JP2007064189A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2007064189A
JP2007064189A JP2005255188A JP2005255188A JP2007064189A JP 2007064189 A JP2007064189 A JP 2007064189A JP 2005255188 A JP2005255188 A JP 2005255188A JP 2005255188 A JP2005255188 A JP 2005255188A JP 2007064189 A JP2007064189 A JP 2007064189A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio sensor
exhaust gas
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005255188A
Other languages
English (en)
Other versions
JP4577161B2 (ja
Inventor
Takamitsu Asanuma
孝充 浅沼
Nobumoto Ohashi
伸基 大橋
Toshisuke Toshioka
俊祐 利岡
Yoshihisa Tsukamoto
佳久 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005255188A priority Critical patent/JP4577161B2/ja
Publication of JP2007064189A publication Critical patent/JP2007064189A/ja
Application granted granted Critical
Publication of JP4577161B2 publication Critical patent/JP4577161B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】 排気ガスの空燃比を所望空燃比とするために燃料供給装置から燃料が供給される時に、上流側空燃比センサによって排気ガスの空燃比を大きな応答遅れなく検出可能とする。
【解決手段】 NOX触媒装置10と、NOX触媒装置の排気上流側に配置されたリニア出力型の上流側空燃比センサ20と、NOX触媒装置の排気下流側に配置されたリニア出力型又はステップ出力型の下流側空燃比センサ30と、上流側空燃比センサの排気上流側へ燃料を供給する燃料供給装置40とを具備する内燃機関の排気浄化装置において、上流側空燃比センサ20の応答性を下流側空燃比センサ30の応答性より高める。
【選択図】 図1

Description

本発明は、内燃機関の排気浄化装置に関する。
リーン空燃比での燃焼を実施する内燃機関が公知であり、このような内燃機関の排気通路には、NOXを浄化するためのNOX触媒装置が配置されている。NOX触媒装置は、酸素濃度の高いリーン空燃比の排気ガスからNOXを良好に吸蔵するものであるが、無制限にNOXを吸蔵することはできない。それにより、NOX触媒装置のNOX吸蔵量が飽和する以前に、排気ガス中の酸素濃度を低下させることにより吸蔵されたNOXを放出させ、放出させたNOXを排気ガス中の未燃HC及びCO等の還元物質により還元浄化させるNOX触媒装置の再生処理が必要となる。
NOX触媒装置の再生処理において、排気ガス中の酸素濃度を低下させると共に排気ガス中に未燃HC等を存在させるために、排気ガスの空燃比をリッチにするリッチ化制御される。このリッチ化制御においては所望リッチ空燃比が設定され、これが実現されれば、排気ガス中の酸素濃度を低下させると共にNOX触媒装置から放出させたNOXを還元浄化するのに必要な量の未燃HCがNOX触媒装置へ流入することとなる。
もし、所望リッチ空燃比より排気ガスの空燃比がリッチ側となっている場合には、余剰の未燃HCがNOX触媒装置を単に通過して排気エミッションを悪化させる。一方、排気ガスの空燃比が所望リッチ空燃比よりリーン側となっている場合には、未燃HCが不足し、NOX触媒装置からのNOXの放出が不十分となり、また、放出されたNOXを十分に還元浄化することができないこととなる。
それにより、NOX触媒装置の再生処理において、NOX触媒装置へ流入する排気ガスの空燃比を所望リッチ空燃比に維持する必要があり、このためには、NOX触媒装置の上流側にリニア出力型の空燃比センサを配置してNOX触媒装置へ流入する排気ガスの空燃比が監視される。こうして再生処理中の排気ガスの空燃比が所望リッチ空燃比に維持されれば、再生処理中においてNOX触媒装置の下流側から排出される排気ガスの空燃比は、ほぼ理論空燃比となり、再生処理が完了するとリッチ空燃比となるために、NOX触媒装置の下流側に、リニア出力型又はステップ出力型の空燃比センサを配置して排気ガスの空燃比がリッチとなったことを検出することにより、再生処理の完了を判断することができる。
排気ガス中の空燃比に応じた出力を発生するリニア出力型の空燃比センサ及び排気ガスの空燃比が理論空燃比近傍となると出力が大きく変化するステップ出力型の空燃比センサのいずれにおいても、ヒータが設けられ、排気ガスの空燃比を検出させる際にはヒータを作動して活性化温度へ昇温することが提案されている(例えば、特許文献1参照)。
特開2004−285983 特開平5−296088
排気ガスのリッチ化制御として、排気管内へ微粒子状燃料が供給される場合には、排気ガス中の未燃HCの炭素数は比較的大きく、一般的な空燃比センサでは、ヒータにより活性化温度に昇温されていても、排気ガス中の未燃HCは、排気ガス中の酸素より大幅に遅れて空燃比センサの電極に到達する。それにより、未燃HCが空燃比センサの電極に到達するまでの間は、酸素だけが電極に到達しており、この間において、上流側の空燃比センサは、排気ガスの空燃比がリッチとなっているにも係わらずに、排気ガスの空燃比をリーンとして検出することとなり、大きな応答遅れを発生する。
一方、NOX触媒装置の下流側では、排気管内へ微粒子状燃料が供給されても、炭素数の大きな未燃HCはNOX触媒装置において炭素数の小さな未燃HCに改質されるために、下流側の空燃比センサの電極には、排気ガス中の未燃HCと酸素がほぼ同時に到達し、大きな応答遅れは発生しない。
このように、リッチ化制御として排気管内へ微粒子状燃料が供給される場合において、NOX触媒装置の上流側に配置された空燃比センサの大きな応答遅れは問題であり、応答遅れの間においては所望リッチ空燃比が実現されているかを確認することができず、また、所望リッチ空燃比が実現されていないことが確認されて微粒子状燃料の供給量を変化させた場合にも、所望リッチ空燃比が実現されることを確認するまでに比較的長い時間が必要となり、排気ガスの空燃比を所望リッチ空燃比に維持することは困難である。
従って、本発明の目的は、NOX触媒装置と、NOX触媒装置の排気上流側に配置されたリニア出力型の上流側空燃比センサと、NOX触媒装置の排気下流側に配置されたリニア出力型又はステップ出力型の下流側空燃比センサと、上流側空燃比センサの排気上流側へ燃料を供給する燃料供給装置とを具備する内燃機関の排気浄化装置において、NOX触媒装置へ流入する排気ガスの空燃比を所望空燃比とするために燃料供給装置から燃料が供給される時に、上流側空燃比センサによって排気ガスの空燃比を大きな応答遅れなく検出可能とすることである。
本発明による請求項1に記載の内燃機関の排気浄化装置は、NOX触媒装置と、NOX触媒装置の排気上流側に配置されたリニア出力型の上流側空燃比センサと、NOX触媒装置の排気下流側に配置されたリニア出力型又はステップ出力型の下流側空燃比センサと、前記上流側空燃比センサの排気上流側へ燃料を供給する燃料供給装置とを具備する内燃機関の排気浄化装置において、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする。
本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記上流側空燃比センサの素子コーティング層の厚さを前記下流側空燃比センサの素子コーティング層の厚さより薄くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする。
本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記上流側空燃比センサの素子コーティング層の気孔率を前記下流側空燃比センサの素子コーティング層の気孔率より大きくすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする。
本発明による請求項4に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記上流側空燃比センサの素子コーティング層に担持された貴金属触媒量を前記下流側空燃比センサの素子コーティング層に担持された貴金属触媒量より多くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする。
本発明による請求項5に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする。
本発明による請求項6に記載の内燃機関の排気浄化装置は、請求項5に記載の内燃機関の排気浄化装置において、前記燃料供給装置により燃料が供給された排気ガスの空燃比を前記上流側空燃比センサにより検出する時には前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることを特徴とする。
本発明による請求項7に記載の内燃機関の排気浄化装置は、請求項5に記載の内燃機関の排気浄化装置において、前記NOX触媒装置からNOXを放出させる再生処理及び前記NOX触媒装置からSOXを放出させる回復処理の少なくとも一方を実施するために、前記NOX触媒装置へ流入する排気ガスの空燃比を変更し、空燃比が変更された前記排気ガスの空燃比を前記上流側空燃比センサにより検出する時には前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることを特徴とする。
本発明による請求項8に記載の内燃機関の排気浄化装置は、請求項7に記載の内燃機関の排気浄化装置において、前記NOX触媒装置へ流入する排気ガスの空燃比を変更するために、前記燃料供給装置から燃料が供給される場合には、気筒内から排出される排気ガスの空燃比を変更する場合に比較して、前記上流側空燃比センサの素子温度をさらに高くすることを特徴とする。
燃料供給装置から燃料が供給される時に、下流側空燃比センサにはNOX触媒装置によって改質された炭素数の小さな未燃HCしか到来しないが、上流側空燃比センサには炭素数の大きな未燃HCがそのまま到来するために、上流側空燃比センサの応答性を下流側空燃比センサの応答性と同じにしていると、上流側空燃比センサでは排気ガスの空燃比を検出するのに大きな応答遅れが発生する。しかしながら、本発明による請求項1に記載の内燃機関の排気浄化装置によれば、上流側空燃比センサの応答性を下流側空燃比センサの応答性より高めるようになっており、それにより、炭素数の大きな未燃HCがそのまま到来しても上流側空燃比センサによって大きな応答遅れなく排気ガスの空燃比を検出することができる。
本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、上流側空燃比センサの素子コーティング層の厚さを下流側空燃比センサの素子コーティング層の厚さより薄くすることにより、上流側空燃比センサでは素子コーティング層における未燃HCの電極への到達時間が短くなり、比較的簡単に上流側空燃比センサの応答性を下流側空燃比センサの応答性より高めることができる。
本発明による請求項3に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、上流側空燃比センサの素子コーティング層の気孔率を下流側空燃比センサの素子コーティング層の気孔率より大きくすることにより、上流側空燃比センサでは素子コーティング層における未燃HCの電極への到達時間が短くなり、比較的簡単に上流側空燃比センサの応答性を下流側空燃比センサの応答性より高めることができる。
本発明による請求項4に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、上流側空燃比センサの素子コーティング層に担持された貴金属触媒量を下流側空燃比センサの素子コーティング層に担持された貴金属触媒量より多くすることにより、上流側空燃比センサに到来する炭素数の大きな未燃HCは素子コーティング層の貴金属触媒により良好に炭素数の小さなHCに改質されて電極へ短時間で到達するようになり、比較的簡単に上流側空燃比センサの応答性を下流側空燃比センサの応答性より高めることができる。
本発明による請求項5に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、上流側空燃比センサの素子温度を下流側空燃比センサの素子温度より高くすることにより、上流側空燃比センサに到来する炭素数の大きな未燃HCは、素子コーティング層において活発に拡散して電極へ短時間で到達するようになり、比較的簡単に上流側空燃比センサの応答性を下流側空燃比センサの応答性より高めることができる。
本発明による請求項6に記載の内燃機関の排気浄化装置によれば、請求項5に記載の内燃機関の排気浄化装置において、燃料供給装置により燃料が供給された排気ガスの空燃比を上流側空燃比センサにより検出する時には上流側空燃比センサの素子温度を下流側空燃比センサの素子温度より高くするようになっている。それにより、上流側空燃比センサにより炭素数の大きな未燃HCに対する空燃比を検出する時にだけ上流側空燃比センサの素子温度を高めることができ、不必要に上流側空燃比センサの素子温度が高められることはない。
本発明による請求項7に記載の内燃機関の排気浄化装置によれば、請求項5に記載の内燃機関の排気浄化装置において、NOX触媒装置からNOXを放出させる再生処理及びNOX触媒装置からSOXを放出させる回復処理の少なくとも一方を実施するために、NOX触媒装置へ流入する排気ガスの空燃比を変更し、空燃比が変更された排気ガスの空燃比を上流側空燃比センサにより検出する時には上流側空燃比センサの素子温度を下流側空燃比センサの素子温度より高くするようになっている。それにより、再生処理及び回復処理が実施されずに、上流側空燃比センサにより排気ガスの空燃比を検出する必要がない時に不必要に上流側空燃比センサの素子温度が高められることはない。
本発明による請求項8に記載の内燃機関の排気浄化装置によれば、請求項7に記載の内燃機関の排気浄化装置において、NOX触媒装置へ流入する排気ガスの空燃比を変更するために、燃料供給装置から燃料が供給される場合には、気筒内から排出される排気ガスの空燃比を変更する場合に比較して、上流側空燃比センサの素子温度をさらに高くするようになっている。排気ガスの空燃比を変更するために、燃焼空燃比を変更したり、膨張行程又は排気行程において追加燃料を噴射したりして、気筒内から排出される排気ガスの空燃比を変更する場合には、それほど大きな炭素数の未燃HCが上流側空燃比センサに到来することはないが、到来する未燃HCがNOX触媒装置によってさらに小さな炭素数に改質される下流側空燃比センサに比較すれば、上流側空燃比センサの素子温度が高められて応答性も高められる。また、排気ガスの空燃比を変更するために、燃料供給装置から燃料が供給される場合には、大きな炭素数の未燃HCが上流側空燃比センサに到来するために、気筒内から排出される排気ガスの空燃比を変更する場合に比較して、上流側空燃比センサの素子温度がさらに高められて応答性もさらに高められる。
図1は本発明による内燃機関の排気浄化装置を示す概略図である。同図において、10は排気通路に配置されたNOX触媒装置である。20はNOX触媒装置1の排気上流側に配置された上流側空燃比センサであり、NOX触媒装置10へ流入する排気ガスの空燃比を検出可能なリニア出力型である。30はNOX触媒装置1の排気下流側に配置された下流側空燃比センサであり、NOX触媒装置10から流出する排気ガスの空燃比を検出可能なリニア出力型である。また、下流側空燃比センサ30は排気ガスの空燃比が理論空燃比近傍である時に出力が急変するステップ出力型としても良い。40は上流側空燃比センサ20の排気上流側に配置されて排気ガス中へ燃料を供給する燃料供給装置である。内燃機関は、希薄燃焼を実施する内燃機関(例えばディーゼルエンジン)であり、排気ガス中には比較的多くのNOXが含まれている。
NOX触媒装置10は、アルミナ等を使用して以下に説明するNOX吸蔵触媒と白金Ptのような貴金属触媒とが担持されたモノリス担体又はペレット担体を有するものである。また、NOX触媒装置10は、排気ガスがコージライトのような多孔質材料から形成された隔壁を通過するようにしたパティキュレートフィルタの隔壁表面及び細孔内にNOX吸蔵触媒と貴金属触媒を担持させたものとしても良い。
NOX吸蔵触媒10は、例えば、カリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つである。このNOX吸蔵触媒は、排気ガスの空燃比がリーンの時、すなわち、酸素濃度が高い時にはNOXを吸蔵し、空燃比が理論空燃比又はリッチになると、すなわち、酸素濃度が低下すると、吸蔵したNOXを放出するNOXの吸放出作用を行う。このNOXの吸放出に際して、活性酸素が放出され、この活性酸素は輝炎を発生させることなくパティキュレートを酸化除去することができるために、NOX触媒装置1をパティキュレートフィルタとすれば、捕集されたパティキュレートは自動的に酸化除去される。
ところで、NOX触媒装置10は、無制限にNOXを吸蔵することはできず、NOXの放出作用を利用して、NOX触媒装置10のNOX吸蔵量が飽和する以前に、排気ガスの空燃比をリッチにして、吸蔵されたNOXを放出させて還元浄化するNOX触媒装置10の再生処理を実施することが必要となる。例えば、機関運転状態毎の単位時間当たりのNOX排出量を予めマップ化しておき、各機関運転状態においてNOX排出量を積算すれば、この積算値をNOX触媒装置10のNOX吸蔵量とすることができる。このNOX吸蔵量が設定値に達した時にNOX触媒装置10の再生時期と判断することができる。
また、NOX触媒装置10には、NOXと同様なメカニズムによって排気ガス中のSOXも吸蔵されてしまう。SOXはNOXより安定な物質としてNOX吸蔵触媒10に吸蔵されるために、再生処理によってNOX触媒装置10からNOXを放出させてもSOXは放出されずに残留する。こうして徐々にSOX吸蔵量が増加すると(S被毒)、その分は、NOXを吸蔵することができなくなるために、NOX吸蔵量の飽和を早めることとなる。SOX吸蔵量は、積算消費燃料量により推定することができ、推定されるSOX吸蔵量が設定値に達した時には、SOXを放出して還元浄化するS被毒の回復処理を実施することが必要である。この回復処理では、NOX触媒装置10の温度を約600℃まで昇温させてから排気ガスの空燃比をリッチにすることとなる。
再生処理及び回復処理において、NOX触媒装置10へ流入する排気ガスの空燃比をリッチにするリッチ化制御として、例えば、低温燃焼を利用して燃焼空燃比をリッチにしたり、膨張行程又は排気行程において気筒内へ燃料を噴射したりして、気筒から排出される排気ガスの空燃比をリッチにすれば良い。しかしながら、このようにしてNOX触媒装置10へ流入する排気ガスの空燃比をリッチにするには、機関運転状態が低負荷時である時に限られ、吸気が多量となる高負荷時に気筒から排出される排気ガスの空燃比をリッチにすることは困難である。それにより、高負荷時に再生処理及び回復処理を実施する場合には、燃料供給装置40によって排気ガス中へ燃料を供給してNOX触媒装置10へ流入する排気ガスの空燃比をリッチにすることになる。もちろん、全ての機関運転状態において、再生処理及び回復処理を実施する際には、燃料供給装置4によって排気ガス中に燃料を供給するようにしても良い。
再生処理のリッチ化制御において、所望リッチ空燃比が設定されており、これが実現されれば、排気ガス中の酸素濃度を低下させると共にNOX触媒装置10から放出させたNOXを還元浄化するのに必要な量の未燃HCがNOX触媒装置へ流入することとなる。もし、所望リッチ空燃比より排気ガスの空燃比がリッチ側となっている場合には、余剰の未燃HCがNOX触媒装置を単に通過して排気エミッションを悪化させる。一方、排気ガスの空燃比が所望リッチ空燃比よりリーン側となっている場合には、未燃HCが不足し、NOX触媒装置からのNOXの放出が不十分となり、また、放出されたNOXを十分に還元浄化することができないこととなる。
同様に、回復処理のリッチ化制御においても、排気ガス中の酸素濃度を低下させると共にNOX触媒装置から放出させたSOXを還元浄化するのに必要な量の未燃HCがNOX触媒装置へ流入するような所望リッチ空燃比が設定されている。また、回復処理において、リッチ化制御の前には、NOX触媒装置10の昇温制御が実施されるが、この昇温制御では、膨張行程又は排気行程において気筒内へ追加燃料が供給されるか、又は、燃料供給装置4によって排気ガス中へ燃料が供給されることにより、排気ガスの空燃比は、比較的多くの未燃HCを含む所望リーン空燃比とされ、未燃HCをNOX触媒装置10において排気ガス中の十分な酸素によって燃焼させることとなる。
このように、再生処理及び回復処理に際し、リッチ化制御又は昇温制御のそれぞれにおいて、NOX触媒装置10へ流入する排気ガスの空燃比を所望空燃比に維持しなければならず、上流側空燃比センサ20によってNOX触媒装置10へ流入する排気ガスの空燃比を監視することが必要となる。図2は、空燃比センサの素子部の拡大部分断面図であり、中心軸線Cの回りには、キャップ状の内側電極1及び外側電極2が配置されている。いずれも例えば白金製の内側電極1と外側電極2との間には、例えばジルコニア又はチタニアからなる素子3が配置され、外側電極2の外側には、多孔質材料から形成された素子コーティング層4が形成されている。5は素子温度を高めるためのヒータである。
未燃HC、CO、NOX、及び酸素を含む排気ガスが素子コーティング層4の細孔を通り外側電極2に達すると、未燃HC及びCOは酸化されると共にNOXは還元され、最終的な酸素濃度に応じて排気ガスの空燃比が検出される。すなわち、余剰酸素が存在して酸素濃度が正値となれば、排気ガスの空燃比はリーンであり、酸素不足となって酸素濃度が負値となれば、排気ガスの空燃比はリッチとなる。
このようにして正確な排気ガスの空燃比を検出するためには、排気ガス中の未燃HC、CO、NOX、及び酸素がほぼ同時に外側電極2に到達しなければならない。しかしながら、特に、燃料供給装置4によって排気ガス中へ燃料が供給される場合には、排気ガス中に含まれる未燃HCの炭素数が大きく、一般的な空燃比センサにおいては、素子コーティング層4内をゆっくりしか拡散することができず、CO、NOX、及び酸素と同時ではなく、かなり遅れて外側電極2へ到達する。それにより、未燃HCが外側電極2へ到達するまで正確な排気ガスの空燃比を検出することができず、大きな応答遅れが発生する。また、所望の排気ガスの空燃比が実現されていない時に、燃料供給装置4の燃料供給量が制御されるが、こうして制御された燃料供給量によって排気ガスの所望空燃比が実現されるか否かを判断するのにも、大きな応答遅れによって比較的長い時間が必要となる。このように、一般的な空燃比センサでは、大きな応答遅れによって排気ガスの空燃比を所望空燃比に維持することは困難である。
一方、NOX触媒装置10から流出する排気ガスにおいて、炭素数の大きな未燃HCは、NOX触媒装置10に担持された貴金属触媒によって炭素数の小さな未燃HCに改質されているために、下流側空燃比センサ3として図2(A)に示すような一般的なものが使用されても、素子コーティング4を通って未燃HC及び酸素はほぼ同時に外側電極2へ到達し、大きな応答遅れを発生することなく排気ガスの空燃比を検出することができる。再生処理及び回復処理のリッチ化制御において、NOX触媒装置10へ流入する排気ガスの空燃比をリッチにしているが、NOX触媒装置10から流出する排気ガスの空燃比は、NOX又はSOXの還元浄化によりほぼ理論空燃比となる。NOX又はSOXの還元浄化が完了すれば、NOX触媒装置1へ流入する排気ガスの空燃比と同じリッチとなるために、下流側空燃比センサ3によってNOX触媒装置1から流出する排気ガスの空燃比を監視することにより、再生処理及び回復処理の完了を判断することができる。
本実施形態では、NOX触媒装置10へ流入する排気ガスの空燃比を大きな応答遅れなく検出して、燃料供給装置40により供給される燃料をフィードバック制御することにより、NOX触媒装置10へ流入する排気ガスの空燃比を所望空燃比に維持することを可能とするために、上流側空燃比センサ20として、下流側空燃比センサ30として使用した図2(A)に示す一般的なものより、素子コーティング層4’の厚さtが薄い図2(B)に示すものを使用している。それにより、排気ガスに含まれる未燃HCの炭素数が大きくても素子コーティング4’内を通過して外側電極2へ到達するまでの時間が短縮され、応答遅れを小さくすることができる。
また、もう一つの実施形態においては、上流側空燃比センサ20として、下流側空燃比センサ30として使用した図2(A)に示す一般的なものより、素子コーティング層4”の気孔率の大きな図3に示すものを使用している。気孔率とは、言わば、素子コーティング層における細孔の占有容積であり、これが大きいほど未燃HCが拡散し易くなる。それにより、排気ガスに含まれる未燃HCの炭素数が大きくても素子コーティング4”内を通過して外側電極2へ到達するまでの時間が短縮され、応答遅れを小さくすることができる。
また、さらにもう一つの実施形態においては、上流側空燃比センサ20として、下流側空燃比センサ30として使用した図2(A)に示す一般的なものに比較して、素子コーティング層4に白金のような貴金属触媒6を担持させた図4に示すものを使用している。もし、下流側空燃比センサ30の素子コーティング層4にも貴金属触媒6が担持されている場合には、上流側空燃比センサ20の素子コーティング層4には、さらに多量の貴金属触媒6を担持させるようにする。すなわち、上流側空燃比センサ20の素子コーティング層4に担持される貴金属触媒量は、下流側空燃比センサ30の素子コーティング層4に担持される貴金属触媒量(ゼロを含む)より多くされる。それにより、排気ガスに含まれる未燃HCの炭素数が大きくても素子コーティング4内を通過する際に、貴金属触媒6により酸化されたり、炭素数の小さな未燃HCに改質されたりし、外側電極2へ到達するまでの時間が短縮され、応答遅れを小さくすることができる。
このように、上流側空燃比センサ20として特別の構造を有するものを使用しなくても、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高めるようにしても良い。このように素子温度が高められれば、上流側空燃比センサ20において、炭素数の大きな未燃HCは、素子コーティング層4内において活発に拡散して外側電極2へ短時間で到達するようになり、また、素子コーティング層4に貴金属触媒が担持されていれば、貴金属触媒の活性が高まって炭素数の大きな未燃HCを良好に酸化させたり、炭素数の小さな未燃HCに改質したりし、さらに、短時間で外側電極2へ到達させることができ、応答遅れを小さくすることができる。
図5は、上流側空燃比センサ20として下流側空燃比センサ30と同様な素子コーティング層を有するものを使用し、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度に比較して高める場合の再生処理のための第一フローチャートである。先ず、ステップ101において、例えば前述したように、再生時期であるか否かが判断される。この判断が否定される時にはそのまま終了するが、肯定される時には、ステップ102において、上流側空燃比センサ20及び下流側空燃比センサ30の昇温制御を実施する。ここで、下流側空燃比センサ30は、通常の燃焼空燃比を検出するために既に昇温されている時には、上流側空燃比センサ20だけを昇温制御することとなる。昇温制御は、ヒータ5へ通電することであり、上流側空燃比センサ20の素子温度が下流側空燃比センサ30の素子温度より高くなるように、上流側空燃比センサ20のヒータ5への通電電流が制御される。また、上流側空燃比センサ20のヒータ5の発熱量が下流側空燃比センサ30のヒータ5の発熱量より大きくなるように上流側空燃比センサ20のヒータを大型化するようにしても良い。
次いで、ステップ103において、再生処理のための排気ガスの所望リッチ空燃比を実現するためのリッチ化制御が実施される。具体的には、所望リッチ空燃比が実現されるように、燃料供給装置40により供給される燃料量が制御される。この時において、上流側空燃比センサ20の素子温度は下流側空燃比センサ30の素子温度より高くされており、上流側空燃比センサ20の応答遅れは小さくなっている。それにより、上流側空燃比センサ20により検出されるNOX触媒装置10へ流入する排気ガスの空燃比に基づき、燃料供給装置40により供給される燃料量をフィードバック制御して、NOX触媒装置10へ流入する排気ガスの空燃比を所望リッチ空燃比に維持することができる。
次いで、ステップ104において、下流側空燃比センサ30により検出されるNOX触媒装置10から流出する排気ガスの空燃比に基づき、再生処理が完了したか否かが判断され、この判断が肯定されるまでステップ103のリッチ化制御は継続される。再生処理が完了したと判断されると、リッチ化制御は中止され、ステップ105において、上流側空燃比センサ20及び下流側空燃比センサ30の昇温制御を停止する。ここで、下流側空燃比センサ30に関しては、通常の燃焼空燃比を検出する等の必要に応じて、昇温制御が持続される。
図6は、上流側空燃比センサ20として下流側空燃比センサ30と同様な素子コーティング層を有するものを使用し、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度に比較して高める場合の回復処理のための第二フローチャートである。先ず、ステップ201において、例えば前述したように、回復時期であるか否かが判断される。この判断が否定される時にはそのまま終了するが、肯定される時には、ステップ202において、第一フローチャートと同様に、上流側空燃比センサ20及び下流側空燃比センサ30の昇温制御を実施する。
次いで、ステップ203において、前述したようにNOX触媒装置10の昇温制御が実施される。具体的には、所望リーン空燃比が実現されるように、燃料供給装置40により供給される燃料量が制御される。この時において、上流側空燃比センサ20の素子温度は下流側空燃比センサ30の素子温度より高くされており、上流側空燃比センサ20の応答遅れは小さくなっている。それにより、上流側空燃比センサ20により検出されるNOX触媒装置10へ流入する排気ガスの空燃比に基づき、燃料供給装置40により供給される燃料量をフィードバック制御して、NOX触媒装置10へ流入する排気ガスの空燃比を所望リーン空燃比に維持することができる。
こうしてNOX触媒装置10の昇温制御が完了すれば、ステップ204において、前述したようにリッチ化制御が実施される。具体的には、所望リッチ空燃比が実現されるように、燃料供給装置40により供給される燃料量が制御される。この時において、上流側空燃比センサ20の素子温度は下流側空燃比センサ30の素子温度より高くされており、上流側空燃比センサ20の応答遅れは小さくなっている。それにより、上流側空燃比センサ20により検出されるNOX触媒装置10へ流入する排気ガスの空燃比に基づき、燃料供給装置40により供給される燃料量をフィードバック制御して、NOX触媒装置10へ流入する排気ガスの空燃比を所望リッチ空燃比に維持することができる。
次いで、ステップ205において、下流側空燃比センサ30により検出されるNOX触媒装置10から流出する排気ガスの空燃比に基づき、回復処理が完了したか否かが判断され、この判断が肯定されるまでステップ204のリッチ化制御は継続される。回復処理が完了したと判断されると、リッチ化制御は中止され、ステップ205において、第一フローチャートと同様に、上流側空燃比センサ20及び下流側空燃比センサ30の昇温制御を停止する。
このように、再生処理及び回復処理を実施するために、NOX触媒装置10へ流入する排気ガスの空燃比を変更する時に、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高くするようになっており、それにより、再生処理及び回復処理が実施されずに、上流側空燃比センサ20により排気ガスの空燃比を検出する必要がない時に不必要に上流側空燃比センサ20の素子温度が高められることはない。それにより、上流側空燃比センサ20の寿命が低下するようなことはなく、また、バッテリの大型化も必要ない。
再生処理及び回復処理において、NOX触媒装置10へ流入する排気ガスの空燃比を所望空燃比とするのに、燃焼空燃比が変更され、又は、膨張行程又は排気行程での気筒内への追加燃料が実施されて、気筒内から排出される排気ガスの空燃比を所望空燃比とし、燃料供給装置40により燃料が排気ガス中へ供給されない場合には、上流側空燃比センサ20へ到来する未燃HCの炭素数はそれほど大きくはなく、素子温度を下流側空燃比センサ30の素子温度より高くしなくてもそれほど大きな応答遅れは発生しない。それにより、燃料供給装置40により燃料が供給される場合にだけ(同時に燃焼空燃比の変更又は気筒内への追加燃料が実施されていても良い)、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高くするようにしても良い。こうして、上流側空燃比センサ20に炭素数の大きな未燃HCが到来する時にだけ上流側空燃比センサの素子温度を高めることができ、不必要に上流側空燃比センサの素子温度が高められることはない。
また、再生処理及び回復処理において、気筒内から排出される排気ガスの空燃比を所望空燃比とする場合には、上流側空燃比センサ20へはそれほど炭素数の大きな未燃HCは到来しない。一方、下流側空燃比センサ30へは、NOX触媒装置10により炭素数をさらに小さく改質された未燃HCが到来することとなり、上流側空燃比センサ20の応答性と下流側空燃比センサ30の応答性とをほぼ一致させることが要求される時には、気筒内から排出される排気ガスの空燃比を所望空燃比とする場合においても、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高くすることが好ましい。
この場合において、さらに、例えば機関高負荷時の再生処理及び回復処理において、燃料供給装置40により燃料が供給される場合には、上流側空燃比センサ20へは炭素数の大きな未燃HCが到来することになるために、気筒内から排出される排気ガスの空燃比を所望空燃比とする場合に比較して、上流側空燃比センサ20の素子温度をさらに高めるようにすることが好ましい。それにより、いずれの場合においても、上流側空燃比センサ20の応答性をほぼ一定にすることができる。
このように、上流側空燃比センサ20の応答性を高めるように、又は、上流側空燃比センサ20と下流側空燃比センサ20との応答性をほぼ一致させるように、再生処理及び回復処理のために変更された排気ガスの空燃比を上流側空燃比センサ20により検出する時には、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高めることが必要となる。第一及び第二フローチャートでは、排気ガスの空燃比を変更する直前に、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高めるようにしたが、排気ガスの空燃比を変更するために、燃料供給装置40により燃料が供給されてから、又は、気筒内で空燃比が変更されてから、これらの排気ガスが実際に上流側空燃比センサ20へ到達するまでにはタイムラグがあるために、排気ガスの空燃比の変更と同時又は変更直後に、上流側空燃比センサ20の素子温度を下流側空燃比センサ30の素子温度より高めるようにしても良い。
これまでの説明においては、上流側空燃比センサ20と下流側空燃比センサ30とは同じ検出原理により空燃比を検出するものとしたが、これは本発明を限定するものではなく、例えば、種類、検出原理、又は、構造等の違いによって、応答性の異なる二つの空燃比センサを準備して、応答性の高いものを上流側空燃比センサとして使用し、応答性の低いものを下流側空燃比センサとして使用するようにしても良い。
本発明による内燃機関の排気浄化装置を示す概略図である。 空燃比センサの素子部の拡大部分断面図であり、(A)は一般的な空燃比センサの場合、(B)は本発明の排気浄化装置の実施形態において使用される空燃比センサの場合をそれぞれ示している。 本発明の排気浄化装置のもう一つの実施形態において使用される空燃比センサの素子部の拡大部分断面図である。 本発明の排気浄化装置のもう一つの実施形態において使用される空燃比センサの素子部の拡大部分断面図である。 再生処理のための第一フローチャートである。 回復処理のための第二フローチャートである。
符号の説明
10 NOX触媒装置
20 上流側空燃比センサ
30 下流側空燃比センサ
40 燃料供給装置

Claims (8)

  1. NOX触媒装置と、NOX触媒装置の排気上流側に配置されたリニア出力型の上流側空燃比センサと、NOX触媒装置の排気下流側に配置されたリニア出力型又はステップ出力型の下流側空燃比センサと、前記上流側空燃比センサの排気上流側へ燃料を供給する燃料供給装置とを具備する内燃機関の排気浄化装置において、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする内燃機関の排気浄化装置。
  2. 前記上流側空燃比センサの素子コーティング層の厚さを前記下流側空燃比センサの素子コーティング層の厚さより薄くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3. 前記上流側空燃比センサの素子コーティング層の気孔率を前記下流側空燃比センサの素子コーティング層の気孔率より大きくすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  4. 前記上流側空燃比センサの素子コーティング層に担持された貴金属触媒量を前記下流側空燃比センサの素子コーティング層に担持された貴金属触媒量より多くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  5. 前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることにより、前記上流側空燃比センサの応答性を前記下流側空燃比センサの応答性より高めることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  6. 前記燃料供給装置により燃料が供給された排気ガスの空燃比を前記上流側空燃比センサにより検出する時には前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることを特徴とする請求項5に記載の内燃機関の排気浄化装置。
  7. 前記NOX触媒装置からNOXを放出させる再生処理及び前記NOX触媒装置からSOXを放出させる回復処理の少なくとも一方を実施するために、前記NOX触媒装置へ流入する排気ガスの空燃比を変更し、空燃比が変更された前記排気ガスの空燃比を前記上流側空燃比センサにより検出する時には前記上流側空燃比センサの素子温度を前記下流側空燃比センサの素子温度より高くすることを特徴とする請求項5に記載の内燃機関の排気浄化装置。
  8. 前記NOX触媒装置へ流入する排気ガスの空燃比を変更するために、前記燃料供給装置から燃料が供給される場合には、気筒内から排出される排気ガスの空燃比を変更する場合に比較して、前記上流側空燃比センサの素子温度をさらに高くすることを特徴とする請求項7に記載の内燃機関の排気浄化装置。
JP2005255188A 2005-09-02 2005-09-02 内燃機関の排気浄化装置 Expired - Fee Related JP4577161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255188A JP4577161B2 (ja) 2005-09-02 2005-09-02 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255188A JP4577161B2 (ja) 2005-09-02 2005-09-02 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2007064189A true JP2007064189A (ja) 2007-03-15
JP4577161B2 JP4577161B2 (ja) 2010-11-10

Family

ID=37926656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255188A Expired - Fee Related JP4577161B2 (ja) 2005-09-02 2005-09-02 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4577161B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309239A (ja) * 1989-05-24 1990-12-25 Mitsubishi Motors Corp デジタル出力式ダブルエレメント酸素濃度センサ
JPH0598947A (ja) * 1991-10-11 1993-04-20 Toyota Motor Corp 内燃機関の触媒劣化判別装置
JPH0674926A (ja) * 1992-08-26 1994-03-18 Ngk Spark Plug Co Ltd 触媒の浄化率検出装置
JPH0719093A (ja) * 1993-06-30 1995-01-20 Honda Motor Co Ltd 内燃機関の空燃比制御装置
JPH07269400A (ja) * 1994-03-29 1995-10-17 Hitachi Ltd 内燃機関の空燃比センサの故障診断装置
JPH08189343A (ja) * 1994-02-18 1996-07-23 Nippondenso Co Ltd 触媒劣化検知法及び空燃比センサ
JP2005140742A (ja) * 2003-11-10 2005-06-02 Toyota Motor Corp センサの劣化診断装置
JP2005226463A (ja) * 2004-02-10 2005-08-25 Isuzu Motors Ltd 排気ガス浄化方法及び排気ガス浄化システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309239A (ja) * 1989-05-24 1990-12-25 Mitsubishi Motors Corp デジタル出力式ダブルエレメント酸素濃度センサ
JPH0598947A (ja) * 1991-10-11 1993-04-20 Toyota Motor Corp 内燃機関の触媒劣化判別装置
JPH0674926A (ja) * 1992-08-26 1994-03-18 Ngk Spark Plug Co Ltd 触媒の浄化率検出装置
JPH0719093A (ja) * 1993-06-30 1995-01-20 Honda Motor Co Ltd 内燃機関の空燃比制御装置
JPH08189343A (ja) * 1994-02-18 1996-07-23 Nippondenso Co Ltd 触媒劣化検知法及び空燃比センサ
JPH07269400A (ja) * 1994-03-29 1995-10-17 Hitachi Ltd 内燃機関の空燃比センサの故障診断装置
JP2005140742A (ja) * 2003-11-10 2005-06-02 Toyota Motor Corp センサの劣化診断装置
JP2005226463A (ja) * 2004-02-10 2005-08-25 Isuzu Motors Ltd 排気ガス浄化方法及び排気ガス浄化システム

Also Published As

Publication number Publication date
JP4577161B2 (ja) 2010-11-10

Similar Documents

Publication Publication Date Title
US8104272B2 (en) Exhaust purifying system for internal combustion engine
JP5306867B2 (ja) 排気浄化装置
JP2006316757A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4458070B2 (ja) 内燃機関の排気浄化装置
JP4062231B2 (ja) 内燃機関の排気浄化装置
JP2008240640A (ja) 排ガス浄化装置
JP2007289844A (ja) 内燃機関の排気浄化装置
JP4941111B2 (ja) 排ガス浄化装置
JP3436134B2 (ja) 内燃機関の排気浄化装置
JP4577161B2 (ja) 内燃機関の排気浄化装置
JP4640062B2 (ja) 内燃機関の排気浄化装置
JP4120563B2 (ja) 内燃機関の排気浄化装置
JP4626439B2 (ja) 内燃機関の排気浄化装置
JP5267682B2 (ja) 内燃機関の排気浄化装置
JP2010013975A (ja) 内燃機関の排気浄化装置
JP2000080913A (ja) 内燃機関の排気浄化装置
JP3724415B2 (ja) 窒素酸化物吸蔵還元型触媒とそれを備えた排気ガス浄化シテスム及び排気ガス浄化方法。
JP4325606B2 (ja) 内燃機関の排気浄化装置
JP4269919B2 (ja) 内燃機関の排気浄化装置
JP5746008B2 (ja) 内燃機関の排気浄化装置
JP4706404B2 (ja) 内燃機関の排気浄化装置
JP4158609B2 (ja) 内燃機関の排気浄化装置
JP2006266144A (ja) 内燃機関の排気浄化装置
JP2006083746A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2005163586A (ja) 圧縮着火式内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4577161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees