US20210172659A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
US20210172659A1
US20210172659A1 US17/181,511 US202117181511A US2021172659A1 US 20210172659 A1 US20210172659 A1 US 20210172659A1 US 202117181511 A US202117181511 A US 202117181511A US 2021172659 A1 US2021172659 A1 US 2021172659A1
Authority
US
United States
Prior art keywords
pressure
refrigerant
valve
compressor
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/181,511
Inventor
Yusuke Tashiro
Komei Nakajima
Masakazu Sato
Yusuke Adachi
Yasuhide Hayamaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to US17/181,511 priority Critical patent/US20210172659A1/en
Publication of US20210172659A1 publication Critical patent/US20210172659A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve

Definitions

  • the present invention relates to air conditioners.
  • Air conditioners that reduce refrigerant consumption with the use of low global warming potential (GWP) refrigerant are desired in consideration of global environment.
  • R32 Used as the refrigerant enabling such air conditioners that reduce refrigerant consumption with the use of low GWP refrigerant is R32.
  • R32 is refrigerant which has a small politropic exponent and whose temperature easily increases when discharged from a compressor. The use of R32 as refrigerant thus easily increases the temperature of the refrigerant discharged from the compressor at high outside temperature and at high condensation temperature. Since an increase in the temperature of the refrigerant discharged from the compressor may lead to a failure of the compressor, the temperature of the refrigerant discharged from the compressor is desired not to exceed a set temperature in order to prevent a failure of the compressor.
  • a linear expansion valve (LEV) is used to adjust the temperature of the refrigerant discharged from a compressor.
  • LEV linear expansion valve
  • a microcomputer controls the degree of opening of the LEV based on a signal from a thermistor that has detected the temperature of the refrigerant discharged from the compressor to adjust the temperature of the refrigerant discharged from the compressor not to exceed the set temperature.
  • Japanese Patent Laying-Open No. 2016-109356 discloses an air conditioner that uses R32 as refrigerant and includes an LEV.
  • the air conditioner disclosed in the above literature has a long response time of the temperature of the refrigerant discharged from the compressor with respect to the adjustment of the degree of opening of the LEV. Consequently, the adjustment of the degree of opening of the LEV may not keep up with an increase in the temperature of the refrigerant discharged from the compressor, allowing the temperature of the refrigerant discharged from the compressor to exceed the set temperature. A reduced amount of refrigerant may lead to a shorter response time of the temperature of the refrigerant discharged from the compressor with respect to the adjustment of the degree of opening of the LEV.
  • the present invention has been made in view of the above problem and has an object to provide an air conditioner that can suppress an increase in the temperature of refrigerant discharged from a compressor and reduce refrigerant consumption with the use of low GWP refrigerant.
  • An air conditioner of the present invention includes a refrigerant circuit and refrigerant.
  • the refrigerant circuit has a compressor, a condenser, a pressure-regulating valve, and an evaporator.
  • the refrigerant flows through the refrigerant circuit in the order of the compressor, the condenser, the pressure-regulating valve, and the evaporator.
  • the refrigerant is R32.
  • the pressure-regulating valve includes a flow path causing the refrigerant flowing from the condenser to flow to the evaporator, a pressure reference chamber partitioned from the flow path and tilled with inert gas, and a valve portion disposed in the flow path.
  • the pressure-regulating valve is configured to adjust a degree of opening of the valve portion to adjust a flow rate of the refrigerant flowing through the flow path.
  • the valve portion is configured to increase the degree of opening when a pressure in the flow path is higher than a pressure in the pressure reference chamber and reduce the degree of opening when the pressure in the flow path is lower than the pressure in the pressure reference chamber.
  • the air conditioner of the present invention sets the pressure in the pressure reference chamber to the pressure in the flow path where the temperature of the refrigerant discharged from the compressor is a set temperature, and accordingly can increase the degree of opening of the valve portion when the pressure in the flow path is higher than the pressure in the pressure reference chamber, thus suppressing the temperature of the refrigerant discharged from the compressor exceeding the set temperature. Also, the degree of opening of the valve portion is adjusted before the temperature of the refrigerant discharged from the compressor exceeds the set temperature, thus suppressing the generation of hunting.
  • R32 is low GWP refrigerant. Therefore, an air conditioner that reduces refrigerant consumption with the use of low GWP refrigerant can be achieved.
  • FIG. 1 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view schematically showing the structure of a pressure-regulating valve of the air conditioner in Embodiment 1 of the present invention.
  • FIG. 3 is a sectional view for illustrating an operation of a valve portion of the air conditioner in Embodiment 1 of the present invention.
  • FIG. 4 schematically shows the structure of a refrigerant circuit of an air conditioner in a comparative example.
  • FIG. 5 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 2 of the present invention.
  • FIG. 6 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 3 of the present invention.
  • FIG. 7 is a sectional view schematically showing the structure of a pressure-regulating valve of a modification of the air conditioner in Embodiment 3 of the present invention.
  • Air conditioner 10 of the present embodiment is a device dedicated to cooling. That is to say, air conditioner 10 of the present embodiment has a cooling function and does not have a heating function.
  • Air conditioner 10 of the present embodiment mainly includes a compressor 1 , a condenser 2 , a pressure-regulating valve 3 , an evaporator 4 , a blower for condenser 5 , a blower for evaporator 6 , pipes PI 1 to PI 4 , and refrigerant.
  • Compressor 1 , condenser 2 , pressure-regulating valve 3 , and blower for condenser 5 are accommodated in an outdoor unit 11 .
  • Evaporator 4 and blower for evaporator 6 are accommodated in an indoor unit 12 .
  • Refrigerant circuit 13 has compressor 1 , condenser 2 , pressure-regulating valve 3 , and evaporator 4 .
  • Compressor 1 , condenser 2 , pressure-regulating valve 3 , and evaporator 4 communicated with each other through pipes PI 1 to PI 4 constitute refrigerant circuit 13 .
  • compressor 1 and condenser 2 are connected to each other by pipe PI 1 .
  • Condenser 2 and pressure-regulating valve 3 are connected to each other by pipe PI 2 .
  • Pressure-regulating valve 3 and evaporator 4 are connected to each other by pipe PI 3 .
  • Evaporator 4 and compressor 1 are connected to each other by pipe PI 4 .
  • Refrigerant circuit 13 is configured to allow refrigerant to circulate therethrough in the order of compressor 1 , pipe PI 1 , condenser 2 , pipe PI 2 , pressure-regulating valve 3 , pipe PI 3 , evaporator 4 , and pipe PI 4 . That is to say, refrigerant flows through refrigerant circuit 13 in the order of compressor 1 , condenser 2 , pressure-regulating valve 3 , and evaporator 4 .
  • Refrigerant is R32.
  • the amount of the refrigerant flowing through refrigerant circuit 13 is preferably 300 g or more and 500 g or less.
  • Compressor 1 is configured to compress refrigerant. Compressor 1 is also configured to compress the sucked refrigerant and discharge the compressed refrigerant. Compressor 1 is configured to have a variable capacity. Compressor 1 of the present embodiment is configured to variably control the number of rotations. Specifically, the drive frequency of compressor 1 is changed based on an instruction from a controller (not shown), so that the number of rotations of compressor 1 is adjusted. This changes the capacity of compressor 1 .
  • the capacity of compressor 1 is an amount by which refrigerant is fed per unit time. That is to say, compressor 1 can perform a high-capacity operation and a low-capacity operation.
  • an operation is performed by setting the drive frequency of compressor 1 high to increase the flow rate of refrigerant circulating through refrigerant circuit 13 .
  • an operation is performed by setting the drive frequency of compressor 1 low to reduce the flow rate of refrigerant circulating through refrigerant circuit 13 .
  • Condenser 2 is configured to condense the refrigerant compressed by compressor 1 .
  • Condenser 2 is an air-heat exchanger formed of a pipe and a fin.
  • Pressure-regulating valve 3 is configured to decompress the refrigerant condensed by condenser 2 .
  • Pressure-regulating valve 3 has the function as an expansion valve.
  • Pressure-regulating valve 3 is also a mechanical pressure control valve.
  • Pressure-regulating valve 3 is also configured to adjust the flow rate of the refrigerant flowing through pressure-regulating valve 3 .
  • the flow rate of the refrigerant flowing through pressure-regulating valve 3 is a flow rate per unit time.
  • Evaporator 4 is configured to evaporate the refrigerant decompressed by pressure-regulating valve 3 .
  • Evaporator 4 is an air-heat exchanger formed of a pipe and a fin.
  • Blower for condenser 5 is configured to adjust a heat exchange amount between the outdoor air and refrigerant in condenser 2 .
  • Blower for condenser 5 is formed of a fan 5 a and a motor 5 b.
  • Motor 5 b may be configured to rotate fan 5 a such that the number of rotations of fan 5 a is variable.
  • Motor 5 b may also be configured to rotate fan 5 a such that the number of rotations of fan 5 a is constant.
  • Blower for evaporator 6 is configured to adjust a heat exchange amount between the indoor air and refrigerant in evaporator 4 .
  • Blower for evaporator 6 is formed of a fan 6 a and a motor 6 b.
  • Motor 6 b may be configured to rotate fan 6 a such that the number of rotations of fan 6 a is variable.
  • Motor 6 b may be configured to rotate fan 6 a such that the number of rotations of fan 6 a is constant.
  • Pressure-regulating valve 3 includes a case 31 , a diaphragm 32 , a flow path 33 , a valve portion 34 , a spring 35 , and a partition member 36 .
  • Pressure-regulating valve 3 is configured to adjust the degree of opening of valve portion 34 to adjust the flow rate of the refrigerant flowing through flow path 33 .
  • Diaphragm 32 is attached to the inner side of case 31 to partition the interior of case 31 .
  • Case 31 has a first chamber SI and a second chamber S 2 partitioned by diaphragm 32 .
  • First chamber S 1 has flow path 33 which causes the refrigerant flowing from condenser 2 to flow to evaporator 4 .
  • first chamber S 1 has a flow inlet portion 31 a and a flow outlet portion 31 b.
  • Flow inlet portion 31 a is connected to pipe PI 2 .
  • Flow outlet portion 31 b is connected to pipe PI 3 .
  • First chamber S 1 is configured to allow the refrigerant flowing through the refrigerant circuit to flow from pipe PI 2 through flow inlet portion 31 a into first chamber S 1 and then flow through outlet portion 31 b to pipe PI 3 .
  • the refrigerant flowing through the refrigerant circuit flows into first chamber S 1 from flow inlet portion 31 a and flows out of flow outlet portion 31 b, as indicated by arrows A 1 in FIG. 2 .
  • the path from flow inlet portion 31 a to flow outlet portion 31 b forms flow path 33 for refrigerant.
  • the pressure of first chamber S 1 is a pressure of the refrigerant in flow path 33 . Since the pressure of first chamber S 1 is a pressure of the refrigerant flowing thereinto from condenser 2 , it is a pressure of high-pressure-side refrigerant flowing through refrigerant circuit 13 . Pressure-regulating valve 3 is accordingly a high-pressure pressure-regulating valve.
  • Second chamber S 2 forms a pressure reference chamber S 2 .
  • Pressure reference chamber S 2 is partitioned from flow path 33 .
  • Pressure reference chamber S 2 is filled with inert gas.
  • Pressure reference chamber S 2 is hermetically sealed while being filled with inert gas.
  • the pressure in pressure reference chamber S 2 is a pressure of the inert gas.
  • the inert gas is, for example, nitrogen or helium. Nitrogen is advantageous in low cost. Helium is advantageous in high level of safety.
  • the pressure in pressure reference chamber S 2 is, for example, 3 MPa or more and 4 MPa or less.
  • Diaphragm 32 is configured to deform in the direction indicated by a double-pointed arrow A 2 in FIG. 2 due to a pressure difference between the pressure of first chamber S 1 and the pressure of second chamber S 2 , that is, a pressure difference between the pressure of the refrigerant in flow path 33 and the pressure of the inert gas in pressure reference chamber S 2 .
  • diaphragm 32 is configured to curve in a projecting manner toward pressure reference chamber S 2 when the pressure of the refrigerant in flow path 33 is higher than the pressure of the inert gas in pressure reference chamber S 2 .
  • diaphragm 32 is configured to be planar when the pressure of the refrigerant in flow path 33 is equal to or lower than the pressure of the inert gas in pressure reference chamber S 2 . That is to say, in this case, diaphragm 32 does not curve in a projecting manner toward pressure reference chamber S 2 .
  • Valve portion 34 , spring 35 , and partition member 36 are disposed in first chamber S 1 .
  • Partition member 36 is configured to partition first chamber S 1 into a first region on the flow inlet portion 31 a side and a second region on the flow outlet portion 31 b side. That is to say, partition member 36 is disposed between flow inlet portion 31 a and flow outlet portion 31 b in flow path 33 extending from flow inlet portion 31 a to flow outlet portion 31 b.
  • Valve portion 34 has a valve body 34 a and a valve seat 34 b. Valve portion 34 is configured to adjust the degree of opening by the gap between valve body 34 a and valve seat 34 b. Valve body 34 a is formed in a shaft shape. One end (first end) of valve body 34 a is connected to diaphragm 32 . The other end (second end) of valve body 34 a is connected to spring 35 . Valve body 34 a is configured to move in the direction indicated by a double-pointed arrow A 3 in FIG. 2 due to the deformation of diaphragm 32 . That is to say, valve body 34 a is configured to move in the axial direction of valve body 34 a due to the deformation of diaphragm 32 .
  • Valve body 34 a has a tapered shape with a cross-section continuously decreasing from the one end to the other end.
  • Valve body 34 a is formed in a truncated cone shape and is formed with a diameter continuously decreasing in the axial direction toward valve seat 34 b.
  • Valve seat 34 b is provided in partition member 36 .
  • Valve seat 34 b is disposed between flow inlet portion 31 a and flow outlet portion 31 b in flow path 33 extending from flow inlet portion 31 a to flow outlet portion 31 b.
  • Valve seat 34 b is provided around a valve hole 37 passing through valve seat 34 b.
  • Valve body 34 a moves in the axial direction of valve body 34 a clue to the deformation of diaphragm 32 and accordingly leaves valve seat 34 b, thereby opening valve hole 37 .
  • diaphragm 32 curves in a projecting manner toward pressure reference chamber S 2 .
  • valve body 34 a connected to diaphragm 32 to move toward pressure reference chamber S 2 in the axial direction of valve body 34 a.
  • the other end of valve body 34 a accordingly leaves valve seat 34 b to expose valve hole 37 from valve body 34 a, thereby opening valve hole 37 .
  • Valve seat 34 b is configured such that each of the surface (upper surface) on the first region side of first chamber S 1 and the surface (lower surface) on the second region side of first chamber S 1 becomes dented. That is to say, valve seat 34 b has a dent on each of the first region side and the second region side of first chamber S 1 .
  • valve seat 34 b the bottom of the dent on the first region side of first chamber S 1 and the bottom of the dent on the second region side of first chamber S 1 are communicated with each other.
  • the bottom of the dent on the first region side of first chamber S 1 and the bottom of the dent on the second region side of first chamber S 1 which are communicated with each other define valve hole 37 .
  • valve seat 34 b is formed such that each of the surface on the first region side of first chamber S 1 and the surface on the second region side of first chamber S 1 is formed in a cone shape.
  • Valve seat 34 b is formed in a cone shape such that the surface on the first region side of first chamber S 1 has a diameter continuously decreasing toward the second region of first chamber S 1 .
  • the surface of valve seat 34 b on the first region side of first chamber S 1 is formed in a cone shape to have a diameter continuously decreasing toward second region of first chamber S 1 .
  • Valve portion 34 is configured to increase the degree of opening when the pressure in flow path 33 is higher than the pressure in pressure reference chamber S 1 . That is to say, valve portion 34 is configured as follows. When the pressure in flow path 33 is higher than the pressure in pressure reference chamber S 2 , valve body 34 a moves toward diaphragm 32 in the axial direction of valve body 34 a to increase the gap between valve body 34 a and valve seat 34 b, thereby increasing the degree of opening. Valve portion 34 is also configured to reduce the degree of opening when the pressure in flow path 35 is lower than the pressure in pressure reference chamber S 2 . That is to say, valve portion 34 is configured as follows.
  • valve body 34 a moves toward spring 35 in the axial direction of valve body 34 a to reduce the gap between valve body 34 a and valve seat 34 b, thereby reducing the degree of opening.
  • Valve portion 34 is configured to continuously change the size of the gap between valve body 34 a and valve seat 34 b by valve body 34 a moving in the axial direction of valve body 34 a due to the deformation of diaphragm 32 . That is to say, valve portion 34 is configured to increase or reduce the degree of opening of valve portion 34 in proportional to the amount of movement in the axial direction of valve body 34 a.
  • Spring 35 is connected to the other end of valve body 34 a and the bottom of case 31 .
  • Spring 35 is configured to bias valve body 34 a toward the bottom of case 31 by elastic force.
  • a small hole 38 is provided in partition member 36 .
  • Small hole 38 is provided to pass through partition member 36 .
  • Small hole 38 defines a part of flow path 33 . Since small hole 38 is not closed by valve body 34 a and is open constantly, refrigerant can constantly flow through small hole 38 front the first region to the second region in first chamber S 1 .
  • small hole 38 has the function as a capillary. That is to say, the refrigerant is decompressed by flowing through small hole 38 .
  • the refrigerant that has flowed into compressor 1 is compressed by compressor 1 to turn into high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from compressor 1 flows through pipe PI 1 into condenser 2 .
  • the refrigerant that has flowed into condenser 2 is subjected to heat exchange with the air in condenser 2 .
  • the refrigerant is condensed by heat dissipation to the air, and the air is heated by the refrigerant.
  • High-pressure liquid refrigerant condensed by condenser 2 flows through pipe PI 2 into pressure-regulating valve 3 .
  • the refrigerant that has flowed into pressure-regulating valve 3 is decompressed by pressure-regulating valve 3 to turn into low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant decompressed by pressure-regulating valve 3 flows through pipe PI 3 into evaporator 4 .
  • the refrigerant that has flowed into evaporator 4 is subjected to heat exchange with the air in evaporator 4 .
  • the air is cooled by the refrigerant, and the refrigerant turns into low-pressure gas refrigerant.
  • the refrigerant decompressed by evaporator 4 to turn into low-pressure gas flows through pipe PI 4 into compressor 1 .
  • the refrigerant flowing into compressor 1 is compressed and pressurized again and subsequently discharged from compressor 1 .
  • valve body 34 a is in contact with valve seat 34 b. This maintains the state in which valve hole 37 is closed by valve body 34 a. Valve portion 34 is closed in this state.
  • valve body 34 a moves toward pressure reference chamber S 2 in the axial direction of valve body 34 a due to the deformation of diaphragm 32 , the gap between valve body 34 a and valve seat 34 b increases. That is to say, the degree of opening of valve portion 34 increases.
  • the amount of movement in the axial direction of valve body 34 a can be adjusted by the pressure of the refrigerant in flow path 33 , the pressure of the inert gas in pressure reference chamber S 2 , and the biasing force of spring 35 connected to valve body 34 a.
  • the degree of opening of valve portion 34 can be adjusted by the gap between valve body 34 a and valve seat 34 b.
  • the amount of the refrigerant flowing through pressure-regulating valve 3 can thus be adjusted by adjusting the amount of movement in the axial direction of valve body 34 a and the degree of opening of valve portion 34 .
  • air conditioner 10 of the comparative example differs from air conditioner 10 of the present embodiment in that it includes a linear expansion valve (LEV) 30 , a thermistor 7 , and a microcomputer 8 .
  • microcomputer 8 controls the degree of opening of LEV 30 based on a signal from thermistor 7 that has detected the temperature of the refrigerant discharged from compressor 1 , so that the temperature of the refrigerant discharged from compressor 1 is adjusted not to exceed a set temperature (a temperature set to prevent a failure of compressor 1 ).
  • refrigerant is R32.
  • R32 is refrigerant which has a small politropic exponent and whose temperature easily increases when discharged from compressor 1 .
  • the temperature of the refrigerant discharged from compressor 1 increases easily at high outside air (high outside air temperature) and at high condensation temperature.
  • Air conditioner 10 of the present embodiment sets the pressure in pressure reference chamber S 2 to the pressure in flow path 33 where the temperature of the refrigerant discharged from compressor 1 is the set temperature (the temperature set to prevent a failure of compressor 1 ), thereby increasing the degree of opening of valve portion 34 when the pressure in flow path 33 is higher than the pressure in pressure reference chamber S 2 .
  • This can suppress the temperature of the refrigerant discharged from compressor 1 exceeding the set temperature.
  • the amount of the refrigerant flowing into evaporator 4 can also be increased by increasing the amount of the refrigerant flowing through pressure-regulating valve 3 , thus reducing the degree of superheat. An increase in the temperature of the refrigerant discharged from compressor 1 can thus be suppressed.
  • the generation of hunting can be suppressed by adjusting the degree of opening of valve portion 34 before the temperature of the refrigerant discharged from compressor 1 exceeds the set temperature.
  • R32 is low GWP refrigerant. Consequently, air conditioner 10 that reduces refrigerant consumption with the use of low GWP refrigerant can be achieved.
  • Air conditioner 10 of the comparative example needs LEV 30 , thermistor 7 , and microcomputer 8 to adjust the temperature of the refrigerant discharged from compressor 1 , leading to a complex configuration of air conditioner 10 . Also, the cost of manufacturing air conditioner 10 is increased. Contrastingly, in air conditioner 10 of the present embodiment, pressure-regulating valve 3 can adjust the temperature of the refrigerant discharged from compressor 1 , leading to a simple configuration of air conditioner 10 . Also, the cost of manufacturing air conditioner 10 is reduced.
  • pressure-regulating valve 3 can adjust the flow rate of the refrigerant flowing through flow path 33 by adjusting the degree of opening of valve portion 34 .
  • the generation of hunting can be suppressed more than in the case where valve portion 34 is merely opened/closed (ON/OFF).
  • the controllability of the flow rate of refrigerant can be improved.
  • the amount of refrigerant flowing through refrigerant circuit 13 is 300 g or more and 500 g or less.
  • the average refrigerant chlorofluorocarbon (CFC) charge amount of a room air conditioner is 800 g.
  • Air conditioner 10 of the present embodiment can thus reduce the amount of refrigerant to about a half of 800 g that is the average refrigerant CFC charge amount of a room air conditioner. If the amount of refrigerant is 400 g ⁇ 100 g, where 400 g is a half of the average refrigerant CFC charge amount of a room air conditioner, the refrigerant consumption can be reduced while maintaining the cooling capacity.
  • air conditioner 10 of the comparative example a reduced amount of refrigerant results in a shorter response time of the temperature of the refrigerant discharged from compressor 1 with respect to the adjustment of the degree of opening of LEV 30 , so hunting may occur at the set temperature.
  • air conditioner 10 of the present embodiment increases the degree of opening of valve portion 34 with reference to the pressure in pressure reference chamber S 2 , thereby suppressing the generation of hunting with respect to the set temperature even when the amount of refrigerant decreases. Controllability can thus be improved.
  • compressor 1 can variably control the number of rotations. Power consumption can thus be reduced by variably controlling the number of rotations of compressor 1 . Also, even when the temperature of the refrigerant discharged from compressor 1 increases due to an increase in the number of rotations of compressor 1 , an increase in the temperature of the refrigerant discharged from compressor 1 can be suppressed by increasing the degree of opening of valve portion 34 with reference to the pressure in pressure reference chamber S 2 .
  • Embodiment 1 The same components as those of Embodiment 1 will be denoted by the same reference signs in Embodiment 2, and description thereof will not be repeated, unless otherwise noted.
  • air conditioner 10 of Embodiment 2 of the present invention differs from air conditioner 10 of Embodiment 1 in the configuration of pressure-regulating valve 3 .
  • pressure-regulating valve 3 includes a capillary 39 .
  • Capillary 39 is connected to case 31 of pressure-regulating valve 3 and evaporator 4 .
  • the configuration in case 31 of pressure-regulating valve 3 is identical to the configuration of Embodiment 1.
  • Capillary 39 is disposed between valve portion 34 and evaporator 4 in refrigerant circuit 13 . Capillary 39 can thus decompress the refrigerant.
  • the present embodiment can adjust the decompression of refrigerant by capillary 39 . This leads to easier adjustment of the decompression of the refrigerant.
  • Embodiment 1 The same components as those of Embodiment 1 will be denoted by the same reference signs in Embodiment 3, and description thereof will not be repeated, unless otherwise noted.
  • air conditioner 10 of Embodiment 3 of the present invention differs from air conditioner 10 of Embodiment 1 in the configuration of pressure-regulating valve 3 .
  • pressure-regulating valve 3 includes capillary 39 .
  • Capillary 39 is connected in parallel with case 31 of pressure-regulating valve 3 in refrigerant circuit 13 .
  • the configuration in case 31 of pressure-regulating valve 3 is identical to the configuration of Embodiment 1.
  • Capillary 39 is disposed in parallel with valve portion 34 in refrigerant circuit 13 . Capillary 39 can thus decompress the refrigerant.
  • the present embodiment can accordingly adjust the decompression of refrigerant by capillary 39 .
  • the adjustment of the decompression of refrigerant can thus be simplified.
  • Capillary 39 can adjust the decompression of refrigerant more easily than small hole 38 of Embodiment 1. In the modification of air conditioner 10 of the present embodiment, thus, capillary 39 can adjust the decompression of refrigerant easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Abstract

An air conditioner (10) includes a refrigerant circuit (13) and refrigerant. The refrigerant circuit (13) has a compressor (1), a condenser (2), a pressure-regulating valve (3), and an evaporator (4). The refrigerant is R32. The pressure-regulating valve (3) includes a flow path (33) causing the refrigerant flowing from the condenser (2) to flow to the evaporator (4), a pressure reference chamber (S2) partitioned from the flow path (33) and filled with inert gas, and a valve portion (34) disposed in the flow path (33). The pressure-regulating valve (3) is configured to adjust a degree of opening of the valve portion (34) to adjust a flow rate of the refrigerant flowing through the flow path (33). The valve portion (34) is configured to increase the degree of opening when a pressure in the flow path (33) is higher than a pressure in the pressure reference chamber (S2), and reduce the degree of opening when the pressure in the flow path (33) is lower than the pressure in the pressure reference chamber (S2).

Description

    TECHNICAL FIELD
  • The present invention relates to air conditioners.
  • BACKGROUND ART
  • Air conditioners that reduce refrigerant consumption with the use of low global warming potential (GWP) refrigerant are desired in consideration of global environment. Used as the refrigerant enabling such air conditioners that reduce refrigerant consumption with the use of low GWP refrigerant is R32. R32 is refrigerant which has a small politropic exponent and whose temperature easily increases when discharged from a compressor. The use of R32 as refrigerant thus easily increases the temperature of the refrigerant discharged from the compressor at high outside temperature and at high condensation temperature. Since an increase in the temperature of the refrigerant discharged from the compressor may lead to a failure of the compressor, the temperature of the refrigerant discharged from the compressor is desired not to exceed a set temperature in order to prevent a failure of the compressor.
  • In a conventional air conditioner using R32 as refrigerant, thus, a linear expansion valve (LEV) is used to adjust the temperature of the refrigerant discharged from a compressor. Specifically, a microcomputer controls the degree of opening of the LEV based on a signal from a thermistor that has detected the temperature of the refrigerant discharged from the compressor to adjust the temperature of the refrigerant discharged from the compressor not to exceed the set temperature.
  • For example, Japanese Patent Laying-Open No. 2016-109356 (PTL 1) discloses an air conditioner that uses R32 as refrigerant and includes an LEV.
  • CITATION LIST Patent Literature
  • PTL: 1: Japanese Patent Laying-Open No. 2016-109356
  • SUMMARY OF INVENTION Technical Problem
  • The air conditioner disclosed in the above literature has a long response time of the temperature of the refrigerant discharged from the compressor with respect to the adjustment of the degree of opening of the LEV. Consequently, the adjustment of the degree of opening of the LEV may not keep up with an increase in the temperature of the refrigerant discharged from the compressor, allowing the temperature of the refrigerant discharged from the compressor to exceed the set temperature. A reduced amount of refrigerant may lead to a shorter response time of the temperature of the refrigerant discharged from the compressor with respect to the adjustment of the degree of opening of the LEV. As a result, even when the degree of opening of the LEV is adjusted to allow the temperature of the refrigerant discharged from the compressor to be equal to the set temperature, a phenomenon (hunting) occurs in which the temperature of the refrigerant discharged from the compressor exceeds or falls below the set temperature.
  • The present invention has been made in view of the above problem and has an object to provide an air conditioner that can suppress an increase in the temperature of refrigerant discharged from a compressor and reduce refrigerant consumption with the use of low GWP refrigerant.
  • Solution to Problem
  • An air conditioner of the present invention includes a refrigerant circuit and refrigerant. The refrigerant circuit has a compressor, a condenser, a pressure-regulating valve, and an evaporator. The refrigerant flows through the refrigerant circuit in the order of the compressor, the condenser, the pressure-regulating valve, and the evaporator. The refrigerant is R32. The pressure-regulating valve includes a flow path causing the refrigerant flowing from the condenser to flow to the evaporator, a pressure reference chamber partitioned from the flow path and tilled with inert gas, and a valve portion disposed in the flow path. The pressure-regulating valve is configured to adjust a degree of opening of the valve portion to adjust a flow rate of the refrigerant flowing through the flow path. The valve portion is configured to increase the degree of opening when a pressure in the flow path is higher than a pressure in the pressure reference chamber and reduce the degree of opening when the pressure in the flow path is lower than the pressure in the pressure reference chamber.
  • Advantageous Effects of Invention
  • The air conditioner of the present invention sets the pressure in the pressure reference chamber to the pressure in the flow path where the temperature of the refrigerant discharged from the compressor is a set temperature, and accordingly can increase the degree of opening of the valve portion when the pressure in the flow path is higher than the pressure in the pressure reference chamber, thus suppressing the temperature of the refrigerant discharged from the compressor exceeding the set temperature. Also, the degree of opening of the valve portion is adjusted before the temperature of the refrigerant discharged from the compressor exceeds the set temperature, thus suppressing the generation of hunting. R32 is low GWP refrigerant. Therefore, an air conditioner that reduces refrigerant consumption with the use of low GWP refrigerant can be achieved.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view schematically showing the structure of a pressure-regulating valve of the air conditioner in Embodiment 1 of the present invention.
  • FIG. 3 is a sectional view for illustrating an operation of a valve portion of the air conditioner in Embodiment 1 of the present invention.
  • FIG. 4 schematically shows the structure of a refrigerant circuit of an air conditioner in a comparative example.
  • FIG. 5 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 2 of the present invention.
  • FIG. 6 schematically shows the structure of a refrigerant circuit of an air conditioner in Embodiment 3 of the present invention.
  • FIG. 7 is a sectional view schematically showing the structure of a pressure-regulating valve of a modification of the air conditioner in Embodiment 3 of the present invention.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments of the present invention will be described below with reference to the drawings.
  • Embodiment 1
  • A configuration of an air conditioner 10 in Embodiment 1 of the present invention will be described with reference to FIG. 1. Air conditioner 10 of the present embodiment is a device dedicated to cooling. That is to say, air conditioner 10 of the present embodiment has a cooling function and does not have a heating function.
  • Air conditioner 10 of the present embodiment mainly includes a compressor 1, a condenser 2, a pressure-regulating valve 3, an evaporator 4, a blower for condenser 5, a blower for evaporator 6, pipes PI1 to PI4, and refrigerant. Compressor 1, condenser 2, pressure-regulating valve 3, and blower for condenser 5 are accommodated in an outdoor unit 11. Evaporator 4 and blower for evaporator 6 are accommodated in an indoor unit 12.
  • Refrigerant circuit 13 has compressor 1, condenser 2, pressure-regulating valve 3, and evaporator 4. Compressor 1, condenser 2, pressure-regulating valve 3, and evaporator 4 communicated with each other through pipes PI1 to PI4 constitute refrigerant circuit 13. Specifically, compressor 1 and condenser 2 are connected to each other by pipe PI1. Condenser 2 and pressure-regulating valve 3 are connected to each other by pipe PI2. Pressure-regulating valve 3 and evaporator 4 are connected to each other by pipe PI3. Evaporator 4 and compressor 1 are connected to each other by pipe PI4.
  • Refrigerant circuit 13 is configured to allow refrigerant to circulate therethrough in the order of compressor 1, pipe PI1, condenser 2, pipe PI2, pressure-regulating valve 3, pipe PI3, evaporator 4, and pipe PI4. That is to say, refrigerant flows through refrigerant circuit 13 in the order of compressor 1, condenser 2, pressure-regulating valve 3, and evaporator 4. Refrigerant is R32. The amount of the refrigerant flowing through refrigerant circuit 13 is preferably 300 g or more and 500 g or less.
  • Compressor 1 is configured to compress refrigerant. Compressor 1 is also configured to compress the sucked refrigerant and discharge the compressed refrigerant. Compressor 1 is configured to have a variable capacity. Compressor 1 of the present embodiment is configured to variably control the number of rotations. Specifically, the drive frequency of compressor 1 is changed based on an instruction from a controller (not shown), so that the number of rotations of compressor 1 is adjusted. This changes the capacity of compressor 1. The capacity of compressor 1 is an amount by which refrigerant is fed per unit time. That is to say, compressor 1 can perform a high-capacity operation and a low-capacity operation. In the high-capacity operation, an operation is performed by setting the drive frequency of compressor 1 high to increase the flow rate of refrigerant circulating through refrigerant circuit 13. In the low-capacity operation, an operation is performed by setting the drive frequency of compressor 1 low to reduce the flow rate of refrigerant circulating through refrigerant circuit 13.
  • Condenser 2 is configured to condense the refrigerant compressed by compressor 1. Condenser 2 is an air-heat exchanger formed of a pipe and a fin. Pressure-regulating valve 3 is configured to decompress the refrigerant condensed by condenser 2. Pressure-regulating valve 3 has the function as an expansion valve. Pressure-regulating valve 3 is also a mechanical pressure control valve. Pressure-regulating valve 3 is also configured to adjust the flow rate of the refrigerant flowing through pressure-regulating valve 3. The flow rate of the refrigerant flowing through pressure-regulating valve 3 is a flow rate per unit time. Evaporator 4 is configured to evaporate the refrigerant decompressed by pressure-regulating valve 3. Evaporator 4 is an air-heat exchanger formed of a pipe and a fin.
  • Blower for condenser 5 is configured to adjust a heat exchange amount between the outdoor air and refrigerant in condenser 2. Blower for condenser 5 is formed of a fan 5 a and a motor 5 b. Motor 5 b may be configured to rotate fan 5 a such that the number of rotations of fan 5 a is variable. Motor 5 b may also be configured to rotate fan 5 a such that the number of rotations of fan 5 a is constant. Blower for evaporator 6 is configured to adjust a heat exchange amount between the indoor air and refrigerant in evaporator 4. Blower for evaporator 6 is formed of a fan 6 a and a motor 6 b. Motor 6 b may be configured to rotate fan 6 a such that the number of rotations of fan 6 a is variable. Motor 6 b may be configured to rotate fan 6 a such that the number of rotations of fan 6 a is constant.
  • With reference to FIGS. 1 and 2, the configuration of pressure-regulating valve 3 in the present embodiment will be described in detail.
  • Pressure-regulating valve 3 includes a case 31, a diaphragm 32, a flow path 33, a valve portion 34, a spring 35, and a partition member 36. Pressure-regulating valve 3 is configured to adjust the degree of opening of valve portion 34 to adjust the flow rate of the refrigerant flowing through flow path 33.
  • Diaphragm 32 is attached to the inner side of case 31 to partition the interior of case 31. Case 31 has a first chamber SI and a second chamber S2 partitioned by diaphragm 32.
  • First chamber S1 has flow path 33 which causes the refrigerant flowing from condenser 2 to flow to evaporator 4. Specifically, first chamber S1 has a flow inlet portion 31 a and a flow outlet portion 31 b. Flow inlet portion 31 a is connected to pipe PI2. Flow outlet portion 31 b is connected to pipe PI3. First chamber S1 is configured to allow the refrigerant flowing through the refrigerant circuit to flow from pipe PI2 through flow inlet portion 31 a into first chamber S1 and then flow through outlet portion 31 b to pipe PI3. That is to say, the refrigerant flowing through the refrigerant circuit flows into first chamber S1 from flow inlet portion 31 a and flows out of flow outlet portion 31 b, as indicated by arrows A1 in FIG. 2. In the present embodiment, the path from flow inlet portion 31 a to flow outlet portion 31 b forms flow path 33 for refrigerant.
  • The pressure of first chamber S1 is a pressure of the refrigerant in flow path 33. Since the pressure of first chamber S1 is a pressure of the refrigerant flowing thereinto from condenser 2, it is a pressure of high-pressure-side refrigerant flowing through refrigerant circuit 13. Pressure-regulating valve 3 is accordingly a high-pressure pressure-regulating valve.
  • Second chamber S2 forms a pressure reference chamber S2. Pressure reference chamber S2 is partitioned from flow path 33. Pressure reference chamber S2 is filled with inert gas. Pressure reference chamber S2 is hermetically sealed while being filled with inert gas. The pressure in pressure reference chamber S2 is a pressure of the inert gas. The inert gas is, for example, nitrogen or helium. Nitrogen is advantageous in low cost. Helium is advantageous in high level of safety. The pressure in pressure reference chamber S2 is, for example, 3 MPa or more and 4 MPa or less.
  • Diaphragm 32 is configured to deform in the direction indicated by a double-pointed arrow A2 in FIG. 2 due to a pressure difference between the pressure of first chamber S1 and the pressure of second chamber S2, that is, a pressure difference between the pressure of the refrigerant in flow path 33 and the pressure of the inert gas in pressure reference chamber S2. Specifically, diaphragm 32 is configured to curve in a projecting manner toward pressure reference chamber S2 when the pressure of the refrigerant in flow path 33 is higher than the pressure of the inert gas in pressure reference chamber S2. In contrast, diaphragm 32 is configured to be planar when the pressure of the refrigerant in flow path 33 is equal to or lower than the pressure of the inert gas in pressure reference chamber S2. That is to say, in this case, diaphragm 32 does not curve in a projecting manner toward pressure reference chamber S2.
  • Valve portion 34, spring 35, and partition member 36 are disposed in first chamber S1. Partition member 36 is configured to partition first chamber S1 into a first region on the flow inlet portion 31 a side and a second region on the flow outlet portion 31 b side. That is to say, partition member 36 is disposed between flow inlet portion 31 a and flow outlet portion 31 b in flow path 33 extending from flow inlet portion 31 a to flow outlet portion 31 b.
  • Valve portion 34 has a valve body 34 a and a valve seat 34 b. Valve portion 34 is configured to adjust the degree of opening by the gap between valve body 34 a and valve seat 34 b. Valve body 34 a is formed in a shaft shape. One end (first end) of valve body 34 a is connected to diaphragm 32. The other end (second end) of valve body 34 a is connected to spring 35. Valve body 34 a is configured to move in the direction indicated by a double-pointed arrow A3 in FIG. 2 due to the deformation of diaphragm 32. That is to say, valve body 34 a is configured to move in the axial direction of valve body 34 a due to the deformation of diaphragm 32. Valve body 34 a has a tapered shape with a cross-section continuously decreasing from the one end to the other end. Valve body 34 a is formed in a truncated cone shape and is formed with a diameter continuously decreasing in the axial direction toward valve seat 34 b.
  • Valve seat 34 b is provided in partition member 36. Valve seat 34 b is disposed between flow inlet portion 31 a and flow outlet portion 31 b in flow path 33 extending from flow inlet portion 31 a to flow outlet portion 31 b. Valve seat 34 b is provided around a valve hole 37 passing through valve seat 34 b. Valve body 34 a moves in the axial direction of valve body 34 a clue to the deformation of diaphragm 32 and accordingly leaves valve seat 34 b, thereby opening valve hole 37. Specifically, when the pressure of the refrigerant in flow path 33 exceeds the pressure of the inert gas in pressure reference chamber S2, diaphragm 32 curves in a projecting manner toward pressure reference chamber S2. This causes valve body 34 a connected to diaphragm 32 to move toward pressure reference chamber S2 in the axial direction of valve body 34 a. The other end of valve body 34 a accordingly leaves valve seat 34 b to expose valve hole 37 from valve body 34 a, thereby opening valve hole 37.
  • Valve seat 34 b is configured such that each of the surface (upper surface) on the first region side of first chamber S1 and the surface (lower surface) on the second region side of first chamber S1 becomes dented. That is to say, valve seat 34 b has a dent on each of the first region side and the second region side of first chamber S1. In valve seat 34 b, the bottom of the dent on the first region side of first chamber S1 and the bottom of the dent on the second region side of first chamber S1 are communicated with each other. The bottom of the dent on the first region side of first chamber S1 and the bottom of the dent on the second region side of first chamber S1 which are communicated with each other define valve hole 37.
  • Specifically, valve seat 34 b is formed such that each of the surface on the first region side of first chamber S1 and the surface on the second region side of first chamber S1 is formed in a cone shape. Valve seat 34 b is formed in a cone shape such that the surface on the first region side of first chamber S1 has a diameter continuously decreasing toward the second region of first chamber S1. The surface of valve seat 34 b on the first region side of first chamber S1 is formed in a cone shape to have a diameter continuously decreasing toward second region of first chamber S1.
  • Valve portion 34 is configured to increase the degree of opening when the pressure in flow path 33 is higher than the pressure in pressure reference chamber S1. That is to say, valve portion 34 is configured as follows. When the pressure in flow path 33 is higher than the pressure in pressure reference chamber S2, valve body 34 a moves toward diaphragm 32 in the axial direction of valve body 34 a to increase the gap between valve body 34 a and valve seat 34 b, thereby increasing the degree of opening. Valve portion 34 is also configured to reduce the degree of opening when the pressure in flow path 35 is lower than the pressure in pressure reference chamber S2. That is to say, valve portion 34 is configured as follows. When the pressure in flow path 35 is lower than the pressure in pressure reference chamber S2, valve body 34 a moves toward spring 35 in the axial direction of valve body 34 a to reduce the gap between valve body 34 a and valve seat 34 b, thereby reducing the degree of opening.
  • Valve portion 34 is configured to continuously change the size of the gap between valve body 34 a and valve seat 34 b by valve body 34 a moving in the axial direction of valve body 34 a due to the deformation of diaphragm 32. That is to say, valve portion 34 is configured to increase or reduce the degree of opening of valve portion 34 in proportional to the amount of movement in the axial direction of valve body 34 a.
  • Spring 35 is connected to the other end of valve body 34 a and the bottom of case 31. Spring 35 is configured to bias valve body 34 a toward the bottom of case 31 by elastic force.
  • A small hole 38 is provided in partition member 36. Small hole 38 is provided to pass through partition member 36. Small hole 38 defines a part of flow path 33. Since small hole 38 is not closed by valve body 34 a and is open constantly, refrigerant can constantly flow through small hole 38 front the first region to the second region in first chamber S1. In the present embodiment, small hole 38 has the function as a capillary. That is to say, the refrigerant is decompressed by flowing through small hole 38.
  • A flow of refrigerant in the refrigerant circuit of air conditioner 10 of the present embodiment will now be described.
  • With reference to FIG. 1, the refrigerant that has flowed into compressor 1 is compressed by compressor 1 to turn into high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from compressor 1 flows through pipe PI1 into condenser 2. The refrigerant that has flowed into condenser 2 is subjected to heat exchange with the air in condenser 2. Specifically, in condenser 2, the refrigerant is condensed by heat dissipation to the air, and the air is heated by the refrigerant. High-pressure liquid refrigerant condensed by condenser 2 flows through pipe PI2 into pressure-regulating valve 3.
  • The refrigerant that has flowed into pressure-regulating valve 3 is decompressed by pressure-regulating valve 3 to turn into low-pressure gas-liquid two-phase refrigerant. The refrigerant decompressed by pressure-regulating valve 3 flows through pipe PI3 into evaporator 4. The refrigerant that has flowed into evaporator 4 is subjected to heat exchange with the air in evaporator 4. Specifically, in evaporator 4, the air is cooled by the refrigerant, and the refrigerant turns into low-pressure gas refrigerant. The refrigerant decompressed by evaporator 4 to turn into low-pressure gas flows through pipe PI4 into compressor 1. The refrigerant flowing into compressor 1 is compressed and pressurized again and subsequently discharged from compressor 1.
  • With reference to FIGS. 2 and 3, the operation of pressure-regulating valve 3 in the present embodiment will now be described in detail.
  • When the pressure of the refrigerant in flow path 33 is equal to or lower than the pressure of the inert gas in pressure reference chamber S2, diaphragm 32 is maintained in a planar manner, so that valve body 34 a is in contact with valve seat 34 b. This maintains the state in which valve hole 37 is closed by valve body 34 a. Valve portion 34 is closed in this state.
  • When the pressure of the refrigerant in flow path 33 is higher than the pressure of the inert gas in pressure reference chamber S2, diaphragm 32 deforms in a projecting manner toward pressure reference chamber S2. The deformation of diaphragm 32 causes valve body 34 a to move toward pressure reference chamber S2 in the axial direction of valve body 34 a. Consequently, valve body 34 a leaves valve seat 34 b. In this state, valve portion 34 is opened. Further, when valve body 34 a moves toward pressure reference chamber S2 in the axial direction of valve body 34 a due to the deformation of diaphragm 32, the gap between valve body 34 a and valve seat 34 b increases. That is to say, the degree of opening of valve portion 34 increases. This increases the amount of refrigerant flowing through pressure-regulating valve 3, thus increasing the amount of refrigerant flowing into evaporator 4. The degree of superheat (SH) accordingly decreases. As a result, an increase in the temperature of the refrigerant discharged from compressor 1 can be suppressed.
  • The amount of movement in the axial direction of valve body 34 a can be adjusted by the pressure of the refrigerant in flow path 33, the pressure of the inert gas in pressure reference chamber S2, and the biasing force of spring 35 connected to valve body 34 a. The degree of opening of valve portion 34 can be adjusted by the gap between valve body 34 a and valve seat 34 b. The amount of the refrigerant flowing through pressure-regulating valve 3 can thus be adjusted by adjusting the amount of movement in the axial direction of valve body 34 a and the degree of opening of valve portion 34.
  • The function and effect of the present embodiment will now be described in comparison with those of a comparative example. The same components as those of Embodiment 1 will be denoted by the same reference signs, and description thereof will not be repeated, unless otherwise noted.
  • With reference to FIG. 4, air conditioner 10 of the comparative example differs from air conditioner 10 of the present embodiment in that it includes a linear expansion valve (LEV) 30, a thermistor 7, and a microcomputer 8. In air conditioner 10 of the comparative example, microcomputer 8 controls the degree of opening of LEV 30 based on a signal from thermistor 7 that has detected the temperature of the refrigerant discharged from compressor 1, so that the temperature of the refrigerant discharged from compressor 1 is adjusted not to exceed a set temperature (a temperature set to prevent a failure of compressor 1).
  • In air conditioner 10 of the present embodiment, refrigerant is R32. R32 is refrigerant which has a small politropic exponent and whose temperature easily increases when discharged from compressor 1. Thus, when R32 is used as refrigerant, the temperature of the refrigerant discharged from compressor 1 increases easily at high outside air (high outside air temperature) and at high condensation temperature.
  • Air conditioner 10 of the present embodiment sets the pressure in pressure reference chamber S2 to the pressure in flow path 33 where the temperature of the refrigerant discharged from compressor 1 is the set temperature (the temperature set to prevent a failure of compressor 1), thereby increasing the degree of opening of valve portion 34 when the pressure in flow path 33 is higher than the pressure in pressure reference chamber S2. This can suppress the temperature of the refrigerant discharged from compressor 1 exceeding the set temperature. The amount of the refrigerant flowing into evaporator 4 can also be increased by increasing the amount of the refrigerant flowing through pressure-regulating valve 3, thus reducing the degree of superheat. An increase in the temperature of the refrigerant discharged from compressor 1 can thus be suppressed. Also, the generation of hunting can be suppressed by adjusting the degree of opening of valve portion 34 before the temperature of the refrigerant discharged from compressor 1 exceeds the set temperature. R32 is low GWP refrigerant. Consequently, air conditioner 10 that reduces refrigerant consumption with the use of low GWP refrigerant can be achieved.
  • Air conditioner 10 of the comparative example needs LEV 30, thermistor 7, and microcomputer 8 to adjust the temperature of the refrigerant discharged from compressor 1, leading to a complex configuration of air conditioner 10. Also, the cost of manufacturing air conditioner 10 is increased. Contrastingly, in air conditioner 10 of the present embodiment, pressure-regulating valve 3 can adjust the temperature of the refrigerant discharged from compressor 1, leading to a simple configuration of air conditioner 10. Also, the cost of manufacturing air conditioner 10 is reduced.
  • In air conditioner 10 of the present embodiment, pressure-regulating valve 3 can adjust the flow rate of the refrigerant flowing through flow path 33 by adjusting the degree of opening of valve portion 34. Thus, the generation of hunting can be suppressed more than in the case where valve portion 34 is merely opened/closed (ON/OFF). Also, the controllability of the flow rate of refrigerant can be improved.
  • In air conditioner 10 of the present embodiment, the amount of refrigerant flowing through refrigerant circuit 13 is 300 g or more and 500 g or less. According to the documents provided by the Ministry of Economy, Trade and Industry (documents related to a method of estimating emissions outside notification, 2003), the average refrigerant chlorofluorocarbon (CFC) charge amount of a room air conditioner is 800 g. Air conditioner 10 of the present embodiment can thus reduce the amount of refrigerant to about a half of 800 g that is the average refrigerant CFC charge amount of a room air conditioner. If the amount of refrigerant is 400 g±100 g, where 400 g is a half of the average refrigerant CFC charge amount of a room air conditioner, the refrigerant consumption can be reduced while maintaining the cooling capacity.
  • In air conditioner 10 of the comparative example, a reduced amount of refrigerant results in a shorter response time of the temperature of the refrigerant discharged from compressor 1 with respect to the adjustment of the degree of opening of LEV 30, so hunting may occur at the set temperature. Contrastingly, air conditioner 10 of the present embodiment increases the degree of opening of valve portion 34 with reference to the pressure in pressure reference chamber S2, thereby suppressing the generation of hunting with respect to the set temperature even when the amount of refrigerant decreases. Controllability can thus be improved.
  • In air conditioner 10 of the present embodiment, compressor 1 can variably control the number of rotations. Power consumption can thus be reduced by variably controlling the number of rotations of compressor 1. Also, even when the temperature of the refrigerant discharged from compressor 1 increases due to an increase in the number of rotations of compressor 1, an increase in the temperature of the refrigerant discharged from compressor 1 can be suppressed by increasing the degree of opening of valve portion 34 with reference to the pressure in pressure reference chamber S2.
  • Embodiment 2
  • The same components as those of Embodiment 1 will be denoted by the same reference signs in Embodiment 2, and description thereof will not be repeated, unless otherwise noted.
  • With reference to FIG. 5, air conditioner 10 of Embodiment 2 of the present invention differs from air conditioner 10 of Embodiment 1 in the configuration of pressure-regulating valve 3.
  • In air conditioner 10 of the present embodiment, pressure-regulating valve 3 includes a capillary 39. Capillary 39 is connected to case 31 of pressure-regulating valve 3 and evaporator 4. The configuration in case 31 of pressure-regulating valve 3 is identical to the configuration of Embodiment 1. Capillary 39 is disposed between valve portion 34 and evaporator 4 in refrigerant circuit 13. Capillary 39 can thus decompress the refrigerant.
  • The present embodiment can adjust the decompression of refrigerant by capillary 39. This leads to easier adjustment of the decompression of the refrigerant.
  • Embodiment 3
  • The same components as those of Embodiment 1 will be denoted by the same reference signs in Embodiment 3, and description thereof will not be repeated, unless otherwise noted.
  • With reference to FIG. 6, air conditioner 10 of Embodiment 3 of the present invention differs from air conditioner 10 of Embodiment 1 in the configuration of pressure-regulating valve 3.
  • In air conditioner 10 of the present embodiment, pressure-regulating valve 3 includes capillary 39. Capillary 39 is connected in parallel with case 31 of pressure-regulating valve 3 in refrigerant circuit 13. The configuration in case 31 of pressure-regulating valve 3 is identical to the configuration of Embodiment 1. Capillary 39 is disposed in parallel with valve portion 34 in refrigerant circuit 13. Capillary 39 can thus decompress the refrigerant.
  • The present embodiment can accordingly adjust the decompression of refrigerant by capillary 39. The adjustment of the decompression of refrigerant can thus be simplified.
  • With reference to FIG. 7, a modification of air conditioner 10 of Embodiment 3 will now be described. This modification differs from Embodiment 1 in that small hole 38 is not provided. In this modification, capillary 39 is disposed in parallel with valve portion 34 in refrigerant circuit 13, and accordingly, capillary 39 can cause refrigerant to constantly flow through refrigerant circuit 13 even when small hole 38 of Embodiment 1 is not provided.
  • Capillary 39 can adjust the decompression of refrigerant more easily than small hole 38 of Embodiment 1. In the modification of air conditioner 10 of the present embodiment, thus, capillary 39 can adjust the decompression of refrigerant easily.
  • It is to be understood that the embodiments disclosed herein have been presented for the purpose of illustration and non-restrictive in every respect. It is therefore intended that the scope of the present invention is defined by claims, not only by the embodiments described above, and encompasses all modifications and variations equivalent in meaning and scope to the claims.
  • REFERENCE SIGNS LIST
  • 1 compressor, 2 condenser, 3 pressure-regulating valve, 4 evaporator, 5 blower for condenser, 6 blower for evaporator, 7 thermistor, 8 microcomputer, 9 capillary, 10 air conditioner, 11 outdoor unit, 12 indoor unit, 13 refrigerant circuit, 31 case, 31 a flow inlet portion, 31 b flow outlet portion, 32 diaphragm, 33 flow path, 34 a valve body, 34 b valve seat, 35 spring, 36 partition member, 37 valve hole, 38 small hole, 39 capillary, S1 first chamber, S2 second chamber (pressure reference chamber).

Claims (4)

1-5. (canceled)
6. An air conditioner comprising:
a refrigerant circuit comprising a compressor, a condenser, a pressure-regulating valve, and an evaporator; and
refrigerant flowing through the refrigerant circuit in an order of the compressor, the condenser, the pressure-regulating valve, and the evaporator, wherein
the refrigerant is R32,
the pressure-regulating valve comprises
a case,
a diaphragm attached to an inner side of the case to partition an interior of the case,
a flow path provided by partitioning the interior of the case by the diaphragm, the flow path causing the refrigerant flowing from the condenser to flow to the evaporator,
a pressure reference chamber partitioned from the flow path by the diaphragm and filled with inert gas,
a valve portion disposed in the flow path, and
a partition member disposed in the flow path,
the pressure-regulating valve is configured to adjust a degree of opening of the valve portion to adjust a flow rate of the refrigerant flowing through the flow path, and
the valve portion is configured to
increase the degree of opening when a pressure in the flow path is higher than a pressure in the pressure reference chamber, and
reduce the degree of opening when the pressure in the flow path is lower than the pressure in the pressure reference chamber,
the valve portion comprises
a valve body connected to the diaphragm, and
a valve seat provided in the partition member, and
the pressure-regulating valve is configured to cause the refrigerant to flow into the pressure-regulating valve also when the valve body is in contact with the valve seat,
wherein
the pressure-regulating valve comprises a capillary, and
the capillary is disposed between the valve portion and the evaporator in the refrigerant circuit.
7. The air conditioner according to claim 6, wherein an amount of the refrigerant flowing through the refrigerant circuit is 300 g or more and 500 g or less.
8. The air conditioner according to claim 6, wherein the compressor is configured to variably control a number of rotations.
US17/181,511 2016-10-28 2021-02-22 Air conditioner Abandoned US20210172659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/181,511 US20210172659A1 (en) 2016-10-28 2021-02-22 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/082119 WO2018078808A1 (en) 2016-10-28 2016-10-28 Air conditioner
US201816313671A 2018-12-27 2018-12-27
US17/181,511 US20210172659A1 (en) 2016-10-28 2021-02-22 Air conditioner

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/313,671 Continuation US20200018530A1 (en) 2016-10-28 2016-10-28 Air conditioner
PCT/JP2016/082119 Continuation WO2018078808A1 (en) 2016-10-28 2016-10-28 Air conditioner

Publications (1)

Publication Number Publication Date
US20210172659A1 true US20210172659A1 (en) 2021-06-10

Family

ID=61968188

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/313,671 Abandoned US20200018530A1 (en) 2016-10-28 2016-10-28 Air conditioner
US17/181,541 Abandoned US20210180842A1 (en) 2016-10-28 2021-02-22 Air conditioner
US17/181,511 Abandoned US20210172659A1 (en) 2016-10-28 2021-02-22 Air conditioner

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/313,671 Abandoned US20200018530A1 (en) 2016-10-28 2016-10-28 Air conditioner
US17/181,541 Abandoned US20210180842A1 (en) 2016-10-28 2021-02-22 Air conditioner

Country Status (7)

Country Link
US (3) US20200018530A1 (en)
EP (1) EP3534088B1 (en)
JP (1) JP6312943B1 (en)
KR (1) KR102147693B1 (en)
CN (1) CN109891164A (en)
AU (1) AU2016427727B2 (en)
WO (1) WO2018078808A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102596984B1 (en) * 2019-01-31 2023-11-02 삼성전자주식회사 Outdoor unit of airconditioner

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500035A (en) * 1982-06-25 1985-02-19 Hitachi, Ltd. Expansion valve
JPH10259961A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Air conditioning equipment
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
US6477848B1 (en) * 1999-03-02 2002-11-12 Daikin Industries, Ltd. Refrigerating apparatus
US6626000B1 (en) * 2002-10-30 2003-09-30 Visteon Global Technologies, Inc. Method and system for electronically controlled high side pressure regulation in a vapor compression cycle
US6766816B2 (en) * 2001-10-03 2004-07-27 Hunter Group, Inc. Collapsible dispensing system
JP2007032979A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Refrigerating cycle device
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
US20090242810A1 (en) * 2008-03-31 2009-10-01 Fujikoki Corporation Pressure control valve
US20090277205A1 (en) * 2005-11-01 2009-11-12 Daikin Industries, Ltd. Outdoor unit of air conditioner
KR20120082077A (en) * 2011-01-13 2012-07-23 엘지전자 주식회사 Expansion device for turbo-refrigerator
CN202501649U (en) * 2012-02-06 2012-10-24 广东美芝制冷设备有限公司 Refrigeration equipment

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1630156A (en) * 1925-03-17 1927-05-24 Firm Atlas Werke Pohler & Co Device for charging and discharging compressed-air containers
US2765629A (en) * 1946-02-02 1956-10-09 Carrier Corp Refrigerant expansion control
US3054273A (en) * 1959-12-28 1962-09-18 Carrier Corp Thermal expansion valve
US3320763A (en) * 1965-11-19 1967-05-23 Westinghouse Electric Corp Controls for refrigeration systems
US3797266A (en) * 1972-07-07 1974-03-19 Borg Warner Air conditioning control system
JPS6030432B2 (en) * 1977-12-14 1985-07-16 株式会社ボッシュオートモーティブ システム evaporation pressure control valve
JPH03105179A (en) * 1989-09-20 1991-05-01 Mitsubishi Heavy Ind Ltd Automatic expansion valve device
JPH08121879A (en) * 1994-10-26 1996-05-17 Mitsubishi Heavy Ind Ltd Refrigerating and air conditioning apparatus
JPH09133436A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP3858297B2 (en) * 1996-01-25 2006-12-13 株式会社デンソー Pressure control valve and vapor compression refrigeration cycle
JP2000205664A (en) * 1999-01-14 2000-07-28 Denso Corp Refrigerating cycle system
WO2001006183A1 (en) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2004036997A (en) * 2002-07-03 2004-02-05 Zexel Valeo Climate Control Corp Supercritical steam compression refrigerating cycle
JP2004132561A (en) * 2002-10-08 2004-04-30 Saginomiya Seisakusho Inc Pressure control valve and vapor compression refrigeration cycle device
JP2007198712A (en) * 2006-01-30 2007-08-09 Sanden Corp Refrigerating system
DE102006021327A1 (en) * 2006-05-05 2007-11-08 Otto Egelhof Gmbh & Co. Kg Control method for expansion valves in car air conditioning systems uses bellows filled with inert gas which pushes rods against spring attached to the valve stem so as to open valve when threshold pressure or temperature is exceeded
JP2008164239A (en) * 2006-12-28 2008-07-17 Denso Corp Pressure regulation valve
CN101377239A (en) * 2007-08-30 2009-03-04 浙江春晖智能控制股份有限公司 Thermal Expansion Valve
JP5196476B2 (en) * 2008-03-27 2013-05-15 日本クラウンコルク株式会社 Container sealing structure
JP5728324B2 (en) * 2011-08-02 2015-06-03 株式会社鷺宮製作所 Temperature expansion valve
CN202521934U (en) * 2012-01-19 2012-11-07 天津商业大学 Variable flow ejector and refrigeration device constituted thereby
JP6343805B2 (en) * 2014-05-12 2018-06-20 パナソニックIpマネジメント株式会社 Refrigeration equipment
US9395000B2 (en) * 2014-08-19 2016-07-19 Flowserve Management Company Apparatus for excluding particle contaminants from a gas lift off mechanical seal
JP2016109356A (en) 2014-12-05 2016-06-20 ダイキン工業株式会社 Air conditioner
JP2016114274A (en) * 2014-12-12 2016-06-23 東芝キヤリア株式会社 Air conditioner and control method of refrigeration cycle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500035A (en) * 1982-06-25 1985-02-19 Hitachi, Ltd. Expansion valve
JPH10259961A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Air conditioning equipment
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
US6477848B1 (en) * 1999-03-02 2002-11-12 Daikin Industries, Ltd. Refrigerating apparatus
US6766816B2 (en) * 2001-10-03 2004-07-27 Hunter Group, Inc. Collapsible dispensing system
US6626000B1 (en) * 2002-10-30 2003-09-30 Visteon Global Technologies, Inc. Method and system for electronically controlled high side pressure regulation in a vapor compression cycle
JP2007032979A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Refrigerating cycle device
US20090277205A1 (en) * 2005-11-01 2009-11-12 Daikin Industries, Ltd. Outdoor unit of air conditioner
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
US20090242810A1 (en) * 2008-03-31 2009-10-01 Fujikoki Corporation Pressure control valve
KR20120082077A (en) * 2011-01-13 2012-07-23 엘지전자 주식회사 Expansion device for turbo-refrigerator
CN202501649U (en) * 2012-02-06 2012-10-24 广东美芝制冷设备有限公司 Refrigeration equipment

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Aoki, Motor Operated Valve, 2/13/1999, JPH1137311A, Whole Document (Year: 1999) *
Hirakuni et al., Refrigerating Cycle Device, 2/8/2007, JP2007032979A, Whole Document (Year: 2007) *
La Da, Refrigeration Equipment, 10/24/2012, CN202501649U, Whole Document (Year: 2012) *
Lee et al., Expansion Device for Turbo-Refrigerator, 7/23/2012, KR20120082077A, Whole Document (Year: 2012) *
Nishida, Pressure Control Valve, 4/17/2008, JP2008089220A, Whole Document (Year: 2008) *
Nonaka et al., Air Conditioning Equipment, 9/29/1998, JPH10259961A, Whole Document (Year: 1998) *

Also Published As

Publication number Publication date
AU2016427727B2 (en) 2019-10-10
KR20190032560A (en) 2019-03-27
JP6312943B1 (en) 2018-04-18
US20200018530A1 (en) 2020-01-16
WO2018078808A1 (en) 2018-05-03
KR102147693B1 (en) 2020-08-25
AU2016427727A1 (en) 2019-02-21
EP3534088A4 (en) 2019-10-30
EP3534088B1 (en) 2022-03-02
EP3534088A1 (en) 2019-09-04
JPWO2018078808A1 (en) 2018-11-01
CN109891164A (en) 2019-06-14
US20210180842A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US8522568B2 (en) Refrigeration system
US9982929B2 (en) Air conditioner
WO2017017767A1 (en) Air conditioning device
US7854136B2 (en) Automated drive for fan and refrigerant system
WO2016204194A1 (en) Air conditioner
US20150338135A1 (en) Refrigeration device for container
US10731904B2 (en) Air conditioner
US20210172659A1 (en) Air conditioner
CN111854240B (en) Refrigeration cycle system
US20100242508A1 (en) Use of an adjustable expansion vavle to control dehumidification
JP2008096072A (en) Refrigerating cycle device
JP6565737B2 (en) Refrigeration cycle equipment
JP2007183086A (en) Supercritical refrigeration cycle
KR101880979B1 (en) Air conditioner system for vehicle and its control method
JP2019138614A (en) Ejector-type refrigeration cycle and flow rate regulation valve
JP2007040601A (en) Refrigeration cycle
JP2016050709A (en) Air conditioning device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION