JP2007018687A - レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置 - Google Patents

レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置 Download PDF

Info

Publication number
JP2007018687A
JP2007018687A JP2006156636A JP2006156636A JP2007018687A JP 2007018687 A JP2007018687 A JP 2007018687A JP 2006156636 A JP2006156636 A JP 2006156636A JP 2006156636 A JP2006156636 A JP 2006156636A JP 2007018687 A JP2007018687 A JP 2007018687A
Authority
JP
Japan
Prior art keywords
objective lens
master
photodetector
laser beam
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156636A
Other languages
English (en)
Inventor
Gakuji Hashimoto
学治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006156636A priority Critical patent/JP2007018687A/ja
Publication of JP2007018687A publication Critical patent/JP2007018687A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】 原盤のレジストを露光する際の初期設定として、対物レンズの焦点付近に原盤の表面が位置するように制御する。
【解決手段】 対物レンズ62をZ方向において振幅10μm、周波数200Hzの正弦波で振動させる。1mm/secの速度で原盤61が移動したとすると、原盤61の変位を表す1次直線と正弦波状の変位とが複数箇所で交叉することになる。フォトディテクタの和信号をモニタすることによって、交叉している期間で和信号が発生し、対物レンズ62を振動させない方法と比して位置決め検出の可能性を高めることができる。フォトディテクタの和信号が検出されると、原盤61のZ方向の移動が停止され、位置決めシーケンスが終了する。この後、フォーカスサーボがオンされる。
【選択図】 図8

Description

この発明は、例えば高密度光ディスクの製造時のカッティッグ工程の対物レンズの位置決めに適用されるレンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置に関する。
高密度光ディスクとして、例えば片面単層で約25Gバイト、片面2層で約50Gバイトの記録容量を有するものが提案されている。かかる光ディスクでは、記録再生用ビームスポット径を小とするために、光源波長を405nmとし、対物レンズの開口数NA(Numerical Aperture)を0.85と大きくしている。高密度光ディスクでは、ビームスポットをDVDと比して、約1/5とすることができる。さらに、対物レンズの開口数NAを高めた結果、ディスク面とレーザ光の光軸がなす角度の90°からの傾きに許される角度誤差(チルト・マージンと称される)が小さくなるので、情報層を覆うカバー層を0.1mmまで薄くしている。情報層は、読み取り専用のディスクの場合では、ピットが形成された反射層または半透過反射層であり、記録可能なディスクの場合では、グルーブが形成された相変化等の記録可能な層である。
図1A、1Bは、この発明を適用できる高密度光ディスクの一例の構造を示す。図1Aは、単層構造を示し、参照符号1が1.1mm厚みのポリカーボネイト(以下、PCと適宜略す)からなる基板を示す。
基板1は、射出成形で原盤ピットが転写されたもので、基板1に対して反射膜2が被着されている。反射膜2に対して、0.1mmの光透過層であるカバー層3が貼り合わされている。カバー層3は、あらかじめ打ち抜かれたPCシート5をUV(紫外線)硬化型接着剤4にて貼り合せ、表層部にハードコート6を施したものである。
図1Bは、2層構造を示す。単層構造と同様に、1.1mmの基材に全反射膜である反射膜2を形成し、その上に、中間層と呼ばれる光透過層7上に半透過反射膜8を形成し、更にカバー層3を貼り合せた情報層を2層有するディスクである。レーザ光の入射方向(ハードコート6側)から見て100μmの深さに反射膜2が形成され、75μmの深さに半透過反射膜8が形成される。
図1Bに示す片面2層ディスクの場合では、レーザ光の入射方向から見て100μmの深さにある反射膜2を基準層(第0記録層、L0層と呼ばれる)とし、75μmの深さに追加する記録層を第1記録層(L1層)と定義している。
上述した高密度光ディスクを製造する場合、基板上にレジストを塗布し、レーザ光によってピットまたはグルーブのパターンの露光を行い、現像によってレジストにピットまたはグルーブに対応する凹凸を有するディスク原盤を作成し、ディスク原盤から金属製のスタンパを作成し、スタンパを使用して射出成形によってディスク基板を作成し、ディスク基板上に記録層を成膜するようになされる。
図2は、スタンパの製造工程を示すものである。まず、基板10上に、スピンコート法等によってごく薄くレジスト(感光剤)11を塗布して原盤を作製する。原盤を回転させながらカッティング装置のレーザ光12により露光する。レジスト11には、露光によってグルーブまたはピットに対応したパターンの潜像が形成される。
その後、回転するガラス基板10上のレジスト11の表面上に現像液13を滴下し、現像処理をすることで、光ディスクのグルーブまたはピットに対応した凹凸のレジストパターンを基板10上に形成する。現像液としては、酸またはアルカリ等の液体を用い、現像に用いられるアルカリ溶液としてはテトラメチルアンモニウム、KOH、NaOH、Na2CO3等の水溶液があり、酸性溶液としては塩酸、硝酸、硫酸、燐酸等が挙げられる。
次に、この基板10上にメッキ処理によりニッケル等の金属14を析出させ、これを剥離し、トリミングを行うことでスタンパ15が得られる。このスタンパ15を射出成型装置の金型に装着し、キャビティ内にPC等の樹脂を注入することによって、スタンパの凹凸が転写されたディスク基板が作製される。このとき、ディスク基板に用いる樹脂は高速で金型に充填することができるよう、熱により可塑化されている。そして、射出成形されたディスク基板を30度以下に冷却した後、スパッタ装置を用いて金属薄膜をピット面側に成膜することにより、反射膜が成膜される。
次に、反射層が成膜されたディスク基板上に、接着剤として紫外線硬化樹脂を滴下し、スピンコート法にて均一に塗布する。その後、ディスク基板上の紫外線硬化樹脂の塗布面とPCフィルムとを対向する位置に保持した後、貼り合わせを行う。なお、PCフィルムの貼り合わせは真空中で行う。ディスク基板とPCフィルムの貼り合わせ面にしわや隙間が入り、読み取りエラーが起こることを防ぐためである。
次に、PCフィルムが貼り合わされたディスクに紫外線を照射し、紫外線硬化樹脂を硬化させ、ディスク基板とPCフィルムを接着する。さらに、ディスクに貼り合わせたPCフィルム上に紫外線硬化型のハードコート剤を滴下し、スピンコート法にて均一に塗布した上、再度紫外線を照射して硬化させることにより、ハードコート層を作製する。これにより、ディスクが完成する。
従来の有機レジストを使用する場合の問題点を解決して高密度光ディスクを製造することを可能する技術が下記の特許文献1に記載されている。特許文献1で開示される遷移金属の不完全酸化物からなる無機レジスト材料では405nm程度の可視レーザによる露光によっても、熱記録の特性によりスポット径より小さいパターンの露光が可能であることが示されており、高記録密度化に対応した光ディスクのマスタリング技術に有用な技術として注目される。
特開2003−315988号公報
ここでいう遷移金属の不完全酸化物とは、遷移金属のとりうる価数に応じた化学量論組成より酸素含有量が少ない方向にずれた化合物のこと、すなわち遷移金属の不完全酸化物における酸素の含有量が遷移金属のとりうる価数に応じた化学量論組成の酸素含有量より小さい化合物のことである。遷移金属の不完全酸化物において、露光による潜像形成部が酸化変質しているために、アルカリ現像液に可溶となり、光ディスク用原盤の微細加工を実現することができる。
この発明は、かかる無機レジストを使用した場合のカッティング装置における対物レンズの位置決め方法に関するものである。カッティング装置においては、無機レジストがシリコンウェハー等の基板上に成膜された原盤の送り精度によって渦巻き状のトラックを形成するために、トラッキング制御がなされず、フォーカス方向の制御(フォーカスサーボ)のみがなされる。フォーカス制御は、非点収差法等の再生装置で使用されているのと同様の方法でなされる。
フォーカス制御の引き込み範囲は、限定されているので、最初に、対物レンズと原盤表面との距離をフォーカスサーボが引き込み可能な範囲まで持ちきたすことが必要とされる。このための制御が位置決め制御と称され、原盤の位置を対物レンズに近づけることでなされる。位置決めが完了した後にフォーカスサーボが動作する。フォーカスサーボでは、合焦状態となるように、対物レンズの上下方向の位置がフィードバック制御される。
特許文献1に記載のカッティング装置においては、民生用の小径の対物レンズを使用されるので、一般的に対物レンズのワーキングディスタンスが小さくなる傾向がある。ワーキングディスタンスは、焦点位置から最も近い対物レンズの物理的な頂部である。例えばワーキングディスタンスが150μmとなる場合には、原盤をセッティングした後の初期調整において、対物レンズの位置決めを高精度に行わないと、対物レンズが原盤と衝突したり、フォーカスサーボに不具合が生じるそれがある。このため、初期調整時に対物レンズの焦点位置が原盤の記録面と同一にセットすることは重要である。
従来の位置決め方法について説明する。対物レンズの焦点深度は、光の波長λをレンズ開口数NAの2乗で割った値:λ/(2NA)2で概算することができる。従来のカッテ
ィング装置では、露光用のレーザ光のスポットを絞るために、波長を短くし、開口数を大きくしていた。そのために、焦点深度が非常に小さいものとなっていた。
一方、特許文献1に記載の方法は、従来ほど、開口数の高いレンズと短波長光源を必要としないものである。例えばλ=405nm、NA=0.85とされ、焦点深度が0.14μmと概算することができる。焦点深度は、光軸上で対物レンズが移動しても焦点が満足できる範囲のことである。光学ピックアップのフォトディテクタにおける光検出感度は、一般的に焦点深度の数倍までの検知が可能であり、検知が可能な範囲を検出可能範囲と称する。一例として、検出可能範囲を2.5μmと想定する。
対物レンズまたは原盤の一方を移動させて対物レンズの位置決め制御を行う場合、両者の距離が上述した検出可能範囲に存在する時にのみ、フォトディテクタから検出出力を得ることができ、検出可能範囲外では、受光光量が減少するため検出出力が得られず、原盤の存在を感知することができない。
従来のカッティング装置における位置決め方法としては、カッティングに使用するレーザ光(波長が例えば266nm)とは別に、波長のより長い検出用のレーザ光を使用する方法が提案されている。図3に示すように、原盤21に対してカッティング用のレーザ光LBと検出用のレーザ光LB’とが対物レンズ22を介して照射され、レーザ光LB’の原盤21で反射された戻り光がピックアップのフォトディテクタによって検出される。対物レンズ22は、Z軸方向に位置が変位可能とされている。
検出用のレーザ光LB’は、波長がより長いために、焦点深度が深くなり、検出可能範囲がレーザ光LBに比して拡大される。レーザ光LBを使用して原盤21を検出するのと比較してレーザ光LB’を使用した方が原盤21を容易に検出することが可能となる。また、レーザ光LB’を透過させる対物レンズ22で使用するレンズ径を小さくして見かけのNAを下げて焦点深度を深くすることも提案されている。
従来のカッティング装置における位置決め方法の他の例として、対物レンズ22と一体に移動する距離センサー23を設け、例えば光学式の距離センサー23の出力信号から位置決めを行う方法がある。
図3に示す方法は、異なる波長のレーザ発生源および光路を光ピックアップに対して追加する必要があり、光ピックアップの複雑化とコストの上昇を招く問題がある。また、図4に示す距離センサー23を設ける方法は、対物レンズ22の焦点位置と距離センサー23の設定位置とを一致させることが必要であり、対物レンズ22と距離センサー23の相対距離(位置ズレ)がワーキングディスタンス以上に変化した場合には、位置合わせ動作時に対物レンズ22と原盤21とが衝突する危険があり、また、フォーカスサーボに不具合が生じるおそれがある。さらに、距離センサー23を追加することによるコストの上昇の問題がある。
したがって、検出用のレーザ光LB’を使用したり、距離センサー23を別に設けることなく、露光用のレーザ光LBを使用して原盤21の存在を検出することが望ましい。しかしながら、上述したように、焦点深度が浅いために検出可能範囲が狭いために、原盤21の検出が難しい問題があった。
図5は、対物レンズと原盤の一方例えば原盤をZ軸方向で1mm/secの速度で遠方から
対物レンズに近付けた場合の時間(横軸)対変位(縦軸)のグラフである。なお、実際の装置では、後述するように、対物レンズ側を移動させているが、ここでは、説明が容易であるため、原盤側を移動させる方式を例として動作を説明する。変位は、合焦位置を0としている。1msecで1μmの割合で発生する変位が1次直線で示されている。上述したように、検出可能範囲は、図5において斜線を付した帯で示すように、変位が0の位置を中心とする所定範囲例えば2.5μmである。したがって、1次直線と帯とが交叉する期間内でのみ、フォトディテクタから検出信号を得ることができる。帯の幅は、上述したように、2.5μmと小さいので、1次直線と帯とが交叉する期間が短時間となり、検出のための信号処理回路の構成が複雑となったり、検出ミスを生じるおそれがあった。
したがって、この発明の目的は、露光用のレーザ光を使用し、距離センサーを別に使用
しないことによって、位置決めを良好に行うことが可能なレンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置を提供することにある。
上述した課題を解決するために、この発明は、対物レンズを光軸と平行な方向に振動させながら、対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、対物レンズと原盤の表面との間の距離を変化させる移動ステップと、
対物レンズを透過し、原盤の表面で反射された戻りレーザ光をフォトディテクタによって検出する検出ステップと、
対物レンズの焦点付近に原盤が位置する時に、フォトディテクタによって戻りレーザ光が検出され、戻りレーザ光の検出時に、対物レンズと原盤の一方の移動を停止させるステップとからなるレンズ位置決め方法である。
この発明は、原盤をレーザ光によってカッティングするカッティング方法において、
対物レンズを光軸と平行な方向に振動させながら、対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、対物レンズと原盤の表面との間の距離を変化させる移動ステップと、
対物レンズを透過し、原盤の表面で反射された戻りレーザ光をフォトディテクタによって検出する検出ステップと、
対物レンズの焦点付近に原盤が位置する時に、フォトディテクタによって戻りレーザ光が検出され、戻りレーザ光の検出時に、対物レンズと原盤の一方の移動を停止させるステップと、
対物レンズのフォーカスを制御しながら、対物レンズを介されたレーザ光によって原盤にグルーブまたはピットの形状に対応して潜像を形成するステップとからなるカッティング方法である。
この発明は、対物レンズを光軸と平行な方向に振動させるアクチュエータと、
対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、対物レンズと原盤の表面との間の距離を変化させる駆動手段と、
対物レンズを透過し、原盤の表面で反射された戻りレーザ光を検出するフォトディテクタとを有し、
対物レンズの焦点付近に原盤が位置する時に、フォトディテクタによって戻りレーザ光が検出され、戻りレーザ光の検出時に、対物レンズと原盤の一方の移動を停止させるようにしたレンズ位置決め装置である。
この発明は、原盤をレーザ光によってカッティングするカッティング装置において、
対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、対物レンズと原盤の表面との間の距離を変化させる駆動手段と、
対物レンズを透過し、原盤の表面で反射された戻りレーザ光を検出するフォトディテクタと、
対物レンズの焦点付近に原盤が位置する時に、対物レンズのフォーカスを合焦状態に制御し、対物レンズを介されたレーザ光によって原盤にグルーブまたはピットの形状に対応して潜像を形成するフォーカス制御手段とを有するカッティング装置である。
この発明によれば、異なる波長のレーザ光を使用しないで、また、距離センサーを使用せずに、対物レンズの焦点距離に原盤を位置させることが可能となる。したがって、光学ピックアップの構成が複雑化することを防止できる。また、距離センサーと対物レンズとの間の相対的位置合わせを不要とでき、初期設定が容易となる。さらに、距離センサーを設けることによるコストの上昇を防止できる。
以下、この発明の一実施形態について図面を参照しながら説明する。図6は、この発明の一実施形態によるカッティング装置の外観を概略的に示す。箱状のキャビネット上にカッティング装置が構成されている。スピンドル51によって回転する円盤状のカッティングテーブル52に対して無機レジストが基板例えばシリコンウェハー上に成膜された原盤が載置される。無機レジストは、遷移金属の不完全酸化物であり、遷移金属としては、モリブデン(Mo)、タングステン(W)などが使用される。一例として、組成割合Mo1-xxにおいて、(0<x<0.75)とされた不完全酸化物が使用される。カッティングテーブル52がスピンドル51を回転軸とするモータによって回転される。
これらのスピンドル51、カッティングテーブル52およびスピンドルモータが支持台53上に構成され、支持台53が原盤の径方向に水平に移動することが可能とされている。カッティングテーブル52による原盤の送り精度によって渦巻き状のトラックが形成される。なお、参照符号56は、カッティング装置の操作用のスイッチ部を示す。
カッティングテーブル52の上方に光学ピックアップブロック54が設けられている。光学ピックアップブロック54の下方に対物レンズ62が位置し、対物レンズ62で集光された露光用のレーザ光が原盤上に照射される。光学ピックアップブロック54は、Z軸モータ55によって原盤の表面に対して垂直方向であるZ軸方向に変位可能とされている。Z軸モータ55としては、ステッピングモータ、リニアモータ等を使用できる。
図7は、光学ピックアップブロック54の部分のみを示し、Z軸モータ55が支持部57に固定され、破線で囲んで示す光学ピックアップブロック54を含む部分がZ軸モータ55によって昇降される。このように、一実施形態では、カッティングテーブル52が水平方向に移動可能とされ、光学ピックアップブロック54が昇降可能とされている。
図8は、この発明を適用できる光学ピックアップブロック54の一例を示す。カッティングテーブル52上に載置された原盤61の表面の無機レジストに対して例えば(開口数NA=0.85)であって二群構成の対物レンズ62によって集光された例えば波長が405nmのレーザ光が照射される。対物レンズ62は、フォーカス方向(光軸と平行な方向)に変位可能な1軸アクチュエータ63に組み込まれている。
レーザダイオード69で発生したレーザ光がグレーティング68、偏光ビームスプリッタ(PBS)67を介してコリメートレンズ66に入射される。グレーティング68によって±1次回折光が発生する。コリメートレンズ66によって平行光とされたレーザ光がビームエキスパンダ等の球面収差補正デバイス65に入射される。
さらに、1/4波長板64および対物レンズ62を介して原盤61に入射され、原盤61が露光される。1/4波長板64によって、直線偏光のレーザ光が円偏光となる。
原盤61で反射した光が対物レンズ62を透過し、1/4波長板64によって円偏光から直線偏光に戻る。このとき、偏光方向がレーザダイオード69から発生した光(行きの光)に対して90°傾くために、偏光ビームスプリッタ67の貼り合わせ面で反射が生じる。
偏光ビームスプリッタ67による反射の前にコリメートレンズ66によって集光されつつある戻り光がマルチレンズ70を透過した後にIC構成のフォトディテクタ71上に集光され、電気信号に変換される。マルチレンズ70は、スポットを結ぶ位置の違いを利用してフォーカスエラーを検出する非点収差法に使用するための収差を発生する。
フォトディテクタ71は,例えば4分割ディテクタである。フォトディテクタ71の受光面に戻り光によって形成されるスポットの形状が合焦状態では、ほぼ真円となり、対物レンズ62が原盤61に近すぎるときと、原盤61に遠すぎるときとで、それぞれスポットの形状が長軸方向および短軸方向が互いに入れ替わった楕円となる。このスポットの形状の相違をフォトディテクタ71の出力信号から求めることによって、フォーカスエラーを検出できる。フォーカスエラーに基づいて1軸アクチュエータ63が駆動され、フォーカスエラーが補正される。
さらに、位置決め時では、レーザ光の強度が所定のものとされるが、データを記録する露光時には、原盤上にピット、グルーブ等のパターンに対応した潜像を形成するために、レーザダイオード69を直接駆動する直接変調方法、または音響光学変調器(AOM:Acousto Optical Modulator)等を用いた外部変調方法によってレーザ光の強度が変調される。
上述した光学ピックアップブロック54がZ軸モータ55によってZ軸方向に変位可能とされている。フォーカス位置検出時には、光学ピックアップブロック54がZ軸モータ55を回転させることによって光軸方向に原盤61に対して接近するように移動させる。光学ピックアップブロック54の移動中は、フォトディテクタ71の出力信号を使用して焦点位置の検知を行う。この場合、後述するように、対物レンズ62を微小振幅振動させてフォーカス位置の検出確率を上げている。
対物レンズ62の焦点位置が原盤61とほぼ一致した場合には、フォトディテクタ71に原盤61からの反射光が入射され、フォトディテクタ71から電気信号出力が得られる。このフォトディテクタ71の出力信号によってZ軸モータ55に対する駆動を停止させる。
以上の位置決め方法によって、光ディスクで通常使用されているフォーカスサーボを用いるにあたって必要とされる位置決め条件が満たされ、フォーカスサーボを動作させて光記録を行うことが可能となる。
この発明の一実施形態は、対物レンズ62をZ方向において高速で微小振幅で振動させる。振動の振幅は、原盤61と対物レンズ62とが衝突しないことが十分に保証され、且つ原盤61の存在の検出の可能性を高くする効果を生じる程度、微小なものである。
理論的には、原盤61と対物レンズ62との間の距離を変化させるには、少なくとも一方を移動させれば良い。一実施形態では、上述したように、原盤61の位置を静止させた状態で、Z軸モータ55によって光学ピックアップブロック54の全体を移動させている。さらに、対物レンズ62を1軸アクチュエータ63を駆動することによって微小振幅で振動させている。但し、Z軸モータ55を設けないで、1軸アクチュエータ63に対する駆動のみで、原盤61に対して対物レンズ62を徐々に近付けると共に、対物レンズ62を振動させても良い。さらに、対物レンズ62は、振動するのみで、原盤61の位置を対物レンズ62に近付けるように変位させても良い。
以下の説明では、説明が容易であるため、原盤側を移動させる方式を例として動作を説明する。位置決め時には、基板上に無機レジストが成膜された原盤61が上昇して対物レンズ62に対して接近する。
一例として対物レンズ62を振幅10μm、周波数200Hzの正弦波で振動させる場合には、駆動波形を図9に示す波形として表すことができる。1mm/secの速度で原盤61
が移動したとすると、図9のグラフにおいて、原盤61の移動を1次直線として表すことができる。対物レンズ62の変位は、合焦位置(変位0)を中心として上(+)下(−)に存在する、検出可能範囲例えば2.5μmの幅でもって正弦波状に変化するものと表すことができる。
図9に示されるように、1次直線と正弦波状の変位とが複数箇所で交叉することになる。フォトディテクタ71の和信号をモニタすることによって、交叉している期間で和信号が発生する。図5を参照して説明したように、対物レンズを振動させない場合には、1次直線と帯の交叉箇所が1箇所のみであるので、この交叉箇所で発生するフォトディテクタの出力信号を見逃すと、位置決めが不可能となる。
これに対して、この発明の一実施形態では、対物レンズ62を振動させている。原盤61のレジストの表面と対物レンズ62との間の距離が対物レンズ62の振動に伴って接近または離間することになる。したがって、振動させない場合の距離が検出可能範囲例えば2.5μmに含まれていない場合でも、振動の結果、検出可能範囲に入り込む。例えば原盤61の表面と対物レンズ62とが合焦位置よりも10μm上側に位置する場合でも、対物レンズ62の負側のピーク付近でフォトディテクタから和信号が出力する。逆に、合焦位置を通りすぎ、対物レンズ62が合焦位置よりも10μm下側に位置する場合でも、対物レンズ62の正側のピーク付近でフォトディテクタから和信号が出力する。
このように一実施形態では、対物レンズ62に対して原盤61を徐々に接近させた場合に、フォトディテクタから検出信号が発生することが可能な状態が複数回発生し、対物レンズ62を振動させない方法と比して位置決めを検出する可能性を高くすることができる。この発明の一実施形態の動作は、対物レンズ62を静止させて、原盤61を微小振幅振動させながら対物レンズ62に接近させる動作と等価である。但し、実際には、原盤61を振動させる制御は困難であり、上述したように、Z軸モータ55を使用し、ピックアップブロック54が元々備えているフォーカス方向のアクチュエータ63を利用することができ、対物レンズ62をZ方向に容易に振動させることができる。
フォトディテクタの和信号が検出されると、原盤61をZ方向に移動させている駆動源の駆動が停止され、位置決めシーケンスが終了する。この後、フォーカスサーボがオンされる。フォトディテクタから出力される和信号は、増幅処理を受け、必要に応じて積分処理、またはサンプルホールド処理がなされ、さらに、検出信号がしきい値とレベル比較される。なお、位置決めが失敗した場合に、対物レンズ62が原盤61に衝突することを防止するための機械的または電気的な停止機構が設けられている。
以上、この発明の一実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。例えばこの発明は、正弦波に限らず、のこぎり波、パルス波等でアクチュエータを駆動して対物レンズを振動させても良い。また、この発明は、対物レンズと原盤の表面を近付ける制御に限らず、両者を最小限の距離で接近させてから両者が離間するように制御しても良い。
この発明を適用できる光ディスクの一例を示す略線図である。 スタンパの製造工程を示す略線図である。 従来の位置決め方法の一例を説明するための略線図である。 従来の位置決め方法の他の例を説明するための略線図である。 原盤を移動させた時に検出信号を得る動作を説明するためのグラフである。 この発明の一実施形態によるカッティング装置の外観を概略的に示す斜視図である。 この発明の一実施形態における光学ピックアップブロックの移動機構の一例を示す略線図である。 光学ピックアップブロックの一例を示す略線図である。 この発明の一実施形態において、原盤を移動させた時に検出信号を得る動作を説明するためのグラフである。
符号の説明
52・・・カッティングテーブル
54・・・光学ピックアップブロック
55・・・Z軸モータ
61・・・原盤
62・・・対物レンズ
63・・・アクチュエータ
69・・・レーザダイオード
71・・・フォトディテクタ


Claims (7)

  1. 対物レンズを光軸と平行な方向に振動させながら、上記対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、上記対物レンズと上記原盤の表面との間の距離を変化させる移動ステップと、
    上記対物レンズを透過し、上記原盤の表面で反射された戻りレーザ光をフォトディテクタによって検出する検出ステップと、
    上記対物レンズの焦点付近に上記原盤が位置する時に、上記フォトディテクタによって上記戻りレーザ光が検出され、上記戻りレーザ光の検出時に、上記対物レンズと上記原盤の一方の移動を停止させるステップとからなるレンズ位置決め方法。
  2. 原盤をレーザ光によってカッティングするカッティング方法において、
    対物レンズを光軸と平行な方向に振動させながら、上記対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、上記対物レンズと上記原盤の表面との間の距離を変化させる移動ステップと、
    上記対物レンズを透過し、上記原盤の表面で反射された戻りレーザ光をフォトディテクタによって検出する検出ステップと、
    上記対物レンズの焦点付近に上記原盤が位置する時に、上記フォトディテクタによって上記戻りレーザ光が検出され、上記戻りレーザ光の検出時に、上記対物レンズと上記原盤の一方の移動を停止させるステップと、
    上記対物レンズのフォーカスを制御しながら、上記対物レンズを介されたレーザ光によって上記原盤にグルーブまたはピットの形状に対応して潜像を形成するステップとからなるカッティング方法。
  3. 請求項2において、
    上記レジスト材料が無機レジストであるカッティング方法。
  4. 請求項2において、
    上記対物レンズがフォーカスサーボ用のアクチュエータによって振動されるカッティング方法。
  5. 請求項2において、
    上記レーザ光の波長が約405nmであり、上記対物レンズの開口数が約0.85以上であるカッティング方法。
  6. 対物レンズを光軸と平行な方向に振動させるアクチュエータと、
    上記対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、上記対物レンズと上記原盤の表面との間の距離を変化させる駆動手段と、
    上記対物レンズを透過し、上記原盤の表面で反射された戻りレーザ光を検出するフォトディテクタとを有し、
    上記対物レンズの焦点付近に上記原盤が位置する時に、上記フォトディテクタによって上記戻りレーザ光が検出され、上記戻りレーザ光の検出時に、上記対物レンズと上記原盤の一方の移動を停止させるようにしたレンズ位置決め装置。
  7. 原盤をレーザ光によってカッティングするカッティング装置において、
    上記対物レンズとレジスト材料が基板上に成膜された原盤の一方を移動させ、上記対物レンズと上記原盤の表面との間の距離を変化させる駆動手段と、
    上記対物レンズを透過し、上記原盤の表面で反射された戻りレーザ光を検出するフォトディテクタと、
    上記対物レンズの焦点付近に上記原盤が位置する時に、上記対物レンズのフォーカスを合焦状態に制御し、上記対物レンズを介されたレーザ光によって上記原盤にグルーブまたはピットの形状に対応して潜像を形成するフォーカス制御手段とを有するカッティング装置。
JP2006156636A 2005-06-09 2006-06-05 レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置 Pending JP2007018687A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156636A JP2007018687A (ja) 2005-06-09 2006-06-05 レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005169890 2005-06-09
JP2006156636A JP2007018687A (ja) 2005-06-09 2006-06-05 レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置

Publications (1)

Publication Number Publication Date
JP2007018687A true JP2007018687A (ja) 2007-01-25

Family

ID=37755702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156636A Pending JP2007018687A (ja) 2005-06-09 2006-06-05 レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置

Country Status (1)

Country Link
JP (1) JP2007018687A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004071A (ja) * 2007-05-21 2009-01-08 Nippon Hoso Kyokai <Nhk> 記録再生方法および記録再生装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149229U (ja) * 1983-03-22 1984-10-05 フオスタ−電機株式会社 フオ−カスサ−ボ回路
JPS61195517U (ja) * 1985-05-16 1986-12-05
JPH09161384A (ja) * 1995-12-11 1997-06-20 Toshiba Corp 光ディスク原盤露光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149229U (ja) * 1983-03-22 1984-10-05 フオスタ−電機株式会社 フオ−カスサ−ボ回路
JPS61195517U (ja) * 1985-05-16 1986-12-05
JPH09161384A (ja) * 1995-12-11 1997-06-20 Toshiba Corp 光ディスク原盤露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004071A (ja) * 2007-05-21 2009-01-08 Nippon Hoso Kyokai <Nhk> 記録再生方法および記録再生装置

Similar Documents

Publication Publication Date Title
KR100697756B1 (ko) 광 디스크 및 그 제조 방법
US20060285463A1 (en) Lens positioning method, cutting method, positioning method, and cutting apparatus
TWI323459B (ja)
JP2000357343A (ja) 光記録媒体及び光記録媒体製造用原盤
JP2007048356A (ja) 記録方法、光ディスク用原盤および光学記録媒体
TWI249741B (en) Optical record playing medium, mother disk for manufacturing of optical record playing medium and optical record playing device, optical record regeneration medium, original disk for manufacturing of optical record regeneration medium
JP2007018687A (ja) レンズ位置決め方法、カッティング方法、位置決め方法およびカッティング装置
JP2011118995A (ja) 光記録媒体、光記録媒体駆動装置、光記録媒体駆動方法
JP4403417B2 (ja) 基準原盤、芯出し調整方法
JP4287313B2 (ja) ホログラム記録装置およびホログラム記録方法
JP2002298445A (ja) 光記録媒体及び光記録媒体製造用原盤
JPH11296910A (ja) 光記録媒体及び光記録媒体製造用原盤
JP4320916B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2005032317A (ja) 光学記録再生媒体、光学記録再生媒体製造用スタンパ及び光学記録方法
JP2005032354A (ja) 記録再生装置及び記録再生方法
JPH06259813A (ja) 再生専用光ディスクの製造方法とその製造装置
JP4320915B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2012142069A (ja) 単一ビットホログラフィック体積記録および読出しにおけるサーボ構造
JP2006331603A (ja) 光ディスク原盤作成方法とその原盤および光ディスク
JP4687783B2 (ja) 記録媒体の製造装置、及び記録媒体製造用原盤の製造装置
JP4687782B2 (ja) 記録媒体の製造方法、および記録媒体製造用原盤の製造方法
JP2000276778A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2001035022A (ja) 光情報記録媒体の製造方法及び光情報記録媒体の製造装置
JP2003045040A (ja) 光記録媒体、光記録媒体作製用原盤、成形用スタンパ及びこれらの製造方法、ならびに光学記録再生方法
MXPA01000014A (en) Optical disk and method of manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102