JP2007040601A - 冷凍サイクル - Google Patents

冷凍サイクル Download PDF

Info

Publication number
JP2007040601A
JP2007040601A JP2005225045A JP2005225045A JP2007040601A JP 2007040601 A JP2007040601 A JP 2007040601A JP 2005225045 A JP2005225045 A JP 2005225045A JP 2005225045 A JP2005225045 A JP 2005225045A JP 2007040601 A JP2007040601 A JP 2007040601A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
main
sub
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225045A
Other languages
English (en)
Inventor
Kenji Iijima
健次 飯島
Nobuhiko Suzuki
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2005225045A priority Critical patent/JP2007040601A/ja
Publication of JP2007040601A publication Critical patent/JP2007040601A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Landscapes

  • Safety Valves (AREA)

Abstract

【課題】ツインエアコン等に用いられる2基の蒸発器を備える冷凍サイクルにおいて、低コスト且つ高COPを実現させる。
【解決手段】圧縮機2、放熱器3、メイン減圧装置4、メイン蒸発器6、サブ減圧装置5、サブ蒸発器7、切替手段10を具備して構成される冷凍サイクル1において、メイン減圧装置4を、メイン減圧装置4の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、メイン減圧装置4の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁とし、サブ減圧装置5を、サブ蒸発器5の出口側の冷媒過熱度が所定値となるように冷媒の流量を調節する過熱度制御弁とする。
【選択図】図1

Description

本発明は、車両用空調装置に用いられる冷凍サイクルに関し、特に車両の前方側及び後方側に対して別々に空調作用を施すことができるツインエアコンに好適に用いられる冷凍サイクルに関するものである。
本発明に関連する従来技術として、次のような構成が開示されている。この従来構成は、放熱器の下流側且つ蒸発器の上流側に設置される減圧装置において、蒸発器が2つある場合(ツインエアコン等)、減圧装置をそれぞれの蒸発器に対応して設置し、これらの減圧装置として、一つは放熱器出口側の冷媒圧力を制御する高圧制御弁、もう一つは蒸発器出口側の冷媒過熱度を制御する過熱度制御弁を用いるものである。この高圧制御弁は、密閉空間内に冷媒であるCO2が封入されたダイアフラムを具備し、この封入されたCO2の体積変化を利用して弁体を変位させて弁開度を調節するものである。即ち、等密度線を利用して冷媒温度を圧力に換算することによって設計される温度依存型のものである。
特開2000−35250号公報(段落番号0039参照)
しかしながら、上記特許文献1に開示されるものは、放熱器出口側の圧力を制御する高圧制御弁が、温度依存型の構造であることから、夏場の高気温等が影響し、空調制御に悪影響を及ぼすことがある。また、ダイアフラム内には設定された容量のガスが精密に封入されている必要があるので、その製造工程、気密性保持、メンテナンス等に特別な技術と費用が必要であった。そのため、冷凍サイクルの低コスト化と高COP化とを両立させることが困難であった。
そこで、本発明は、ツインエアコン等に用いられる2基の蒸発器を備える冷凍サイクルにおいて、低コスト且つ高COPを実現させることを課題とするものである。
上記課題を解決するために、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段を具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、前記サブ減圧装置が、前記サブ蒸発器の出口側の冷媒過熱度が所定値となるように冷媒の流量を調節する過熱度制御弁であることを特徴とするものである(請求項1)。
この高圧制御弁は、従来の構成のように封入ガス等が不要であるため、ガス封入のための精密な製造工程、気密性の保持、メンテナンス等に技術や費用を投じる必要がないものであるので、サイクル全体を安価に製造することができる。また、この高圧制御弁をメイン減圧装置として使用することにより、その優れた制御特性から最大COPに近い制御を行うことが可能となる。更に、メイン・サブ両減圧装置として特性の異なるものを用いることにより、ハンチングや制御不能状態を防止することができる。
また、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であり、前記サブ減圧装置が、前記サブ蒸発器の出口側の冷媒過熱度が所定値となるように冷媒の流量を調節する過熱度制御弁であることを特徴とするものである(請求項2)。
上記差圧制御弁も従来のダイアフラムを必要としないシンプルな構造であることからサイクルを安価に製造することができる。また、この差圧制御弁をメイン減圧装置として使用することにより、その優れた制御特性から最大COPに近い制御を行うことが可能となる。更に、メイン・サブ両減圧装置として特性の異なるものを用いることにより、ハンチングや制御不能状態を防止することができる。
また、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段を具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、前記サブ減圧装置が、固定オリフィスであることを特徴とするものである(請求項3)。
このような構成によっても、メイン減圧装置として用いる高圧制御弁の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
また、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段を具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であり、前記サブ減圧装置が、固定オリフィスであることを特徴とするものである(請求項4)。
このような構成によっても、メイン減圧装置として用いる差圧制御弁の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
また、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段を具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、前記サブ減圧装置が、該サブ減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該サブ減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であることを特徴とするものである(請求項5)。
このような構成によっても、高圧制御弁の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができる。また、メイン・サブ両減圧装置の制御特性を異ならせることにより、ハンチングや制御不能状態を防止することができる。
また、本発明は、冷媒を圧縮する圧縮機、冷媒を放熱させる放熱器、放熱後の冷媒を減圧するメイン減圧装置、前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、放熱後の冷媒を減圧するサブ減圧装置、前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段を具備して構成される冷凍サイクルであって、前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、前記サブ減圧装置が、該サブ減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該サブ減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であることを特徴とするものである(請求項6)。
このような構成によっても、高圧制御弁及び差圧制御弁の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
また、上記請求項1、3、5、又は6記載の構成において、前記高圧制御弁は、該高圧制御弁入口の冷媒圧力の上昇に応じて縮小すると共に内部圧力が大気に開放されたベローズと、該ベローズを伸張する方向へ付勢する弾性部材とを有して構成されるものであることが好ましい(請求項7)。
上記構成の高圧制御弁によれば、ベローズは、開放孔によって内部ガスの温度変化に伴う体積変化の影響がないため、ベローズ自体の抵抗力及びスプリングの反発力の合力と、冷媒圧力との関係のみに依存して伸縮する。これにより、弁開度を高圧側冷媒圧力にのみ依存して(温度に依存せずに)変化させることができる。また、スプリングのばね定数を選択することにより、弁開度の変化率を任意に設定することができる。また、ベローズ内部への気体の封入作業、メンテナンス等が不要となる利点をも有する。
また、上記請求項7記載の構成において、前記高圧制御弁は、該高圧制御弁の入口側の冷媒圧力が7.38MPaの時に、弁開度が内径0.2〜0.5mmの管に相当すると共に、該高圧制御弁入口の冷媒圧力が14MPaの時に、弁開度が内径0.8〜1.6mmの管に相当するものであることが好ましく(請求項8)、また該請求項8記載の構成において、前記高圧制御弁は、該高圧制御弁の入口側の冷媒圧力が7.38MPa以下となった時に、弁開度が内径0.2〜0.5mmの管に相当することが好ましい(請求項9)。
上記数値限定は、図3に示す範囲Sに前記高圧制御弁の弁開度の制御線が納まることを意味する。これにより、あらゆる大きさの車両に対しても高いCOPを実現できることが、発明者らによる実験から明らかとなっている。
また、上記請求項2、4、又は6記載の構成において、前記差圧制御弁は、該差圧制御弁の入口側の冷媒圧力及び出口側の冷媒圧力の影響を受けて変位する弁体と、前記弁体の高圧側への変位方向に形成される弁座と、前記弁体を着座方向へ付勢する弾性部材とを有して構成されるものであることが好ましい(請求項10)。
上記構成の差圧制御弁によれば、弁体は、高圧側冷媒圧力、低圧側冷媒圧力、及びスプリングの反発力との合力とによって変位する。これにより、高圧側冷媒圧力と低圧側冷媒圧力の差圧にのみ依存して(温度に依存せずに)弁開度を変化させることができる。
また、上記請求項10記載の構成において、前記差圧制御弁は、前記差圧が3.88MPaの時に、弁開度が内径0.2〜0.5mmの管に相当すると共に、前記差圧が11.52MPaの時に、弁開度が内径0.9〜1.9mmの管に相当することが好ましく(請求項11)、また該請求項11構成において、前記差圧制御弁は、前記差圧が3.88MPa以下となった時に、弁開度が内径0.2〜0.5mmの管に相当することが好ましい(請求項12)。
上記数値限定は、図6に示す範囲S’に前記差圧制御弁の弁開度の制御線が納まることを意味する。これにより、あらゆる大きさの車両に対しても高いCOPを実現できることが、発明者らによる実験から明らかとなっている。
また、上記請求項1〜12のいずれか1つに記載の構成において、前記冷媒がCO2であることが好ましく(請求項13)、また上記請求項1〜13のいずれか1つに記載の構成において、前記メイン蒸発器の容量が前記サブ蒸発器の容量よりも大きいものであってもよい(請求項14)。
以下、添付した図面を参照して本発明の実施例を説明する。尚、以下の複数の実施例において、同一又は同様の箇所には、同一の符号を付してその説明を省略するものとする。
図1に示す本実施例に係る冷凍サイクル1は、車両用ツインエアコンに用いられ、二酸化炭素を冷媒として循環させるものであって、該冷媒を圧縮する圧縮機2、圧縮された冷媒を外気との熱交換により放熱させる放熱器3、放熱された冷媒を流路を絞ることにより減圧させるメイン減圧装置4及びサブ減圧装置5、減圧された冷媒を車室内への吹出空気と熱交換させ吸熱効果により蒸発させるメイン蒸発器6及びサブ蒸発器7、蒸発後の冷媒を気液分離し気相冷媒のみを圧縮機2側に送り出す気液分離器8、放熱器3と両減圧装置4,5との間の高圧冷媒と、両蒸発器6,7と気液分離器8との間の低圧冷媒とを熱交換させる内部熱交換器9、内部熱交換器9の高圧熱交換部9aの出口と両減圧装置4,5の入口との間の流路に配置され、冷媒をメイン減圧装置4とサブ減圧装置5とのどちらへ流すかの切り換え、又は流量の調整を可能にする切替弁10を具備して構成される。
内部熱交換器9の高圧側熱交換部9a出口と低圧側熱交換部9b入口とを結ぶ流路は、メイン流路15とサブ流路16を有して構成される。メイン流路15には、メイン減圧装置4とメイン蒸発器6とが接続され、サブ流路16には、サブ減圧装置5とサブ蒸発器7とが接続される。メイン蒸発器6は、主に車両の前方座席側への吹出空気を冷却するために使用され、サブ蒸発器7は、主に車両の後方座席側への吹出空気を冷却するために使用される。また、メイン蒸発器6の容量(流入可能な冷媒量)が、サブ熱交換器7よりも大きいことが好ましい。
そして、本実施例においては、メイン減圧装置4として、図2に示すような高圧制御弁20が使用されると共に、サブ減圧装置5として、図4に示すような過熱度制御弁35が使用される。
図2に示す高圧制御弁20(メイン減圧装置4)は、該高圧制御弁20の入口側の高圧圧力にのみ依存してその弁開度が制御されるものであり、シェル21、ベローズ22、弁体23、弁座24、スプリング25、開放孔26を有して構成される。シェル21は、内部に中空部27が形成され、中空部27と外部とを連通させる高圧側連通孔28及び低圧側連通孔29を有し、高圧側連通孔28は冷凍サイクル1の高圧ラインH(図1参照)と連通し、低圧側連通孔29は低圧ラインLと連通している。ベローズ22は、金属箔等により形成された蛇腹状の部材であり、前記中空部27に配され、その一端側がシェル21の内側上面に固定されている。弁体23は、ベローズ22の他端側に固定され、ベローズ22の伸縮に伴って図中上下に変位する。弁座24は、低圧側連通孔29に設けられ、弁体23が嵌合(着座)可能な形状を有している。スプリング25は、前記ベローズ22の内部に配されその一端側がシェル21の内側上面に固定されていると共に他端側がベローズ22下端部(弁体23上端部)に固定されており、ベローズ22の縮小を妨げるように作用する。開放孔26は、シェル21の上面に穿設され、ベローズ22の内部と大気中とを連通させるものである。本実施例においては、前記ベローズ22の内部には特別なガスは封入されておらず、前記開放孔26のために、その内部圧力が大気圧と略同一となっている。
上記構成の高圧制御弁20によれば、ベローズ22は、開放孔26によって内部ガスの温度変化に伴う体積変化の影響がないため、ベローズ22自体の抵抗力及びスプリング25の反発力の合力と、内部空間27に流れ込んだ冷媒の圧力との関係のみに依存して伸縮する。これにより、弁開度を高圧側冷媒圧力にのみ依存して(温度に依存せずに)変化させることができ、またばね定数の異なるスプリング25を適宜選択することにより、弁開度の変化率を任意に設定することができる。また、ベローズ22内部への気体の封入作業、メンテナンス等が不要となる利点をも有する。
そして、高圧制御弁20の弁開度は、例として図3に示す範囲S内に収まる一本の制御線Aに基づいて変化される。尚、同図において、弁開度は仮想管の内径で表されている。即ち、弁体23と弁座24との間に形成される絞り通路の開口面積が、仮想管の開口面積に相当する(仮想管内径が0.2mmの時、実際の絞り通路の開口面積はおよそ0.1256mm2)。範囲Sは、高圧側冷媒圧力が臨界圧7.38MPa以上の領域において、高圧側冷媒圧力が7.38MPaの時弁開度が0.2〜0.5mmの範囲内にあると共に、高圧側冷媒圧力が14MPaの時弁開度が0.8〜1.6mmの範囲内にあり、また高圧側冷媒圧力が臨界圧7.38MPa以下の領域において、弁開度が0.2〜0.5mmの範囲内にある制御線群からなるものである。尚、この例では高圧側冷媒圧力の上限を18MPaとしている。制御線の設定は、前記スプリング25のばね定数を選定することにより行うことができる。
前記高圧制御弁20の弁開度を前記範囲S内に収まる制御線に基づいて調節することにより、あらゆる大きさの車両に対しても高いCOPを実現できることが、発明者らによる実験から明らかとなっている。また、上述のように、高圧側冷媒圧力が臨界圧7.38MPa以下の領域において、弁開度0.2〜0.5mmの範囲を維持する。これにより、高圧側冷媒圧力が臨界圧以下となる状況下においても高いCOP(最適値の−10〜20%の範囲内)を維持できることも、様々な実験から明らかとなっている。また、弁が全閉状態とならないことにより、高圧ラインHの過度の圧力上昇を抑えると共に弁体20のハンチング現象を防止することができる。尚、所定の弁開度を維持する手段としては、例えば、弁体23の弁座24方向への進行を着座位置から所定の距離を保った位置で阻止する部材を、シェル21や弁体23と一体に形成すること等により実現することができる。
サブ減圧装置5として用いる過熱度制御弁の構造に関しては、本発明においては特に限定する必要はなく、従来からある構造を適宜用いることができるが、図4において一般的な過熱度制御弁の概略を説明する。図4に示す過熱度制御弁35は、サブ蒸発器7の出口側の冷媒過熱度に応じて開閉されるものであり、高圧ラインHと連通する高圧連通孔36及び低圧ラインLと連通する低圧連通孔37が形成されたケーシング38、感温筒39に封入された媒体の内圧に応じて変形するダイアフラム40、ダイアフラム40の変形に応じて変位する弁体41、弁体41が着座可能な弁座42等を具備して構成される。感温筒39は、その内部に温度変化に伴い体積が変化する所定の媒体が封入されると共に、サブ蒸発器7の出口側の冷媒通路に配置される。この構成により、過熱度制御弁35は、サブ蒸発器7の出口側の冷媒加熱度が所定値以上となると開弁され、所定値よりも小さくなると閉弁される。
上記のように、メイン減圧装置4として高圧制御弁20を使用することにより、その優れた制御特性から最大COPに近い制御を行うことが可能となる。また、この高圧制御弁20は、従来の構成のように封入ガス等が不要であるため、ガス封入のための精密な製造工程、気密性の保持、メンテナンス等に技術や費用を投じる必要がないものであるので、サイクル全体を安価に製造することができる。更に、上記のように両減圧装置4,5として特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
本実施例においては、メイン減圧装置4として、図5に示すような差圧制御弁45が使用されると共に、サブ減圧装置5として、図4に示すような過熱度制御弁35が使用される。
差圧制御弁45(メイン減圧装置4)は、シェル46、弁体47、弁座48、スプリング49を有して構成される。シェル46は、内部に中空部42が形成され、中空部42と外部とを連通させる高圧側連通孔50及び低圧側連通孔51を有し、高圧側連通孔50は高圧ラインHと、低圧側連通孔51は低圧ラインLと連通している。弁体47は、スプリング49の一端側に固定され、高圧ラインHの圧力及び低圧ラインLの圧力(差圧)を受けて変位する。弁座48は、高圧側連通孔50に設けられ、弁体47が嵌合(着座)可能な形状を有している。スプリング49は、その他端側がシェル46の内壁面に固定され、一端側に固定された弁体47を着座方向へ付勢する。
上記構成の差圧制御弁45によれば、弁体47は、高圧側冷媒圧力、低圧側冷媒圧力、及びスプリング49の反発力との合力とによって変位する。これにより、高圧側冷媒圧力と低圧側冷媒圧力の差圧にのみ依存して(温度に依存せずに)弁開度を変化させることができる。
前記差圧制御弁45の弁開度は、例として図6に示す範囲S'内に収まる一本の制御線Bに基づいて変化される。尚、同図においても、上述した図3の場合と同様に、弁開度が仮想管の内径として表されている。範囲S'は、前記差圧が3.88MPa以上の領域において、差圧が3.88MPaの時弁開度が0.2〜0.5mmの範囲内にあると共に、差圧が11.52MPaの時弁開度が0.9〜1.9mmの範囲内にあり、また差圧が3.88MPa以下の領域において、弁開度が0.2〜0.5mmの範囲内にある制御線群からなるものである。制御線の設定は、前記スプリング49のばね定数を選定することにより行うことができる。
前記差圧制御弁45の弁開度を前記範囲S'内に収まる制御線に基づいて調節することにより、あらゆる大きさの車両に対しても高いCOPを実現できることが、実験から明らかとなっている。また、上述のように、高低差圧が臨界圧3.88MPa以下の領域において、弁開度0.2〜0.5mmの範囲を維持する。これにより、高圧側冷媒圧力が臨界圧以下となる状況下においても高いCOP(最適値の−10〜20%の範囲内)を維持できることが、様々な実験から明らかとなっている。また、弁が全閉状態とならないことにより、高圧ラインHの過度の圧力上昇を抑えると共に弁体47のハンチング現象を防止することができる。
上記のように、メイン減圧装置4として差圧制御弁45を使用することにより、その優れた制御特性から最大COPに近い制御を行うことが可能となる。また、差圧制御弁45がシンプルな構造であることからサイクルを安価に製造することができる。更に、上記のように両減圧装置4,5として特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
本実施例においては、メイン減圧装置4として、図2に示すような高圧制御弁20が使用されると共に、サブ減圧装置5として、図7に示すような固定オリフィス55が使用される。
固定オリフィスの構造に関しては特に限定する必要はなく、従来からある構造を用いることができるが、図7において、一般的な例を開示する。この固定オリフィス55は、シェル56の内部に、高圧ラインHと連通する高圧側連通孔57、低圧ラインLと連通する低圧側連通孔58、そしてこれら両連通孔57,58よりも径の小さい絞り通路59を有して構成され、この絞り通路59の直径、距離等は、使用目的等に応じて適宜設定される。
このような構成によっても、メイン減圧装置4として用いる高圧制御弁20の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
本実施例に置いては、メイン減圧装置4として、図5に示すような差圧制御弁45を用いると共に、サブ減圧装置5として、図7に示すような固定オリフィス55を用いる。
このような構成によっても、メイン減圧装置4として用いる差圧制御弁45の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
本実施例においては、メイン減圧装置4及びサブ減圧装置5の両方に、図2に示すような高圧制御弁20が用いられる。メイン減圧装置4及びサブ減圧装置5としての両高圧制御弁20の特性は、スプリング25の選定等により適宜設定されるべきである。
このような構成によっても、高圧制御弁20の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができる。また、両減圧装置4,5(高圧制御弁20)の制御特性を異ならせることにより、ハンチングや制御不能状態を防止することができる。
本実施例においては、メイン減圧装置4として、図2に示すような高圧制御弁20を用いると共に、サブ減圧装置5として、図5に示すような差圧制御弁45を用いる。
このような構成によっても、高圧制御弁20及び差圧制御弁45の制御特性及び構造の簡素性により、高COP及び低コスト化を図ることができ、また特性の異なる2種類の弁を用いることにより、ハンチングや制御不能状態を防止することができる。
本発明に係る冷凍サイクルの全体構成を示す図である。 高圧制御弁の構成を示す図である。 高圧制御弁の弁開度の制御範囲を示すグラフである。 過熱度制御弁の構造を示す図である。 差圧制御弁の構造を示す図である。 差圧制御弁の弁開度の制御範囲を示すグラフである。 固定オリフィスの構造を示す図である。
符号の説明
1 冷凍サイクル
2 コンプレッサ
3 放熱器
4 メイン減圧装置
5 サブ減圧装置
6 メイン蒸発器
7 サブ減圧装置
8 気液分離器
9 内部熱交換器
10 切替弁
15 メイン流路
16 サブ流路
20 高圧制御弁
35 過熱度制御弁
45 差圧制御弁
55 固定オリフィス

Claims (14)

  1. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、
    前記サブ減圧装置が、前記サブ蒸発器の出口側の冷媒過熱度が所定値となるように冷媒の流量を調節する過熱度制御弁であることを特徴とする冷凍サイクル。
  2. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であり、
    前記サブ減圧装置が、前記サブ蒸発器の出口側の冷媒過熱度が所定値となるように冷媒の流量を調節する過熱度制御弁であることを特徴とする冷凍サイクル。
  3. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、
    前記サブ減圧装置が、固定オリフィスであることを特徴とする冷凍サイクル。
  4. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であり、
    前記サブ減圧装置が、固定オリフィスであることを特徴とする冷凍サイクル。
  5. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、
    前記サブ減圧装置が、該サブ減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該サブ減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であることを特徴とする冷凍サイクル。
  6. 冷媒を圧縮する圧縮機、
    冷媒を放熱させる放熱器、
    放熱後の冷媒を減圧するメイン減圧装置、
    前記メイン減圧装置により減圧された冷媒を蒸発させるメイン蒸発器、
    放熱後の冷媒を減圧するサブ減圧装置、
    前記サブ減圧装置により減圧された冷媒を蒸発させるサブ蒸発器、
    前記メイン減圧装置又は前記サブ減圧装置へ流入する冷媒量を調節する切替手段、
    を具備して構成される冷凍サイクルであって、
    前記メイン減圧装置が、該メイン減圧装置の入口側の冷媒圧力に依存すると共に冷媒温度に依存せずに、該メイン減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する高圧制御弁であり、
    前記サブ減圧装置が、該サブ減圧装置の入口側と出口側とでの冷媒圧力の差圧に依存すると共に冷媒温度に依存せずに、該サブ減圧装置の入口側の冷媒圧力が所定値となるように冷媒流量を調節する差圧制御弁であることを特徴とする冷凍サイクル。
  7. 前記高圧制御弁は、該高圧制御弁の入口側の冷媒圧力の上昇に応じて縮小すると共に内部圧力が大気に開放されたベローズと、該ベローズを伸張する方向へ付勢する弾性部材とを有して構成されることを特徴とする請求項1、3、5、又は6記載の冷凍サイクル。
  8. 前記高圧制御弁は、該高圧制御弁の入口側の冷媒圧力が7.38MPaの時に、弁開度が内径0.2〜0.5mmの管に相当すると共に、該高圧制御弁入口の冷媒圧力が14MPaの時に、弁開度が内径0.8〜1.6mmの管に相当するものであることを特徴とする前記請求項7記載の冷凍サイクル。
  9. 前記高圧制御弁は、該高圧制御弁の入口側の冷媒圧力が7.38MPa以下となった時に、弁開度が内径0.2〜0.5mmの管に相当することを特徴とする請求項8記載の冷凍サイクル。
  10. 前記差圧制御弁は、該差圧制御弁の入口側の冷媒圧力及び出口側の冷媒圧力の影響を受けて変位する弁体と、前記弁体の高圧側への変位方向に形成される弁座と、前記弁体を着座方向へ付勢する弾性部材とを有して構成されることを特徴とする請求項2、4、又は6記載の冷凍サイクル。
  11. 前記差圧制御弁は、前記差圧が3.88MPaの時に、弁開度が内径0.2〜0.5mmの管に相当すると共に、前記差圧が11.52MPaの時に、弁開度が内径0.9〜1.9mmの管に相当することを特徴とする請求項10記載の冷凍サイクル。
  12. 前記差圧制御弁は、前記差圧が3.88MPa以下となった時に、弁開度が内径0.2〜0.5mmの管に相当することを特徴とする請求項11記載の冷凍サイクル。
  13. 前記冷媒がCO2であることを特徴とする請求項1〜12のいずれか1つに記載の冷凍サイクル。
  14. 前記メイン蒸発器の容量が前記サブ蒸発器の容量よりも大きいことを特徴とする請求項1〜13のいずれ1つに記載の冷凍サイクル。
JP2005225045A 2005-08-03 2005-08-03 冷凍サイクル Pending JP2007040601A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225045A JP2007040601A (ja) 2005-08-03 2005-08-03 冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225045A JP2007040601A (ja) 2005-08-03 2005-08-03 冷凍サイクル

Publications (1)

Publication Number Publication Date
JP2007040601A true JP2007040601A (ja) 2007-02-15

Family

ID=37798757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225045A Pending JP2007040601A (ja) 2005-08-03 2005-08-03 冷凍サイクル

Country Status (1)

Country Link
JP (1) JP2007040601A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166806A1 (ja) * 2015-04-14 2016-10-20 三菱電機株式会社 冷凍サイクル装置
US9599353B2 (en) 2013-07-26 2017-03-21 Whirlpool Corporation Split air conditioning system with a single outdoor unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455847A (en) * 1977-10-12 1979-05-04 Hitachi Ltd Refrigerating device
JPS54136458A (en) * 1978-04-14 1979-10-23 Hitachi Ltd Refrigerating cycle for air-conditioning unit
JP2000035250A (ja) * 1998-07-15 2000-02-02 Nippon Soken Inc 超臨界冷凍サイクル
JP2002520572A (ja) * 1998-07-20 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Co2で作動可能な空調システム
JP2003065635A (ja) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2004142701A (ja) * 2002-10-28 2004-05-20 Zexel Valeo Climate Control Corp 冷凍サイクル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455847A (en) * 1977-10-12 1979-05-04 Hitachi Ltd Refrigerating device
JPS54136458A (en) * 1978-04-14 1979-10-23 Hitachi Ltd Refrigerating cycle for air-conditioning unit
JP2000035250A (ja) * 1998-07-15 2000-02-02 Nippon Soken Inc 超臨界冷凍サイクル
JP2002520572A (ja) * 1998-07-20 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Co2で作動可能な空調システム
JP2003065635A (ja) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2004142701A (ja) * 2002-10-28 2004-05-20 Zexel Valeo Climate Control Corp 冷凍サイクル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599353B2 (en) 2013-07-26 2017-03-21 Whirlpool Corporation Split air conditioning system with a single outdoor unit
US9970667B2 (en) 2013-07-26 2018-05-15 Whirlpool Corporation Air conditioning systems with multiple temperature zones from independent ducting systems and a single outdoor unit
US10180257B2 (en) 2013-07-26 2019-01-15 Whirlpool Corporation Air conditioning systems for at least two rooms using a single outdoor unit
WO2016166806A1 (ja) * 2015-04-14 2016-10-20 三菱電機株式会社 冷凍サイクル装置
JPWO2016166806A1 (ja) * 2015-04-14 2017-11-24 三菱電機株式会社 冷凍サイクル装置

Similar Documents

Publication Publication Date Title
JP2007163074A (ja) 冷凍サイクル
JP2006189240A (ja) 膨張装置
US20080011363A1 (en) Pressure Control Valve
JP2008138812A (ja) 差圧弁
JP2006292184A (ja) 膨張装置
JP2004142701A (ja) 冷凍サイクル
JP2010112616A (ja) 温度式膨張弁
JP2001174076A (ja) 冷凍サイクル
JP2007278616A (ja) 膨張装置
JP2004093106A (ja) 膨張弁
JP2007040601A (ja) 冷凍サイクル
JP2006234207A (ja) 冷凍サイクル用減圧装置
JP2008164239A (ja) 圧力制御弁
JP2017044463A (ja) 車両用エアコンシステムの膨張バルブ及びこれを含む車両用エアコンシステム
JP2007046808A (ja) 膨張装置
US20210172659A1 (en) Air conditioner
JP4676166B2 (ja) 冷凍サイクルの安全弁装置
JP2008196774A (ja) 圧力制御弁
CN111854240B (zh) 冷冻循环系统
JPH09133436A (ja) 温度式膨脹弁およびこれを用いた車両用空調装置
JP2002310539A (ja) 膨張弁
JP2005201484A (ja) 冷凍サイクル
JP2001116399A (ja) 冷凍サイクル
JP2005331166A (ja) 膨張弁
JP2001116400A (ja) 冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100715

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125