JP2007036118A - 固体撮像デバイスおよびその製造方法 - Google Patents

固体撮像デバイスおよびその製造方法 Download PDF

Info

Publication number
JP2007036118A
JP2007036118A JP2005220937A JP2005220937A JP2007036118A JP 2007036118 A JP2007036118 A JP 2007036118A JP 2005220937 A JP2005220937 A JP 2005220937A JP 2005220937 A JP2005220937 A JP 2005220937A JP 2007036118 A JP2007036118 A JP 2007036118A
Authority
JP
Japan
Prior art keywords
region
substrate
trench
trench groove
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005220937A
Other languages
English (en)
Inventor
Tetsuya Komoguchi
徹哉 菰口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005220937A priority Critical patent/JP2007036118A/ja
Publication of JP2007036118A publication Critical patent/JP2007036118A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】セル分離絶縁層の占有面積を増大させることなく、固体撮像デバイスのセル間絶縁特性を向上させる。
【解決手段】半導体基板2に形成されている第1半導体領域3と、第1半導体領域3内の受光面側に形成され、信号電荷を蓄積するための第2半導体領域5と、第1半導体領域3の受光面から基板深さ方向に形成され、内部に絶縁物が充填されているセル分離用のトレンチ溝4と、トレンチ溝4の底部から、さらに基板深さ方向にかけて形成されているセル分離用の第3半導体領域13とを有し、第3半導体領域13は、第2半導体領域5より基板深さ方向に離れ、トレンチ溝4に接して形成されている。
【選択図】図1

Description

本発明は、セル分離用にトレンチ溝を有する固体撮像デバイスと、その製造方法とに関する。
固体撮像デバイスの高密度化にともない、画素セル(フォトセル)の微細化が進んでいる。固体撮像デバイスの微細化において、画素セル面積縮小による集光効率の低下が問題となる。
図6に、固体撮像デバイスの一種であるCMOSセンサの画素セル断面構造を示す。
CMOSセンサの画素セルは、半導体基板100に形成されているLOCOS等のセル分離絶縁膜101で画素セルの半導体領域が区分され、画素セル内のPウェル102にN型不純物領域103が形成され、これによりフォトダイオードが形成されている。
フォトダイオードのカソードとなるN型不純物領域103をドレインとする転送トランジスタMTが形成されている。転送トランジスタMTのゲート電極104が、ゲート絶縁膜105を介してN型不純物領域103の隣接領域に形成されている。転送トランジスタMTのソースとなる他のN型不純物領域106は、図示されていない部分で、コンタクト107、遮光層となる第1層配線108、コンタクト109および第2層配線110を介して、不図示の他のトランジスタ(リセットトランジスタ)等に接続されている。
これらゲート電極104、コンタクト107、第1層配線108、コンタクト109および第2層配線110は、複数層の層間絶縁膜111内に埋め込まれている。
層間絶縁膜111上にカラーフィルタ層112およびオンチップレンズ113が形成されている。
このような多層配線構造を有する固体撮像デバイスにおいては、配線密度の増大により、オンチップレンズ113から入射された光をフォトダイオードに導く際に、配線による反射の影響で集光効率がさらに低下する。
また、上層配線の影響のみならずフォトダイオードの蓄積電荷を転送する転送トランジスタMTのゲート電極104や、ソースフォロアにより信号電荷を読み出し線に増幅して排出するアンプトランジスタ等、他のトランジスタのゲート配線(不図示)による影響も無視できない。
このような集光効率の低下は、CCD撮像デバイス(以下、CCDという)でも同じであり、フォトダイオードの感度向上のためには、開口部(図6ではN型不純物領域103の面積および遮光層の開口部)の面積を、フォトセル面積の増大をともなわずに大きくする必要がある。
そのためには、レイアウトの工夫のほかに、受光機能としては無駄なセル分離絶縁層のレイアウト面積を小さくすることが有効である。一般的に素子間分離層は、CMOSセンサではLOCOSあるいはトレンチ絶縁層、CCDではチャネルストップと称されるP型不純物領域により達成される。
しかし、単純にセル分離絶縁層の面積(とくに画素セル分離方向の幅)を小さくすると、セル分離特性が低下する。
セル分離特性が低下すると、CMOSセンサ、CCDの何れにおいても、隣接した画素セルからの蓄積電荷の回りこみによる混色現象が発生する。
また、とくにカメラレンズのF値が開放側(F値が小さい側)等となっている状態では、フォトダイオードへの入射光に斜め光成分が多くなる。このとき、画素セル間の分離をP型不純物領域のみで達成する構造では、微細化が進むにともなって光が画素セルのセル分離絶縁層を超えて隣接した画素セルへ漏れ込みやすくなり、混色を発生しやすくなる。
このセル分離特性の向上のために、セル分離絶縁層としてSTI(Shallow-Trench-Isolation)を用いる固体撮像デバイスが提案されている(たとえば、特許文献1参照)。
特許文献1では、STI(セル分離絶縁層)の側壁部の周囲に、P型不純物が導入された領域を形成している。これは、以下の理由による。
基板深くまで入射された光から発生した電子を信号電荷として蓄積するためにはフォトダイオードを形成するN型不純物領域とPウェル間の空乏層が深くまで拡がるように不純物プロファイル設計を行う必要がある。
ところが、トレンチ加工したセル分離絶縁層のPウェルとの界面には結晶欠陥が存在するため、もし空乏層がこの結晶欠陥まで広がると、暗電流や白点の発生の原因となる。
そこで、特許文献1の発明では、STIセル分離絶縁層の側壁部の全周にP型不純物領域を形成してホールで結晶欠陥から発生した電子を中和して、上記暗電流や白点の発生を防止している。
特開2002−57318号公報
ところが、特許文献1に記載されているセル間分離構造では、STI側壁周囲のP型不純物領域と、信号電荷蓄積用のN型不純物領域とを離す必要から、Pウェル(実施例ではNウェル)の表面側で、上記P型不純物領域とN型不純物領域とのギャップを形成する必要がある。このギャップは動作時に空乏層の延びがあることを考慮すると、十分広くしなければならない。
このため、前記特許文献1のセル間分離構造では、LOCOSからSTIに変更することによって得られたセル間分離絶縁層の占有面積の縮小効果が十分に得られていない。
また、STIは、その占有面積を縮小し、かつ、セル間分離のために必要な深さまで形成しようとすると、トレンチ溝のアスペクト比が高くなる。このため、セル分離絶縁膜の埋め込み性が悪化する。
本発明が解決しようとする課題は、トレンチ溝のアスペクト比を無理に高くしないでも、セル分離絶縁層の占有面積を増大させることなく、固体撮像デバイスのセル間絶縁特性を向上させることである。
本発明に係る固体撮像デバイスは、互いにセル分離された画素セルが撮像領域内で繰り返し配列されている固体撮像デバイスであって、半導体基板に形成されている第1半導体領域と、前記第1半導体領域内の受光面側に形成され、信号電荷を蓄積するための第2半導体領域と、前記第1半導体領域の受光面から基板深さ方向に形成され、内部に絶縁物が充填されているセル分離用のトレンチ溝と、前記トレンチ溝の底部から、さらに基板深さ方向にかけて形成されているセル分離用の第3半導体領域と、を有し、前記第3半導体領域は、前記第2半導体領域より基板深さ方向に離れ、前記トレンチ溝に接して形成されている。
本発明では好適に、前記トレンチ溝は前記第1半導体領域に形成され、前記第3半導体領域は、トレンチ溝の底面から、前記第1半導体領域と基板バルク領域との界面までの第1半導体領域の部分に形成されて画素セル間で第1半導体領域を分離し、かつ、前記界面からさらに基板バルク領域の一定深さまで達している。
本発明では好適に、前記第3半導体領域の前記受光面からの深さと、前記第2半導体領域の前記受光面からの深さとの差が、当該2つの半導体領域が空乏層を介して接しないような値に設定されている。
以上の構成によれば、セル分離用の第3半導体領域がトレンチ溝の底部から基板深さ方向にかけて形成されている。そのため、当該第3半導体領域は、トレンチ溝によるセル間分離の機能を補うように作用する。したがって、セル間のリークパスがトレンチ溝と第3半導体領域の双方によって遮断され、これによるセル間の信号が混合することがない。
また、第3半導体領域は、第1半導体領域内の受光面側に形成されている信号電荷蓄積用の第2半導体領域と、基板深さ方向に離れている。つまり、セル分離用の第3半導体領域は、その受光面側の端面の位置が、信号電荷蓄積用の第2半導体領域の基板深さ方向端面より、基板深部側のより深い位置に形成されている。
また好ましくは、第2半導体領域と第3半導体領域との深さ方向の距離は、少なくとも、空乏層が最大まで拡がった場合でも電気的に両者が接続されないように規定されている。
以上から、第2半導体領域と第3半導体領域とで接合リークは発生しないため、信号電荷の無駄な散逸はない。
本発明では、分離絶縁層の密度が高い撮像領域と、相対的に低いロジック領域とでトレンチ溝の深さに差を設けることができる。
本発明に係る製造方法は、そのような場合に好適である。
すなわち、本発明に係る固体撮像デバイスの製造方法は、半導体基板の撮像領域とロジック領域とに、それぞれトレンチ溝を形成する工程を含む固体撮像デバイスの製造方法であって、前記トレンチ溝形成の工程が、半導体基板上にマスク層を形成し、当該マスク層に対し、前記ロジック領域側より前記撮像領域側で径が小さくなるように開口部を同時に形成するマスク開口ステップと、前記撮像領域と前記ロジック領域で同時に、前記マスク層の前記開口部を通して前記半導体基板にトレンチ溝を形成する溝形成ステップと、前記撮像領域側に形成されているトレンチ溝に選択的に前記マスク層の開口部から不純物をイオン注入して、当該トレンチ溝の底部から基板深部にかけてセル分離用の不純物領域を形成するセル分離ステップと、前記ロジック領域に形成されているトレンチ溝に選択的に追加エッチングを行って、当該トレンチ溝の深さを前記撮像領域側より深くする追加エッチングのステップと、を含み、その後の画素セルの不純物領域形成工程において、前記撮像領域の画素セル信号電荷蓄積用の不純物領域を、前記セル分離用の不純物領域の基板表面側端面より浅い基板位置に形成する。
本発明では好適に、前記セル分離用の不純物領域の前記基板表面からの深さと、前記画素セル信号電荷蓄積用の不純物領域の前記基板表面からの深さとの差が、当該2つの不純物領域が空乏層を介して接しない値になるように、前記トレンチ溝、前記セル分離用の不純物領域および前記画素セル信号電荷蓄積用の不純物領域を形成する。
この製造方法によれば、撮像領域側でトレンチ溝の開口径をより小さくて占有面積を小さくした場合でも、ロジック領域ではトレンチ溝を必要な深さまで形成される。その際、両領域に共通な溝形成ステップを有し、その後、同じマスク層を用いてロジック側のトレンチを追加エッチングにより深くする。このため、マスク層を2つの領域で個々に形成する必要がない。
また、撮像領域のトレンチ溝に対して選択的に、マスク層を形成した状態でイオン注入してセル間絶縁用の不純物領域を形成する。このため、この不純物領域は、トレンチ溝の基板深部側への延長領域に形成される。
以上より、セル間のリークパスがトレンチ溝と不純物領域の双方によって遮断され、これによるセル間の信号が混合することがない。
また、セル分離用の不純物領域を、基板表面部に形成されている画素セル信号電荷蓄積用の不純物領域と、基板深さ方向に離れて形成する。つまり、本製造方法の適用によって、セル分離用の不純物領域は、その基板表面側の端面の位置が、画素セル信号電荷蓄積用の不純物領域の基板深さ方向端面より、基板深部側のより深い位置に形成される。
また好ましくは、少なくとも、空乏層が最大まで拡がった場合でも両不純物領域が電気的に接続されないように、両不純物領域とトレンチ溝を形成する。
以上から、セル分離用の不純物領域と画素セル信号電荷蓄積用の不純物領域とで接合リークは発生しないため、信号電荷の無駄な散逸はない。
本発明によれば、トレンチ溝のアスペクト比を無理に高くしないでも、セル分離絶縁層の占有面積を増大させることなく、固体撮像デバイスのセル間絶縁特性が向上する。
本発明はCMOSセンサおよびCCDの何れにも適用可能である。以下、CCDの場合を例として、本発明の固体撮像デバイスおよびその製造方法の実施形態を説明する。
一般に、CCDの撮像領域は、画素セルがマトリックス状に配置されている。各画素セルは、大別すると、入射光を受光し、発生した信号電荷を蓄積する受光部(フォトダイオード)と、垂直転送部と、垂直転送部への信号電荷排出を制御する読み出しゲート部と、受光部の過剰電荷を捨てるためのオーバフロードレイン(OFD)部と、これら受光部、垂直転送部、読み出しゲート部およびOFD部を囲み画素セル間を絶縁分離するセル分離部とを備える。画素セルにおける、各部のレイアウトは種々存在する。
垂直転送部は列方向の画素セル間でライン状につながり垂直転送レジスタを構成する。垂直転送レジスタに、たとえば2層構造の転送電極が配置されている。2層の転送電極は一部が重なってパルス駆動され、排出された信号電荷を垂直方向に転送する。垂直方向の端部に転送された信号電荷は、水平方向に設けられている水平転送レジスタに読み出され、さらに転送されて、水平転送レジスタ端の出力部から読み出される。
図1は、CCDの画素セルの概略断面図である。この図1は、ある画素セルレイアウトにおける列方向の断面を示すものであり、セル分離部間に受光部(フォトダイオード)とOFDが形成されている。なお、本発明は、この例のように受光部とセル分離部とが隣接する場合に有用であり、その他の点はレイアウトに依存して種々変更可能である。つまり、OFD部に代えて他の構成が配置されていてもよい。
以下、図1の構成を説明する。
図解した画素セル1は、シリコンウェハからなる半導体基板2に形成されているP型半導体ウェル(以下、Pウェルという)3に形成されている。Pウェル3は、本発明の「第1半導体領域」に該当する。
Pウェル3に画素セルのピッチでセル分離絶縁層としてのSTI層が形成されている。STI層は、トレンチ溝4A,4Bに絶縁物を埋め込んだものである。なお、以下、2つのトレンチ溝4A,4Bを、単に「トレンチ溝4」と総称する場合もある。
2つのトレンチ溝4A,4Bにより区画された画素セルの能動領域(Pウェル領域)に、一方のトレンチ溝4Aに隣接して、フォトダイオードのカソードとなるN型不純物領域(以下、「N型フォトダイオード領域」という)5が形成されている。このN型フォトダイオード領域5は、本発明の「第2半導体領域」または「画素セル信号蓄積用の不純物領域」に該当する。
N型フォトダイオード領域5のウェル表面(受光面)からの深さは、トレンチ溝4Aのウェル表面(ウェル開口面)からの深さより浅く形成されている。
他方のトレンチ溝4B側にはOFD部のN型のドレイン不純物領域6が形成されている。ドレイン不純物領域6は図では、いわゆるLDDあるいはエクステンションと称される浅い領域と深い領域との2重不純物拡散構造となっているが、この構成は任意である。
ドレイン不純物領域6とN型フォトダイオード領域5との離間領域の上方に薄いゲート絶縁膜7を介してOFD部の転送ゲート電極8が形成されている。
トレンチ溝4Aの上方に、垂直転送レジスタの転送電極9が形成されている。
この転送電極9と転送ゲート電極8との離間領域が受光部開口となる。転送電極9は不図示の隣接した画素セルの垂直転送部を覆い、入射光が転送中の信号電荷に混入して、いわゆるスミアと称されるノイズが発生することを防止している。
転送電極9、受光部開口、OFD部の転送ゲート電極8およびドレイン不純物領域6等を覆って保護絶縁膜10が形成され、さらに、その上に不図示の層間絶縁膜が厚く形成されている。
層間絶縁膜内に埋め込まれた導電性プラグ11がドレイン不純物領域6に接続して設けられている。導電性プラグ11上に、正電位に制御され過剰電荷を引き抜くための配線層12が形成されている。
なお、とくに図示しないが受光部開口の上方にカラーフィルタおよびオンチップレンズが配置され、また層間絶縁膜に必要に応じて、屈折率が異なる絶縁膜により層内レンズが形成されている。
以上は既存のCCD画素セルでも共通に設けられている構成であるが、本実施の形態では、2つのトレンチ溝4A,4Bのそれぞれに、セル分離用の不純物領域13が、たとえば図示のように形成されている。このセル分離用の不純物領域13は、本発明において「第3半導体領域」とも称せられる。
セル分離用の不純物領域13は、図示例の場合、トレンチ溝4Aまたは4Bの底面から、トレンチ溝とほぼ同一の幅で基板深部側に伸びるように縦長に配置されている。
具体的には、2つのトレンチ溝4A,4Bは、それぞれの深さがPウェル3の深さより浅いため、トレンチ底面と、Pウェル3と半導体基板2の基板バルク領域との境界との間にスペースが存在している。セル分離用の不純物領域13は、少なくともこのスペースに形成され、上記境界より、さらに基板バルク領域の深部側に所定深さまで深く形成されている。
つぎに、トレンチ溝4の形状と、それに対するセル分離用の不純物領域13およびN型フォトダイオード領域5の位置関係を、図2を用いて、より詳細に説明する。
図2(A)〜図2(C)は、セル分離部周囲の拡大図であり、それぞれトレンチ形状が異なる場合を示している。
図2(A)は、トレンチ溝4の側壁が、その底面に対して順テーパーとなっている場合を示す。
この場合、トレンチ溝4の順テーパー角度が90°(垂直)より小さくなっている。後述するように、セル分離用の不純物領域13は、このような順テーパーのトレンチ溝4をエッチングにより形成した後に、そのとき用いた同じマスク層(破線)を用いたイオン注入により形成する。そのため、順テーパーに応じてセル分離用の不純物領域13の基板表面側端13Aが、トレンチ溝4の底面より上方に位置する。そして、基板表面側端13AとN型フォトダイオード領域5との深さ方向の距離d1が、順テーパー角度に応じて短くなる。
図2(B)は、トレンチ溝4の側壁が、基板表面(ウェル表面)に対してほぼ垂直になっている場合を示す。
この場合、上記セル分離用の不純物領域13のイオン注入時にトレンチ溝4の側壁には不純物が導入されず、セル分離用の不純物領域13の基板表面側端13Aは、トレンチ溝4の底面と深さ方向においてほぼ一致する。なお、その後の不純物の熱拡散により、セル分離用の不純物領域13内の不純物がトレンチ溝4の側壁端部に若干拡散する場合もあるが、それによる深さ方向の拡散部の寸法拡大は軽微である。
図2(C)は、トレンチ溝4の側壁が、いわゆるボウイング形状となる場合である。つまり、トレンチ溝4の開口径r1に比べて、側壁の最大径r2が大きくなっている。なお、トレンチ溝4の底面の径は形成条件によるが、ほぼ開口径r1と等しい場合が多い。
この場合、上記セル分離用の不純物領域13のイオン注入時にトレンチ溝4の側壁には不純物が導入されず、セル分離用の不純物領域13の基板表面側端13Aは、トレンチ溝4の底面と深さ方向においてほぼ一致する。なお、その後の不純物の熱拡散により、セル分離用の不純物領域13内の不純物がトレンチ溝4の側壁端部に若干拡散する場合もあるが、それによる深さ方向の拡散部の寸法拡大は軽微である。
以上の3つの場合、セル間分離用の不純物領域13の基板表面側端13AからN型フォトダイオード領域5までの深さ方向の距離は、図2(B)の場合(d2)と図2(C)の場合(d3)でほぼ等しくなり、図2(A)の場合(d1)は、それより短くなる。
本発明では、図2に示すトレンチ溝4の形状は何れの場合であってもよく、その場合の最小の距離d1が、最小の場合でもゼロでないように、トレンチ溝4の深さを含む形状、Pウェル3およびN型フォトダイオード領域5の深さが規定されている。
また、より望ましくは、セル間分離用の不純物領域13の受光面(ウェル表面)からの深さと、N型フォトダイオード領域5の受光面からの深さとの差が、当該2つの不純物領域が空乏層を介して接することがないような値に規定されている。あるいは、セル間分離用の不純物領域13とN型フォトダイオード領域5の深さ方向の距離は、少なくとも、空乏層が最大まで広がった場合でも電気的に両者が接続されないように規定されている。
ここで空乏層の幅は、これら不純物領域の能動や不純物プロファイル、不純物に蓄積される信号電荷の自己バイアス効果、さらには上方の各種電極による電界により動作時に変化する。
本実施形態では、これらの要素を加味して空乏層が最大に広がった場合でも、2つの不純物領域が空乏層を介して接しない、あるいは、電気的に接続されないように、上記最小の距離d1が決められている。
つぎに、このようなトレンチ溝4の配置と、上記距離の規定がもたらす利点を説明する。
セル間分離用の不純物領域13が図1または図2のような位置に存在しないと、トレンチ溝4の底面と、半導体基板2とPウェル3との境界との間に、Pウェル3のスペースが存在することになる。
このスペースが存在すると、ここに電荷のリークパスが生じやすくなる。つまり、図1のトレンチ溝4Aに関しては、N型フォトダイオード領域5が隣接しているため、N型フォトダイオード領域5に蓄積されている信号電荷が、当該リークパスを通って隣の画素セルの、たとえば垂直転送部や受光部に入ることがある。その結果、画素間混色の問題が発生する。
本実施形態では、上記スペースを遮る位置にセル間分離用の不純物領域13が形成されているため、この混色を有効に防止できる。また、セル間分離用の不純物領域13がトレンチ溝4に対して深さ方向につながるように配置されるため、トレンチ溝4のアスペクト比を高くする必要がなく、結果として、トレンチ溝4の開口面積、すなわちセル分離部のレイアウト面積を小さくできる。これにより、同一セル面積なら受光部面積を、その分大きくでき感度が向上する。
また、セル間分離用の不純物領域13とN型フォトダイオード領域5との距離が上述のように規定されているため、両者間の接合リークが流れることがない。その結果、信号電荷が無駄に消失することがない。
つぎに、以上の画素セルの形成方法を、図3(A)〜図5(B)を用いて説明する。
なお、これらの図は、本発明の製造方法に関するセル間分離部の形成工程を示すものであり、他の工程は、よく知られた既存の方法で実施可能である。また、CCDは通常、画素セル1をマトリックス状に配置した撮像領域と、撮像領域から信号を読み出し、所定の処理を行う回路をロジックトランジスタから形成したロジック領域とを有する。本発明の製造方法は、撮像領域とロジック領域でセル分離部を形成する場合に関するため、図3(A)〜図5(B)では撮像領域とロジック領域でセル分離部を並べて示している。
たとえばCZ(チョクラルスキー)法やMCZ(Magnetic field CZ)法により形成されたシリコンウェハ等の半導体基板2を用意する。
つぎに、以下の方法により、半導体基板2の撮像領域とロジック領域のそれぞれにトレンチ溝4を形成する。
最初に、図3(A)に示すように、半導体基板2表面を熱酸化して熱酸化膜20を形成し、熱酸化膜20上に、CVD法により、CMPのエッチングストッパとなる窒化シリコン(SiN)膜21を成膜する。また、CVD法により、酸化シリコン(SiO)膜22とアモリファスシリコン(a−Si)膜23の2層膜からなるマスク層30を成膜する。
a−Si膜23上に、ロジック領域で大きな開口部24Rを有し、撮像領域で小さな開口部24Pを有する第1レジストR1を形成する。
第1レジストR1およびマスク層30をエッチングマスクとして、異方性エッチングを行い、ロジック領域でアスペクト比が小さく、撮像領域で大きいトレンチ溝4Rと4Pを同時に形成する。図3(B)はトレンチ溝形成後の断面図であり、第1レジストR1およびa−Si膜23はエッチングにより除去されている。
このときのシリコン基板のエッチングでは、ガスの組み合わせとしては、HBr/Cl/O、HBr/O、あるいは、HBr/CF/O等を用いる。このうちCFを使わない場合は、側壁保護膜の形成効果が弱まるため、図2(C)に示すボウイングが出やすくなる。側壁のテーパー角はガス流量比等を含むエッチング条件や装置に応じて70数°からほぼ垂直まで制御可能である。ここではほぼ垂直にすることが望ましく、側壁のテーパー角は小さいほどよい。また、ボウイングが発生しても、後に説明する絶縁物の充填方法と組み合わせると、望ましい。
図4(A)に示すように、ロジック領域を第2レジストR2で覆い、P型のドーパント、たとえばボロン(B)を、比較的高いエネルギーでイオン注入する。このときのドーズは、たとえば、1×1018atoms/cmである。
これにより、トレンチ溝4Pの底面から深さ方向に350〜500nm程度までの寸法を有するセル間分離用の不純物領域13が形成される。
つぎに、図4(B)に示すように、撮像領域を第3レジストR3で覆い、ロジック領域に選択的に、トレンチ溝の追加エッチングを行う。
第3レジストR3を除去し、SiO膜22をウエットエッチングにより除去する。
図5(A)に示すように、CVDによりSiO膜を厚く堆積する。あるいは、充填性のよいスピン・オン・グラス塗布法によりSOG膜を形成する。とくにSOG膜の場合は、アスペクト比が高いトレンチ溝4P内が十分に充填されボイドの発生を防止できる。また、図2(C)に示すようにトレンチ溝がボウイング形状の場合は、SOG塗布、その他の複数の膜塗布による方法が望ましい。
これによりトレンチ溝4P,4Rを埋め込む絶縁膜25が形成される。
充填した絶縁膜25をCMPにより研磨エッチングする。このときSiN膜21がストッパ膜として機能し、その終点検出、平坦性向上が可能である。
その後、CMPにより分離された絶縁膜25P,25Rの高さをウエットエッチングにより調整し、図5(B)に示すようにSiN膜21を除去する。
以後は、既知の方法により画素セルを完成させる。
まず、セル分離以外に必要な不純物領域をイオン注入法により形成する。これにより図5(B)に示すように、Pウェル(およびNウェル)、さらには、画素セルのN型フォトダイオード領域5が撮像領域側に形成される。
Pウェル3形成時のイオン注入のドーズは、1×1017atoms/cm程度とし、その深さは基板表面から約1μmとする。また、セル間分離用の不純物領域13形成においては、イオン注入のドーズを、1×1018atoms/cm程度とし、その深さは基板表面から約300nmとする。
このため、セル間分離用の不純物領域13とN型フォトダイオード領域5との深さ方向の距離d1〜d3(図2参照)は、最低でも50nm、最大で200nmと十分な値となる。
その後、ゲート絶縁膜を形成して各種ゲート電極を形成し、絶縁膜を介して、さらに各種転送電極を形成する。
その後、遮光膜、その上層のリフロー膜等を堆積させ、画素セル1の層内レンズを層間絶縁膜内に形成する。
そして、フィルタ層(カラーフィルタ)、オンチップレンズを形成し、パッシベーション膜を堆積して、ウエハ工程を終了する。
以上の製造方法によれば、第2レジストR2と第3レジストR3の形成と、追加のエッチングを既存のプロセスに加えるだけで、深さが異なるトレンチ溝4Pと4Rを作り分けることができる。
本実施形態によれば、フォトダイオード面積増大にともなう集光感度の向上が可能である。
とくに、半導体基体の内部をトレンチ加工して、絶縁膜を埋め込むことによりセル分離層が形成されたことにより、隣接する画素セル間が絶縁膜により絶縁されて、隣接する画素セルへ電荷が漏れ込むことを防止することができる。また、埋め込まれた絶縁膜との界面に入射した光が反射するため、隣接する画素へ光が漏れ込むことを防止することができる。さらに、トレンチ加工してセル分離層を形成しているため、不純物のイオン注入によるセル分離層のような拡散を生じないため、セル分離層の幅を制御性良く形成することができる。
また、基板の深い側の領域では拡散層分離により画素間の分離を形成しているため、STIの深さをその分浅くすることが可能となる。したがって、STI幅を狭くしてもSTI溝のアスペクト比を低くおさえることができ、セル分離絶縁膜の埋込み性という点で向上する。
さらにSTI幅を狭くしても基板の深い領域で拡散層による分離構造を形成しているため、STI上に形成されたゲート配線による寄生MOSトランジスタの動作が抑制される。
以上より、隣接画素セル間リークによる混色を有効に防止または抑制することができる。
CCDの画素セルの概略断面図である。 (A)〜(C)は、セル分離部周囲の拡大図であり、それぞれトレンチ形状が異なる場合を示す。 (A)および(B)は、トレンチ溝の同時エッチングまでを示す断面図である。 (A)および(B)は、追加エッチングまでを示す断面図である。 (A)および(B)は、トレンチ溝内に絶縁物を埋め込むまでを示す断面図である。 CMOSセンサの画素セル断面構造図である。
符号の説明
1…画素セル、2…半導体基板、3…Pウェル、4…トレンチ溝、5…N型フォトダイオード領域、13…セル間分離用の不純物領域、13A…基板表面側端、d1〜d3…セル間分離用の不純物領域とN型不純物領域との深さ方向の距離

Claims (12)

  1. 互いにセル分離された画素セルが撮像領域内で繰り返し配列されている固体撮像デバイスであって、
    半導体基板に形成されている第1半導体領域と、
    前記第1半導体領域内の受光面側に形成され、信号電荷を蓄積するための第2半導体領域と、
    前記第1半導体領域の受光面から基板深さ方向に形成され、内部に絶縁物が充填されているセル分離用のトレンチ溝と、
    前記トレンチ溝の底部から、さらに基板深さ方向にかけて形成されているセル分離用の第3半導体領域と、を有し、
    前記第3半導体領域は、前記第2半導体領域より基板深さ方向に離れ、前記トレンチ溝に接して形成されている
    固体撮像デバイス。
  2. 前記トレンチ溝は前記第1半導体領域に形成され、
    前記第3半導体領域は、トレンチ溝の底面から、前記第1半導体領域と基板バルク領域との界面までの第1半導体領域の部分に形成されて画素セル間で第1半導体領域を分離し、かつ、前記界面からさらに基板バルク領域の一定深さまで達している
    請求項1に記載の固体撮像デバイス。
  3. 前記第3半導体領域の前記受光面からの深さと、前記第2半導体領域の前記受光面からの深さとの差が、当該2つの半導体領域が空乏層を介して接しないような値に設定されている
    請求項1に記載の固体撮像デバイス。
  4. 前記第2半導体領域がN型、前記第3半導体領域がP型の導電型を有する
    請求項1に記載の固体撮像デバイス。
  5. 前記トレンチ溝は、その受光面側の開口径と基板深部側の底面の径とが略同一に形成されている
    請求項1に記載の固体撮像デバイス。
  6. 前記トレンチ溝は、その受光面側の開口径よりも、側壁の最大径が大きく形成されている
    請求項1に記載の固体撮像デバイス。
  7. 前記トレンチ溝に充填されている絶縁物は、スピン・オン・グラス塗布用の絶縁材料からなる
    請求項1に記載の固体撮像デバイス。
  8. 前記撮像領域とロジック領域とが同一半導体基板に形成され、
    前記撮像領域に形成されているセル分離用の前記トレンチ溝は、前記ロジック領域に形成されている素子間分離用のトレンチ溝に比べて、トレンチ開口の径が小さく、かつ、トレンチ開口から基板深さ方向の端面までの距離が短い
    請求項1に記載の固体撮像デバイス。
  9. 半導体基板の撮像領域とロジック領域とに、それぞれトレンチ溝を形成する工程を含む固体撮像デバイスの製造方法であって、
    前記トレンチ溝形成の工程が、
    半導体基板上にマスク層を形成し、当該マスク層に対し、前記ロジック領域側より前記撮像領域側で径が小さくなるように開口部を同時に形成するマスク開口ステップと、
    前記撮像領域と前記ロジック領域で同時に、前記マスク層の前記開口部を通して前記半導体基板にトレンチ溝を形成する溝形成ステップと、
    前記撮像領域側に形成されているトレンチ溝に選択的に前記マスク層の開口部から不純物をイオン注入して、当該トレンチ溝の底部から基板深部にかけてセル分離用の不純物領域を形成するセル分離ステップと、
    前記ロジック領域に形成されているトレンチ溝に選択的に追加エッチングを行って、当該トレンチ溝の深さを前記撮像領域側より深くする追加エッチングのステップと、を含み、
    その後の画素セルの不純物領域形成工程において、前記撮像領域の画素セル信号電荷蓄積用の不純物領域を、前記セル分離用の不純物領域の基板表面側端面より浅い基板位置に形成する
    固体撮像デバイスの製造方法。
  10. 前記セル分離用の不純物領域の前記基板表面からの深さと、前記画素セル信号電荷蓄積用の不純物領域の前記基板表面からの深さとの差が、当該2つの不純物領域が空乏層を介して接しない値になるように、前記トレンチ溝、前記セル分離用の不純物領域および前記画素セル信号電荷蓄積用の不純物領域を形成する
    請求項9に記載の固体撮像デバイスの製造方法。
  11. 前記溝形成ステップでは、前記トレンチ溝の開口径に比べて側壁の最大径が大きくなる基板エッチング条件を用いる
    請求項9に記載の固体撮像デバイスの製造方法。
  12. 前記追加エッチングのステップ後に、形成したトレンチ溝に、スピン・オン・グラス塗布法により絶縁物を埋め込むステップを、
    さらに含む請求項9に記載の固体撮像デバイスの製造方法。
JP2005220937A 2005-07-29 2005-07-29 固体撮像デバイスおよびその製造方法 Pending JP2007036118A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220937A JP2007036118A (ja) 2005-07-29 2005-07-29 固体撮像デバイスおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220937A JP2007036118A (ja) 2005-07-29 2005-07-29 固体撮像デバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2007036118A true JP2007036118A (ja) 2007-02-08

Family

ID=37794964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220937A Pending JP2007036118A (ja) 2005-07-29 2005-07-29 固体撮像デバイスおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2007036118A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272596A (ja) * 2008-04-09 2009-11-19 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2010087369A (ja) * 2008-10-01 2010-04-15 Canon Inc 光電変換装置、撮像システム、及び光電変換装置の製造方法
WO2010110081A1 (ja) * 2009-03-25 2010-09-30 東京エレクトロン株式会社 マイクロレンズアレイの製造方法およびマイクロレンズアレイ
JP2012028585A (ja) * 2010-07-23 2012-02-09 Nikon Corp 固体撮像素子及びその製造方法
JP2012084748A (ja) * 2010-10-13 2012-04-26 Sharp Corp 固体撮像素子および電子情報機器
US8728852B2 (en) 2008-04-09 2014-05-20 Sony Corporation Solid-state imaging device, production method thereof, and electronic device
US9443892B2 (en) 2013-02-25 2016-09-13 Samsung Electronics Co., Ltd. Image sensor and method of forming the same
US9524995B2 (en) 2013-03-04 2016-12-20 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
CN108475684A (zh) * 2016-01-13 2018-08-31 浜松光子学株式会社 背面入射型固体摄像元件和其制造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272596A (ja) * 2008-04-09 2009-11-19 Sony Corp 固体撮像装置とその製造方法、及び電子機器
US8728852B2 (en) 2008-04-09 2014-05-20 Sony Corporation Solid-state imaging device, production method thereof, and electronic device
JP2010087369A (ja) * 2008-10-01 2010-04-15 Canon Inc 光電変換装置、撮像システム、及び光電変換装置の製造方法
JP2010224471A (ja) * 2009-03-25 2010-10-07 Tokyo Electron Ltd マイクロレンズアレイの製造方法およびマイクロレンズアレイ
WO2010110081A1 (ja) * 2009-03-25 2010-09-30 東京エレクトロン株式会社 マイクロレンズアレイの製造方法およびマイクロレンズアレイ
JP2012028585A (ja) * 2010-07-23 2012-02-09 Nikon Corp 固体撮像素子及びその製造方法
JP2012084748A (ja) * 2010-10-13 2012-04-26 Sharp Corp 固体撮像素子および電子情報機器
US9443892B2 (en) 2013-02-25 2016-09-13 Samsung Electronics Co., Ltd. Image sensor and method of forming the same
US9524995B2 (en) 2013-03-04 2016-12-20 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
US9754994B2 (en) 2013-03-04 2017-09-05 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures and methods of fabricating the same
US9780142B1 (en) 2013-03-04 2017-10-03 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
USRE48878E1 (en) 2013-03-04 2022-01-04 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
USRE49793E1 (en) 2013-03-04 2024-01-09 Samsung Electronics Co., Ltd. Image sensors including conductive pixel separation structures
CN108475684A (zh) * 2016-01-13 2018-08-31 浜松光子学株式会社 背面入射型固体摄像元件和其制造方法

Similar Documents

Publication Publication Date Title
KR101617045B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 제조 방법, 및 전자 기기
US9196646B2 (en) Method for reducing crosstalk in image sensors using implant technology
TWI280658B (en) Method for fabricating image sensor including isolation layer having trench structure
US6545302B2 (en) Image sensor capable of decreasing leakage current between diodes and method for fabricating the same
US7005315B2 (en) Method and fabricating complementary metal-oxide semiconductor image sensor with reduced etch damage
JP2007036118A (ja) 固体撮像デバイスおよびその製造方法
CN111009535A (zh) 包含非晶区和电子抑制区的图像传感器及其制造方法
KR101103179B1 (ko) 고체 촬상 소자
KR20050061608A (ko) 씨모스 이미지 센서들 내에서 암전류를 감소시키기 위한아이솔레이션 기술
KR20060046277A (ko) 고체 촬상 소자 및 그 제조 방법
US7262110B2 (en) Trench isolation structure and method of formation
US20090121264A1 (en) Cmos image sensor and method of forming the same
TWI816151B (zh) Cmos影像感測器中抑制浮動擴散接面洩漏之隔離結構及其製造方法
JP2006216577A (ja) 固体撮像装置及びその製造方法
JP2006344644A (ja) 固体撮像装置およびカメラならびに固体撮像装置の製造方法
JP5629450B2 (ja) 半導体素子及び半導体素子の形成方法
TWI381481B (zh) 半導體裝置及其製造方法
KR100696995B1 (ko) 고체 촬상 장치
JP2005072236A (ja) 半導体装置および半導体装置の製造方法
JP5407282B2 (ja) 固体撮像装置とその製造方法、及び電子機器
WO2017028546A1 (zh) 具有三维晶体管结构的背照式图像传感器及其形成方法
JP2008153566A (ja) 固体撮像装置及びその製造方法
US20080087977A1 (en) Solid-state imaging device and method of manufacturing the same
JP4241527B2 (ja) 光電変換素子
JP2007141937A (ja) 固体撮像素子、半導体装置及び半導体装置の製造方法