミック球を容器の上部に位置した駆動軸(駆動軸用
治具)の下面に押しつけて駆動軸の運動をセラミック球
に伝達してセラミック球を砥粒を含有する磁性流体中で
運動させることによるものである。この研磨方法は、特
公平5−41394号に詳細に記載されている。
The method for polishing spheres using a magnetic fluid, which is the basis of the present invention, is a method in which a ceramic sphere and a float are immersed in a magnetic fluid containing abrasive particles filled in a container in which a magnet is arranged. By the action of the magnetic field formed by the magnet, the ceramic sphere is pressed against the lower surface of the drive shaft (drive shaft jig) located at the upper part of the container by the magnetic levitation phenomenon that occurs in the ceramic sphere and the float to move the drive shaft. This is due to transmission to the ceramic spheres and movement of the ceramic spheres in a magnetic fluid containing abrasive grains. This polishing method is described in detail in JP-B-5-41394.

【0008】本発明にかかる研磨方法及び装置の構成要
素のうちで、浮子の中心に穴を開けたこと、砥粒を含有
する磁性流体を研磨容器と外部に設けた貯蔵タンクとの
間に循環させるということを特徴とする。
Among the components of the polishing method and apparatus according to the present invention, a hole is made in the center of the float, and a magnetic fluid containing abrasive grains is circulated between the polishing container and an external storage tank. The feature is to let.

【0009】[0009]

【作用】図3に示すように設置された状態で研磨する場
合、この磁性流体研磨法での浮子3と磁石面との距離
は、0.5mm−2mmの間で調整される。研磨時間の
経過と共に磁性流体自体の劣化から発生する酸化鉄を主
成分とする微粉子、そして駆動軸として回転を与える一
方、ラップ盤として機能することから自身も研削されて
発生するステンレス鋼の金属粉、摩耗する砥粒の微粉、
また研削されたセラミック粉が磁性流体中に次第にその
含有量を増して滞留することになる。そして摩擦熱の発
生による分散媒の蒸発にともなう磁性粒子の体積濃度の
増加と相まって、磁性流体の粘度が増加する。その結果
磁性流体中に浮遊出来なくなったそれらの物質ともども
容器4Aの上部壁にこびりついたり、一部は浮子3の下
部に拡散され、特に鉄分は磁石面いっぱいに張り付くよ
うになる。こうしたことが浮子の上下運動、回転運動、
球体の自転、公転に悪い因子と働いて現在まで理想とす
るセラミック球を得ることが出来なかった。
When polishing is carried out in the state of being installed as shown in FIG. 3, the distance between the float 3 and the magnet surface in this magnetic fluid polishing method is adjusted within the range of 0.5 mm-2 mm. A fine powder containing iron oxide as a main component, which is generated by deterioration of the magnetic fluid itself with the passage of polishing time, and rotation as a drive shaft, while it also functions as a lapping machine and is also a metal of stainless steel that is generated by grinding itself. Powder, abrasive fines,
Further, the ground ceramic powder gradually increases its content and stays in the magnetic fluid. The viscosity of the magnetic fluid increases with the increase in the volume concentration of the magnetic particles accompanying the evaporation of the dispersion medium due to the generation of frictional heat. As a result, those substances that cannot be suspended in the magnetic fluid stick to the upper wall of the container 4A, and some of them are diffused to the lower part of the float 3, and iron in particular sticks to the entire magnet surface. This is because the float moves up and down,
Until now, it has been impossible to obtain the ideal ceramic sphere by working with factors that are bad for the rotation and revolution of the sphere.

【0010】そこで本発明では図2に示す浮子3の中心
に穴を開けたことによってすばらしい成果を得た。すな
わち浮子3の中心に穴を開けたことによって浮子が回転
する場合に発生する浮子下面の負圧を穴より逃がす事が
可能となり、従来、浮子の回転速度に伴い発生していた
浮子の上下振動を抑制することが可能となり、球の自
転、公転運動に安定を与える事が可能となる。また砥粒
を含有する磁性流体がこの穴を通じて循環するため、球
に連続して砥粒が供給されることとなる。このような浮
子の穴の作用により、駆動軸1の回転運動と共にセラミ
ック球2が自転及び容器4Aの内側に沿って公転運動を
する時、浮子3は磁気浮揚力によってセラミック球2を
容器4Aと駆動軸の斜面に押しつけるだけでなく、自ず
から回転することでセラミック球2の回転運動を助け、
セラミック球2の特定の部位を研磨することなく、より
効率的に球状に研磨することになる。
Therefore, in the present invention, a great result is obtained by forming a hole in the center of the float 3 shown in FIG. That is, it is possible to let the negative pressure on the bottom surface of the float generated when the float rotates by opening a hole in the center of the float 3 from the hole, and the vertical vibration of the float that has conventionally been generated with the rotation speed of the float. It becomes possible to suppress the rotation of the ball, and to stabilize the rotation and revolution movement of the ball. Further, since the magnetic fluid containing abrasive grains circulates through this hole, the abrasive grains are continuously supplied to the sphere. Due to the action of the hole of the float, when the ceramic ball 2 rotates and revolves along the inside of the container 4A along with the rotational motion of the drive shaft 1, the float 3 causes the ceramic ball 2 to move to the container 4A by the magnetic levitation force. Not only pressing on the slope of the drive shaft, but also rotating by itself to assist the rotational movement of the ceramic ball 2,
The ceramic sphere 2 can be more efficiently spherically polished without polishing a specific portion.

【0011】すなわち浮子に穴を開けることで、浮子の
粘性抵抗力が減少し、同じ駆動軸の回転速度でも、浮子
の回転速度は異なり、それに伴いセラミック球の公転速
度が増加する。そのため、球と駆動軸の接触点におい
て、すべり速度に対する転がり速度の割合が大きくな
る。球全体が効率よく、駆動軸等に接触することにな
り、その結果、真球度は向上する。
That is, by making a hole in the float, the viscous resistance of the float is reduced, and even if the rotation speed of the same drive shaft is different, the rotation speed of the float is different, and the revolution speed of the ceramic ball is increased accordingly. Therefore, at the contact point between the ball and the drive shaft, the ratio of the rolling speed to the sliding speed becomes large. The entire sphere efficiently contacts the drive shaft and the like, and as a result, the sphericity is improved.

【0012】加えて容器内に充填された砥粒を含有する
磁性流体を連続的に入れ換える循環方法は、先にも述べ
たこの研磨法で悪い因子として働く要因を取除く効果が
見られる。それは駆動軸から出る金属粉、使用された砥
粒粉、研削されたセラミック粉を含有する磁性流体を容
器4Aの裏側にオ−バ−フロ−のかたちで排出する一
方、磁石5の中心部から新しい砥粒を含有する磁性流体
が供給されることによって、研磨開始初期の状態を保持
することが可能となる。またこの事は研磨能力の点から
比較的粒度の小さ目の砥粒を使用しても研磨効率を下げ
ることなく、かえって仕上げ工程を容易にさせ、面粗さ
の良いセラミック球が得られる。なお、排出された磁性
流体はフイルタ−を通してから貯蔵タンクに導入され還
流される事が望ましい。
In addition, the circulation method in which the magnetic fluid containing abrasive grains filled in the container is continuously replaced has the effect of removing the factor acting as a bad factor in the polishing method described above. It discharges the magnetic powder containing the metal powder, the used abrasive powder, and the ground ceramic powder from the drive shaft to the back side of the container 4A in the form of an overflow, while it is discharged from the center of the magnet 5. By supplying the magnetic fluid containing new abrasive grains, the initial state of polishing can be maintained. Further, this means that even if abrasive grains having a relatively small grain size are used from the viewpoint of polishing ability, the polishing efficiency is not lowered, rather the finishing process is facilitated, and ceramic spheres having a good surface roughness can be obtained. Incidentally, it is desirable that the discharged magnetic fluid is introduced into the storage tank and then refluxed through the filter.

【0013】[0013]

【実施例】次に添付図面、表を参照しながら本発明の方
法及びその装置について述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus of the present invention will be described below with reference to the accompanying drawings and tables.

【0014】図1 公知の研磨装置、図2 本発明の装
置、図3 本発明に到る予備的な装置、図4 図2、図
3の装置の容器の内側に沿って並べられた球体の配列を
示す平面図、図5 磁石、図6 本発明の装置である。
いづれも本発明の説明図である。
FIG. 1 Known polishing device, FIG. 2 Device according to the invention, FIG. 3 Preliminary device according to the invention, FIG. 4 Spheres arranged along the inside of the container of the device according to FIGS. FIG. 6 is a plan view showing the arrangement, FIG. 5 is a magnet, and FIG. 6 is a device of the present invention.
Both are explanatory views of the present invention.

【0015】 図1−6に示す符号について 1 駆動軸、2 セラミック球、3 浮子、4A 容器
の内側部、4B 容器の外側部、5 磁石、6 取付け
台、7 貯蔵タンク、8A、8B、8C 穴、9 磁性
流体、10 水、11 スピンドル、12 フランジ。
1-6 drive shaft, 2 ceramic spheres, 3 floats, 4A container inner part, 4B container outer part, 5 magnets, 6 mounting base, 7 storage tanks, 8A, 8B, 8C Hole, 9 magnetic fluid, 10 water, 11 spindle, 12 flange.

【0016】表1 研磨条件Table 1 Polishing conditions

【0017】図1は特公平5−41394号の基本的な
磁性流体研磨装置の説明図である。図2は本発明にかか
る研磨装置、図3は本発明の完成に到る前の研磨装置の
いづれも説明図である。図2、3に示されている駆動軸
1の下端はステンレス鋼製のパイプの片端を頂角900
の円錐面にカットされたものである。セラミック球2は
この円錐面に接触している。そしてパイプのもう一方の
端はフランジに固定され、フランジを介してスピンドル
に連動このスピンドルの振れ精度はより高い精度が望ま
れ、かつ堅牢なハウジングに固定されている事が重要で
ある。
FIG. 1 is an explanatory view of a basic magnetic fluid polishing apparatus of Japanese Patent Publication No. 5-41394. FIG. 2 is an explanatory view of a polishing apparatus according to the present invention, and FIG. 3 is an explanatory view of each polishing apparatus before the completion of the present invention. The lower end of the drive shaft 1 shown in FIGS. 2 and 3 is one end of a pipe made of stainless steel and has an apex angle 90 0.
It was cut into a conical surface. The ceramic sphere 2 is in contact with this conical surface. The other end of the pipe is fixed to a flange, and linked to the spindle via the flange. It is important that the spindle has a high runout accuracy and is fixed to a robust housing.

【0018】図2、3に見られる容器(アルミ鋳物製)
は球体の運動の案内面として作用する4Aの部分と底部
で一体となっている4Bの部分からなる二重円筒状であ
る。但し図2の4A,4Bの間の底面の一ケ所には4A
をオ−バ−フロ−してくる砥粒を含有する磁性流体を外
部貯蔵タンクに導く排出口8Bが設けてある。また図3
の4A,4Bの間の溝には研磨中の磁性流体の温度上昇
を防ぐため水が張られる。
The container (made of aluminum casting) shown in FIGS.
Is a double cylinder consisting of a portion 4A which acts as a guide surface for the movement of the sphere and a portion 4B which is integrated at the bottom. However, in one place on the bottom surface between 4A and 4B in FIG.
There is provided a discharge port 8B for guiding the magnetic fluid containing abrasive grains flowing over to the external storage tank. See also FIG.
The groove between 4A and 4B is filled with water to prevent the temperature rise of the magnetic fluid during polishing.

【0019】図4は同一サイズのセラミック球を図2,
3に示した装置の容器4Aの内側に沿って設置した状態
を示したものである。図5は磁石5の組立図である。磁
石部の中心に砥粒を有する磁性流体を貯蔵タンクより研
磨装置内に導く穴8Cを具備する。
FIG. 4 shows ceramic balls of the same size as shown in FIG.
4 shows a state where the apparatus shown in FIG. 3 is installed along the inside of a container 4A. FIG. 5 is an assembly drawing of the magnet 5. A hole 8C is provided at the center of the magnet portion for guiding the magnetic fluid having abrasive grains into the polishing apparatus from the storage tank.

【0020】本願発明にかかる図2に示されている浮子
3の中心部には穴8Aを開けている。図3に示されてい
る浮子3には穴は開いていない。次に磁石5,容器4
A、4Bはその下部の取付け台6にセットされ、上下方
向に移動することが出来、駆動軸1の運動をセラミック
球に伝達する任意の位置に固定出来る。
A hole 8A is formed in the center of the float 3 shown in FIG. 2 according to the present invention. The float 3 shown in FIG. 3 has no holes. Next, magnet 5, container 4
A and 4B are set on a mounting base 6 at the lower part thereof, can be moved in the vertical direction, and can be fixed at an arbitrary position for transmitting the motion of the drive shaft 1 to the ceramic sphere.

【0021】図6は駆動軸の下面の形状が円板上である
場合を示し、かつ浮子3の中心に穴をあけ、且つ上面に
環状V形溝を設けた一例を示す。
FIG. 6 shows a case in which the shape of the lower surface of the drive shaft is a disk, and shows an example in which a hole is formed in the center of the float 3 and an annular V-shaped groove is provided on the upper surface.

【0022】使用されたセラミック球(直径約8mmの
HIP窒化ケイ素球)は、予めマイクロメ−タ−(最小
目盛1μ)により直径を10ケ所測定し、図4のように
設置された各球に0.5Nの荷重がかかる状態で下記表
1に示したA,Bの条件で、それぞれ40分研磨した
後、セラミック球を水で洗浄し、再び直径を10ケ所測
定し、各々の直径不同(1個の球の直径の最大値と最小
値の差)を計算し、それらの値のすべての球における平
均値を各研磨における直径不同とした。
The ceramic spheres used (HIP silicon nitride spheres having a diameter of about 8 mm) were preliminarily measured with a micrometer (minimum scale 1 μm) at 10 locations, and each sphere installed as shown in FIG. After polishing for 40 minutes under the conditions of A and B shown in Table 1 below under a load of 0.5 N, the ceramic spheres were washed with water, and the diameters were measured again at 10 locations. The difference between the maximum value and the minimum value of the diameter of each sphere was calculated, and the average value of those values in all spheres was regarded as the diameter disparity in each polishing.

【0023】[0023]

【表1】 [Table 1]

【0024】その結果10mmの穴を有する浮子ではA
1の場合直径不同が2.5μから1.0μに減少したの
に対し、穴のない浮子ではBの場合、直径不同は1.5
μから3.9μに増加した。またA1で得られたセラミ
ック球をA2の条件で40分研磨した後、水で洗浄し、
再度測定した結果、直径不同は1.0μから0.5μに
減少した。
As a result, for a float with a 10 mm hole, A
In the case of 1, the diameter difference was reduced from 2.5μ to 1.0μ, while in the case of the float without a hole, in the case of B, the diameter difference was 1.5μ.
It increased from μ to 3.9μ. Also, after polishing the ceramic spheres obtained in A1 under the conditions of A2 for 40 minutes, washed with water,
As a result of re-measurement, the diameter difference was reduced from 1.0 μ to 0.5 μ.

【0025】さらに図6に示された駆動軸の下面が円板
状で、かつ浮子に環状V型溝がある場合の実施例はV溝
2列でCに示す条件で行った時、直径不同は1.5μか
ら1.0μに減少した。
Further, in the embodiment shown in FIG. 6 in which the lower surface of the drive shaft is disk-shaped and the float has an annular V-shaped groove, the diameters are different when the condition is shown in C with two rows of V grooves. Was reduced from 1.5μ to 1.0μ.

【0026】これより、穴を有する浮子は直径不同を減
少させるのに有効であることが分かる。また、穴がある
場合と無い場合の研磨後の球面を光学顕微鏡で観察した
際、穴のある浮子では駆動軸と球との間で転がりが多く
発生したと思われる押し込み傷が多く観察されたのに対
し、穴のない浮子では引っかき傷が多く観察された。こ
れより、浮子に穴があることで浮子の回転運動が容易と
なり、それに伴い球の公転運動が増加し、その結果、駆
動軸と球の間の運動が、浮子に穴があることにより、よ
り転がり運動に近づいたと考えられる。
From this, it can be seen that the float having holes is effective in reducing the diameter difference. Also, when observing the polished spherical surface with and without holes with an optical microscope, many indentation scratches that were thought to have caused a lot of rolling between the drive shaft and the sphere were observed in the float with holes. On the other hand, many scratches were observed on the float without holes. As a result, the hole in the float facilitates the rotational movement of the float, which increases the orbital movement of the sphere, and as a result, the movement between the drive shaft and the sphere becomes more It is probable that the rolling motion was approaching.

【0027】[0027]

【発明の効果】従来の磁性流体を用いた球体の研磨方法
によりよりも、真球度の高い球体が量産化されることに
ある。
The object of the present invention is to mass-produce spheres having a higher sphericity than the conventional method for polishing spheres using magnetic fluid.

【図面の簡単な説明】[Brief description of drawings]

【図1】公知の研磨装置の説明図FIG. 1 is an explanatory view of a known polishing device.

【図2】本発明の研磨装置の説明図FIG. 2 is an explanatory view of a polishing apparatus of the present invention.

【図3】本発明に到る予備的な研磨装置の説明図FIG. 3 is an explanatory view of a preliminary polishing apparatus according to the present invention.

【図4】図2、図3の装置の容器の内側に沿って並べら
れた球体の配列を示す説明図
FIG. 4 is an explanatory view showing an array of spheres arranged along the inside of the container of the apparatus of FIGS. 2 and 3;

【図5】磁石の説明図FIG. 5 is an explanatory diagram of a magnet

【図6】本発明の研磨装置の説明図FIG. 6 is an explanatory view of a polishing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 駆動軸 2 セラミック球 3 浮子(浮力板) 4A 容器内側部 4B 容器外側部 5 磁石 6 取付け台 7 貯蔵タンク 8A 穴 8B 穴 8C 穴 9 磁性流体 10 水 11 スピンドル 12 フランジ 1 Drive shaft 2 Ceramic sphere 3 Float (buoyancy plate) 4A Container inner part 4B Container outer part 5 Magnet 6 Mounting stand 7 Storage tank 8A hole 8B hole 8C hole 9 Magnetic fluid 10 Water 11 Spindle 12 Flange

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下方に磁石が配置された内壁面が低い2
重円筒状容器内に還流している砥粒を含有する磁性流体
中に、球体と中心に穴の開いた浮子(浮力板)を浸漬
し、該磁石により形成される磁場の作用により球体及び
浮子に生ずる磁気浮揚現象により、球体と容器の上部に
設置された駆動軸の下端が、パイプの片端を頂角900
の円錐面にカツトされた面に押しつけて駆動軸の運動を
球体に伝達して球体を砥粒を含有する磁性流体中で運動
させる時、中心に穴を開けた浮子は加工荷重を増すばか
りでなく、自身の回転に伴う上下振動を抑制し、 球体
の自転、公転速度を高め、またこの穴を通じて砥粒を含
む磁性流体が循環するため球体に連続して砥粒が供給さ
れる研磨方法。
1. A low inner wall surface on which a magnet is arranged below 2
A spherical body and a float (buoyancy plate) having a hole in the center are immersed in a magnetic fluid containing abrasive grains that are refluxed in a heavy cylindrical container, and the spherical body and the float are caused by the action of a magnetic field formed by the magnet. Due to the magnetic levitation phenomenon that occurs in, the lower end of the drive shaft installed at the upper part of the sphere and the container makes one end of the pipe apex angle 90 0.
When the drive shaft is pressed against the surface cut by the conical surface of the and the motion of the drive shaft is transmitted to the sphere to move the sphere in the magnetic fluid containing abrasive grains, the float with a hole in the center not only increases the processing load. Instead, it suppresses vertical vibrations due to its rotation, increases the rotation and revolution speed of the sphere, and the magnetic fluid containing the abrasive circulates through this hole, so that the abrasive is continuously supplied to the sphere.
【請求項2】 下方に磁石が配置された内壁面が低い2
重円筒状容器内に還流している砥粒を含有する磁性流体
中に、球体と上面に環状V字形溝を設け、その中心に穴
の開いた浮子(浮力板)を浸漬し、その溝に球体を配置
し、該磁石により形成される磁場の作用により球体及び
浮子に生じる磁気浮揚現象により球体を、容器の上部に
設置された駆動軸の平面状の下面に押しつけて駆動軸の
運動球体に伝達して球体を砥粒を含有する磁性流体中で
運動させる時、中心に穴を開けた浮子は加工荷重を増す
ばかりでなく、自身の回転に伴う上下振動を抑制し球体
の自転、公転速度を高め、またこの穴を通じて砥粒を含
む磁性流体が循環するため球体に連続して砥粒が供給さ
れる研磨方法。
2. A lower inner wall surface on which a magnet is arranged below 2
An annular V-shaped groove is provided on the sphere and the upper surface in a magnetic fluid containing abrasive grains that is refluxed in a heavy cylindrical container, and a float (buoyancy plate) with a hole at its center is immersed in the groove. By placing a sphere, the sphere is pressed by the magnetic levitation phenomenon that occurs in the sphere and the float due to the action of the magnetic field formed by the magnet, and the sphere is pressed against the flat lower surface of the drive shaft installed in the upper part of the container to make the sphere of the drive shaft moving. When the sphere is moved to move in a magnetic fluid containing abrasive grains, the float with a hole in the center not only increases the processing load, but also suppresses the vertical vibration due to its own rotation and the rotation and revolution speed of the sphere. And a magnetic fluid containing abrasive grains circulates through this hole so that the abrasive grains are continuously supplied to the sphere.
【請求項3】 球体がセラミツク球体である請求項第1
項または第2項に記載の方法。
3. The spherical body is a ceramic sphere.
The method according to Item 2 or Item 2.
【請求項4】 内壁面が低い2重円筒状容器の外壁間の
溝に外部貯蔵タンクとの間を循環する砥粒を含有する磁
性流体を排出する穴を有し、該容器の下部に磁石が配置
され、その磁石群の中心部に外部貯蔵タンクとの間を循
環する砥粒を含有する磁性流体を導入する穴を具備し、
該容器の上部に下端がパイプの片端を頂角900の円錐
面にカツトされた駆動軸が設置され、該磁性流体中に浸
漬する被研磨球体とその下部に浸漬する浮子は中心に穴
を有し、該磁石により形成される磁場の作用により生じ
る磁気浮揚現象によって球体は容器の上部に設置された
駆動軸の下面に押しつけられ駆動軸のの運動が球体に伝
達されて球体が砥粒を含む磁性流体中で運動するように
構成されている球体の研磨装置。
4. A double cylindrical container having a low inner wall surface has a hole for discharging a magnetic fluid containing abrasive grains which circulates between the outer storage tank and a groove in the groove between the outer walls, and a magnet is provided in a lower portion of the container. And a hole for introducing a magnetic fluid containing abrasive grains that circulates between the magnet group and the external storage tank in the center of the magnet group,
A drive shaft having a lower end and one end of a pipe cut into a conical surface with an apex angle of 90 0 is installed in the upper part of the container, and a sphere to be dipped in the magnetic fluid and a float to be dipped in the lower part have a hole at the center. The sphere is pressed against the lower surface of the drive shaft installed in the upper part of the container by the magnetic levitation phenomenon caused by the action of the magnetic field formed by the magnet, and the motion of the drive shaft is transmitted to the sphere to cause the sphere to generate abrasive particles. An apparatus for polishing spheres configured to move in a magnetic fluid containing.
【請求項5】 内壁面が低い2重円筒状容器の外壁間の
溝に外部貯蔵タンクとの間を循環する砥粒を含有する磁
性流体を排出する穴を有し、該容器の下部に磁石が配置
され、その磁石群の中心部に外部貯蔵タンクとの間を循
環する砥粒を含有する磁性流体を導入する穴を具備し、
該容器の上部に下面が平面状の駆動軸が設置され、該磁
性流体中に浸漬する球体とその下部に浸漬する浮子は環
状V字形溝の複数個を有し、かつ中心部に穴が開けら
れ、該磁石により形成される磁場の作用により生じる磁
気浮揚現象によって球体は容器の上部に設置された駆動
軸の下面に押しつけられ、駆動軸の運動が球体に伝達さ
れて球体が砥粒を含む磁性流体中で運動するように構成
されている球体の研磨装置。
5. A hole between the outer walls of a double cylindrical container having a low inner wall surface for discharging a magnetic fluid containing abrasive grains that circulates between the outer storage tank and a magnet is provided at the bottom of the container. And a hole for introducing a magnetic fluid containing abrasive grains that circulates between the magnet group and the external storage tank in the center of the magnet group,
A drive shaft having a flat lower surface is installed on an upper portion of the container, and a sphere immersed in the magnetic fluid and a float immersed in the lower portion thereof have a plurality of annular V-shaped grooves, and a hole is formed at a center portion. The sphere is pressed against the lower surface of the drive shaft installed in the upper part of the container by the magnetic levitation phenomenon caused by the action of the magnetic field formed by the magnet, the motion of the drive shaft is transmitted to the sphere, and the sphere contains abrasive grains. A sphere polishing device configured to move in a magnetic fluid.
JP9455295A 1995-03-28 1995-03-28 Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain Pending JPH08257897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9455295A JPH08257897A (en) 1995-03-28 1995-03-28 Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9455295A JPH08257897A (en) 1995-03-28 1995-03-28 Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain

Publications (1)

Publication Number Publication Date
JPH08257897A true JPH08257897A (en) 1996-10-08

Family

ID=14113485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9455295A Pending JPH08257897A (en) 1995-03-28 1995-03-28 Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain

Country Status (1)

Country Link
JP (1) JPH08257897A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033610A1 (en) * 1997-12-30 1999-07-08 Board Of Regents For Oklahoma State University Magnetic float polishing of magnetic materials
KR100812717B1 (en) * 2006-06-05 2008-03-14 주식회사 윈트 Abrasive blasting machine for cutting tool
CN108705443A (en) * 2018-07-28 2018-10-26 天津大学 It is a kind of to be used for abrasive disk, the device and method that cylindrical roller rolling surface finishes
CN109863220A (en) * 2016-10-25 2019-06-07 3M创新有限公司 Functional abrasive grain, abrasive product and preparation method thereof
CN114147582A (en) * 2021-11-26 2022-03-08 新乡航空工业(集团)有限公司 Magnetic-insulation grinding device for magnetic suction grinding machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033610A1 (en) * 1997-12-30 1999-07-08 Board Of Regents For Oklahoma State University Magnetic float polishing of magnetic materials
KR100812717B1 (en) * 2006-06-05 2008-03-14 주식회사 윈트 Abrasive blasting machine for cutting tool
CN109863220A (en) * 2016-10-25 2019-06-07 3M创新有限公司 Functional abrasive grain, abrasive product and preparation method thereof
CN109863220B (en) * 2016-10-25 2021-04-13 3M创新有限公司 Functional abrasive particles, abrasive articles, and methods of making the same
CN108705443A (en) * 2018-07-28 2018-10-26 天津大学 It is a kind of to be used for abrasive disk, the device and method that cylindrical roller rolling surface finishes
CN108705443B (en) * 2018-07-28 2023-09-19 天津大学 Grinding disc kit, equipment and method for finishing rolling surface of cylindrical roller
CN114147582A (en) * 2021-11-26 2022-03-08 新乡航空工业(集团)有限公司 Magnetic-insulation grinding device for magnetic suction grinding machine
CN114147582B (en) * 2021-11-26 2024-01-09 新乡航空工业(集团)有限公司 A adiabatic grinding processingequipment for grinding machine is inhaled to magnetism

Similar Documents

Publication Publication Date Title
JP5396025B2 (en) Magnetic spiral polishing machine
JP4741212B2 (en) Magnetorheological polishing apparatus and method
Umehara et al. Magnetic fluid grinding–a new technique for finishing advanced ceramics
KR20170089866A (en) Double-disc straight groove cylindrical-component surface grinding disc
US20030087585A1 (en) Magnetorheological polishing devices and methods
CN108544305A (en) A kind of device of the magnetorheological auxiliary V-groove high-efficiency high-accuracy polishing Ceramic Balls of cluster
CN107617933A (en) A kind of dynamic magnetic field magnetorheological finishing device
KR20010089581A (en) Device for polishing outer peripheral edge of semiconductor wafer
JPH08257897A (en) Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain
CN208262426U (en) A kind of device of the magnetorheological auxiliary V-groove high-efficiency high-accuracy polishing Ceramic Balls of cluster
EP1852219A1 (en) Flow barrel polishing device and polishing method
JPS63267155A (en) Polishing device
KR102068538B1 (en) Polishing system using magnetorheological fluid and polishing method using the same
CN112264904B (en) Marble carving surface finish all-in-one
JPH0584656A (en) Magnetic fluid polishing method
JPS62173166A (en) Sphere polishing method using magnetic fluid and polishing device
JPH05329766A (en) Method and device for effecting magnetic polishing of inner surface of container
CN213615994U (en) Magnetic fluid polishing device for hemispherical harmonic oscillator
US1134944A (en) Grinding and polishing machine.
JPH01234160A (en) Polishing and polishing device
JP2584945B2 (en) Apparatus and method for polishing true sphere of ceramics
JPH01271163A (en) Polishing device using magnetic fluid
JPH06226617A (en) Method of roughening wire rod surface
JPS63221966A (en) Noncontact polishing method
Kang et al. A study on the lapping of ceramic balls