JP2007040496A - 可変減衰力ダンパの制御装置 - Google Patents

可変減衰力ダンパの制御装置 Download PDF

Info

Publication number
JP2007040496A
JP2007040496A JP2005227762A JP2005227762A JP2007040496A JP 2007040496 A JP2007040496 A JP 2007040496A JP 2005227762 A JP2005227762 A JP 2005227762A JP 2005227762 A JP2005227762 A JP 2005227762A JP 2007040496 A JP2007040496 A JP 2007040496A
Authority
JP
Japan
Prior art keywords
damper
damping force
control
roll
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005227762A
Other languages
English (en)
Inventor
Shigeki Ebara
茂樹 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005227762A priority Critical patent/JP2007040496A/ja
Publication of JP2007040496A publication Critical patent/JP2007040496A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】 可変減衰力ダンパを備えた車両のエンジン始動時における車体の揺れを抑制する。
【解決手段】 可変減衰力ダンパの電子制御ユニットUは、車輪を車体に懸架するサスペンションのダンパのアクチュエータ5に通電することで、その減衰力を車両挙動に応じて変更する。エンジンの始動時には電子制御ユニットUによる可変減衰力ダンパの制御が開始されておらず、ダンパの減衰力は最も低い状態にあるため、エンジン始動に伴って車体が大きく揺れて乗員に違和感を与える可能性がある。そこで、スタータモータ20からの信号に基づいて、エンジンの始動時にダンパのアクチュエータ5に通電して減衰力を増加させることで、エンジンの始動に伴う車体の揺れを抑制する。
【選択図】 図2

Description

本発明は、車輪を車体に懸架するサスペンションのダンパの減衰力を制御手段が車両挙動に応じて変更する可変減衰力ダンパの制御装置に関する。
路面からサスペンションを介して車体に伝達される振動を抑制すべくダンパの減衰力を制御する乗心地制御と、車両の旋回に伴うロール角の変化や車両の加減速に伴うピッチ角の変化を抑制して走行安定性を高めるべくダンパの減衰力を制御する姿勢制御とを、例えば舵角信号を監視することで切り換えるものが、下記特許文献1により公知である。
特開2000−148208号公報
ところで、可変減衰力ダンパの制御はイグニッションスイッチをONしてエンジンの始動が完了した後に開始されるため、エンジンの始動時にはダンパのアクチュエータに通電されておらず、従ってダンパの減衰力は最も低い状態にある。そのため、エンジンの始動に伴う振動で車体が大きく揺れて乗員に違和感を与える可能性があった。
本発明は前述の事情に鑑みてなされたもので、可変減衰力ダンパを備えた車両のエンジン始動時における車体の揺れを抑制することを目的とする。
上記目的を達成するために、請求項1に記載された発明によれば、車輪を車体に懸架するサスペンションのダンパの減衰力を制御手段が車両挙動に応じて変更する可変減衰力ダンパの制御装置において、前記制御手段は、エンジンの始動時にダンパの減衰力を増加させることを特徴とする可変減衰力ダンパの制御装置が提案される。
尚,実施例の電子制御ユニットUは本発明の制御手段に対応する。
請求項1の構成によれば、エンジンの始動時にダンパの減衰力が増加するので、エンジンの始動に伴う車体の揺れを抑制することができる。
以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。
図1〜図9は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2はダンパの減衰力を変更するアクチュエータの制御系のブロック図、図3はサスペンションのモデルを示す図、図4はスカイフック制御の説明図、図5はロール姿勢制御の作用を示すフローチャート、図6はアクチュエータの目標電流を検索するマップを示す図、図7はレーンチェンジを行う際の横加速度および横加速度微分値を示すグラフ、図8はレーンチェンジを行う際の車両挙動を示す図、図9はスカイフック制御における振動伝達率を示すグラフである。
図1に示すように、四輪の自動車の車輪Wを懸架するサスペンションSは、車体1にナックル2を上下動自在に支持するサスペンションアーム3と、サスペンションアーム3および車体1を接続するように直列に配置されたダンパ4、アクチュエータ5およびダンパマウントラバー6と、サスペンションアーム3および車体1を接続するコイルバネ7とを備える。ダンパ4は、サスペンションアーム3に下端を支持したシリンダ8と、シリンダ8に摺動自在に嵌合するピストン9と、ピストン9から上方に延びるピストンロッド10とから構成され、またアクチュエータ5は、ピストンロッド10の上端およびダンパマウントラバー6の下端を接続するコア11と、コア11の外周を囲むように配置されたコイル12とから構成される。ダンパ4は周知の油圧式のもので、オイルを満たしたシリンダ8の内部をピストン9が移動する際に、その移動速度に応じた荷重(減衰力)を発生する。
アクチュエータ5の作動を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサ13からの信号と、ダンパ4の変位(ストローク)を検出するダンパ変位センサ14からの信号と、車両の横加速度を検出する横加速度センサ15からの信号と、車両の前後加速度を検出する前後加速度センサ16からの信号と、エンジンを始動するスタータモータ20からの信号とが入力され、これらの信号に基づいて電子制御ユニットUはダンパ4に供給する電流を制御して減衰力を任意に変更することができる。
図2に示すように、電子制御ユニットUは、スカイフック乗心地制御部M1と、ロール姿勢制御部M2と、ピッチ姿勢制御部M3と、目標電流算出部M4と、バネ下制御部M5とを備える。バネ上加速度センサ13が出力するバネ上加速度は積分手段21で積分されてバネ上上下速度となり、スカイフック乗心地制御部M1に入力される。ダンパ変位センサ14が出力するダンパ変位はバネ下制御部M5に直接入力されるとともに、微分手段22で微分されてダンパ速度となり、スカイフック乗心地制御部M1およびバネ下制御部M5に入力される。横加速度センサ15が出力する横加速度は微分手段23で微分されて横加速度微分値となり、ロール姿勢制御部M2に入力される。前後加速度センサ16が出力する前後加速度は微分手段24で微分されて前後加速度微分値となり、ピッチ姿勢制御部M3に入力される。
微分手段22で算出したダンパ速度と、ロール姿勢制御部M2が出力するロール制御目標荷重(ロール制御を行うためにダンパ4に発生させるべき目標減衰力)と、ピッチ姿勢制御部M3が出力するピッチ制御目標荷重(ピッチ制御を行うためにダンパ4に発生させるべき目標減衰力)とが入力された目標電流算出部M4は、ダンパ4のアクチュエータ5に供給するロール制御電流およびピッチ制御電流を出力し、それらのロール制御電流およびピッチ制御電流は加算手段25で加算されてロール/ピッチ制御電流となり、ハイセレクト手段26に入力される。ロール/ピッチ制御電流に加えて、スカイフック乗心地制御部M1からのスカイフック制御電流(スカイフック制御を行うための目標電流)が入力されたハイセレクト手段26は、ロール/ピッチ制御電流およびスカイフック制御電流のうちの何れか大きい方を出力する。そしてハイセレクト手段26が出力するハイセレクト値と、バネ下制御部M5が出力するバネ下制御電流(バネ下制御を行うための目標電流)とが加算手段27で加算され、その加算値に基づいてダンパ4のアクチュエータ5の作動が制御される。また加算手段27にはスタータモータ20からの信号も入力される。
次に、図3および図4に基づいて、スカイフック乗心地制御部M1の機能について説明する。
図3に示すサスペンションのモデルから明らかなように、路面にタイヤの仮想的なバネ17を介してバネ下質量18が接続され、バネ下質量18にダンパ4、アクチュエータ5およびコイルバネ7を介してバネ上質量19が接続される。ダンパ4の減衰力はアクチュエータ5により可変である。バネ上質量19の変位X2の変化率dX2/dtは、図2の積分手段21が出力するバネ上上下速度に相当する。またバネ上質量19の変位X2およびバネ下質量18の変位X1の差の変化率d(X2−X1)/dtは、図2の微分手段22が出力するダンパ速度に相当する。
dX2/dt×d(X2−X1)/dt>0
のとき、つまりバネ上上下速度とダンパ速度とが同方向(同符号)であるとき、ダンパ4のアクチュエータ5は減衰力を増加させる方向に制御される。一方、
dX2/dt×d(X2−X1)/dt≦0
のとき、つまりバネ上上下速度とダンパ速度とが逆方向(逆符号)であるとき、ダンパ4のアクチュエータ5は減衰力を減少させる方向に制御される。
従って、図4に示すように車輪Wが路面の突起を乗り越す場合を考えると、(1)に示すように車輪Wが突起の前半に沿って上昇する間は、車体1が上向きに移動してバネ上上下速度(dX2/dt)が正値になり、ダンパ4が圧縮されてダンパ速度d(X2−X1)/dtが負値になるため、両者が逆符号となってダンパ4のアクチュエータ5は圧縮方向の減衰力を減少させるように制御される。
また(2)に示すように車輪Wが突起の頂点を乗り越した直後は、車体1が慣性で依然として上向きに移動してバネ上上下速度(dX2/dt)が正値になり、車体1の上昇によりダンパ4が伸長されてダンパ速度d(X2−X1)/dtが正値になるため、両者が同符号となってダンパ4のアクチュエータ5は伸長方向の減衰力を増加させるように制御される。
また(3)に示すように車輪Wが突起の後半に沿って下降する間は、車体1が下向きに移動してバネ上上下速度(dX2/dt)が負値になり、車輪Wが車体1よりも速く下降することによりダンパ4が伸長されてダンパ速度d(X2−X1)/dtが正値になるため、両者が逆符号となってダンパ4のアクチュエータ5は伸長方向の減衰力を減少させるように制御される。
また(4)に示すように車輪Wが突起を完全に乗り越した直後は、車体1が慣性で依然として下向きに移動してバネ上上下速度(dX2/dt)が負値になり、車輪Wが下降を停止することによりダンパ4が圧縮されてダンパ速度d(X2−X1)/dtが負値になるため、両者が同符号となってダンパ4のアクチュエータ5は圧縮方向の減衰力を増加させるように制御される。
このようなスカイフック制御を行って車両の乗心地を高める際に、図4の(2)および(4)に示すダンパ4のアクチュエータ5の減衰力を増加させる領域で、その減衰力、つまりスカイフック制御電流を(比例定数)×(バネ上上下速度)により算出することで、切替音の低減と違和感の低減とを実現することができる。
次に、ロール姿勢制御部M2および目標電流算出部M4の作用を図5〜図8に基づいて説明する。
図5のフローチャートのステップS1で、横加速度センサ15により横加速度を検出し、ステップS2で横加速度を微分手段23により微分して横加速度変化率を算出し、更にステップS3でロール姿勢制御部M2において(比例定数)×(横加速度微分値)によりロール制御目標荷重を算出する。続くステップS4でダンパ変位センサ14によりダンパ変位を検出し、ステップS5でダンパ変位を微分手段22により微分してダンパ速度を算出する。続くステップS6で、ロール制御目標荷重およびダンパ速度が入力される目標電流算出部M4が、図6に示すマップからロール制御電流を検索し、ステップS7で前記ロール制御電流を加算手段25に出力する。
図6はロール制御目標荷重およびダンパ速度からロール制御電流を検索するマップを示している。基本的に縦軸のロール制御目標荷重に対してロール制御電流は比例関係にあるが、そのロール制御電流はダンパ速度により補正される。例えば、ロール制御目標荷重がFtであるとき、ダンパ速度がVptであれば、ロール制御電流はItとなる。そしてダンパ速度がVptからVpt1に増加すると、ロール制御電流はItからIt1に減少し、逆にダンパ速度がVptからVpt2に減少すると、ロール制御電流はItからIt2に増加する。
図7は車両が左車線から右車線にレーンチェンジした際の横加速度と、それを微分した横加速度微分値とを示すもので、その時間軸上の(1)〜(5)は、図8に示すレーンチェンジする車両の挙動の(1)〜(5)に対応している。
横加速度がゼロである(1)、(3)、(5)では車体1はロールしておらず、右旋回中の(2)では車体1が遠心力で左側にロールし、左旋回中の(4)では車体1が遠心力で右側にロールするが、このときダンパ4にロール制御目標荷重Ftを発生させることで、旋回方向外側への車体1のロールを抑制して車両の姿勢を安定させることができる。
その際に、車体1のロール角を制御すべくダンパ4のロール制御目標荷重Ftを横加速度に基づいて決定すると、横加速度はロール角とほぼじ位相で変化するため、ダンパ4の減衰力の制御に遅れが生じる可能性がある。図7のグラフに注目すると、(2)において左向きの横加速度が最大となるタイミングに先立つa点で横加速度微分値の絶対値が最大になり、(4)において右向きの横加速度が最大となるタイミングに先立つb点で横加速度微分値の絶対値が最大になっている。このように、横加速度が変化する位相に対して、横加速度微分値が変化する位相が先行していることに着目し、この横加速度微分値に比例したダンパ4のロール制御目標荷重Ftを設定することで、ダンパ4の減衰力を時間遅れなく制御して車両の姿勢を更に安定させ、的確な姿勢制御と乗心地とを両立させることができる。
しかも目標電流算出部M4がロール制御目標荷重からロール制御電流をマップ検索する際にダンパ速度による補正を行うので、路面の凹凸からの大きな入力があった場合でも、適切なロール制御目標荷重を設定して乗心地の悪化を回避することができる。
上述したロール制御電流の算出と同様にして、車両の急加速時におけるノーズアップや急制動時におけるノーズダウンを抑制するために、ピッチ姿勢制御部M3は、前後加速度センサ16で検出した前後加速度を微分手段24で微分して得た前後加速度微分値からピッチ制御目標荷重を算出し、目標電流算出手部M4はピッチ制御目標荷重からピッチ制御電流をマップ検索する際に、ダンパ速度に基づいてピッチ制御電流を補正する。
しかして、目標電流算出手部M4が出力するロール制御電流およびピッチ制御電流は加算手段25で加算され、その加算値であるロール/ピッチ制御電流はハイセレクト手段26に入力され、そこでスカイフック制御電流と比較された結果、いずれか大きい方の電流が加算手段27に出力される。そして加算手段27において、バネ下制御部M5が出力するバネ下制御電流と加算され、その加算値に基づいてダンパ4のアクチュエータ5の減衰力が制御される。
このように、ロール/ピッチ制御電流およびスカイフック制御電流のうちの何れか大きい方がハイセレクト手段26により選択されてアクチュエータ5に出力されるので、ハイセレクト手段26がロール/ピッチ制御電流を選択している間にスカイフック制御電流が増加してロール/ピッチ制御電流を超えた瞬間に、ロール/ピッチ制御電流からスカイフック制御電流に切り換わり、逆にハイセレクト手段26がスカイフック制御電流を選択している間にロール/ピッチ制御電流が増加してスカイフック制御電流を超えた瞬間に、スカイフック制御電流からロール/ピッチ制御電流からに切り換わることになる。何れの場合にも、その切換時にハイセレクト手段26が出力するハイセレクト電流が不連続に急変することがないため、ダンパ4のアクチュエータ5の作動がドライバーに違和感を与えることが回避される。
ところで、図9に示すように、上述したスカイフック制御では、制御ゲインを変更してもバネ上共振周波数である1Hz近傍の振動伝達率が変化するだけであり、バネ下共振周波数である10Hz近傍の振動伝達率を制御できないという問題がある。
バネ下制御部M5はこの問題を解消するために設けられたもので、バネ下共振領域での振動を把握して制御する指標としてダンパ速度とダンパ変位との積に着目し、(比例定数)×(ダンパ速度)×(ダンパ変位)によりバネ下制御電流を算出し、このバネ下制御電流は加算手段27においてハイセレクト手段26が出力するハイセレクト電流に加算される。その結果、特にダンパ速度およびダンパ変位が大きい場合に、スカイフック制御とは独立して、10Hz近傍のバネ下共振領域の振動を抑制することが可能になる。
さて車両を走行させるべくエンジンを始動するとき、電子制御ユニットUは不作動状態にあってダンパ4のアクチュエータ5には通電されておらず、従ってダンパ4の減衰力は最も低い状態にある。この状態でスタータモータ20が作動してエンジンが始動すると、エンジン回転数が安定するまでエンジン振動が大きくなるが、このときダンパ4の減衰力が最も低い状態にあると、エンジン振動の反作用で車体が大きく揺れて乗員に違和感を与える可能性がある。しかしながら本実施例では、スタータモータ20が作動すると同時にダンパ4に最大の減衰力を発生させることで、始動時のエンジン振動による車体の揺れを最小限に抑えることができる。そしてエンジンの始動が完了してエンジン回転数が安定すると、ダンパ4の減衰力は通常の制御に戻される。
尚、スタータモータ20は消費電力が大きいため、バッテリ電圧が低いときにダンパ4の減衰力を増加させる上記制御を行うと、スタータモータ20の出力が不足してエンジンの始動が困難になる場合がある。従ってバッテリ電圧が所定値以下の場合には、ダンパ4の減衰力を増加させる上記制御を中止しても良い。
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
例えば、実施例では減衰力を増加させる最も好ましい例として減衰力を最大に増加させているが、少なくとも二つの減衰力パターンを選択可能なシステムにおいては、減衰力が最小でない減衰力パターンを選択すれば良く、また減衰力を電流の通電量でリニアに調整できるシステムでは、通電していない状態よりも高い減衰力に設定すれば良い。
また実施例ではエンジンの始動をスタータモータ20の作動により検出しているが、それをエンジン回転数から検出することも可能である。
車両のサスペンション装置の正面図 ダンパの減衰力を変更するアクチュエータの制御系のブロック図 サスペンションのモデルを示す図 スカイフック制御の説明図 ロール姿勢制御の作用を示すフローチャート アクチュエータの目標電流を検索するマップを示す図 レーンチェンジを行う際の横加速度および横加速度微分値を示すグラフ レーンチェンジを行う際の車両挙動を示す図 スカイフック制御における振動伝達率を示すグラフ
符号の説明
1 車体
4 ダンパ
S サスペンション
U 電子制御ユニット(制御手段)
W 車輪

Claims (1)

  1. 車輪(W)を車体(1)に懸架するサスペンション(S)のダンパ(4)の減衰力を制御手段(U)が車両挙動に応じて変更する可変減衰力ダンパの制御装置において、
    前記制御手段(U)は、エンジンの始動時にダンパ(4)の減衰力を増加させることを特徴とする可変減衰力ダンパの制御装置。
JP2005227762A 2005-08-05 2005-08-05 可変減衰力ダンパの制御装置 Pending JP2007040496A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227762A JP2007040496A (ja) 2005-08-05 2005-08-05 可変減衰力ダンパの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227762A JP2007040496A (ja) 2005-08-05 2005-08-05 可変減衰力ダンパの制御装置

Publications (1)

Publication Number Publication Date
JP2007040496A true JP2007040496A (ja) 2007-02-15

Family

ID=37798667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227762A Pending JP2007040496A (ja) 2005-08-05 2005-08-05 可変減衰力ダンパの制御装置

Country Status (1)

Country Link
JP (1) JP2007040496A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040140A (ja) * 2007-08-07 2009-02-26 Honda Motor Co Ltd 可変減衰力ダンパの制御装置
JP2010247588A (ja) * 2009-04-13 2010-11-04 Toyota Motor Corp 車両の制御装置
WO2013140657A1 (ja) * 2012-03-23 2013-09-26 日産自動車株式会社 車両の制御装置及び車両の制御方法
JP2013224130A (ja) * 2012-03-23 2013-10-31 Nissan Motor Co Ltd 車両の制御装置及び車両の制御方法
WO2016072511A1 (ja) * 2014-11-07 2016-05-12 Kyb株式会社 サスペンション装置およびサスペンション制御装置
CN108327663A (zh) * 2017-01-20 2018-07-27 比亚迪股份有限公司 汽车及其的主动减振控制方法和装置
CN108327664A (zh) * 2017-01-20 2018-07-27 比亚迪股份有限公司 汽车及其的主动减振控制方法和装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040140A (ja) * 2007-08-07 2009-02-26 Honda Motor Co Ltd 可変減衰力ダンパの制御装置
JP2010247588A (ja) * 2009-04-13 2010-11-04 Toyota Motor Corp 車両の制御装置
WO2013140657A1 (ja) * 2012-03-23 2013-09-26 日産自動車株式会社 車両の制御装置及び車両の制御方法
JP2013224129A (ja) * 2012-03-23 2013-10-31 Nissan Motor Co Ltd 車両の制御装置及び車両の制御方法
JP2013224130A (ja) * 2012-03-23 2013-10-31 Nissan Motor Co Ltd 車両の制御装置及び車両の制御方法
CN104203609A (zh) * 2012-03-23 2014-12-10 日产自动车株式会社 车辆的控制装置和车辆的控制方法
US9114683B2 (en) 2012-03-23 2015-08-25 Nissan Motor Co., Ltd. Vehicle control device and method
TWI508880B (zh) * 2012-03-23 2015-11-21 Nissan Motor Vehicle control device and vehicle control method
WO2016072511A1 (ja) * 2014-11-07 2016-05-12 Kyb株式会社 サスペンション装置およびサスペンション制御装置
JP2016088359A (ja) * 2014-11-07 2016-05-23 Kyb株式会社 サスペンション装置およびサスペンション制御装置
CN108327663A (zh) * 2017-01-20 2018-07-27 比亚迪股份有限公司 汽车及其的主动减振控制方法和装置
CN108327664A (zh) * 2017-01-20 2018-07-27 比亚迪股份有限公司 汽车及其的主动减振控制方法和装置

Similar Documents

Publication Publication Date Title
JP4732061B2 (ja) サスペンションの制御装置
JP4648126B2 (ja) 車両用サスペンション装置
EP1623856B1 (en) Suspension control system
JP4648125B2 (ja) 可変減衰力ダンパの制御装置
JP4972440B2 (ja) 減衰力可変ダンパの制御装置
JP5700190B2 (ja) サスペンション制御装置
JP2007040496A (ja) 可変減衰力ダンパの制御装置
JP2006109642A (ja) 車両の制駆動力制御装置
JP2005255152A (ja) サスペンション制御装置
JPH04201710A (ja) サスペンション装置
JP2006044523A (ja) サスペンションの制御装置
JP2006281876A (ja) 可変減衰力ダンパーの制御装置
JP2009227036A (ja) サスペンションの制御装置及び制御方法
JP5162283B2 (ja) 減衰力可変ダンパの制御装置および制御方法
US20220314725A1 (en) Vehicle control device
JP6495566B1 (ja) 制御装置、懸架システム
JP4744327B2 (ja) 車両姿勢制御装置
JP4435303B2 (ja) 減衰力可変ダンパの制御装置
JP2010158960A (ja) 走行状況報知装置
JP2008162333A (ja) 車両用サスペンションシステム
JP2007153186A (ja) 可変減衰力ダンパの制御装置
JP2008001144A (ja) 車両用サスペンション制御装置
JP2006273225A (ja) 可変減衰力ダンパーの制御装置
JP6207497B2 (ja) サスペンション制御装置
JP4716071B2 (ja) サスペンション制御装置