JPH08121879A - Refrigerating and air conditioning apparatus - Google Patents

Refrigerating and air conditioning apparatus

Info

Publication number
JPH08121879A
JPH08121879A JP6262375A JP26237594A JPH08121879A JP H08121879 A JPH08121879 A JP H08121879A JP 6262375 A JP6262375 A JP 6262375A JP 26237594 A JP26237594 A JP 26237594A JP H08121879 A JPH08121879 A JP H08121879A
Authority
JP
Japan
Prior art keywords
pressure
valve
throttle
refrigerant
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6262375A
Other languages
Japanese (ja)
Inventor
Makoto Watabe
眞 渡部
Masami Ito
政美 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6262375A priority Critical patent/JPH08121879A/en
Publication of JPH08121879A publication Critical patent/JPH08121879A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To control high pressure by providing a compressor, a condenser, a throttle and an evaporator in a refrigerating and air conditioning apparatus, and providing an automatic inlet pressure regulating valve in parallel with the throttle. CONSTITUTION: Refrigerant gas output from a compressor 1 is introduced to a condenser 2, radiated and liquefied. Refrigerant liquefied by the condenser 2 is all fed through a capillary tube 3 of the throttle, pressure-reduced, introduced to an evaporator 4, evaporated and vaporized, and returned to the compressor 1 to complete a refrigerating cycle. In this case, an automatic inlet pressure regulating valve 6 is provided in parallel with the tube 3 of the throttle, and the valve 6 is opened when the condensing pressure is raised as the atmospheric temperature rises and the raised pressure rises to a set pressure. Thus, the high pressure can be held substantially constantly to avoid excess pressure rise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍・空調装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating / air conditioning system.

【0002】[0002]

【従来の技術】図5は、主たる絞りと並列に開閉弁を設
け、冷媒流量を制御する冷凍装置の冷媒回路図であり、
特開平2−290471号に示されているものである。
図において、1は圧縮機、2は凝縮器、4は蒸発器、1
1は第1キャピラリチューブ、12は第2キャピラリチ
ューブ、13は上記第1キャピラリチューブと並列に設
けられているバイパス回路、14は同回路に設けられて
いる開閉弁、15は圧縮機回転数制御手段、16は回転
数比較手段、17は運転時間比較手段、18は開閉弁制
御手段、19は温度検出手段、20は温度比較手段であ
る。
2. Description of the Related Art FIG. 5 is a refrigerant circuit diagram of a refrigerating machine in which an opening / closing valve is provided in parallel with a main throttle to control a refrigerant flow rate.
This is disclosed in JP-A-2-290471.
In the figure, 1 is a compressor, 2 is a condenser, 4 is an evaporator, 1
Reference numeral 1 is a first capillary tube, 12 is a second capillary tube, 13 is a bypass circuit provided in parallel with the first capillary tube, 14 is an opening / closing valve provided in the circuit, and 15 is a compressor rotation speed control. Reference numeral 16 is a rotation speed comparing means, 17 is an operating time comparing means, 18 is an opening / closing valve controlling means, 19 is a temperature detecting means, and 20 is a temperature comparing means.

【0003】この回路は、圧縮機の回転数すなわち冷媒
循環量や、吐出ガス温度を検知することによって、間接
的に判断できる液冷媒の戻り具合により、開閉弁14を
制御して安定した運転を得ようとするものである。この
ような回路は、利用温度範囲が広い場合に対して固定絞
りである第1キャピラリチューブ11の流量を調整する
ものである。即ち、バイパス回路13を用いることによ
って、例えば高圧圧力が極めて高い場合において開閉弁
14を開放し、高圧圧力を低減するということが可能で
ある。上記以外の部分の作用は公知であるから説明を省
略する。
This circuit controls the on-off valve 14 to perform a stable operation by detecting the rotation speed of the compressor, that is, the refrigerant circulation amount and the discharge gas temperature, and by the return condition of the liquid refrigerant that can be indirectly determined. It's about to get. Such a circuit adjusts the flow rate of the first capillary tube 11, which is a fixed throttle, when the operating temperature range is wide. That is, by using the bypass circuit 13, it is possible to open the on-off valve 14 and reduce the high pressure when the high pressure is extremely high, for example. Since the operation of the parts other than the above is known, the description thereof will be omitted.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術に示した
回路、即ち開閉弁を用いてキャピラリチューブをバイパ
スする回路においては、高圧圧力制御を行う場合、以下
の問題がある。 (1)高圧圧力を検知する圧力スイッチが必要であるう
え、電気配線を必要とする。 (2)弁の開閉動作により流量がステップ状に変化する
ため、必要以上に圧力を下げたり、又、適正範囲を広く
するには開閉弁とキャピラリチューブの組み合せを多く
する必要がある。
In the circuit shown in the above-mentioned prior art, that is, the circuit for bypassing the capillary tube by using the on-off valve, there are the following problems when high pressure control is performed. (1) In addition to the need for a pressure switch for detecting high pressure, electrical wiring is required. (2) Since the flow rate changes stepwise by the opening / closing operation of the valve, it is necessary to increase the number of combinations of the opening / closing valve and the capillary tube in order to lower the pressure more than necessary and to widen the appropriate range.

【0005】本発明は上記従来技術の欠点を解消し、簡
単な装置によって高圧圧力の制御を可能にしようとする
ものである。
The present invention solves the above-mentioned drawbacks of the prior art and makes it possible to control high pressure by a simple device.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、圧縮機、凝縮器、絞り、及び蒸発器
を備えた冷凍・空調装置において、絞りと並列に自動入
口圧力調整弁を設けたことを特徴とする冷凍・空調装置
に関するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in a refrigerating / air-conditioning apparatus equipped with a compressor, a condenser, a throttle, and an evaporator, an automatic inlet pressure adjustment is provided in parallel with the throttle. The present invention relates to a refrigerating / air-conditioning device having a valve.

【0007】[0007]

【作用】本発明の冷凍・空調装置は、上記のように構成
したので絞りの入口側の圧力が高くなり、入口圧力調整
弁の設定圧力に達すると弁は自動的に開き始め、更に圧
力が高くなると弁はさらに開くので、高圧圧力をほぼ一
定に保ち、過大な圧力上昇を回避することが可能とな
る。
Since the refrigerating / air-conditioning apparatus of the present invention is configured as described above, the pressure on the inlet side of the throttle becomes high, and when the set pressure of the inlet pressure adjusting valve is reached, the valve will automatically open and the pressure will further increase. The higher the valve opens, the higher pressure can be kept almost constant and excessive pressure rise can be avoided.

【0008】[0008]

【実施例】図1は本発明の第1実施例に係る冷媒回路図
であり、本発明を冷凍装置に適用した例である。図にお
いて、1は圧縮機、2は凝縮器、3はキャピラリチュー
ブ、4は蒸発器、5はキャピラリチューブ3に対して並
列に設けられたバイパス回路、6は同バイパス回路上に
設けられた入口圧力調整弁である。
1 is a refrigerant circuit diagram according to a first embodiment of the present invention, which is an example in which the present invention is applied to a refrigerating apparatus. In the figure, 1 is a compressor, 2 is a condenser, 3 is a capillary tube, 4 is an evaporator, 5 is a bypass circuit provided in parallel to the capillary tube 3, and 6 is an inlet provided on the bypass circuit. It is a pressure control valve.

【0009】本実施例の回路においては、圧縮機1を出
た高温高圧の冷媒ガスは、凝縮器2に入り放熱してして
液化する。凝縮器2が空冷式の場合にあっては、外気温
度によって凝縮圧力が変化する。そのため、外気温度が
高くない場合は凝縮圧力も低く、従って入口圧力調整弁
6は閉弁している。その結果、凝縮器2にて液化した冷
媒は全てキャピラリチューブ3を通り、ここで減圧され
蒸発器4に入り、周囲より熱を奪って自身は蒸発・気化
して圧縮機1に戻り冷凍サイクルを完了する。外気温度
が上昇するにつれ凝縮圧力、即ち入口圧力調整弁6の入
口の圧力は上昇する。この圧力が入口圧力調整弁6の設
定圧力まで上昇すると入口圧力調整弁6は開弁する。
In the circuit of this embodiment, the high-temperature and high-pressure refrigerant gas that has exited the compressor 1 enters the condenser 2 and radiates heat to be liquefied. When the condenser 2 is of the air cooling type, the condensation pressure changes depending on the outside air temperature. Therefore, when the outside air temperature is not high, the condensation pressure is also low, and therefore the inlet pressure adjusting valve 6 is closed. As a result, all the refrigerant liquefied in the condenser 2 passes through the capillary tube 3, is decompressed here and enters the evaporator 4, takes heat from the surroundings, evaporates and vaporizes itself, and returns to the compressor 1 for the refrigeration cycle. Complete. As the outside air temperature rises, the condensing pressure, that is, the pressure at the inlet of the inlet pressure adjusting valve 6 rises. When this pressure rises to the set pressure of the inlet pressure adjusting valve 6, the inlet pressure adjusting valve 6 opens.

【0010】図2は上記実施例に用いる入口圧力調整弁
6の断面図である。図において弁本体の主部は、上下方
向に延びる筒形の胴部21からなっている。胴部21の
下部にはバイパス管15と接続する下方へ延びる入口側
の口体22と、左側方へ延びる出口側の口体23とが形
成してある。口体22の基部端には弁座24が形成して
ある。弁室となる胴部21内には、弁座24と組合う弁
体25が収容してある。弁体25の下端部は円錐状をな
している。弁体25の上端部には、コイルスプリング2
6を介して、ばね押え27が結合してある。このばね押
え27の上部中央には、ねじ軸28が突き出ている。こ
のねじ軸28は胴部21の上部壁に進退可能に螺挿さ
れ、弁体25を弁座24に形成してある弁孔24aに位
置決めしている。30はキャップである。そして、この
キャップ30を取り除き、ねじ軸28を進退調節するこ
とによって、コイルスプリング26を圧縮する方向に変
位させて、冷媒圧力が所定の高圧圧力以上となるときに
弁孔24aが「開」となるよう、弁体25を弁座24に
押付ける。これにより、弁孔24aは、通常は弁体25
の下部と弁座24との密接によって閉塞され、冷媒圧力
が所定の高圧圧力以上になると、弁体25が弁座24か
ら離れる方向へ押し上げられて開く。なお、29はねじ
軸端に螺挿された緩み止めナット、31はキャップ30
と胴部21との間に設けられているシール部材である。
FIG. 2 is a sectional view of the inlet pressure adjusting valve 6 used in the above embodiment. In the figure, the main portion of the valve body is composed of a tubular body portion 21 extending in the vertical direction. In the lower part of the body portion 21, an inlet-side mouth 22 that extends downward and is connected to the bypass pipe 15 and an outlet-side mouth 23 that extends leftward are formed. A valve seat 24 is formed at the base end of the mouth 22. A valve body 25 that is combined with the valve seat 24 is accommodated in the body portion 21 that serves as a valve chamber. The lower end of the valve body 25 has a conical shape. At the upper end of the valve body 25, the coil spring 2
A spring retainer 27 is connected via 6. A screw shaft 28 projects from the center of the upper portion of the spring retainer 27. The screw shaft 28 is screwed into the upper wall of the body 21 so as to be able to move forward and backward, and the valve body 25 is positioned in the valve hole 24a formed in the valve seat 24. 30 is a cap. Then, by removing the cap 30 and adjusting the screw shaft 28 forward and backward, the coil spring 26 is displaced in the direction in which it is compressed, and the valve hole 24a is "opened" when the refrigerant pressure becomes equal to or higher than a predetermined high pressure. Then, the valve body 25 is pressed against the valve seat 24. As a result, the valve hole 24a is normally formed in the valve body 25.
When the refrigerant pressure becomes equal to or higher than a predetermined high pressure due to the close contact between the lower portion of the valve seat 24 and the valve seat 24, the valve body 25 is pushed up in the direction away from the valve seat 24 and opens. In addition, 29 is a locking nut screwed into the screw shaft end, 31 is a cap 30
It is a sealing member provided between the body and the body portion 21.

【0011】上記の動作設定によって、冷媒圧力が所定
の高圧圧力以上になると、凝縮器2からの液冷媒が、キ
ャピラリチューブ3を経るものに調整弁6を経るものが
加わえられて、蒸発器4に導かれ、そこで蒸発する。即
ち、高圧圧力が高くなるにつれ調整弁6の弁開度が自動
的に大きくなり、キャピラリチューブ3を含めた絞りが
ゆるくなるため、冷媒が流れ易くなり、高圧圧力が所定
値よりも高くなることを回避することができる。
According to the above operation settings, when the refrigerant pressure becomes higher than a predetermined high pressure, the liquid refrigerant from the condenser 2 is added through the capillary tube 3 and the adjustment valve 6, and the evaporator is added. 4 and evaporate there. That is, as the high pressure increases, the valve opening of the adjusting valve 6 automatically increases, and the throttle including the capillary tube 3 becomes loose, so that the refrigerant easily flows and the high pressure becomes higher than a predetermined value. Can be avoided.

【0012】図3は本発明の第2実施例に係る冷媒回路
図であり、本発明をヒートポンプ式空調装置に適用した
例である。図において、1は圧縮機、40は四方弁、4
1は四方弁40に連り、内部に2系統のサーキットを有
する室外熱交換器、42a,42bは上記各サーキット
に連る分配管、43は冷房用キャピラリチューブ、44
は同チューブと並列に設けられている逆止弁、6Aは同
チューブと並列に設けられている入口圧力調整弁であ
る。この弁の構造は図2に示したものと同じである。4
5はキャピラリチューブ43、逆止弁44、入口圧力調
整弁6Aに連る配管、46は同配管に連る暖房用キャピ
ラリチューブ、47は同チューブと並列に設けられてい
る逆止弁、6Bは同チューブと並列に設けられている入
口圧力調整弁であり構造は図2に示したものと同じであ
る。上記暖房用キャピラリチューブ46、逆止弁47、
入口圧力調整弁6Bに連る配管は合流した後、分配管4
8a,48bに分かれる。49は内部に2系統のサーキ
ットを有する室内熱交換器であり、前記分配管が各サー
キットに連っている。この室内熱交換器に連る配管は合
流した後、前記四方弁40に連っている。
FIG. 3 is a refrigerant circuit diagram according to the second embodiment of the present invention, which is an example in which the present invention is applied to a heat pump type air conditioner. In the figure, 1 is a compressor, 40 is a four-way valve, 4
1 is an outdoor heat exchanger that is connected to the four-way valve 40 and has two circuits inside, 42a and 42b are distribution pipes that connect to each of the circuits, 43 is a cooling capillary tube, and 44
Is a check valve provided in parallel with the tube, and 6A is an inlet pressure adjusting valve provided in parallel with the tube. The structure of this valve is the same as that shown in FIG. Four
5 is a pipe connected to the capillary tube 43, the check valve 44, and the inlet pressure adjusting valve 6A, 46 is a heating capillary tube connected to the pipe, 47 is a check valve provided in parallel with the tube, and 6B is The inlet pressure adjusting valve is provided in parallel with the tube and has the same structure as that shown in FIG. The heating capillary tube 46, the check valve 47,
After joining the pipes connected to the inlet pressure adjusting valve 6B, the distribution pipe 4
It is divided into 8a and 48b. 49 is an indoor heat exchanger having two circuits inside, and the distribution pipe is connected to each circuit. The pipes connected to the indoor heat exchanger are joined and then connected to the four-way valve 40.

【0013】本回路において、冷房運転においては、四
方弁40は実線の向きに接続されており圧縮機1を出た
高温高圧の冷媒ガスは、四方弁40を経て室外熱交換器
41に入り、放熱して液化する。液化した冷媒は、分配
管42a,42bを経て冷房用キャピラリチューブ43
に至る。ここで、外気温度が高くない時は、凝縮圧力も
低く、従って、入口圧力調整弁6Aは閉弁している。逆
止弁44も流れの向きが逆のため閉止しているので、液
化した冷媒は全て冷房用キャピラリチューブ43を通
り、ここで減圧されて配管45に入る。減圧された冷媒
は、逆止弁47が開となるため大部分がここを通り、分
配管48a,48bを経て室内熱交換器49に入る。こ
こで室内空気より熱を奪い、自身は蒸発・気化して四方
弁40を経て圧縮機1に戻り冷凍サイクルを完了する。
この間室内熱交換器49内での冷媒の圧力損失が過大と
なると能力低下を起こすため、能力の大きな空調装置に
あっては、通常、多サーキットになっている。このサー
キット毎に流れる冷媒の量を調整するため、各サーキッ
ト毎に分配管48a,48bが設けられている。この分
配管48a,48bは二相流である低圧の冷媒に対して
は、ある程度の抵抗となることで適正な分配を行なって
いる。そのため、配管45内の圧力は蒸発圧力よりは高
くなる。
In the present circuit, during cooling operation, the four-way valve 40 is connected in the direction of the solid line, and the high-temperature and high-pressure refrigerant gas that has left the compressor 1 enters the outdoor heat exchanger 41 through the four-way valve 40, It radiates heat and liquefies. The liquefied refrigerant passes through the distribution pipes 42a and 42b, and the cooling capillary tube 43.
Leading to. Here, when the outside air temperature is not high, the condensation pressure is also low, and therefore the inlet pressure adjusting valve 6A is closed. Since the check valve 44 is also closed because the flow direction is opposite, all the liquefied refrigerant passes through the cooling capillary tube 43 and is depressurized there to enter the pipe 45. Most of the depressurized refrigerant passes through the check valve 47 because it opens, and enters the indoor heat exchanger 49 via the distribution pipes 48a and 48b. Here, heat is taken from the room air, and the air evaporates and vaporizes, returns to the compressor 1 through the four-way valve 40, and completes the refrigeration cycle.
During this time, if the pressure loss of the refrigerant in the indoor heat exchanger 49 becomes excessively large, the capacity deteriorates. Therefore, an air conditioner having a large capacity usually has multiple circuits. In order to adjust the amount of refrigerant flowing in each circuit, distribution pipes 48a and 48b are provided in each circuit. The distribution pipes 48a and 48b perform proper distribution to the low-pressure refrigerant, which is a two-phase flow, by having some resistance. Therefore, the pressure in the pipe 45 becomes higher than the evaporation pressure.

【0014】外気温が高くなるにつれ凝縮圧力が高くな
り、入口圧力調整弁6Aの入口の圧力は上昇する。この
圧力が入口圧力調整弁6Aの設定圧力まで上昇すると、
この入口圧力調整弁6Aは開弁する。その結果、冷房キ
ャピラリチューブ43を含めた絞りがゆるくなり冷媒が
流れ易くなり高圧圧力が所定値よりも高くなることをほ
ぼ回避できる。この場合、入口圧力調整弁6Aが開弁す
ることによって配管45内の圧力が上昇し、分配管48
a,48bの部分も流れ易くなる。このため、分配管4
8a,48bの部分で高圧圧力を決めてしまうことが回
避される。
As the outside air temperature rises, the condensing pressure rises and the pressure at the inlet of the inlet pressure adjusting valve 6A rises. When this pressure rises to the set pressure of the inlet pressure adjusting valve 6A,
This inlet pressure adjusting valve 6A is opened. As a result, it is possible to almost avoid that the throttle including the cooling capillary tube 43 becomes loose, the refrigerant easily flows, and the high pressure becomes higher than a predetermined value. In this case, the pressure in the pipe 45 rises due to the opening of the inlet pressure adjusting valve 6A, and the distribution pipe 48
The portions a and 48b also easily flow. Therefore, the distribution pipe 4
It is avoided that the high pressure is determined in the portions 8a and 48b.

【0015】暖房運転の場合は四方弁40は破線の向き
に接続されている。ヒートポンプ式冷凍サイクルはみか
け上まったく対称であるため、冷媒の流れは冷房の場合
と同様である。従って、室内温度が高い場合や、室内熱
交換器49を流れる空気量が減ってしまった場合のよう
に高圧圧力が高くなると入口圧力調整弁6Bが開弁する
ことによって、高圧圧力はほぼ所定値に保たれることに
なる。この例では、冷房、暖房双方に入口圧力調整弁を
設けた例を示したが、一方のみとしてもよい。
In the heating operation, the four-way valve 40 is connected in the direction of the broken line. Since the heat pump type refrigeration cycle is completely symmetrical in appearance, the flow of the refrigerant is the same as in the case of cooling. Therefore, when the high temperature becomes high, such as when the indoor temperature is high or when the amount of air flowing through the indoor heat exchanger 49 is reduced, the high pressure is opened to a predetermined value by opening the inlet pressure adjusting valve 6B. Will be kept. In this example, the inlet pressure adjusting valve is provided for both cooling and heating, but only one may be provided.

【0016】図4は本発明の第3実施例に係るヒートポ
ンプ式空調装置の冷媒回路図である。これは、冷房用、
暖房用を兼ねて、1個の入口圧力調整弁で対応した例で
ある。図において、1は圧縮機、50は四方弁、51は
室外熱交換器、52は冷房用キャピラリチューブ、53
は冷房・暖房兼用キャピラリチューブ、54,55,5
6,57は逆止弁、58は室内熱交換器である。本回路
においては、冷房時には冷媒は冷房用キャピラリチュー
ブ52と冷房・暖房兼用キャピラリチューブを共に通過
する。暖房時には冷房・暖房兼用キャピラリチューブ5
3のみを通過する。入口圧力調整弁6Cは図2に示した
ものと同じ構造のものであり、これらのキャピラリチュ
ーブと並列に設置されており、冷房用・暖房用を兼ねて
いる。この入口圧力調整弁6Cの本回路における作用は
前記第2実施例と同様であるから説明を省略する。本例
は回路の構成を簡単化した例であり、コスト低減の効果
がある。
FIG. 4 is a refrigerant circuit diagram of a heat pump type air conditioner according to a third embodiment of the present invention. This is for cooling,
This is an example in which one inlet pressure adjusting valve is used for heating as well. In the figure, 1 is a compressor, 50 is a four-way valve, 51 is an outdoor heat exchanger, 52 is a cooling capillary tube, and 53.
Is a capillary tube for both cooling and heating, 54, 55, 5
Reference numerals 6 and 57 are check valves, and 58 is an indoor heat exchanger. In this circuit, during cooling, the refrigerant passes through both the cooling capillary tube 52 and the cooling / heating capillary tube. Capillary tube 5 for both cooling and heating during heating
Pass only 3 The inlet pressure adjusting valve 6C has the same structure as that shown in FIG. 2, is installed in parallel with these capillary tubes, and serves both for cooling and heating. The operation of this inlet pressure adjusting valve 6C in this circuit is the same as that in the second embodiment, and therefore its explanation is omitted. This example is an example in which the circuit configuration is simplified and has an effect of cost reduction.

【0017】[0017]

【発明の効果】本発明の冷凍・空調装置においては、絞
りと並列に自動入口圧力調整弁を設けてあるので、簡単
な装置によって自動的に高圧圧力の制御を行うことがで
き、コスト低減の効果がある。
In the refrigerating / air-conditioning apparatus of the present invention, since the automatic inlet pressure adjusting valve is provided in parallel with the throttle, the high pressure can be automatically controlled by a simple device, and the cost can be reduced. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る冷媒回路図。FIG. 1 is a refrigerant circuit diagram according to a first embodiment of the present invention.

【図2】上記実施例に用いる入口圧力調整弁の断面図。FIG. 2 is a sectional view of an inlet pressure control valve used in the above embodiment.

【図3】本発明の第2実施例に係る冷媒回路図。FIG. 3 is a refrigerant circuit diagram according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る冷媒回路図。FIG. 4 is a refrigerant circuit diagram according to a third embodiment of the present invention.

【図5】従来の冷凍装置の冷媒回路図。FIG. 5 is a refrigerant circuit diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 キャピラリチューブ(絞
り) 4 蒸発器 5 バイパス回路 6,6A,6B,6C 入口圧力調整弁 40 四方弁 41 室外熱交換器 42a,42b 分配管 43 冷房用キャピラリチューブ 44 逆止弁 45 配管 46 暖房用キャピラリチューブ 47 逆止弁 48a,48b 分配管 49 室内熱交換器 50 四方弁 51 室外熱交換器 52 冷房用キャピラリチューブ 53 冷房・暖房兼用キャピラリ
チューブ 54,55,56,57 逆止弁 58 室内熱交換器
1 Compressor 2 Condenser 3 Capillary tube (throttle) 4 Evaporator 5 Bypass circuit 6,6A, 6B, 6C Inlet pressure control valve 40 Four-way valve 41 Outdoor heat exchanger 42a, 42b Distribution pipe 43 Cooling capillary tube 44 Non-return Valve 45 Pipe 46 Heating capillary tube 47 Check valve 48a, 48b Distribution pipe 49 Indoor heat exchanger 50 Four-way valve 51 Outdoor heat exchanger 52 Cooling capillary tube 53 Cooling / heating capillary tube 54, 55, 56, 57 Reverse Stop valve 58 Indoor heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、絞り、及び蒸発器を備
えた冷凍・空調装置において、絞りと並列に自動入口圧
力調整弁を設けたことを特徴とする冷凍・空調装置。
1. A refrigeration / air-conditioning system comprising a compressor, a condenser, a throttle, and an evaporator, wherein a refrigeration / air-conditioning system is provided with an automatic inlet pressure adjusting valve in parallel with the throttle.
JP6262375A 1994-10-26 1994-10-26 Refrigerating and air conditioning apparatus Pending JPH08121879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6262375A JPH08121879A (en) 1994-10-26 1994-10-26 Refrigerating and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6262375A JPH08121879A (en) 1994-10-26 1994-10-26 Refrigerating and air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH08121879A true JPH08121879A (en) 1996-05-17

Family

ID=17374883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6262375A Pending JPH08121879A (en) 1994-10-26 1994-10-26 Refrigerating and air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH08121879A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855254A1 (en) * 2003-05-23 2004-11-26 Valeo Climatisation Air conditioning device for use in motor vehicle, has liquid/gas separator dividing fluid into liquid phase that is sent to evaporator inlet via primary duct and into gaseous phase that is sent to evaporator outlet via secondary duct
JP2007198712A (en) * 2006-01-30 2007-08-09 Sanden Corp Refrigerating system
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
CN102562532A (en) * 2011-12-19 2012-07-11 中国海洋石油总公司 Method of reducing interstage temperature of propane compressor in propane compressor cycle refrigerating system
CN105157284A (en) * 2015-08-21 2015-12-16 广东美的制冷设备有限公司 Air conditioner system
CN107477928A (en) * 2017-09-25 2017-12-15 珠海格力电器股份有限公司 Throttling mechanism, refrigeration system and control method of refrigeration system
JP6312943B1 (en) * 2016-10-28 2018-04-18 三菱電機株式会社 Air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855254A1 (en) * 2003-05-23 2004-11-26 Valeo Climatisation Air conditioning device for use in motor vehicle, has liquid/gas separator dividing fluid into liquid phase that is sent to evaporator inlet via primary duct and into gaseous phase that is sent to evaporator outlet via secondary duct
JP2007198712A (en) * 2006-01-30 2007-08-09 Sanden Corp Refrigerating system
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
CN102562532A (en) * 2011-12-19 2012-07-11 中国海洋石油总公司 Method of reducing interstage temperature of propane compressor in propane compressor cycle refrigerating system
CN102562532B (en) * 2011-12-19 2015-01-28 中国海洋石油总公司 Method of reducing interstage temperature of propane compressor in propane compressor cycle refrigerating system
CN105157284A (en) * 2015-08-21 2015-12-16 广东美的制冷设备有限公司 Air conditioner system
KR20190032560A (en) * 2016-10-28 2019-03-27 미쓰비시덴키 가부시키가이샤 Air conditioner
JP6312943B1 (en) * 2016-10-28 2018-04-18 三菱電機株式会社 Air conditioner
WO2018078808A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Air conditioner
CN109891164A (en) * 2016-10-28 2019-06-14 三菱电机株式会社 Air conditioner
AU2016427727B2 (en) * 2016-10-28 2019-10-10 Mitsubishi Electric Corporation Air conditioner
EP3534088A4 (en) * 2016-10-28 2019-10-30 Mitsubishi Electric Corporation Air conditioner
CN107477928A (en) * 2017-09-25 2017-12-15 珠海格力电器股份有限公司 Throttling mechanism, refrigeration system and control method of refrigeration system
CN107477928B (en) * 2017-09-25 2023-08-22 珠海格力电器股份有限公司 Throttle mechanism, refrigerating system and control method of refrigerating system

Similar Documents

Publication Publication Date Title
US20150176848A1 (en) Air conditioning system and method of controlling an air conditioning system
JPH0232546B2 (en)
JP2009174800A (en) Reheating dehumidifier and air conditioner
JP2007232265A (en) Refrigeration unit
JPH08121879A (en) Refrigerating and air conditioning apparatus
JP3317170B2 (en) Refrigeration equipment
JP2002357353A (en) Air conditioner
US3803864A (en) Air conditioning control system
JP2003106694A (en) Air conditioner
JP3945523B2 (en) Refrigeration equipment
JPH1038421A (en) Refrigerating cycle
JP2003065584A (en) Air-conditioning apparatus and its control method
KR100308455B1 (en) Air conditioner without outdoor unit
JP2611297B2 (en) Air conditioner
JPH0375462A (en) Heat pump system
JPH0579894B2 (en)
JP4235868B2 (en) Air conditioner with automatic temperature expansion valve
JPH04369327A (en) Air conditioner
JPH08136067A (en) Air conditioner
KR100308374B1 (en) Compressor protection device of air conditioner
JPS60248972A (en) Heat pump type air conditioner
JPH0442682Y2 (en)
JPS6343660B2 (en)
JPH09138018A (en) Heat pump apparatus
JPH04372421A (en) Air conditioning device for vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991207