JP2007098117A - 一方向性多孔質複合体の製造方法および一方向性多孔質複合体 - Google Patents

一方向性多孔質複合体の製造方法および一方向性多孔質複合体 Download PDF

Info

Publication number
JP2007098117A
JP2007098117A JP2006225545A JP2006225545A JP2007098117A JP 2007098117 A JP2007098117 A JP 2007098117A JP 2006225545 A JP2006225545 A JP 2006225545A JP 2006225545 A JP2006225545 A JP 2006225545A JP 2007098117 A JP2007098117 A JP 2007098117A
Authority
JP
Japan
Prior art keywords
porous composite
hydroxyapatite
unidirectional
composite
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006225545A
Other languages
English (en)
Other versions
JP5024780B2 (ja
Inventor
Toshiyuki Ikoma
俊之 生駒
Shunji Yunoki
俊二 柚木
Masanori Kikuchi
正紀 菊池
Junzo Tanaka
順三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006225545A priority Critical patent/JP5024780B2/ja
Publication of JP2007098117A publication Critical patent/JP2007098117A/ja
Application granted granted Critical
Publication of JP5024780B2 publication Critical patent/JP5024780B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

【課題】 優れた強度や使用時の操作性、生体適合性および骨誘導性を備えているとともに、強度が異方的で変形の抑制効果を向上させ、細胞や組織の侵入性を向上させた一方向に連通した気孔と弾性を有する新しい一方向性多孔質複合体と、この一方向性多孔質複合体を簡単な工程で、しかも手間とコストを抑えて製造できる新しい一方向性多孔質複合体の製造方法を提供する。
【解決手段】 水酸アパタイト/コラーゲン複合繊維と緩衝液とを混合し、氷結晶の成長サイズおよび成長方向を制御して凍結処理し、凍結乾燥することを特徴とする。
【選択図】図3

Description

本願発明は、一方向性多孔質複合体の製造方法および一方向に連通した気孔と弾性とを有する一方向性多孔質複合体に関するものである。
近年、再生医療の分野では、損傷を受けた組織や器官に代わる種々の人工生体材料の研究開発が盛んに進められている。また、骨欠損部の治療においては、人工骨材や人工骨充填材等のインプラントが用いられる。このようなインプラントには生体骨に類似の機械的特性はもちろん、生体適合性や骨誘導性が求められる。この骨誘導性とは、生体適用後に徐々に吸収されて、骨再生サイクルに取り込まれ、自身の骨に置換していく性質のことをいう。
脊椎動物の骨は、リン酸カルシウムの一種である水酸アパタイト(水酸アパタイト)と、タンパク質であるコラーゲンとからなる複合体である。これらは、生体骨中で水酸アパタイトが、そのc軸方向にコラーゲン繊維に沿って配向した特有の構造を形成し、この構造が骨に特有の機械的性質を与えていることが知られている。
そこで、硬いが脆くインプラント後に崩壊をきたすという強度の問題や、使用時の操作性が悪い等の問題を有していた、既存のリン酸カルシウムを使用した多孔体人工骨に代わって、上記のような生体骨に類似の構造組成を有する、水酸アパタイトとコラーゲンからなる二元複合生体材料が提案され(たとえば、特許文献1)、また、水酸アパタイト、コラーゲンおよびアルギン酸塩からなる三元複合生体材料も提案されている(たとえば、特許文献2)。これら複合生体材料は、上記のとおり、水酸アパタイトとコラーゲン、あるいは、さらにアルギン酸塩を含んでおり、水酸アパタイトのc軸がコラーゲン繊維に沿うように配向した微小多孔質構造を有するように製造することができるとしている。このような構成を有するため、この複合生体材料は、スポンジ状の弾力性を有し、従来の強度の問題や、使用時の操作性の問題を解消することはもちろん、生体適合性および骨誘導性にも優れた複合生体材料であるとされている。
WO 2003/035128号公報 特開2003−190271号公報
しかしながら、従来の上記特許文献1および特許文献2のような複合生体材料は、球状の気孔が無秩序に存在しているため、強度が等方的であり、部位によっては周囲組織につぶされて変形するという強度の問題が依然として解消できないでいた。また、気孔の連通性が少ないため、細胞や組織の侵入性が不十分な場合があった。さらに、このような問題を解決しようとすると、たとえば、つなぎ材としてのコラーゲンを別途添加する工程や、ゲル化剤として、たとえば水酸化ナトリウムを添加する工程等が必要になる等、製造工程がさらに煩雑となり、手間とコストがかかるという問題があった。
そこで、本願発明は、以上のとおりの背景から、従来の問題点を解決すべく、優れた強度や使用時の操作性、生体適合性および骨誘導性を備えているとともに、強度が異方的で変形の抑制効果を向上させ、細胞や組織の侵入性を向上させた一方向に連通した気孔と弾性を有する新しい一方向性多孔質複合体と、この一方向性多孔質複合体を簡単な工程で、しかも手間とコストを抑えて製造できる、新しい一方向性多孔質複合体の製造方法を提供することを課題としている。
本願発明は、前記の課題を解決するものとして、第1には、水酸アパタイト/コラーゲン複合繊維と緩衝液とを混合し、氷結晶の成長サイズおよび成長方向を制御して凍結処理し、凍結乾燥することを特徴とする。
また、本願発明は、第2には、水酸アパタイト/コラーゲン複合繊維は、水酸アパタイトのc軸が繊維軸方向に配向されているものであることを特徴とし、第3には、前記凍結
処理において、水酸アパタイト/コラーゲン複合繊維と緩衝液との混合によって得られる混合物の特定箇所を冷却して、前記混合物全体を凍結することを特徴とし、第4には、前記凍結乾燥後に、さらに真空下で加熱処理することを特徴とし、第5には、前記凍結乾燥後に、化学架橋剤で処理することを特徴とする。
さらに、第6には、水酸アパタイト/コラーゲン複合繊維の凝集体であって、一方向に連通した気孔からなる多孔質を有することを特徴とし、第7には、水酸アパタイト/コラーゲン複合繊維は、水酸アパタイトのc軸が繊維軸方向に配向されているものであること
を特徴とし、そして、第8には、気孔率80%以上であることを特徴とする。
本願第1から第5の発明によれば、優れた強度や使用時の操作性、生体適合性および骨誘導性を備えているとともに、強度が異方的で変形の抑制効果を向上させ、細胞や組織の侵入性を向上させた一方向性多孔質複合体を、簡単な工程で、しかも手間とコストを抑えて製造できる。
第6から第8の発明によれば、優れた強度や使用時の操作性、生体適合性および骨誘導性を備えているとともに、強度が異方的で変形の抑制効果を向上させ、細胞や組織の侵入性を向上させることができる。
本願発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について詳しく説明する。
本願発明の一方向性多孔質複合体の製造方法は、水酸アパタイトとコラーゲンとを必須成分として含有している複合繊維である、水酸アパタイト/コラーゲン複合繊維(以下、HAp/Colとすることがある)と緩衝液とを混合し、均一になるまで十分に混練し、ペースト状にして、水酸アパタイト/コラーゲン複合物(以下、混合物とすることがある)とする。次に、このペースト状の前記混合物を、凍結処理するために凍結装置等の型に注入し、冷却を開始して完全に凍結させる。
この凍結処理は、凍結することで前記混合物の構成成分を結晶化させ(すなわち氷結晶)この氷結晶の成長サイズ、および、成長方向を制御して行い、その後に凍結乾燥することで、一方向に連通した気孔からなる多孔質を有するHAp/Colの凝集体である一方向性多孔質複合体を製造する。
前記凍結処理においては、水酸アパタイト/コラーゲン複合繊維と緩衝液との混合によって得られる混合物の任意の特定箇所(実際的には、この混合物が注入された容器の特定箇所)を冷却して、前記混合物全体を凍結することで、冷却した特定箇所(冷却面)から氷結晶が一方向に成長して、凍結乾燥後に一方向の連通性が高い気孔を有する多孔質複合体を、さらに効率よく得ることができる。この特定箇所は、底面や側面等、特に限定されない。さらには、前記混合物内(もしくは、混合物が注入された容器内)に冷却板や冷却
棒を挿入し、これを冷却して前記混合物を凍結してもよい。
「氷結晶の成長サイズ、および、成長方向を制御」について説明すると、具体的には、まず、「サイズ」については、冷却面の温度によって制御できる。たとえば、−100℃では気孔横断面の短軸長さが5〜20μm、−30℃では気孔横断面の短軸長さが30〜60μmとすることができる。次に、「方向」については、冷却面の設定によって制御できる。たとえば、前記混合物の底面(実際的には、混合物が注入されている容器の底面)のみを冷却すると、鉛直方向の一方向性連通気孔が形成され、また、前記混合物の側面(実際的には、混合物が注入されている円筒容器の側面)の場合は、側面から中心に向かって収束する一方向性連通気孔が形成される。
このように一方向性連通気孔を形成させることで、本願発明の一方向性多孔質複合体の強度は、一方向性連通気孔に対して平行な方向への圧縮強度が高いため、筋肉圧等によって潰れやすい方向に対して優先的に強度を付与することができる。また、組織再生については、従来の多孔質複合体が有する無秩序の球状気孔に比べ、一方向に連通した気孔は骨組織や血管の積極的な再生を気孔方向に沿って速やかに生じさせることができ、また、再生速度は気孔のサイズを大きくすることで高めることができる。そして、気孔サイズが大きすぎると強度が悪化し、小さいと強度が高くなるが、組織誘導の効果が低くなることを考慮して、上記の氷結晶の成長サイズ、および、成長方向を制御して凍結処理を行うことで、気孔サイズを制御して、気孔サイズを適宜組み合わせることにより、骨欠損部の状態に応じて部位最適化された、本願発明の多孔質複合体からなる人工骨材等を作製することができる。
なお、HAp/Colの混合比率について説明すると、吸着水の重量を除いた重量比で、90/10〜60/40、特に85/15〜70/30の範囲で設定することが好ましい。この「吸着水の重量を除いた重量比」とは、大気下の熱重量測定によって、昇温速度20℃/分において、室温(通常25℃)〜200℃の範囲の重量減少分を「吸着水」、200〜600℃の範囲の重量減少を「コラーゲン」、残り分を「水酸アパタイト」として算出することを示す。
このとき、HAp/Colは、たとえば、水酸アパタイトのc軸がコラーゲン繊維軸に沿うように配向されている、生体骨に類似の微小多孔質構造を有する複合繊維体(たとえば、特開平11−199209号公報参照)であることが望ましく、これをさらに凍結乾燥して、粉末状にしたものを使用することが、緩衝液の混合が容易となり、さらに望ましい。このような複合繊維体は、たとえば、水酸化カルシウム溶液とコラーゲンを含むリン酸塩水溶液を反応容器中に同時滴下し、生じた沈澱物を乾燥することにより得ることができる。ここで、用いられるコラーゲンは、特に限定されないが、分子量が大きいとHAp/Col繊維合成時のコラーゲンの分散が悪くなるため、単分子なコラーゲンを用いることが好ましい。特に、ペプシン処理したアテロコラーゲンはモノメリックであることに加え、抗原性が低いため、好ましい。
水酸アパタイトは、一般組成をCa5(PO4)3OH、とする化合物であり、その反応の非化学
量論性によって、CaHPO4 、Ca3(PO4)2、Ca4O(PO4)2、Ca10(PO4)6(OH)2、CaP4O11、Ca(PO3)2、Ca2P2O7、Ca(H2PO4)2・H2O等、リン酸カルシウムと称される1群の化合物を含んでいる。また、水酸アパタイトは、Ca5(PO4)3OH、またはCa10(PO4)6(OH)2の組成式で示される化合物を基本成分とするもので、Ca成分の一部分は、Sr、Ba、MG、Fe、Al、Y、La、Na、K、H等から選ばれる1種以上で置換されてもよい。また、(PO4)成分の一部分が、VO4、BO3、SO4、CO3、SiO4等から選ばれる1種以上で置換されてもよいし、さらに、(OH)成分の一部分が、F、Cl、O、CO3等から選ばれる1種以上で置換されてもよい。また、これらの各
成分の一部が欠失していてもよい。
なお、水酸アパタイトは、通常の微結晶や非晶質、結晶体の他に、同型固溶体、置換型固溶体、侵入型固溶体であってもよく、非量子論的欠陥を含むものであってもよい。
コラーゲンは、現在では20種類程度の分子種の異なるものが、哺乳動物に限らず、魚類を含む広範な動物の生体組織中に存在することが知られている。本願発明で用いられるコラーゲンは、その出発原料とする動物の種、組織部位、年齢等は特に限定されず、任意のものを用いることができるが、一般的には、哺乳動物(たとえば、ウシ、ブタ、ウマ、ウサギ、ネズミ等)や鳥類(たとえば、ニワトリ等)の皮膚、骨、軟骨、腱、臓器等から得られるコラーゲンが用いられる。また、魚類(たとえば、タラ、ヒラメ、カレイ、サケ、マス、マグロ、サバ、タイ、イワシ、サメ等)の皮、骨、軟骨、ひれ、うろこ、臓器等から得られるコラーゲン様蛋白を出発原料として用いてもよい。さらには、上記のような動物組織からの抽出ではなく、遺伝子組換え技術によって人工的に得られたコラーゲンを用いてもよい。
本願発明で用いられるコラーゲンは特に限定されないが、たとえば、I型コラーゲン、コラーゲンタンパク質のアミノ酸残基を、アセチル化、コハク化、マレイル化、フタル化、ベンゾイル化、エステル化、アミド化、グアニジノ化等といった化学修飾したものを用いてもよい。
本願発明に用いられる緩衝液は、イオン種やイオン強度を制御した溶媒であり、たとえば、イオン種が、無機イオンであるリン酸緩衝液等、あるいは、有機イオンであるトリス緩衝液や酢酸緩衝液等、各種の緩衝液を使用することができる。また、イオン強度は、上記のとおりペースト状にした水酸アパタイト/コラーゲン複合物中の値として、0.01〜0.5の範囲、特に0.02〜0.2の範囲であることが好ましい。
また、本願発明は、凍結乾燥における凍結温度を制御することで、多孔質複合体の気孔形状および気孔サイズを制御することができ、たとえば、気孔率を80%以上にすることができる。この制御条件については、基本的には、上記の氷結晶の成長サイズ、および、成長方向を制御する条件に準じている。
さらに、この凍結乾燥後に、真空炉を使って減圧下で行う熱処理(真空熱処理)することで、脱水縮合を生じさせ、効率よく架橋を生成することができ、より弾性に富み、安定した多孔質複合体を製造することができる。真空熱処理の実施条件としては、コラーゲンにおける効率のよい架橋生成を考慮すると、温度は90〜170℃の範囲、より好ましくは100〜150℃の範囲であり、圧力(真空度)は気圧20Pa以下の減圧状態が好ましい。そして、処理時間は、温度によって変化する。具体的には、たとえば、処理温度が90〜110℃の範囲の場合、処理時間は72〜168時間が好ましく、処理温度が110〜130℃の範囲の場合、処理時間は24〜120時間が好ましく、また、処理温度が130〜150℃の範囲の場合、処理時間は8〜48時間以上が好ましく、さらに、処理温度が150〜170℃の範囲の場合、処理時間は3〜24時間が好ましい。そして、コラーゲンの熱分解の進行をできるだけ抑制するために、コラーゲンに架橋が導入された後はできるだけ短時間に上記熱処理を終えることが好ましい。
さらにまた、化学架橋剤を使用することによっても、上記の真空熱処理と同様に効率よくコラーゲンに架橋を導入させることができる。本願発明における化学架橋剤は、タンパク質を架橋でき、水溶性を有するものであれば特に限定されるものではない。このタンパク質の架橋剤については、たとえば、Biomaterials 18, p95〜105 (1997)記載のものが使用でき、中でも、アルデヒド系、カルボジイミド系、エポキシド系およびイミダゾール系架橋剤が、経済性、安全性および操作性の観点から好ましい。さらに具体的には、1−エ
チル−3−(3−ジメチルアミノプロピル)カルボジイミド・塩酸塩、1−シクロヘキシル−3−(2−モルホリニル−4−エチル)カルボジイミド・スルホン酸塩等の水溶性カルボジイミドが、さらに好ましい。
このような製造方法によって、水酸アパタイト/コラーゲン複合繊維の凝集体であって、一方向に連通した気孔からなる多孔質を有することで、スポンジ様の弾性(粘弾性)を発揮することを特徴とした、優れた強度や使用時の操作性、生体適合性および骨誘導性を備えているとともに、変形の抑制効果を向上させ、細胞や組織の侵入性を向上させることができる多孔質複合体を、簡単な工程で、しかも手間とコストを抑えて製造することができる。さらに、このとき水酸アパタイト/コラーゲン複合繊維は、水酸アパタイトのc軸
が繊維軸方向に配向されているものであること、さらにまた、気孔率が80%以上とすることによって、さらに効率よく、多孔質複合体の上記作用効果を実現できる。
そして、このような製造方法で製造された一方向性多孔質複合体は、生体骨類似体として、たとえば、骨欠損部の治療における人工骨材や人工骨充填材等のインプラントに活用することができる。
以下に、実施例を例示しながら、さらに詳しく本願発明の一方向性多孔質複合体の製造方法および一方向に連通する気孔と弾性とを有する一方向性多孔質複合体について説明する。もちろん、以下の例によって本願発明が限定されることはない。
実施例1:本願発明の一方向性多孔質複合体の試験例と、その比較例
1.一方向性多孔質複合体の作製
(1) 水酸アパタイト/コラーゲン複合繊維体(HAp/Col:混合比率は、80/20)7gと、リン酸緩衝液(100mM, pH6.8)56mLとを混合し、均一になるまで十分に混練してペースト状とした。
(2) このペースト状の混合物を、凍結装置のペースト成形容器の型に注入し、容器底面から凍結冷却を開始して、前記ペーストを完全に凍結した。図1にこの凍結装置の構成例を例示した。この凍結装置1は、凍結乾燥機(AD2.0-EL-SC、バーチス社製)
付属の冷却台2、冷却台2の温度を伝導する真鍮台3、Hap/Colからなるペースト状混合物4を注入するシリコーンからなる成形容器5(内径60mm×高さ20mm)とから構成されている。そして、前記真鍮台3から冷却台2の温度が、真鍮台3上に設置されている成形容器5内のペースト状混合物4に伝導し、凍結させる。
(3) 凍結完了後、凍結乾燥を行った。
(4) そして、140℃、12時間の条件で、真空下で加熱処理(真空熱処理)を行い、脱水縮合を生じさせて、本願発明の一方向性多孔質複合体、すなわち、多孔質のHAp/Col複合体を作製した。
2.走査型電子顕微鏡(SEM)による観察
作製した一方向性多孔質複合体をカッターで、図2(A)における、矢印A−Aおよび矢印B−Bに示したように切断(カッティング)し、その切断面を白金コーティングした。そして、この切断面から気孔構造に確認をSEMで行った。
結果は、図3(A)(B)に示したとおりであった。横断面図であるA−A断面図および縦断面図であるB−B断面図ともに、気孔が確認できた。特に、縦断面図であるB−B断面図に示したように、多孔質複合体における気孔は、図2(A)中の矢印Cで示した冷却面からの冷却方向に沿って、一方向に気孔が連通していることが確認できた。
3.圧縮強度試験
図2(B)に例示したように、作製した一方向性多孔質複合体から内径10mm、高さ10mmの円柱(または、内径8mm、高さ8mm)を、白矢印で示した気孔軸が高さ方
向と平行および垂直になるように切り出した。この円柱を、リン酸緩衝液に浸漬し、減圧脱気した後、37℃で静置してインキュベーションした。
24時間のインキュベーション後、テクスチャーアナライザーを用いてリン酸緩衝液に浸漬した状態で多孔質複合体の圧縮試験を行った。押し込み速度0.1mm/sで押し込み、圧縮歪み2〜8%の範囲の応力−歪み曲線の傾きから圧縮弾性率を求め、圧縮歪み20%時の応力を圧縮強度とした。
結果を表1に示した。値は、4サンプルの平均値±標準偏差で表記した。多孔質複合体は高い圧縮弾性率と強度を示し、それらは気孔方向による異方性も示した。多孔質複合体中の連通気孔軸と同方向に対する弾性率と強度は、垂直方向に対するよりもそれぞれ7倍および4倍高かった。
実施例2:化学架橋剤を使用した一方向性多孔質複合体の検証I
上記実施例1で作製した一方向性多孔質複合体を、エタノールに浸漬後、減圧して脱泡し、室温で減圧乾燥した。内径8mm、高さ8mmの円柱を、気孔軸が高さ方向と平行になるように切り出した。実施例1と同様にPBS中での圧縮試験を行った。
結果は、上記表1に示したとおりであった。
実施例3:化学架橋剤を使用した一方向性多孔質複合体の検証II
実施例1で作製した一方向性多孔質複合体を、50mMの1‐エチル‐3‐(3‐ジメチルアミノプロピル)カルボジイミド・塩酸塩(EDC)を含むエタノールに浸漬した。速やかに減圧して脱泡し、室温にて外液をマグネティックスターラーで12時間攪拌した。エタノールで繰り返し洗浄し、未反応EDCおよび副生成物を除去した後、減圧乾燥した。実施例2と同様にサンプルを切り出し、PBS中での圧縮試験を行った。
結果は、上記の表1に示したとおりであった。
すなわち、化学架橋剤EDCをさらに用いたことで、本願発明の一方向性多孔質複合体の機械的強度を大幅に向上させることができることを確認できた。
実施例4:動物実験用の一方向性多孔質複合体の作製
4−1.動物実験用の一方向性多孔質複合体の作製
実施例1で作製した一方向性多孔質複合体を試料片10×10×3mmの大きさに切り出した。一方向性気孔は短辺方向に対して垂直になるよう成型した。25kGyの線量にてγ線滅菌を行い動物実験用の一方向性多孔質複合体とした。
4−2.動物実験用の比較用多孔質複合体の作製
比較用多孔質複合体として、従来作製されている凍結乾燥処理による無秩序な気孔構造を持った多孔質複合体(無秩序多孔質複合体)を作製した。実施例1の(1)で作製した
ペーストを同様な型に流し込み−20℃で全方位から凍結し、同じ条件で凍結乾燥と真空熱処理を行った。試料片は上記4−1と同様に10×10×3mmの大きさに切り出して、γ線滅菌処理を行った。走査型電子顕微鏡(SEM)観察により、気孔構造は従来報告されている無秩序な多孔構造を持っていることを確認した。
実施例5:一方向性多孔質複合体の生体内における組織観察
ウィスターラット(10週齢;体重280−320)の背部皮下の筋肉と皮膚との間に、上記4−1及び4−2において作製した一方向性多孔質複合体及び無秩序多孔質複合体を、それぞれ別個のウィスターラットに移植した。その際に気孔構造に関しては十分に配慮を行った。そして、移植して2週間後に真皮組織ごと摘出した。10%ホルムアルデヒドで固定し、アルコールにて脱水した後、キシレンで洗浄を行い、パラフィンワックスに埋め込んだ。これを厚さ5μmの薄片にしてHE染色を行い、光学顕微鏡で組織観察を行っ
た。
図4に、光学顕微鏡写真(無秩序多孔質複合体(a)(c)、一方向性多孔質複合体(b)(d))を示す。図4中の黒三角(▲)は侵入組織を示すものである。一方向性多孔質複合体(a)及び無秩序多孔質複合体(b)はどちらも、明確な分解は生じていなかった。ここで、一方向性多孔質複合体(a)では、制御した気孔に周囲組織からの線維芽細胞様細胞などの浸潤が認められ、材料内部までほぼ均一に組織が侵入していた。一方、無秩序多孔質複合体(b)では、組織侵入は外側だけに観察され、材料内部の気孔内への組織侵入は観察されなかった。このことより、組織侵入において、一方向に連通させた気孔構造の方が無秩序な気孔構造の材料よりも優れており、本願発明の一方向性多孔質複合体は細胞・組織親友性が優れていることが示された。
実施例6:一方向性多孔質複合体の生体内での血管新生に関する評価
上記4−1において作製した一方向性多孔質複合体に、200μlの血管由来の各成長因子(塩基性線維芽細胞増殖因子(FGF−2)0.25μg/mlと2.5μg/ml、血管内皮増殖因子(VEGF)2.5μg/ml)を別個に滴下した後、それぞれを実施例5と同様に別個のラット背部皮下に移植した。そして、移植2週間後に摘出を行い、実施例5と同様な処理を行い、光学顕微鏡で観察して、生体内での血管新生に関する評価を行った。ここで、血管新生量を定量化するため、抗SMA染色を用いて面積を計算した。また、比較例として、上記4−2において作製した無秩序多孔質複合体と、成長因子の代わりにリン酸緩衝液(PBS)を添加した一方向性多孔質複合体を用いた。
図5に、光学顕微鏡写真(無秩序多孔質複合体(a)、PBS添加(b)、FGF0.25μg/ml添加(c)、FGF2.5μg/ml添加(d)、VEGF2.5μg/ml添加(e))を示す。無秩序多孔質複合体(a)では、血管新生が殆ど観察されなかった。また、PBS添加した一方向性多孔質複合体(b)では、無秩序多孔質複合体(a)と比較して血管新生が観測されたが、成長因子を用いた一方向性多孔質複合体(c)−(e)ほど多くは無かった。そして、FGF0.25μg/ml添加(c)とFGF2.5μg/ml添加(d)とVEGF2.5μg/ml添加(e)を比較すると、FGF濃度を増加させると血管新生が多くなり((c)<(d))、同じ濃度であればFGFよりもVEGFの方が血管新生を促進している((d)<(e))ことが図5より明らかであるが、新生血管の面積計算からも統計学的に優位差があった。このことより、これら成長因子と一方向性多孔質構造の組み合わせることにより、一方向性多孔質複合体材料内部に血管新生を加速できることが示された。
本願発明の一方向性多孔質複合体を作製する際に使用した、凍結装置の一例を例示した模式図であり、(A)は側面図、(B)は平面図である。 本願発明の一方向性多孔質複合体の気孔構造を確認するため、試料の調製の様子を例示した模式図であり、(A)は多孔質複合体のカッティングの様子、(B)は気孔軸の方向を例示している。 本願発明の一方向性多孔質複合体の気孔構造を例示した図であり、(A)は図2のA−A断面図を本願発明の一方向性多孔質複合体の横断面図として、(B)図2のB−B断面図を本願発明の一方向性多孔質複合体の縦断面図として例示している。 ラットの背部皮下の筋肉と皮膚との間に、本願発明の一方向性多孔質複合体を移植して、2週間後に摘出して、HE染色した試料((b)、(d))の光学顕微鏡写真である。比較として、従来の無秩序多孔質複合体を用いて、同様に移植、摘出、染色した試料((a)、(c))の光学顕微鏡写真も示す。 ラットの背部皮下の筋肉と皮膚との間に、本願発明の一方向性多孔質複合体に血管由来の成長因子を添加した後に移植して、2週間後に摘出して、抗SMA染色した試料(FGF0.25μg/ml添加(c)、FGF2.5μg/ml添加(d)、VEGF2.5μg/ml添加(e))の光学顕微鏡写真である。比較として、無秩序多孔質複合体(a)及びPBS添加した一方向性多孔質複合体(b)を用いて、同様に移植、摘出、染色した試料の光学顕微鏡写真も示す。
符号の説明
1 凍結装置
2 冷却台
3 真鍮台
4 ペースト状混合物
5 成形容器

Claims (8)

  1. 水酸アパタイト/コラーゲン複合繊維と緩衝液とを混合し、氷結晶の成長サイズおよび成長方向を制御して凍結処理し、凍結乾燥することを特徴とする一方向性多孔質複合体の製造方法。
  2. 水酸アパタイト/コラーゲン複合繊維は、水酸アパタイトのc軸が繊維軸方向に配向さ
    れているものであることを特徴とする請求項1の製造方法。
  3. 前記凍結処理において、水酸アパタイト/コラーゲン複合繊維と緩衝液との混合によって得られる混合物の特定箇所を冷却して、前記混合物全体を凍結することを特徴とする請求項1または2の製造方法。
  4. 前記凍結乾燥後に、さらに真空下で加熱処理することを特徴とする請求項1から3いずれかの製造方法。
  5. 前記凍結乾燥後に、化学架橋剤で処理することを特徴とする請求項1から3いずれかの製造方法。
  6. 水酸アパタイト/コラーゲン複合繊維の凝集体であって、一方向に連通した気孔からなる多孔質を有することを特徴とする一方向性多孔質複合体。
  7. 水酸アパタイト/コラーゲン複合繊維は、水酸アパタイトのc軸が繊維軸方向に配向さ
    れているものであることを特徴とする請求項6の一方向性多孔質複合体。
  8. 気孔率80%以上であることを特徴とする請求項6または7の一方向性多孔質複合体。
JP2006225545A 2005-09-09 2006-08-22 一方向性多孔質複合体の製造方法および一方向性多孔質複合体 Expired - Fee Related JP5024780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225545A JP5024780B2 (ja) 2005-09-09 2006-08-22 一方向性多孔質複合体の製造方法および一方向性多孔質複合体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005263103 2005-09-09
JP2005263103 2005-09-09
JP2006225545A JP5024780B2 (ja) 2005-09-09 2006-08-22 一方向性多孔質複合体の製造方法および一方向性多孔質複合体

Publications (2)

Publication Number Publication Date
JP2007098117A true JP2007098117A (ja) 2007-04-19
JP5024780B2 JP5024780B2 (ja) 2012-09-12

Family

ID=38025609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225545A Expired - Fee Related JP5024780B2 (ja) 2005-09-09 2006-08-22 一方向性多孔質複合体の製造方法および一方向性多孔質複合体

Country Status (1)

Country Link
JP (1) JP5024780B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272297A (ja) * 2007-05-01 2008-11-13 Hoya Corp アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP2008295795A (ja) * 2007-05-31 2008-12-11 Hoya Corp アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
WO2011115145A1 (ja) 2010-03-16 2011-09-22 独立行政法人産業技術総合研究所 不凍タンパク質を用いる多孔体の製造方法
KR20140068248A (ko) * 2011-12-05 2014-06-05 히타치가세이가부시끼가이샤 뼈·조직 재생 유도용 멤브레인 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788174A (ja) * 1993-09-28 1995-04-04 Yamanouchi Pharmaceut Co Ltd 骨形成用移植体
JP2002248119A (ja) * 2001-02-23 2002-09-03 Japan Science & Technology Corp 人工椎体
WO2003035128A1 (fr) * 2001-10-25 2003-05-01 Japan Science And Technology Agency Substance biologique composite
JP2003169845A (ja) * 2001-12-07 2003-06-17 Japan Science & Technology Corp スポンジ状多孔質アパタイト・コラーゲン複合体、スポンジ状超多孔質アパタイト・コラーゲン複合体及びそれらの製造方法
WO2003092759A1 (fr) * 2002-05-01 2003-11-13 Japan Science And Technology Agency Procede de preparation d'un materiau composite poreux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788174A (ja) * 1993-09-28 1995-04-04 Yamanouchi Pharmaceut Co Ltd 骨形成用移植体
JP2002248119A (ja) * 2001-02-23 2002-09-03 Japan Science & Technology Corp 人工椎体
WO2003035128A1 (fr) * 2001-10-25 2003-05-01 Japan Science And Technology Agency Substance biologique composite
JP2003169845A (ja) * 2001-12-07 2003-06-17 Japan Science & Technology Corp スポンジ状多孔質アパタイト・コラーゲン複合体、スポンジ状超多孔質アパタイト・コラーゲン複合体及びそれらの製造方法
WO2003092759A1 (fr) * 2002-05-01 2003-11-13 Japan Science And Technology Agency Procede de preparation d'un materiau composite poreux

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272297A (ja) * 2007-05-01 2008-11-13 Hoya Corp アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP2008295795A (ja) * 2007-05-31 2008-12-11 Hoya Corp アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
WO2011115145A1 (ja) 2010-03-16 2011-09-22 独立行政法人産業技術総合研究所 不凍タンパク質を用いる多孔体の製造方法
KR20140068248A (ko) * 2011-12-05 2014-06-05 히타치가세이가부시끼가이샤 뼈·조직 재생 유도용 멤브레인 및 그 제조 방법
KR101682778B1 (ko) 2011-12-05 2016-12-05 히타치가세이가부시끼가이샤 뼈·조직 재생 유도용 멤브레인 및 그 제조 방법
US9877808B2 (en) 2011-12-05 2018-01-30 Hitachi Chemical Company, Ltd. Membrane for inducing regeneration of bone/tissue, and method for producing same

Also Published As

Publication number Publication date
JP5024780B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4873555B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法
JP4699759B2 (ja) 自己組織化したアパタイト/コラーゲン複合体を含むアパタイト/コラーゲン架橋多孔体及びその製造方法
JP4680771B2 (ja) リン酸カルシウム含有複合多孔体及びその製造方法
Hosseinkhani et al. Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold
JP5945380B2 (ja) 吸収置換型人工骨及びその製造方法
JPH0824710B2 (ja) 移植用骨コラーゲンマトリックス
JP2009268685A (ja) アパタイト/コラーゲン複合体で被覆してなる人工骨、及びその製造方法
JP2010273847A (ja) 高密度多孔質複合体
WO2005097217A1 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の平均気孔径制御方法
JP5458237B2 (ja) アパタイト/コラーゲン複合体からなる膨張性多孔体、及びその製造方法
Li et al. A cell-engineered small intestinal submucosa-based bone mimetic construct for bone regeneration
JP2009132601A (ja) アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP5008135B2 (ja) アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
JPWO2003035128A1 (ja) 複合生体材料
JP5024780B2 (ja) 一方向性多孔質複合体の製造方法および一方向性多孔質複合体
JP5453690B2 (ja) コラーゲン・キトサン複合繊維状多孔体及びその製造方法
JP2007098118A (ja) 多孔質弾性複合材料の製造方法および多孔質弾性複合材料
JP4934773B2 (ja) アパタイト/コラーゲン複合体からなる多孔体及びその製造方法
US20190015553A1 (en) Preparation method of injectable extracellular matrix based hydrogel derived from decellularized porcine skin loaded with bi-phasic calcium phosphate
JP5236894B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
JP2003260124A (ja) 複合生体材料の生分解性制御
JP2005213449A (ja) ゼラチンスポンジ
CN111359020B (zh) 软组织修复材料及其制备方法和应用
CN109364307A (zh) 一种梯度多孔骨支架材料及其制备方法
JP2007050084A (ja) 骨再建材の製造方法および骨再建材ならびに骨組織誘導方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees