JP2007078677A - 開口作製方法 - Google Patents

開口作製方法 Download PDF

Info

Publication number
JP2007078677A
JP2007078677A JP2006213266A JP2006213266A JP2007078677A JP 2007078677 A JP2007078677 A JP 2007078677A JP 2006213266 A JP2006213266 A JP 2006213266A JP 2006213266 A JP2006213266 A JP 2006213266A JP 2007078677 A JP2007078677 A JP 2007078677A
Authority
JP
Japan
Prior art keywords
chip
shielding film
opening
light shielding
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213266A
Other languages
English (en)
Inventor
Majung Park
馬中 朴
Takayuki Ishii
隆行 石井
Masakazu Hirata
雅一 平田
Manabu Omi
学 大海
Koichi Shibata
浩一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006213266A priority Critical patent/JP2007078677A/ja
Publication of JP2007078677A publication Critical patent/JP2007078677A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

【課題】 チップ先端部から遮光膜を完全に除去し、しかも製造歩留まりの向上が可能な開口作製方法を提供する。
【課題手段】 錐状あるいは錐台状に形成されたチップの先端に光学的な開口を作製する開口作製方法であって、前記チップと該チップの近傍に配置されて尾根状に形成されたストッパーと少なくとも前記チップ上に形成された遮光膜とからなる被開口形成体のうち、前記チップの先端部に形成されている前記遮光膜を塑性変形させる第1の工程と、塑性変形させて残った前記遮光膜をエッチングして除去し、前記チップの先端に光学的な開口部を形成する第2の工程とからなることを特徴とする。
【選択図】 図1

Description

この発明は、光学的な開口を作製する開口作製方法、特に近接場光を照射、検出する近接場光デバイスに用いる開口作製方法に関する。
光を利用した装置は、記録、加工、観察の分野で実用化されている。記録装置では大容量を記憶する光ストレージ、加工装置では半導体メモリやMEMS(Micro−Electro−MechanicAl System)を作製するための光リソグラフィー装置、観察装置では微細な領域を観察するための顕微鏡などが代表的である。これら光を利用した記録、加工、観察装置は、今後ますます取扱う対象領域を微細化し、高精度化することが求められている。これまでの光によって微細領域を取扱う装置は、高NA化されたマイクロレンズによる集光や短波長の青紫色半導体レーザを使用して高分解能化が図られてきたが、限界に近づいているのが現実である。そこで、マイクロレンズによる集光や、光の回折限界に依らず100nm以下の高分解能を実現できる近接場光を利用した光学技術が開発、実用化されてきている。
実際に近接場光を利用した技術としては、近接場光を発現する光プローブと試料表面の間に生じる相互作用を観察対象とすることで、試料表面の微小領域の観察を可能にした走査型近接場光学顕微鏡(SNOM)がある。走査型近接場光学顕微鏡においては、先鋭化された光ファイバーの先端に近接場光を発現させ試料の表面に照射する。先鋭化された光ファイバーは遮光膜で被覆されており、先端部の遮光膜には導入される光の波長の回折限界以下となる直径100nm以下程度の開口が形成され光プローブとなる。プローブ先端に形成された開口と試料間の距離は、走査型プローブ顕微鏡(SPM)と同様な技術によって制御され、その値は開口の大きさ以下である。
このとき、試料上での近接場光のスポット径は、開口の大きさとほぼ同等となる。したがって、試料表面に照射する近接場光を走査することで、開口サイズを分解能とした微小領域における試料の光学物性の観測を可能としている。顕微鏡としての利用だけでなく、光ファイバープローブを通して試料に向けて比較的強度の大きな光を導入させることにより、光ファイバープローブの開口にエネルギー密度の高い近接場光を生成し、その近接場光によって試料表面の構造または物性を局所的に変更させる高密度な記録装置としての応用も可能である。
上記のような近接場光を利用した記録、加工、観察装置においては、近接場光発現部となる光学的な開口の形成が最も重要となる。光学的な開口の作製方法の一つには、特許文献1に開示されている方法がある。図7は特許文献1に開示された開口作製方法の概略図である。
図7(a)は近接場光プローブとなる錐状チップ701が形成されたワーク700の概略図である。ワーク700は、基板706上に形成された透明層707と、透明層707の上に形成され、この透明層707と同じかまたは異なる材質で形成された光透過率の高い錐状のチップ701および尾根状のストッパー708と、チップ701、ストッパー708および透明層707の上に形成された遮光膜702とからなる。チップ701の高さH1は、数10μm以下であり、ストッパー708の高さH2は数10μm以下である。高さH1と高さH2の差は、1000nm以下である。チップ701とストッパー708の間隔は、数mm以下である。また、遮光膜702の厚さは材質によって異なるが、数10nmから数100nmである。
図7(b)は、チップ701先端に力を加える方法を示している。ワーク700の上に、チップ701および少なくともストッパー708の一部を覆い、かつ、少なくともチップ701およびストッパー708側が平面である板709を載せ、さらに板709の上には、押し込み用具710が載せてある。押し込み用具710にチップ701の中心軸方向に力Fを加えることによって、板709がチップ701に向かって移動することでチップ701上の遮光膜702を塑性変形させている。チップ701と板709との接触面積に比べて、ストッパー708と板709との接触面積は、数100〜数万倍も大きい。
したがって、与えられた力Fは、ストッパー708によって分散され、結果として板70の変位量は小さくなる。板709の変位量が小さいため、遮光膜702が受ける塑性変形量は非常に小さい。また、チップ701およびストッパー708は、非常に小さな弾性変形を受けるのみである。
図7(c)は、力Fを加えた後に、板709および押し込み用具710を取り除いた状態のチップ701先端を示した図である。遮光膜702の塑性変形量が非常に小さく、チップ701およびストッパー708が弾性変形領域でのみ変位しているため、チップ701の先端に開口703が形成されている。開口703の大きさは、数nmからチップ701を通過する光波長の回折限界程度の大きさである。
上記の方法によれば、板709の変位によりチップ701先端の遮光膜702を塑性変形させ開口703を作製することが可能である。このとき、同一形状のチップ701に対して板709により同一の力Fで遮光膜702を塑性変形すれば、チップ701先端には上方から見た突出面積が同一である開口703を作製することが可能となる。
図8は特許文献2に開示された方法で作製したヘッド800の断面図である。ヘッド800は、透明基板807の表面に錐台状チップ801とスライダー811を有す。錐台状のチップ801は側面が遮光膜802で覆われている。チップ801先端には開口803が形成されている。スライダー811の表面はABS(Air BeAring Surface)812であり、回転する記録媒体表面にヘッド800を近接させた時に発生する空気浮上力を受け、この浮上力とヘッド800にかけられた荷重とのバランスにより、ヘッド800が記録媒体表面から一定の微小な距離だけ離れて浮上する。
この方法で作製したヘッド800は、開口803がABS812よりもΔHだけ突出している。近接場光は開口803から記録媒体に向けて発生し、その強度は開口803からの距離に強く依存して指数関数的に減衰する。また、近接場光の空間的広がりも、開口803からの距離に依存し、距離が大きくなるにつれて広がりも大きくなる。したがって、ヘッド800はABS812の浮上量よりも開口803の浮上量を小さくし、高分解能と高SN比を実現している。このヘッド800が有した開口803は特許文献1に示した塑性変形方法により作製することができる。
図9は特許文献3で開示された開口903の概略図である。図9(a)は形状が三角錐台であるチップ901の概略図であり、チップ901先端には三角開口903が形成されている。なお、図9(a)は、遮光膜902で覆う前のチップ901の様子を示す図である。チップ901の一つの側面にはAu膜913が形成され、その上から遮光膜902のAlを被覆している。Au膜913は入射光によってプラズモンを励起する材質であり、このほかにAg膜、Cu膜を成膜しても良い。図9(b)はチップ901の三角開口903の概略図である。図9(b)に示すように三角開口903の輪郭の一辺はAu膜913となる。したがって、発生する近接場光が三角開口903の一辺に強く局在するため、高いSN比で高密度記録に対応した近接場光発生素子を作製することができる。この三角開口903は特許文献1に示した塑性変形方法により作製することができる。
特開2002−71545号公報(第3頁、図2) 特開2003−4622号公報(第50頁、図12) 特開2004−178663号公報(第6頁、図1)
しかしながら、特許文献1に示す方法においては開口703の作製時に遮光膜702を錐状のチップ701先端から完全に除去することができない。その様子を示したものが図10であり、図10(a)〜図10(c)には、同一形状であり上方から見た開口703の面積が同一となっているチップ701先端の3例が示されている。この例から示されるように、開口703の表面には遮光膜残滓704が付着しており、その付着の仕方には大きな個体差がある。この状態では、上方から見た開口703の面積が同一であったとしても、個々の開口703で近接場光のエネルギー量および表面における近接場光のエネルギー分布に大きなばらつきが発生してしまう。また、開口703に発現する近接場光のエネルギーが大きく減少し、近接場光プローブのSN比が低下するという問題が起こる。さらに、板709とチップ701が接触することによりチップ701の先端が破損するという問題も発生する。
また、図8に示したヘッド800を作製するにはチップ801の形状を錐台状にする必要がある。これは、ABS812からのチップ801先端の高さを高精度に決定するためである。チップ801先端の高さを制御するには基板表面を残し、この表面を基準としてチップ801を作製せねばならないため、チップ801先端を先鋭化させることができない。図11は遮光膜802を特許文献1に記載の方法により塑性変形した後の錐台状のチップ801の概略図である。チップ801が錐状である場合より錐台状である方が先端から遮光膜802が除去されにくく、頂面に遮光膜残滓804が付着しやすい。この結果、上記と同様の問題が発生する。
さらに、図9に示した三角開口903を作製するためには、三角錐台状のチップ901の一つの側面にAu膜913、Ag膜、Cu膜のいずれかの金属膜を成膜する必要がある。しかしながら、真空蒸着装置を用いて斜方蒸着により金属膜を成膜すると、チップ901の頂面まで金属膜で覆われることとなる。図12は三角錐台状のチップ901の概略図である。特許文献1に記載の方法で遮光膜902および金属膜を塑性変形し開口903を形成しようとすると、チップ901先端に遮光膜残滓904が付着するのに加え、延性の大きい金属膜は薄く延びるだけで完全に除去することが非常に難しい。この結果、上記と同様の問題が発生する上に三角開口903の輪郭の一辺を金属膜にするという構造自体を実現できない。
そこで本発明は上記問題点を鑑み、開口の表面から遮光膜を完全に除去しチップ先端を露出させ、チップ形状が同一である場合には形状にばらつきのない開口を作製する方法を提供する。さらに、チップ先端の破損を防止し開口作製時の歩留まりを向上させることを目的とする。
本発明は、錐状あるいは錐台状に形成されたチップの先端に光学的な開口を作製する開口作製方法であって、前記チップと該チップの近傍に配置されて尾根状に形成されたストッパーと少なくとも前記チップ上に形成された遮光膜とからなる被開口形成体のうち、前記チップの先端部に形成されている前記遮光膜を塑性変形させる第1の工程と、塑性変形させて残った前記遮光膜をエッチングして除去し、前記チップの先端に光学的な開口部を形成する第2の工程と、からなることを特徴とする。
前記第1の工程は、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させて前記チップ先端部を突出させる工程からなることを特徴とする。
もしくは、前記第1の工程は、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させ、前記チップ先端部の前記遮光膜を薄くする工程からなることを特徴とする。
また、前記第2の工程は、前記チップ先端部に付着した前記遮光膜もしくは前記遮光膜残滓をドライエッチングもしくはウェットエッチングにより除去する工程からなることを特徴とする。
また、前記第2の工程は、複数個の前記チップに対し前記チップ先端部に形成されている前記遮光膜を塑性変形させて残った前期遮光膜を、同時にエッチングすることを特徴とする。
また、前記ドライエッチングにより除去する工程は、イオンミリング又はスパッタで行うことを特徴とする。
また、前記ドライエッチングにより除去する工程は、Arイオンで除去することを特徴とする。
本発明によれば、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させて前記チップ先端部を突出させる前記第一の工程と、前記チップ先端部に付着した前記遮光膜もしくは前記遮光膜残滓をドライエッチングもしくはウェットエッチングにより除去する第二の工程を併し光学的な開口を作製することで、前記チップの形状が同一である場合において、前記開口の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー布を制御した前記開口を作製することができる。また、前記開口に発現する近接場光のエネルギーを大きくし、SN比を向上させることができる。
また、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させて前記チップ先端部を突出させる前記第一の工程と、前記チップ先端部に付着した前記遮光膜もしくは前記遮光膜残滓をドライエッチングもしくはウェットエッチングにより除去する第二の工程を併用し光学的な開口を作製することで、前記チップの形状が同一である場合において、前記開口の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した前記開口を作製することができる。また、前記開口に発現する近接場光のエネルギーを大きくし、SN比を向上させることができる。さらに、前記チップを破損させる可能性を無くし、前記開口作製工程の歩留まりを向上させることができる。
第二の工程がドライエッチングであるときは、微細領域にある前記開口部の遮光膜もしくは遮光膜残滓を良好に除去でき、エッチング量の制御を容易にすることができる。第二の工程がウェットエッチングであるときは、簡便な設備でできるためコストを小さくし、バッチ処理を可能にすることができる。
また、複数個の前記チップを用いて前記エッチングを行う場合は、前記チップを大量に生産することが可能でコストが削減できる。
(実施の形態1)
図1は、本発明の実施の形態1における光学的な開口の作製方法の概略図である。101はチップ、102は遮光膜、103は開口、104は遮光膜残滓、105はAr(アルゴン)プラズマを示す。
まず、近接場光プローブとなるチップ101先端の遮光膜102を塑性変形し開口103を形成する。このチップ101先端の遮光膜102の塑性変形方法は特許文献1に記載の方法であり、本明細書の「背景技術」において図7を用いて概略を説明している。遮光膜102にはAlを使用し、厚さは300nmである。この方法によればストッパー708によって板709の変位量を良好に制御することができ、かつ、板709の変位量を非常に小さくできる。したがって、遮光膜102を微量に塑性変形しチップ101先端に微小な開口103を作製することができる。図1(a)は、特許文献1に記載の方法により遮光膜102を塑性変形した後のチップ101先端の概略図である。図1(a)に示すように、チップ101先端の開口103の表面には、遮光膜残滓104が付着したままとなっている。これでは、発現する近接場光のエネルギーを著しく減少させSN比の低下を招いてしまう。また、遮光膜残滓104の付着の仕方は個々のチップ101で違いがあり非常に個体差が大きい。この状態であると、基板側から光を入射し開口103から近接場光を発生させた場合に、近接場光エネルギーや近接場光の分布に大きくばらつきが生じてしまう。
図1(b)は図1(a)のチップ101にArプラズマ105を照射している際のチップ101先端の概略図である。図1(c)はチップ101にArプラズマ105を照射した後のチップ101先端の概略図である。Arプラズマを照射する装置として、Arイオンミリング装置を使用している。Arイオンミリング装置によるエッチング量は、プラズマのエネルギーや照射時間により容易に制御することができる。Arプラズマをチップ101に照射すると、先端に付着した遮光膜残滓104はエッチングされ除去される。したがって、チップ101先端を遮光膜102から完全に露出させ開口103を作製することができる。つまり、それぞれ異なる遮光膜残滓104が付着したチップ101先端を、同一の開口103に統一することができる。
図1(a)のチップ101先端では、遮光膜残滓104の厚さが遮光膜102の厚さよりも極めて小さくなっており、その比は50分の1以下である。したがって、遮光膜残滓104を除去する程度のエッチング量では遮光膜102の厚さにほとんど影響を与えることがない。以上の方法によれば、チップ101先端が遮光膜残滓104に覆われず、遮光膜102から完全に露出した光学的な開口103を作製することができる。また、チップ101を全くの同形状に作製し、チップ101先端の遮光膜102の塑性変形量を同一にした場合には、同一形状の開口103を量産することができる。
この結果、本発明の実施の形態1によれば、錐状のチップ101の形状が同一であり特許文献1の方法によるチップ101先端の遮光膜102の塑性変形量が同一である場合において、同一形状の開口103を作製することができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した開口103を作製することができた。また、開口103に発現する近接場光のエネルギーを大きくし、SN比を向上させることができる。
遮光膜103は、板709が与える力によって十分に塑性変形できる材料であれば良い。また、遮光膜残滓104をエッチングする方法には、ドライエッチングおよびウェットエッチングがある。ドライエッチングを行う装置には、イオンミリング装置、スパッタ装置、RIE(Reactive Ion Etching)装置などがある。ドライエッチングは微細領域の加工に適すため遮光膜残滓104を良好に除去でき、またエッチング量の制御を容易にすることができる。ウェットエッチングは簡便な設備で行えるためコストを小さくでき、バッチ処理も可能である。遮光膜102の材料や開口103の作製プロセスに応じ適切なエッチング方法を選択すればよい。
(実施の形態2)
図2は、本発明の実施の形態2における光学的な開口の作製方法の概略図である。212は錐状のチップ101先端の遮光膜102の塑性変形部である。まず、特許文献1に記載の方法により近接場光プローブとなるチップ101先端の遮光膜102を塑性変形する。遮光膜102にはAlを使用し、厚さは300nmである。図2(a)は、チップ101先端の遮光膜102を塑性変形した後のチップ101先端の概略図である。本発明の実施の形態1との相違点は、板709がチップ101先端に加える力を小さくし遮光膜102の塑性変形量を減少させているため、チップ101先端が遮光膜102から突出していないことである。チップ101先端の塑性変形部212においては、被覆する遮光膜102がチップ101側面の遮光膜102に対し極めて薄くなっている。チップ101先端の遮光膜102の厚さは特許文献1に記載の塑性変形方法により精度良く制御することができ、側面の遮光膜102に対して50分の1程度まで薄くすることができる。
図2(b)は、チップ101先端の塑性変形部212をArプラズマ105でエッチングする方法の概略図である。図2(c)はArプラズマ105を照射した後のチップ101先端の概略図である。Arプラズマを照射する装置として、Arイオンミリング装置を使用する。Arイオンミリング装置によるエッチング量は、プラズマのエネルギーや照射時間により容易に制御することができる。図2(c)に示すようにArプラズマが照射された後には、チップ101先端の塑性変形部212から遮光膜102が除去され開口103が形成される。この方法によれば、特許文献1に記載の方法によるチップ101先端の遮光膜102の塑性変形量と、Arイオンミリング装置による遮光膜102のエッチング量を制御することで、チップ101上方から見た開口103の面積をねらい値どおりに作製することができる。
塑性変形部212における遮光膜102の厚さは、特許文献1に記載の方法により遮光膜102の厚さよりも極めて小さくなっており、その比は50分の1程度である。したがって、遮光膜残滓104を除去する程度のエッチング量ではチップ101側面の遮光膜102の厚さにほとんど影響を与えることがない。
また、本発明の実施の形態1では、特許文献1に記載の方法で遮光膜102を塑性変形する際に板709がチップ101先端と接触するため、チップ101先端を破損してしまう可能性がある。しかしながら、本発明の実施の形態2によれば、板709とチップ101先端は接触することがないため、チップ101先端を破損する可能性が無くなり歩留まりを向上させることができる。
この結果、本発明の実施の形態2により、錐状のチップ101の形状が同一である場合において、開口103の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した開口103を作製することができる。また、開口103に発現する近接場光のエネルギーを大きくし、SN比を向上させることができた。さらに、チップ101を破損させる可能性を無くし、開口103作製工程の歩留まりを向上させることができる。
遮光膜103は、板709が与える力によって十分に塑性変形できる材料であれば良い。また、遮光膜残滓104をエッチングする方法には、ドライエッチングおよびウェットエッチングがある。ドライエッチングを行う装置には、イオンミリング装置、スパッタ装置、RIE(Reactive Ion Etching)装置などがある。ドライエッチングは微細領域加工に適すため遮光膜残滓104を良好に除去でき、またエッチング量の制御を容易にすることができる。ウェットエッチングは簡便な設備で行えるためコストを小さくでき、バッチ処理も可能である。遮光膜102の材料や開口103の作製プロセスに応じ適切なエッチング方法を選択すればよい。
(実施の形態3)
図3は、本発明の実施の形態3における光学的な開口の第1の作製方法の概略図である。チップ301は背景技術の図8で説明したワーク800上に作製されたものであり形状は錐台状である。まず、近接場光プローブとなるチップ301先端の遮光膜102を塑性変形する。遮光膜102にはAlを使用し、厚さは300nmである。このチップ301先端の遮光膜102の塑性変形方法は特許文献1に記載の方法である。図3(a)は、特許文献1に記載の方法によりチップ301先端の遮光膜102を塑性変形した後のチップ301の概略図である。
チップ301の先端は錐台状であるため、チップが錐状である場合より先端から遮光膜102が除去されにくく頂面に遮光膜残滓104が付着しやすい。これでは、発現する近接場光のエネルギーを著しく減少させSN比の低下を招いてしまう。また、遮光膜残滓104の付着の仕方は個々のチップ301先端によって違いが非常に大きい。この状態であると、基板側から光を入射しチップ301に近接場光を発生させた場合に、近接場光エネルギーや近接場光の分布に大きくばらつきが生じてしまう。また、板709とチップ301が接触することによりチップ301の先端が破損してしまうという問題も発生する。
図3(b)は、本発明の実施の形態3における第1の方法のArプラズマ105を照射している際のチップ301先端の概略図である。図3(c)は、Arプラズマ105を照射した後のチップ301先端の概略図である。Arプラズマを照射する装置として、Arイオンミリング装置を使用している。Arイオンミリング装置によるエッチング量は、プラズマのエネルギーや照射時間により容易に制御することができる。Arプラズマをチップ301先端に照射すると、付着した遮光膜残滓104はエッチングされ除去される。したがって、チップ301先端を遮光膜102から完全に露出させることができる。
つまり、それぞれ異なった遮光膜残滓104の付着の仕方をした個々のチップ301先端を、図3(c)に示す同一の開口303に統一することができる。したがって、錐台状のチップ301の個々の形状が同一である場合において、開口303の形状を同一にすることができ、近接場光のエネルギー量と近接場光のエネルギー分布を制御した開口303を作製することができた。また、開口303に発現する近接場光のエネルギーを大きくし、SN比を向上させることができる。
図4は本発明の実施の形態3における光学的な開口の第2の作製方法の概略図である。まず、近接場光プローブとなるチップ301先端の遮光膜102を塑性変形する。遮光膜102にはAlを使用し厚さは300nmである。このチップ301先端の遮光膜102の塑性変形方法は特許文献1に記載の方法を用いている。板709がチップ301先端に加える力を小さくし塑性変形量を減少させており、チップ301先端が遮光膜102から突出していない。チップ301先端の塑性変形部412は、チップ301側面の遮光膜102に対し極めて薄くなっている。
塑性変形部412の厚さは特許文献1に記載の方法により精度良く制御することができ、側面の遮光膜102に対して50分の1程度まで薄くすることができる。図4(b)は、本発明の実施の形態3の第2の方法におけるチップ301先端の塑性変形部412をArプラズマ105でエッチングする方法の概略図である。図4(c)はArプラズマ105を照射した後のチップ301先端の概略図である。同様にしてArミリング装置によりチップ301先端の遮光膜102をエッチングで除去し、開口303を形成した。この方法によれば、チップ301を破損させる可能性を無くし、開口303の作製工程の歩留まりを向上させることができる。
チップ301先端における遮光膜残滓104や塑性変形部412の膜厚は、チップ301側面の遮光膜102厚さよりも極めて小さくなっており、その比は50分の1以下である。したがって、遮光膜残滓104や塑性変形部412を除去する程度のエッチング量では遮光膜102の厚さにほとんど影響を与えることがない。
この結果、本発明の実施の形態3によれば、錐台状のチップ301の形状が同一である場合において、開口303の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した開口303を作製することができる。また、開口303に発現する近接場光のエネルギーを大きくしSN比を向上させることができる。さらに、チップ301を破損させる可能性を無くし開口303作製工程の歩留まりを向上させることができる。
遮光膜102は、板709が与える力によって十分に塑性変形できる材料であれば良い。また、遮光膜残滓104をエッチングする方法には、ドライエッチングおよびウェットエッチングがある。ドライエッチングを行う装置には、イオンミリング装置、スパッタ装置、RIE(Reactive Ion Etching)装置などがある。ドライエッチングは微細領域の加工に適し遮光膜残滓104を良好に除去でき、またエッチング量の制御を容易にすることができる。ウェットエッチングは簡便な設備で行えるためコストを小さくできバッチ処理も可能である。遮光膜102の材料や開口303の作製プロセスに応じ、適切なエッチング方法を選択すればよい。
図3に示すArプラズマ105を利用し、開口303に付着している遮光膜残滓104を実際に除去した実験結果を示す。
Arプラズマ105発生装置として、イオンミリング装置を用い10分間エッチングを行った。エッチング条件は印加電圧3kV、プラズマ電流1mV、試料台傾斜角15°である。その結果、残滓104が完全に除去された開口303をSEM(Scanning Electron Microscope)やFIB(Focused Ion Beam)で観察することができた。次に、レーザ光を入射し、残滓104除去後の光透過効率を測定した。その結果、表1に示すように残滓104除去前に比べ、約一桁程度光透過効率が向上したことが確認できた。
また、Arプラズマ105発生装置として、スパッタ装置を用い15分間エッチングを行った。エッチング条件は逆スパッタRF印加電力200Wにした。その結果、 残滓104が完全に除去された開口303をSEMやFIBで観察することができた。次に、前記と同じ方法で残滓104除去後の光透過効率を測定した。その結果、表1に示すように残滓104除去前に比べ、約一桁程度光透過効率が向上したことが確認できた。
Figure 2007078677
次は、図4に示すArプラズマ105を利用し開口303に付着している遮光膜塑性変形部412を実際に除去した実験結果を示す。
Arプラズマ105発生装置はスパッタ装置を用い、前記図3と同一条件でエッチングを行った。その結果、遮光膜塑性変形部412が完全に除去された開口303をSEMやFIBで観察することができた。次に、前記と同じ方法で遮光膜塑性変形部412除去後の光透過効率を測定した。その結果、表2に示すように遮光膜塑性変形部412除去前に比べ、光透過効率が開口として使用可能な値まで向上したことが確認できた。
Figure 2007078677
(実施の形態4)
図5は、本発明の実施の形態4における光学的な開口の第1の作製方法の概略図である。図5(a)は開口作製工程前のチップ501先端の概略図である。チップ501は三角錐台状に作製しており三角錐台のチップ501の一つの側面にはAu膜513が形成され、その上から遮光膜102のAlを被覆している。遮光膜102にはAlを使用し厚さは300nmであり、Au膜513の厚さは10nmである。Au膜513は入射光によってプラズモンを励起する材質である。
これにより、三角開口503の輪郭の一辺はAu膜513となる。Au膜513は真空蒸着装置を用いて斜方蒸着により成膜するが、斜方蒸着の性質上チップ501の頂面もAu膜513で覆われてしまっている。次に、特許文献1に記載の方法によりチップ501先端の遮光膜102およびAu膜513を塑性変形する。図5(b)は、特許文献1に記載の方法によりチップ501先端の遮光膜102、Au膜513を塑性変形した後のチップ501の概略図である。チップ501先端には遮光膜残滓104が付着しているのに加え、延性の大きいAu膜513は薄く延びるだけで完全に除去することができず被覆したままである。
これでは、開口503に発現する近接場光のエネルギーを著しく減少させSN比の低下を招いてしまう。また、Au膜513が被覆したままでは、三角開口503の輪郭の一辺をAu膜513にするという構造自体が実現できていない。また、板709とチップ501が接触することによりチップ501の先端が破損してしまうという問題も発生する。
図5(c)はArプラズマ105を照射している際のチップ501先端の概略図である。図5(d)はArプラズマ105を照射した後のチップ501先端の概略図である。Arプラズマを照射する装置として、Arイオンミリング装置を使用している。Arイオンミリング装置によるエッチング量は、プラズマのエネルギーや照射時間により容易に制御することができる。Arプラズマをチップ501に照射すると、付着した遮光膜残滓104およびAu膜513はエッチングされ除去される。したがって、チップ501先端を遮光膜102、Au膜513から完全に露出させ開口503を形成することができる。つまり、異なった遮光膜残滓104およびAu膜513の付着の仕方をした個々のチップ501先端を、図5(d)に示す同一の開口503にすることができる。
この結果、本発明の実施の形態4における第1の方法によれば、三角錐台状の個々のチップ501の形状が同一である場合において、開口503の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した開口503を作製することができた。また、開口503に発現する近接場光のエネルギーを大きくし、SN比を向上させることができた。
図6は本発明の実施の形態4における光学的な開口の第2の作製方法の概略図である。開口作製工程前のチップ501先端は図5(a)と同様である。チップ501は三角錐台状に作製しており三角錐台のチップ501の一つの側面にはAu膜513が形成され、その上から遮光膜102のAlを被覆している。遮光膜102にはAlを使用し厚さは300nmであり、Au膜513の厚さは10nmである。Au膜513は入射光によってプラズモンを励起する材質である。これにより、三角開口503の輪郭の一辺はAu膜513となる。Au膜513は真空蒸着装置を用いて斜方蒸着により成膜するが、斜方蒸着の性質上チップ501の頂面もAu膜513で覆われてしまっている。
図6(a)は、特許文献1に記載の方法によりチップ501先端の遮光膜102を塑性変形した後のチップ501の概略図である。612はチップ501先端の遮光膜102の塑性変形部である。板709がチップ501先端に加える力を小さくし塑性変形量を減少させており、チップ501先端が突出していない。チップ501先端の塑性変形部612においては、被覆する遮光膜102がチップ501側面の遮光膜102に対し極めて薄くなっている。塑性変形部612の厚さは特許文献1に記載の方法で精度良く制御することができ、チップ501側面の遮光膜102に対して50分の1程度まで薄くすることができる。
図6(b)は、チップ501先端の塑性変形部612をArプラズマ105でエッチングし除去する方法の概略図である。図6(c)はArプラズマ105を照射した後のチップ501先端の概略図である。Arミリング装置によりチップ501先端の遮光膜102とAu膜513とをエッチングで除去し開口603を形成した。この方法によればチップ501を破損させることが無くなり、開口603作製工程の歩留まりを向上させることができる。
チップ501先端における遮光膜残滓104や塑性変形部612の膜厚は、特許文献1に記載の方法によりチップ501側面の遮光膜102の厚さよりも極めて小さくなっており、その比は50分の1以下である。したがって、遮光膜残滓104や塑性変形部612を除去する程度のエッチング量では遮光膜102の厚さにほとんど影響を与えることがない。
この結果、本発明の実施の形態4における第2の方法によれば、三角錐台状のチップ501の形状が同一である場合において、開口603の形状を同一にすることができ、近接場光のエネルギー量と表面における近接場光のエネルギー分布を制御した三角開口603を作製することができた。また、開口603に発現する近接場光のエネルギーを大きくし、SN比を向上させることができた。さらに、チップ501を破損させる可能性を無くし、開口603作製工程の歩留まりを向上させることができた。
遮光膜102は、板709が与える力によって十分に塑性変形できる材料であれば良い。また、遮光膜残滓104、Au膜513をエッチングする方法には、ドライエッチングおよびウェットエッチングがある。ドライエッチングを行う装置には、イオンミリング装置、スパッタ装置、RIE(Reactive Ion Etching)装置などがある。ドライエッチングは異方性が大きいためサイドエッチが小さく金属膜を良好に除去でき、またエッチング量の制御を容易にすることができる。ウェットエッチングは簡便な設備で行えるためコストを小さくでき、バッチ処理も可能である。遮光膜102の材料や開口603の作製プロセスに応じ、適切なエッチング方法を選択すればよい。
図6に示すArプラズマ105を利用し開口501に付着している遮光膜塑性変形部612を実際に除去した実験結果を示す。
Arプラズマ105発生装置はイオンミリング装置を用い、実施の形態3で行った条件とほぼ同一条件でエッチングを行った。その結果、遮光膜塑性変形部612が完全に除去された開口303をSEMやFIBで観察することができた。次に、前記と同じ方法で遮光膜塑性変形部612除去後の光透過効率を測定した。その結果、表3に示すように、遮光膜塑性変形部612除去前に比べ、光透過効率が開口として使用可能な値まで向上したことが確認できた。
Figure 2007078677
(実施の形態5)
図13は、本発明の実施の形態5における光学的な開口の作製方法の概略図である。基板1306と透明基板1307上には実施の形態1のチップ101と同一形状の錐状チップ1301が厚さ300nmのAl遮光膜102に被覆され複数個形成されワーク1300となっている。まず、近接場光プローブとなる個々のチップ1301先端の遮光膜102を塑性変形する。このチップ1301先端の遮光膜102の塑性変形方法は特許文献1に記載の方法であり概略図を図13(a)に示す。図13(b)は、遮光膜102の塑性変形後におけるワーク1300の概略図である。遮光膜102の塑性変形後には個々のチップ1301先端に異なった状態で遮光膜残滓104が付着している。
次に、図13(c)に示すようにイオンミリング装置でArプラズマをワーク1300に対して照射する。これにより、個々のチップ1301先端の遮光膜残滓104がエッチングにより除去される。図13(d)はArプラズマでエッチング後のチップ1301先端の概略図である。ワーク1300に形成された同一形状の複数個の錐状チップ1301は、それぞれ遮光膜残滓104が除去され、同一形状の開口1303が形成された。この方法によれば、複数個の同一形状の開口1303を同時に作製することが可能である。実施の形態2、実施の形態3、実施の形態4のチップ101、301、501についても、同様の方法により同時に複数個の開口形成が可能である。
(実施の形態6)
実施の形態5の図13で示す方法とほぼ同一方法で図3に示すチップ301を複数個作製した後、前記チップ301の開口303に付着している遮光膜残滓104を同時に除去した実験結果を示す。
Arプラズマ105発生装置はスパッタ装置を用い、そのエッチング時間と条件は実施の形態3に示す条件とほぼ同一条件でエッチングを行った。その結果、残滓104が完全に除去された開口303をSEMやFIBで観察することができた。次に、実施の形態3で示す方法と同じ方法で遮光膜残滓104除去後の光透過効率を測定した。その結果、表4に示すように遮光膜塑性変形部412除去前に比べ、光透過効率が開口として使用可能な値まで向上したことが確認できた。
Figure 2007078677
本発明の実施の形態1における光学的な開口の作製方法の概略図 本発明の実施の形態2における光学的な開口の作製方法の概略図 本発明の実施の形態3における光学的な開口の第1の作製方法の概略図 本発明の実施の形態3における光学的な開口の第2の作製方法の概略図 本発明の実施の形態4における光学的な開口の第1の作製方法の概略図 本発明の実施の形態4における光学的な開口の第2の作製方法の概略図 従来の開口作製方法の概略図 従来のヘッド構造を説明するための説明用断面図 従来のヘッドの開口を説明するための概略図 従来のヘッド開口部を説明する例示図 従来のヘッド開口部を説明する例示図 従来のヘッド開口部を説明する例示図 本発明の実施の形態5における光学的な開口の作製方法の概略図
符号の説明
101 チップ
102 遮光膜
103 開口
104 遮光膜残滓
105 Arプラズマ
212 塑性変形部
301 チップ
303 開口
412 塑性変形部
501 チップ
503 開口
513 Au膜
612 塑性変形部
700 ワーク
701 チップ
702 遮光膜
703 開口
704 遮光膜残滓
706 基盤
707 透明基盤
708 ストッパー
709 板
710 押し込み用具
F 力
800 ヘッド
801 チップ
802 遮光膜
803 開口
807 透明基盤
811 スライダー
812 ABS
901 チップ
902 遮光膜
903 開口
907 透明基盤
913 Au膜
1300 ワーク
1301 チップ
1303 開口
1306 基盤
1307 透明基盤
1309 板
1310 押し込み用具

Claims (10)

  1. 錐状あるいは錐台状に形成されたチップの先端に光学的な開口を作製する開口作製方法であって、
    前記チップと、該チップの近傍に配置されて尾根状に形成されたストッパーと、少なくとも前記チップ上に形成された遮光膜と、からなる被開口形成体のうち、前記チップの先端部に形成されている前記遮光膜を塑性変形させる第1の工程と、前記塑性変形させて残った前記遮光膜をエッチングして除去し、前記チップの先端に光学的な開口部を形成する第2の工程と、からなることを特徴とする開口作製方法。
  2. 前記第1の工程は、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させて前記チップ先端部を突出させる工程からなることを特徴とする請求項1に記載の開口作製方法。
  3. 前記第1の工程は、前記被開口形成体に対して前記チップ及び前記ストッパーの少なくとも一部を覆うように板材を載置し、該板材に所定の加重を加えて前記板材のしなりを用いることにより、前記遮光膜に覆われた前記チップの先端部分の前記遮光膜を塑性変形させ、前記チップ先端部の前記遮光膜を薄くする工程からなることを特徴とする請求項1に記載の開口作製方法。
  4. 前記第2の工程は、前記チップ先端部に付着した前記遮光膜残滓をドライエッチングにより除去する工程からなることを特徴とする請求項2に記載の開口作製方法。
  5. 前記第2の工程は、前記チップ先端部に付着した前記遮光膜残滓をウェットエッチングにより除去する工程からなることを特徴とする請求項2に記載の開口作製方法。
  6. 前記第2の工程は、前記チップ先端部の前記遮光膜の薄膜をドライエッチングにより除去する工程からなることを特徴とする請求項3に記載の開口作製方法。
  7. 前記第2の工程は、前記チップ先端部の前記遮光膜の薄膜をウェットエッチングにより除去する工程からなることを特徴とする請求項3に記載の開口作製方法。
  8. 前記第2の工程は、複数個の前記チップに対し前記チップ先端部に形成されている前記遮光膜を塑性変形させて残った前記遮光膜を、同時にエッチングすることを特徴とする請求項2あるいは3に記載の開口作製方法。
  9. 前記ドライエッチングにより除去する工程は、イオンミリング又はスパッタで行うことを特徴とする請求項4あるいは6に記載の開口作製方法。
  10. 前記ドライエッチングにより除去する工程は、Arイオンで除去することを特徴とする請求項4あるいは6に記載の開口作製方法。
JP2006213266A 2005-08-17 2006-08-04 開口作製方法 Pending JP2007078677A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213266A JP2007078677A (ja) 2005-08-17 2006-08-04 開口作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005236617 2005-08-17
JP2006213266A JP2007078677A (ja) 2005-08-17 2006-08-04 開口作製方法

Publications (1)

Publication Number Publication Date
JP2007078677A true JP2007078677A (ja) 2007-03-29

Family

ID=37939146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213266A Pending JP2007078677A (ja) 2005-08-17 2006-08-04 開口作製方法

Country Status (1)

Country Link
JP (1) JP2007078677A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212450A (ja) * 2006-01-16 2007-08-23 Seiko Instruments Inc 近接場光発生素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323790A (ja) * 1999-05-14 2000-11-24 Canon Inc 半導体近接場光源、その製造方法、及びこれを用いた近接場光学システム
JP2002181683A (ja) * 2000-12-12 2002-06-26 Seiko Instruments Inc 光学的な開口の形成方法とその形成方法によって作製される近接場光デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323790A (ja) * 1999-05-14 2000-11-24 Canon Inc 半導体近接場光源、その製造方法、及びこれを用いた近接場光学システム
JP2002181683A (ja) * 2000-12-12 2002-06-26 Seiko Instruments Inc 光学的な開口の形成方法とその形成方法によって作製される近接場光デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212450A (ja) * 2006-01-16 2007-08-23 Seiko Instruments Inc 近接場光発生素子の製造方法

Similar Documents

Publication Publication Date Title
AU2003253085B2 (en) Charged particle beam generator
JP4628361B2 (ja) 電子顕微鏡検査用試料の調製方法ならびにそれに用いる試料支持体および搬送ホルダ
JP4699168B2 (ja) 電子顕微鏡用試料の作製方法
KR102571504B1 (ko) 현미경 시편의 현장 내 준비를 위한 방법
JP2002543439A (ja) 一体型マイクロカラム・走査型プローブ顕微鏡アレイ
JP2003520409A (ja) 成形され、低密度な集束イオンビーム
US5788853A (en) Substrate and method for microscopical observation of amorphous specimens
CN106908290A (zh) 全息观测透射电镜试样的制备方法
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
JP2007078677A (ja) 開口作製方法
Gierak et al. Exploration of the ultimate patterning potential achievable with focused ion beams
JP4451015B2 (ja) 光学的な開口の作製方法
US6809886B2 (en) Method for manufacturing a combined solid immersion lens (SIL) and submicron aperture, and device thereof
JP4421768B2 (ja) 近視野光素子の作製方法
JP4450978B2 (ja) 光学的な開口の作製方法及び光学的な開口の作製装置
JP4450976B2 (ja) 光学的な開口の作製方法
JP2002181683A (ja) 光学的な開口の形成方法とその形成方法によって作製される近接場光デバイス
JP4450977B2 (ja) 光学的な開口の作製方法及び光学的な開口の作製装置
JP4450968B2 (ja) 走査型近視野顕微鏡用プローブの製造方法
JP4450981B2 (ja) 光学的な開口の作製方法及び作製装置
Fu et al. Focused ion beam machining and deposition
JP2002168760A (ja) 光学的な開口の作製方法
JP4157348B2 (ja) プローブの製造方法
JP4450972B2 (ja) 光学的な開口の作製方法
JP4450979B2 (ja) 光学的な開口の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A02 Decision of refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A02