JP2007036063A - Manufacturing method of multilayer substrate - Google Patents

Manufacturing method of multilayer substrate Download PDF

Info

Publication number
JP2007036063A
JP2007036063A JP2005219631A JP2005219631A JP2007036063A JP 2007036063 A JP2007036063 A JP 2007036063A JP 2005219631 A JP2005219631 A JP 2005219631A JP 2005219631 A JP2005219631 A JP 2005219631A JP 2007036063 A JP2007036063 A JP 2007036063A
Authority
JP
Japan
Prior art keywords
conductive pattern
multilayer substrate
conductive
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219631A
Other languages
Japanese (ja)
Inventor
Konosuke Kitamura
幸之助 北村
Hiroshi Aoyama
博志 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2005219631A priority Critical patent/JP2007036063A/en
Publication of JP2007036063A publication Critical patent/JP2007036063A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a reliable multilayer substrate where conductive patterns on an upper layer and a lower layer are surely connected, even if the lines of a conductive pattern, or the intervals between lines are narrow. <P>SOLUTION: The manufacturing method includes a process where an insulating layer 10 is arranged on the surface of a substrate 12 on which a conductive pattern 13 is formed, a process where an arranged surface of the insulating layer 10 is processed to provide a groove 5 and a via hole 2 that connects to the groove 5, and also connects to the conductive pattern 13 of the lower layer; and a process where a conductive layer is formed at the groove 5 and the via hole 2, and the processed conductive layer is connected to the conductive pattern 13 of the lower layer as a conductive pattern. By repeating these processes, a multilayer substrate is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の基板を積層して1つの多層基板とする多層基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer substrate in which a plurality of substrates are stacked to form one multilayer substrate.

近年、導電体で形成された導電層(以下、「導電性パターン」という。)と材質が樹脂である絶縁層とを交互に積層した多層基板が多用されている。多層基板の上下の導電性パターンはバイアホール(穴)により接続される。バイアホールは、予め設けられた位置合わせマークを基準にして形成される。   In recent years, a multi-layer substrate in which conductive layers formed of a conductor (hereinafter referred to as “conductive pattern”) and insulating layers made of a resin are alternately stacked has been widely used. The upper and lower conductive patterns of the multilayer substrate are connected by via holes (holes). The via hole is formed with reference to an alignment mark provided in advance.

図2は、半導体パッケージ(高密度プリント基板)の製造工程などで用いられているセミアディティブ法の製造過程を示す図であり、(a1)〜(a4)は断面図、(b1)〜(b4)は(a1)〜(a4)に対応する平面図である。
コアとなる基材12の上面には導電性パターン13に加えて位置合わせマーク11が数個(例えば4個)形成され、その上側に絶縁層10が接着等により積層(ラミネート)されている。
まず、図2(a1)に示すように、基材12表面に形成されている位置合わせマーク11をカメラで撮像し、画像処理により位置合わせマーク11のそれぞれの中心位置の座標を求めてこの基板の座標系の加工座標系との関係を求めた後、レーザの光軸を例えば導電性パターン13の中心に位置決めし、レーザを照射して絶縁層10にバイアホール2を形成する。なお、位置合わせマーク11を撮像するにあたり、絶縁層10が不透明の場合は機械加工等により位置合わせマーク11を表面に露出させた後、絶縁層10が透明あるいは透明に近い場合は絶縁層10を削除することなく位置合わせマーク11を撮像する。
次に、図2(a2)に示すように、バイアホール2が形成された絶縁層10の表面10aにレジスト15を塗布し、さらにその上に、位置合わせマーク11(あるいはレーザにより絶縁層10に形成した位置合わせマーク)を基準としてマスク16を配置する。この状態で、マスク16の図における上方から紫外線を照射し、マスク16で塞がれていない部分(ここでは、ランド形成部と導電性パターン形成部)のレジスト15を露光させる。
次に、化学処理により露光したレジスト15を除去する。この結果、図2(a3)に示すように、ランド形成部と導電性パターン形成部を除き、絶縁層表面10aにはレジスト15が残存することとなる。
次に、図2(a4)に示すように、レジスト15除去部に銅めっきを施し、導電性パターン8及びランド9を形成する。このとき、バイアホール2の内壁部に形成される銅めっき層により、下層の導電性パターン13と上層の導電性パターン8とが電気的に接続される。その後、残存レジスト15を化学処理により除去する。
FIG. 2 is a diagram showing a manufacturing process of a semi-additive method used in a manufacturing process of a semiconductor package (high-density printed circuit board), where (a1) to (a4) are cross-sectional views, and (b1) to (b4). ) Is a plan view corresponding to (a1) to (a4).
In addition to the conductive pattern 13, several (for example, four) alignment marks 11 are formed on the upper surface of the base material 12 serving as a core, and the insulating layer 10 is laminated (laminated) on the upper side by adhesion or the like.
First, as shown in FIG. 2 (a1), the alignment mark 11 formed on the surface of the base material 12 is imaged by a camera, and the coordinates of the respective center positions of the alignment mark 11 are obtained by image processing to obtain this substrate. After determining the relationship between the coordinate system and the processing coordinate system, the optical axis of the laser is positioned at the center of the conductive pattern 13, for example, and the via hole 2 is formed in the insulating layer 10 by irradiating the laser. When imaging the alignment mark 11, if the insulating layer 10 is opaque, the alignment mark 11 is exposed on the surface by machining or the like, and if the insulating layer 10 is transparent or nearly transparent, the insulating layer 10 is removed. The alignment mark 11 is imaged without being deleted.
Next, as shown in FIG. 2 (a2), a resist 15 is applied to the surface 10a of the insulating layer 10 in which the via hole 2 is formed, and further, an alignment mark 11 (or a laser is applied to the insulating layer 10 by laser). The mask 16 is arranged with reference to the formed alignment mark). In this state, ultraviolet rays are irradiated from above in the drawing of the mask 16 to expose the resist 15 in portions not covered by the mask 16 (here, land formation portions and conductive pattern formation portions).
Next, the resist 15 exposed by chemical treatment is removed. As a result, as shown in FIG. 2A3, the resist 15 remains on the insulating layer surface 10a except for the land forming portion and the conductive pattern forming portion.
Next, as shown in FIG. 2A4, the resist 15 removal portion is subjected to copper plating to form the conductive pattern 8 and the land 9. At this time, the lower conductive pattern 13 and the upper conductive pattern 8 are electrically connected by the copper plating layer formed on the inner wall portion of the via hole 2. Thereafter, the remaining resist 15 is removed by chemical treatment.

半導体パッケージ用のプリント基板は、年々高密度化が進んでおり、導電性パターンの線巾および隣の導電性パターンまでの距離(以下、「線間隔」という。)が狭くなってきている。また、これに伴い、ランドおよびバイアホールの直径も小径になってきている。   The density of printed circuit boards for semiconductor packages is increasing year by year, and the line width of a conductive pattern and the distance to an adjacent conductive pattern (hereinafter referred to as “line interval”) are becoming narrower. Along with this, the diameters of lands and via holes have also become smaller.

下層の導電性パターンと上層の導電性パターンを確実に接続するためには、両者が高さ方向に重なる位置にバイアホールを配置する必要がある。
このため、従来技術では、マスクの製造費が高価になった。また、マスクおよび基板12は温度変化に伴って伸縮するため、バイアホールや導電性パターンの線巾及び線間隔を余裕を持たせた大きさにしなければならず、バイアホールを小径にすると共に導電性パターンの線巾及び線間隔をそれぞれ10μm以下にすることは困難であった。
In order to securely connect the lower conductive pattern and the upper conductive pattern, it is necessary to arrange a via hole at a position where both overlap in the height direction.
For this reason, in the prior art, the manufacturing cost of the mask becomes expensive. In addition, since the mask and the substrate 12 expand and contract as the temperature changes, the via holes and the conductive patterns must have a sufficient line width and line spacing, and the via holes can be reduced in diameter and conductive. It was difficult to make the line width and line spacing of the sex pattern 10 μm or less, respectively.

本発明の目的は、上記課題を解決し、導電性パターンの線巾および線間隔が狭い場合であっても、上層と下層の導電性パターンを確実に接続し、製品として信頼性に優れる多層基板の製造方法を提供するにある。   The object of the present invention is to solve the above-mentioned problems, and even when the line width and line interval of the conductive pattern are narrow, the upper layer and the lower layer conductive pattern are securely connected, and the multilayer substrate has excellent reliability as a product. To provide a manufacturing method.

上記課題を解決するため、本発明は、導電性パターンが形成された基板の表面に絶縁層を配置する工程と、配置した前記絶縁層の表面に溝と、この溝に接続しかつ下層の前記導電性パターンに接続する穴を加工する工程と、加工した前記溝及び穴に導電層を形成し、形成したこの導電層を導電性パターンとして下層の前記導電性パターンと接続する工程と、を繰り返して、多層基板を形成することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a step of disposing an insulating layer on the surface of a substrate on which a conductive pattern is formed, a groove on the surface of the disposed insulating layer, and the lower layer connected to the groove and the lower layer A step of processing a hole to be connected to the conductive pattern, and a step of forming a conductive layer in the processed groove and hole and connecting the formed conductive layer as a conductive pattern to the lower conductive pattern are repeated. Forming a multi-layer substrate.

本発明によれば、導電性パターンの線巾および線間隔が狭い場合であっても、上層の導電性パターンと下層の導電性パターンとを確実に接続できるので、製品として信頼性に優れる多層基板を製造することができる。   According to the present invention, even when the line width and line interval of the conductive pattern are narrow, the upper layer conductive pattern and the lower layer conductive pattern can be reliably connected. Can be manufactured.

以下、図面を参照しながら、本発明について説明する。
図1は、本発明に係る多層基板の製造過程を示す図であり、(a1)〜(a3)は断面図、(b1)〜(b3)は(a1)〜(a3)に対応する平面図である。
同図(a1)に示すように、コアとなる基材12の上面には導電性パターン13に加えて位置合わせマーク11が数個(例えば4個)形成され、その上に絶縁層10が積層されている。
まず、基材12表面に形成されている位置合わせマーク11をカメラで撮像し、画像処理により位置合わせマーク11のそれぞれの中心位置の座標を求めてこの基板の座標系の加工座標系との関係を求めた後、レーザの光軸を例えば導電性パターン13の中心に位置決めし、レーザ1を照射して絶縁層10にバイアホール2を形成する。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a manufacturing process of a multilayer substrate according to the present invention, wherein (a1) to (a3) are sectional views, and (b1) to (b3) are plan views corresponding to (a1) to (a3). It is.
As shown in FIG. 2A1, several alignment marks 11 (for example, four) are formed on the upper surface of the base material 12 serving as the core in addition to the conductive pattern 13, and the insulating layer 10 is laminated thereon. Has been.
First, the alignment mark 11 formed on the surface of the base material 12 is imaged with a camera, the coordinates of the center position of each alignment mark 11 are obtained by image processing, and the relationship between the coordinate system of this substrate and the processing coordinate system Then, the optical axis of the laser is positioned at the center of the conductive pattern 13, for example, and the laser 1 is irradiated to form the via hole 2 in the insulating layer 10.

次に、同図(a2)に示すように、ビーム径がレーザ1よりも大径のレーザ4により、軸線がバイアホール2の軸線と同軸のランド形成のための浅底穴6をバイアホール2の外周に形成する。さらに、ビーム径がレーザ1よりも細いレーザ3により、導電性パターン形成のための溝5を加工する。溝5の深さは、底面が浅底穴6の底面と略同一あるいは僅かに深くなるように、また、長手方向の一端は浅底穴6に重なるように形成する。   Next, as shown in FIG. 2A2, a shallow hole 6 for forming a land whose axis is coaxial with the axis of the via hole 2 is formed in the via hole 2 by a laser 4 having a beam diameter larger than that of the laser 1. It is formed on the outer periphery. Further, the groove 5 for forming the conductive pattern is processed by the laser 3 whose beam diameter is smaller than that of the laser 1. The depth of the groove 5 is formed such that the bottom surface is substantially the same as or slightly deeper than the bottom surface of the shallow hole 6, and one end in the longitudinal direction overlaps the shallow hole 6.

次に、同図(a3)に示すように、レーザによって加工した溝5及び浅底穴6に銅めっきを行い、溝5及び浅底穴6を銅で充填してランドおよび導電性パターンを形成すると共にバイアホール2に充填された銅により、下層の導電性パターンとランドおよび溝5内部の導電性パターンとを接続する。なお、銅めっきは、例えば、以下の手順で行う。すなわち、無電解銅めっき処理により、バイアホール2の内壁面、浅底穴6の内壁面、溝5の底面および内壁面を含む絶縁層表面10aの表面全体に銅の下地層を形成する。次に、バイアホール2の内壁、浅底穴6の内壁、溝5の底面および内壁面を除く絶縁層表面10aの表面に形成された銅層をソフトエッチングもしくは研磨により除去し、さらに無電解銅めっき処理を行う。このようにすると、バイアホール2の内壁面、浅底穴6の内壁面、溝5の底面および内壁面に銅を充填することができる。   Next, as shown in FIG. 4A3, copper is plated on the groove 5 and the shallow hole 6 processed by the laser, and the land 5 and the conductive pattern are formed by filling the groove 5 and the shallow hole 6 with copper. At the same time, the conductive pattern in the lower layer and the conductive pattern in the land and the groove 5 are connected by copper filled in the via hole 2. In addition, copper plating is performed in the following procedures, for example. That is, a copper underlayer is formed on the entire surface of the insulating layer surface 10a including the inner wall surface of the via hole 2, the inner wall surface of the shallow hole 6, the bottom surface of the groove 5, and the inner wall surface by electroless copper plating. Next, the copper layer formed on the surface of the insulating layer surface 10a excluding the inner wall of the via hole 2, the inner wall of the shallow hole 6, the bottom surface of the groove 5 and the inner wall surface is removed by soft etching or polishing, and further the electroless copper Plating is performed. In this way, the inner wall surface of the via hole 2, the inner wall surface of the shallow hole 6, the bottom surface and the inner wall surface of the groove 5 can be filled with copper.

以下、基板をさらに積層する場合は、新たな絶縁層10を図示の絶縁層10の上側に配置し、上記の動作を繰り返す。   Hereinafter, when the substrate is further laminated, a new insulating layer 10 is disposed on the upper side of the illustrated insulating layer 10 and the above operation is repeated.

なお、バイアホール2、浅底穴6および溝5に充填する銅の表面を高さを、絶縁層表面10aよりも低くなるようにすると、次の絶縁層を接着等により配置する際に確実に接着することができるだけでなく、銅の表面を高さが絶縁層表面10aよりも高くする場合に比べて、製品としての多層基板表面の凹凸を小さくすることができる。   If the height of the copper surface filling the via hole 2, the shallow hole 6 and the groove 5 is made lower than the insulating layer surface 10a, it is ensured when the next insulating layer is disposed by adhesion or the like. Not only can the bonding be performed, but also the unevenness of the surface of the multilayer substrate as a product can be reduced as compared with the case where the height of the copper surface is higher than that of the insulating layer surface 10a.

また、銅めっき処理を行うことに代えて、導電性のペーストをバイアホール2、溝5及び浅底穴6に充填した後、加熱処理等によりペーストを固化させるようにしてもよい。   Instead of performing the copper plating treatment, the paste may be solidified by heat treatment or the like after the conductive paste is filled into the via hole 2, the groove 5 and the shallow hole 6.

以上説明したように、本発明によれば、バイアホール2、浅底穴6および溝5を同一工程で形成するので位置決め誤差はほとんど発生せず、溝5に形成される導電性パターンと下層の導電性パターンを電気的に確実に接続できる。したがって、製品としての多層基板の信頼性を向上させることができる。   As described above, according to the present invention, the via hole 2, the shallow hole 6 and the groove 5 are formed in the same process, so that positioning errors hardly occur, and the conductive pattern formed in the groove 5 and the lower layer are formed. The conductive pattern can be reliably connected electrically. Therefore, the reliability of the multilayer substrate as a product can be improved.

また、露光のためのマスクを必要としないので、加工が容易になり、加工能率を向上させることができる。   In addition, since a mask for exposure is not required, processing is facilitated and processing efficiency can be improved.

また、ここではレーザによりバイアホール、ランドおよび溝を加工するようにしたが、他の方法を用いても良い。   Here, the via holes, lands, and grooves are processed by laser, but other methods may be used.

本発明に係る多層基板の製造過程を示す図である。It is a figure which shows the manufacture process of the multilayer board | substrate which concerns on this invention. 従来の多層基板の製造過程を示す図である。It is a figure which shows the manufacturing process of the conventional multilayer substrate.

符号の説明Explanation of symbols

2 バイアホール
5 溝
10 絶縁層
12 基板
13 導電性パターン
2 Via hole 5 Groove 10 Insulating layer 12 Substrate 13 Conductive pattern

Claims (6)

下記a〜cの工程を繰り返すことにより、多層基板を形成することを特徴とする多層基板の製造方法。
a.導電性パターンが形成された基板の表面に絶縁層を配置する工程。
b.配置した前記絶縁層の表面に溝と、この溝に接続しかつ下層の前記導電性パターンに接続する穴を加工する工程。
c.加工した前記溝及び穴に導電層を形成し、形成したこの導電層を導電性パターンとして下層の前記導電性パターンと接続する工程。
The manufacturing method of a multilayer substrate characterized by forming a multilayer substrate by repeating the process of the following ac.
a. A step of disposing an insulating layer on the surface of the substrate on which the conductive pattern is formed.
b. A step of processing a groove on the surface of the insulating layer disposed and a hole connected to the groove and connected to the conductive pattern in the lower layer;
c. Forming a conductive layer in the processed groove and hole, and connecting the formed conductive layer as a conductive pattern to the underlying conductive pattern;
前記穴および溝をレーザで加工することを特徴とする請求項1に記載の多層基板の製造方法。   The method for manufacturing a multilayer substrate according to claim 1, wherein the holes and grooves are processed by a laser. 前記穴を、下層の前記基板に形成された位置合わせマークに基づいて形成することを特徴とする請求項1に記載の多層基板の製造方法。   The method for manufacturing a multilayer substrate according to claim 1, wherein the hole is formed based on an alignment mark formed in the lower substrate. 前記導電層を導電性のめっきで形成することを特徴とする請求項1に記載の多層基板の製造方法。   The method for manufacturing a multilayer substrate according to claim 1, wherein the conductive layer is formed by conductive plating. 前記導電層を導電性のペーストで形成することを特徴とする請求項1に記載の多層基板の製造方法。   The method for manufacturing a multilayer substrate according to claim 1, wherein the conductive layer is formed of a conductive paste. 上記工程cの後に、形成した前記導電層の前記絶縁層の表面よりも高い部分を除去する工程を設け、その後上記工程aに移ることを特徴とする請求項1に記載の多層基板の製造方法。   2. The method for manufacturing a multilayer substrate according to claim 1, further comprising a step of removing a portion of the formed conductive layer higher than the surface of the insulating layer after the step c, and then moving to the step a. .
JP2005219631A 2005-07-28 2005-07-28 Manufacturing method of multilayer substrate Pending JP2007036063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219631A JP2007036063A (en) 2005-07-28 2005-07-28 Manufacturing method of multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219631A JP2007036063A (en) 2005-07-28 2005-07-28 Manufacturing method of multilayer substrate

Publications (1)

Publication Number Publication Date
JP2007036063A true JP2007036063A (en) 2007-02-08

Family

ID=37794920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219631A Pending JP2007036063A (en) 2005-07-28 2005-07-28 Manufacturing method of multilayer substrate

Country Status (1)

Country Link
JP (1) JP2007036063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066275A (en) * 2013-03-21 2014-09-24 毅嘉科技股份有限公司 Opening method for insulation protective layer of circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200236A (en) * 1996-12-27 1998-07-31 Victor Co Of Japan Ltd Manufacturing method of wiring board
JP2000165049A (en) * 1998-11-27 2000-06-16 Shinko Electric Ind Co Ltd Manufacture of multilayer circuit board
JP2000165039A (en) * 1998-11-26 2000-06-16 Nippon Carbide Ind Co Inc Manufacturing printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200236A (en) * 1996-12-27 1998-07-31 Victor Co Of Japan Ltd Manufacturing method of wiring board
JP2000165039A (en) * 1998-11-26 2000-06-16 Nippon Carbide Ind Co Inc Manufacturing printed wiring board
JP2000165049A (en) * 1998-11-27 2000-06-16 Shinko Electric Ind Co Ltd Manufacture of multilayer circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066275A (en) * 2013-03-21 2014-09-24 毅嘉科技股份有限公司 Opening method for insulation protective layer of circuit board

Similar Documents

Publication Publication Date Title
JP2008283140A (en) Method of manufacturing wiring board, and wiring board
TWI449480B (en) Multilayered wiring substrate
TWI399136B (en) Circuit board and manufacturing method thereof
TWI608777B (en) Flexible printed circuit board and method manufacturing same
JP2011096998A (en) Printed circuit board containing via pad with irregular pattern and method of manufacturing the same
JP5172409B2 (en) Wiring board manufacturing method
JP2010087168A (en) Method for manufacturing multilayer printed circuit board
JP3908610B2 (en) Manufacturing method of multilayer wiring board
JP2006278683A (en) Connecting member and its manufacturing method
JP2010225973A (en) Manufacturing method of multilayer circuit board
JP2007036063A (en) Manufacturing method of multilayer substrate
JP2009016806A (en) Embedded pattern board and its manufacturing method
JP2009021401A (en) Printed wiring board and inspecting method for printed wiring board
JP4930073B2 (en) Manufacturing method of build-up board
JP2009239105A (en) Method of manufacturing multilayer circuit board
TWI399152B (en) Method for manufacturing blind hole in printed circuit board
JP4934101B2 (en) Method for manufacturing printed circuit board
JP2012209284A (en) Method of manufacturing wiring substrate
JP4351078B2 (en) Method for manufacturing printed wiring board
JP2010129723A (en) Method of forming via hole
JP2797871B2 (en) Manufacturing method of printed wiring board
JP2002111204A (en) Method of manufacturing multilayered wiring board
TWI505759B (en) Printed circuit board and method for manufacturing the same
JP6027819B2 (en) Printed circuit board
JP2009088337A (en) Printed circuit board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207