JP2007017813A - 3次元線型空間結像光学系及びこれを用いた投写光学系 - Google Patents

3次元線型空間結像光学系及びこれを用いた投写光学系 Download PDF

Info

Publication number
JP2007017813A
JP2007017813A JP2005200969A JP2005200969A JP2007017813A JP 2007017813 A JP2007017813 A JP 2007017813A JP 2005200969 A JP2005200969 A JP 2005200969A JP 2005200969 A JP2005200969 A JP 2005200969A JP 2007017813 A JP2007017813 A JP 2007017813A
Authority
JP
Japan
Prior art keywords
optical system
imaging
dimensional linear
display device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005200969A
Other languages
English (en)
Inventor
Tatsuo Uchida
龍男 内田
Toru Kawakami
徹 川上
Baku Katagiri
麦 片桐
Yuhei Kuratomi
雄平 倉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Techno Brains Corp
Original Assignee
Tohoku University NUC
Tohoku Techno Brains Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Techno Brains Corp filed Critical Tohoku University NUC
Priority to JP2005200969A priority Critical patent/JP2007017813A/ja
Publication of JP2007017813A publication Critical patent/JP2007017813A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】 結像面への入射角度を大きくしても、物体に対する非線型歪のない結像が得られる、3次元線型空間結像光学系及びこれを用いた投写光学系を提供する。
【解決手段】 3次元物体(物体格子3)の無変形像又は直交3軸の各軸方向で一様な伸び縮み及び/又はせん断変形像(結像格子4)を別の空間に結像させる3次元線型空間結像光学系5であり、又、これを用い、これの3次元物体として画像表示デバイス12を光軸6に対しティルトさせて配置し、そのほぼ結像位置にスクリーン13を配置して構成された投写光学系である。
【選択図】 図1

Description

本発明は、3次元線型空間結像光学系及びこれを用いた投写光学系に関する。
近年、プロジェクションディスプレイの需要が高まるにつれて、プロジェクションディスプレイディスプレイ装置の薄型化が求められている。プロジェクションディスプレイの薄型化手法に関する従来技術としては、広角レンズを用いて拡大像を得るもの(広角投写系)、レンズ光軸からのずれの角度(即ちオフアクシス;off-axis)が大きいレンズ部分を用いて光路を曲げるもの(シフト光学系;例えば非特許文献1)、レンズへの入射画像平面と出射結像平面とを同レンズの主平面に対して傾斜させるもの(ティルト光学系;例えば特許文献1)が知られている。
Ultra-Thin Rear Projector, Shinsuke Shikama etc., SID 05 DIGEST, p.1910 特許第2815554号公報
上記従来技術では、結像面(この面内にスクリーン面が置かれる)への物体光(プロジェクタ光)入射角度が大きいと、物体に対する結像の非線型歪が顕著になり、その補正が困難であるため、スクリーン面へのプロジェクタ光入射角度はある程度(例えば最大70°程度)以上大きくすることができない。この制限があるため、リアプロジェクションディスプレイの画面が大画面になるほど同画面奥行き方向の装置長さ(厚み)を大きくとらざるを得ず、平面反射鏡による光路折返し方法を用いても、例えば60インチサイズの大画面である場合、厚み20cm未満の薄型化は困難である。
そこで本発明は、結像面への入射角度を大きくしても、物体に対する非線型歪のない結像が得られる、3次元線型空間結像光学系及びこれを用いた投写光学系を提供することを目的とする。
本発明者らは、更なる薄型化のために、投写光学系の結像概念及び結像原理の根本的改革が必要不可欠であると判断し、鋭意考究した結果、前記課題の解決手段の基礎になる結像原理として、3次元物体の線型空間結像理論(3-D Linear Space Imaging theory:3-D LSI理論)を構築し、この3-D LSI理論による光学系が、3次元物体を空間直交座標系の3軸方向の何れの軸方向にも一様に伸び縮み或いはせん断変形して結像させ得るものであることを見出した。更に、この3次元物体を3次元座標系と考えると、この3次元座標系内にどのように配置された画像表示デバイスも、空間直交座標系の3軸方向の何れの軸方向にも一様に伸び縮み或いはせん断変形されることになるから、この3-D LSI理論による光学系の光の進行方向である光軸に対し略平行に、画像表示デバイスや結像面を設定することが可能になる。
本発明は、上述の原理を応用することにより、リアプロジェクションディスプレイの厚みを大幅に減少させた超薄型高品位リアプロジェクションディスプレイの実現を可能としたものであり、その要旨は以下の通りである。
(請求項1)3次元物体の無変形像を別の空間に結像させる3次元線型空間結像光学系。
(請求項2)3次元物体の変形像を別の空間に結像させる光学系において、前記変形は直交座標系の3軸の各軸方向で一様な伸び縮み変形及びせん断変形の何れか又はこれらの組合せであることを特徴とする3次元線型空間結像光学系。
(請求項3)前記3次元線型空間結像光学系は、レンズ、球面若しくは非球面反射鏡、集光結像機能を有する光学デバイスの何れか1種又は2種以上を少なくとも2枚用い、それらの光軸を互いに一致させ或いはずらして、配置したものである請求項1又は2に記載の3次元線型空間結像光学系。
(請求項4)前記光軸の少なくとも何れか2本の内、1本が他の1本に対し、±30度の範囲内の回転角度で回転した請求項3記載の3次元線型空間結像光学系。
(請求項5)n枚のレンズ又は反射鏡等の結像能力のある光学素子により構成された光学系において、光情報入力側の画像表示デバイス上の点(a0,y0)からθ0方向に出射し、n番目の光学素子を通過又は反射した光が、該光のn番目の光学素子における同素子光軸に対する垂直方向位置yn及び方向θnをyn=Yn(a0,y00)、θnn(a0,y00)で表すと、n番目の光学素子以降の空間で直線y=x・tanΘn(a0,y00)+Yn(a0,y00)をなし、該直線上の或る1点(xfn,yfn)がxfn=Xfn(a0,y0),yfn=Yfn(a0,y0)なるθ0に非依存の形となり、且つxfnとyfnとはa0及びy0の2次以上の項を含まないことを特徴とする3次元線型空間結像光学系。
(請求項6)前記xfn=Xfn(a0,y0),yfn=Yfn(a0,y0)及び前記画像表示デバイスの画素位置y0=P(a0)、又は前記xfn=Xfn(a0,y0),yfn=Yfn(a0,y0)及び平板状の画像表示デバイスを用い光学系や光学素子の機能により光学的に実現した画素位置y0=P(a0)を用いて表される、n番目の光学素子以降の空間における点(xfn,yfn)の軌跡が曲面をなすことを特徴とする請求項5記載の3次元線型空間結像光学系。
(請求項7)請求項1〜6の何れかに記載された3次元線型空間結像光学系を用いた投写光学系であって、前記3次元物体として、平板状の画像表示デバイスを前記3次元線型空間結像光学系の光軸に対しティルトさせて設置し、或いは曲板状の画像表示デバイスを設置し、又は、平板状の画像表示デバイスに光学的に画素位置y0=P(a0)を実現する光学系又は光学素子を付加したシステム若しくはデバイスを設置し、これのほぼ結像位置にスクリーンを設置したことを特徴とする、3次元線型空間結像光学系を用いた投写光学系。
(請求項8)前記画像表示デバイスの画素アスペクト比を光学的に変化させる手段として、シリンドリカルレンズ、シリンドリカル反射鏡等を組合せたアスペクト比変換光学系を、前記3次元線型空間結像光学系の前段に結合したことを特徴とする請求項7記載の投写光学系。
(請求項9)前記スクリーンが、フレネルレンズ等の光偏向素子、レンティキュラレンズ等の光拡散素子、ブラックマトリクス、拡散フィルムのうちの1種又は2種以上の組合せからなるスクリーンであることを特徴とする請求項7又は8に記載の投写光学系。
(請求項10)前記3次元線型空間結像光学系の光軸に対する前記画像表示デバイス面の法線の角度と同光軸に対する前記結像面の法線の角度とが互いに異なることを特徴とする請求項7〜9の何れかに記載の投写光学系。
(請求項11)前記画像表示デバイスの画素形状を長方形、平行四辺形又は台形としたことを特徴とする請求項7〜10の何れかに記載の投写光学系。
本発明によれば、3次元線型空間結像光学系の光軸に対し略平行に画像表示デバイスや結像面を設定しても、ゆがみの殆ど無い結像が得られるから、超薄型高品位リアプロジェクションディスプレイの実現が可能となる。
請求項1、3、5、7に記載の光学系の基本形態を図3に示す。尚、請求項5は、請求項1〜4をより一層具体的に表現したものである。この光学系は、焦点距離f=f1のレンズをレンズ1、2の2枚のみ用い、光軸6を一致させて、レンズ主平面71、72間距離を2f1(f1の2倍)とした非常に単純な構成である。この光学系の3次元物体結像機構を説明する理論が、3-D LSI理論の等倍立体結像に関する部分である。この部分について先ず説明する。
図3の光学系の機能(請求項1記載の発明の機能)の概念を図1に示す。光学系5の左側に3次元物体空間座標系があり、この3次元物体空間座標系の1点から散乱した光は、光学系5を通ると右側にある3次元結像空間座標系の対応する1点に集光する。3次元物体空間座標系内の物体格子(この場合立方体格子)3の8つの角の点A,B,C,D,E,F,G,Hには、3次元結像空間座標系の結像格子(この場合立方体格子)4の8つの角の点A',B',C',D',E',F',G',H'が同順の1対1に対応する。左右の立方体格子3、4は大きさが完全に一致し、合同であり、対応する点同士は光学系5の光軸6に対し対称な位置関係にある。
上述の機能は、3-D LSI理論における光線行列を用いて説明される。光線行列について図2を用いて説明する。図2において、レンズ1は焦点距離fを有し、レンズ1の光軸6がx-y-z座標系のx軸と一致し、レンズ1のレンズ主平面7がy-z軸と一致するように設置されている。図2ではレンズ1が1枚のみ示されているが、収差補正等のため複数枚のレンズを用いた場合でも、それらの合成レンズ1枚のレンズ主平面及び光軸が図2のレンズ1のものと夫々一致すると考える。解析はx-y平面内で行う。
図2に示す如く、レンズ主平面7内の1点P1(0,y1)に入射角θ1で入射し、出射角θ2で出射後に点P2(a,y2)を通る光線8は、レンズ1中心(x-y-z座標系の原点)を通り光線8の入射分に平行である直線10と、出射側の焦点面FS(レンズ主平面7から焦点距離fだけ離れた平面)内の1点P(f,f・tanθ1)で交わる。そこで、光線8について、点P1への入力ベクトルと、点P2への入力ベクトル(=点P1からの出力ベクトル)とを次のように定義する。尚、x軸に対する光線の角度は反時計回りを正とする。
点P1への入力ベクトル=[点P1のy座標,点P1における入射角のタンジェント]=[y1,tanθ1]
点P2への入力ベクトル=[点P2のy座標,点P2における入射角のタンジェント](=[点P1のy座標,点P1における出射角のタンジェント])=[y2,tanθ2]
図2より明らかなように、点P1への入力ベクトルと点P2への入力ベクトルの間には次の関係式が成り立つ。
Figure 2007017813
数1の式の右辺の係数行列を光線行列と称する。尚、点P1の位置にレンズがない場合(空間やガラス板等の場合)においては、屈折力が無いと考え、f=∞、即ち光線行列の左上成分=1、左下成分=0として計算する。又、数1の式は、負の焦点距離の凹レンズの場合にも、f<0として成立する。
数1の式を図3の光学系に適用するにあたり、図3では、レンズ1(f=f1)のレンズ主平面71から左側へ距離2f1までの空間を「空間1」、レンズ2(f=f2)のレンズ主平面72から左側へ距離2f1までの空間を「空間2」、同面72から右側へ距離2f1までの空間を「空間3」と称することとし、「空間1」内の点P0から、レンズ主平面71、72内の点P1、P2を経て「空間3」の右端の点P3へ進む光線9を数1の式の適用対象とした。尚、点P0、…点P3の座標は夫々固有に設けた直交座標系(x0-y0-z0、…x3-y3-z3座標系)を用いて表し、x0〜x3軸はレンズ1、2に共通の光軸6と一致させ(x軸と総称)、各座標系の原点はy0-z0、…y3-z3面内に点P0、…点P3が夫々位置するようにとり、x0-y0-z0座標系とx1-y1-z1座標系との原点間距離を図示のようにa0とした。各y軸は互いに平行である。尚、点P0の位置にはf=∞のレンズ11があるものとした。
図3の光線9に数1の式を適用し、点P3への入力ベクトル[y3,tanθ3]を点P0への入力ベクトル[y0,tanθ0]で表すと、次式が得られる。
Figure 2007017813
よって、「空間1」(x1-y1座標系)への入力光線の位置と方向は、レンズ光軸(x軸)に関して対称変換されることを除けば、「空間3」(x3-y3座標系)への入力光線の位置と方向に完全に一致する。即ち、空間を光が直進すると考えると、「空間1」を伝播する光と「空間3」を伝播する光は、x軸に対して対称なこと以外、完全に一致する。従って、「空間1」内に置かれた3次元物体空間座標上の点は、「空間3」内に置かれた3次元結像空間座標上の点のx軸対称な点と完全に一致する。例えばx1-y1座標が(-a0,y0)である位置にある点P0から発した散乱光は、x3-y3座標が(-a0,-y0)である位置にある点Qに集光する。このことは、点P1が「空間1」内を動いて物体格子3を形成するとき、それに応じて点Qは「空間3」内を動いて合同な結像格子4を形成することを意味する。つまり、図3に示す光学系の「空間1」内に置かれた3次元物体は、「空間3」に全く変形することなく結像する。
上記3次元物体として画像表示デバイス12を光軸6に対しティルトさせて設置し、これの結像位置にスクリーン13を設置して投写光学系を構成することで、スクリーン13のスクリーン面が、画像表示デバイス12の画素配列面をx軸に関し対称変換してなるリバースティルト結像面になり、画素と合同な平面形状の投写像が得られる(即ち、画素が正方形ならば結像画素は画素と合同な正方形になる)。ティルトとリバースティルトとではx軸に対する角度の絶対値が等しいから、スクリーン面は光の進行方向と略平行若しくは平行に設定することができ、超薄型高品位リアプロジェクションディスプレイが実現する。
次に、請求項2記載の光学系の基本形態について述べる。この基本形態は、3次元物体の変形像を別の空間に結像させる光学系において、前記変形は直交座標系の3軸の各軸方向で一様な伸び縮み変形である3次元線型空間結像光学系である。この伸び縮みのモードは、3軸方向の何れの歪も相等しい3軸等方モード、何れか2軸方向の歪が相等しく残りの1軸方向の歪とは異なる2軸等方モード、何れの1軸方向の歪も他軸方向の歪とは異なる3軸異方モードの何れであってもよい。
この基本形態の例を図4に示す。図4は2軸等方モードの伸び変形(拡大)の場合の例である。この例は、図3において、レンズ2の焦点距離をf1からf2に変更し、「空間1」〜「空間3」のサイズ、点P0の位置、及び各座標系の原点のとり方を図4の通りに変更したものである。尚、縮み変形(縮小)の場合はx軸の向きを逆にして同様に扱えばよい。
図4の光線9に数1の式を適用し、点P3への入力ベクトル[y3,tanθ3]を点P0への入力ベクトル[y0,tanθ0]で表すと、次式が得られる。
Figure 2007017813
数3の式に基づく集光位置計算によれば、「空間1」内のx1-y1座標が(-a0-f1,y0)である位置にある点P1から発した散乱光は、「空間3」内のx3-y3座標が(-(f2/f1)2a0,-(f2/f1)y0)である位置にある点Qに集光する。このことは、点P1が「空間1」内を動いて物体格子3を形成するとき、それに応じて点Qは「空間3」内を動いてy軸及びz軸方向には-(f2/f1)倍、x軸方向には(f2/f1)2倍の倍率(伸び縮みの倍率)で拡大された結像格子4を形成することを意味する。この様子を図5に示す。
図5に示すように、結像格子4は物体格子3を直交座標系のx,y,zの3軸の各軸方向に2軸等方モードで伸び変形したものとなるので、物体格子3のティルト断面位置に置かれた正方形の画像表示デバイス12は、結像格子4の対応ティルト断面位置に置かれたスクリーン13のスクリーン面内に長方形の投写像を結像し、台形歪のようなゆがみは発生しない。
尚、レンズは2枚必要であるが、3枚以上であっても、パラメータが増える分だけ自由度が増すから、同様にゆがみのない3次元線型空間結像が得られる。又、レンズに代えて或いはレンズと組合せて、球面若しくは非球面反射鏡、集光結像機能を有する光学デバイスの何れか1種又は2種以上を用いても、光線行列を同様に定義できるので、同様にゆがみのない3次元線型空間結像が得られる(請求項3)。
上記請求項1〜4は、数式を用いて具体的に記述することが可能である。光情報入力側の物体としての画像表示デバイス上の点(a0,y0)からθ0方向に出射しn(nは2以上の正の整数)番目の光学素子を通過又は反射した光の、「空間n+1」(n番目の光学素子以降に存在し、x軸が同素子光軸、y軸が同素子主平面からx軸の正の方向に同焦点距離の2倍の位置にかけて存在する空間)における、垂直方向位置yn及び方向θnは、数1の式或いは後述する数5の式を用いることで、行列の掛け算として以下のように表すことが可能である。
yn=Yn(a0,y00)、θnn(a0,y00) …[1]
ここで、「空間n+1」における光線は、式[1]を用いて、以下のように表される。
y=x・tanΘn(a0,y00)+Yn(a0,y00) …[2]
このとき点(a0,y0)から出射したあらゆる光が式[2]の光線上の或る1点(xfn,yfn)に集光するためには、式[2]がθ0に依存してはならない。このため以下の式が得られる。
xfn=Xfn(a0,y0)、yfn=Yfn(a0,y0) …[3]
ここでXfn(a0,y0)及びYfn(a0,y0)はθ0を含まない関数である。画像表示デバイス面が平面である場合、「空間1」内のx0-y0平面において、画像表示デバイスの画素位置は以下のように表される。
y0=p・a0 …[4]
ここで、pは画素面の傾きを表すものである。このため、式[3]は、これに式[4]を代入して、以下のように表すことが可能である。
xfn=X'fn(a0)、yfn=Y'fn(a0) …[5]
ここで、X'fn(a0)及びY'fn(a0)は、θ0及びy0を含まない関数である。
一方、結像媒体(結像を可視化する媒体)が例えばスクリーンである場合、平面状のスクリーン面に画像を投写するためには、点(xfn,yfn)の軌跡は、平面でなければならず、「空間n+1」のxn+1-yn+1平面において以下のように表されなければならない。
yfn=F・xfn、又はyfn=Fy、又はxfn=Fx …[6]
ここで、F、Fy及びFxは、a0、y0、θ0を含まない定数である。画像表示デバイス側の条件から得られた式[5]を、スクリーン側の条件から得られた式[6]の形にするためには、式[5]のX'fn(a0)及びY'fn(a0)がa0の2次以上の項を含まない関数でなければならない。このためには、Xfn(a0,y0)及びYfn(a0,y0)は、a0及びy0の2次以上の項を含んではならない(請求項5)。
上記は、画像表示デバイス面及びスクリーン面が平面状である場合に関する記述であるが、画像表示デバイス面及びスクリーン面の何れか一方又は両方が曲面状である場合に関しても、同様の考え方で扱うことが可能である。
画像表示デバイス面又は「光学的に実現したデバイス面」がx0-y0平面において以下のように表されるとする。
y0=P(a0) …[*1]
ここで、「光学的に実現したデバイス面」とは、元となる平面状又は曲面状の画像表示デバイス面を、レンズ、反射板、ファイバアレイプレート、グラジエントインデックスプレート、プリズム、ホログラム、回折格子、等を用いて、光学的に変換した面のことである。
このとき式[*1]を式[3]に代入することで、xn+1-yn+1平面における点(xfn,yfn)の軌跡を求めることが可能である。
一方、スクリーン面がxn+1-yn+1平面において以下のように表されるとする。
yn+1=S(xn+1) …[*2]
このときスクリーン面に収差の少ない画像を投写するためには、点(xfn,yfn)の軌跡が式[*2]とほぼ一致していなければならない。
ここで、上記ではx-y平面内でのみの画像表示デバイス及びスクリーンの形状について記述したが、x-y-zの3次元方向に対しても同様の議論により扱うことが可能である(請求項6)。
本発明の投写光学系においては、スクリーンの設置位置は、画像表示デバイスのほぼ結像位置とした。ほぼ結像位置とは結像画像の画素の大きさが、無収差で結像位置に結像した場合のそれに対し許容範囲即ち2倍以内となる焦点深度内の位置を意味し、十分実用範囲内であり、有効と考えられる。よって、この範囲内にスクリーンを設置した場合を本発明の範囲とする(請求項7)。尚、前記許容範囲は、好ましくは1.5倍以内、より好ましくは1.1倍以内である。
又、本発明の投写光学系に用いるスクリーンとしては、リアプロジェクションディスプレイに適用する観点から、大きな入射角で入射してきた光をスクリーン面の法線方向を中心とする所望の角度範囲の方向に拡散可能であるスクリーン、例えば、フレネルレンズ等の光偏向素子、レンティキュラレンズ等の光拡散素子、ブラックマトリクス、拡散フィルムのうちの1種又は2種以上の組合せからなるスクリーン等が好ましい(請求項10)。
尤も、画像表示デバイス12の画素が正方形の場合、その投写像(結像画素)が長方形になると、投写画像が縦長又は横長に変形したものになるから、正方形に戻すように補正するのが好ましい。この補正は請求項8又は請求項11記載の光学系により行うことができる。
図6に示すように、画素14と結像画素15の寸法及び傾き角(光軸6に直交する平面からの傾き角)を夫々同図中に記した記号で表すと、結像画素15のアスペクト比は次式で表される。
Figure 2007017813
尚、S:結像画素の縦長さ、T:結像画素の横長さ、py:画素の縦長さ、pz:画素の横長さ、φ1:画素の傾き角、φ2:結像画素の傾き角である。
よって、画素アスペクト比(py/pz)がcosφ2/cosφ1であれば、結像画素は正方形となる。画素アスペクト比をcosφ2/cosφ1にする手段としては、画素形状を長方形とするもの(請求項11)や、シリンドリカルレンズ、シリンドリカル反射鏡等を組合せたアスペクト比変換光学系を前記3次元線型空間結像光学系の前段に結合して画素アスペクト比を光学的に変化させるもの(請求項8)が好ましく用い得る。これら手段は組合せて用いてもよい。
尚、φ1は3次元線型空間結像光学系の光軸6に対する画像表示デバイス12のデバイス面(画素14配列面)の法線の角度に該当し、φ2は同光軸6に対する結像面(スクリーン13のスクリーン面)の法線の角度に該当する。図6に示されるように、本発明では、画素の拡縮像を得る場合、φ1≠φ2である(請求項10)。
この特性を活かして、拡大光学系を設計すると、φ1<<φ2とでき、投写光学系の画像表示デバイスを光の進行方向にほぼ垂直に設置し、且つスクリーン面は光の進行方向にほぼ平行に設置できる。よって、きわめて画像表示デバイスの光の利用効率のよい、超薄型リアプロジェクションディスプレイシステムが可能となる。
図8は、請求項8記載の光学系の例を示す図であり、図示のように3次元線型空間結像系21の前段に2枚のシリンドリカルレンズ19、20を組合せたアスペクト比変換光学系22が結合される。結合形態は、アスペクト比変換光学系22結合前の3次元線型空間結像系21における画像表示デバイス12の設置位置が、アスペクト比変換光学系22結合後のアスペクト比変換光学系22による画像表示デバイス12のアスペクト比変換像18の結像位置になる形態である。
シリンドリカルレンズ19、20は、それらのレンズ主平面が画像表示デバイス12の画素配列面及びこれのアスペクト比変換像18と平行に置かれ、シリンドリカルレンズ19がy'方向、シリンドリカルレンズ20がz'方向の拡縮作用を分担し、正方形画素の画像表示デバイス12をアスペクト比=cosφ2/cosφ1のアスペクト比変換像18として結像させるように、夫々の焦点距離f1'、f2'及び夫々のレンズ主平面から画像表示デバイス12の画素配列面及びこれのアスペクト比変換像18への距離a1,b1、a2,b2(但しa1+b1=a2+b2)を設定してあるので、スクリーン13のスクリーン面内の結像画素は正方形となる。
次に、請求項2において物体に対する結像の変形がせん断変形である場合は、請求項3において複数のレンズの光軸を互いにずらした場合に対応する。この例として、図3において2枚のレンズの光軸を互いに平行にずらした光学系に光線行列を適用する方法につき図9を用いて説明する。レンズ1とレンズ2の光軸61と62が図示の位置関係で配置され、座標系がレンズ毎に図示のようにとられ、レンズ1の焦点距離がfであるとき、レンズ主平面71内の点P1に入射後レンズ主平面72内の点P2に向かう光線9について、点P2への入力ベクトルは光線行列により点P1への入力ベクトルと次式のように関係づけられる。
Figure 2007017813
ここで、yij(i=1,2、j=1,2)は点Piのyj座標、tanθiは点Piにおける入射角のタンジェントである。尚、右辺の[-b,0]をシフトベクトルと称する。
数5の式を図10(図9と同じ光学系である)に適用し、集光位置計算を行うと、「空間1」(x1-y1-z1座標系)内のx1-y1座標が(-a0,y0)である位置にある点P0からの散乱光は「空間3」(x3-y3-z3座標系)内のx3-y3座標が(-a0,-y0-(b/f)a0+b)である位置にある点Qに集光する。従って、図10に示すように、点P0が「空間1」内を動いて物体格子3を描くとき、これに応じて点Qが「空間3」内を動いて描く結像格子4は、立方格子状の物体格子3をy軸方向にせん断変形した斜交格子状のものになる。このせん断変形歪はtanβ=b/fである。x,z軸方向の変形はない。
よって、物体格子3の対角線位置に画像表示デバイス12を配置し、これに対応した結像格子4の対角線位置にスクリーン13を配置すると、画像表示デバイス12の画素が正方形であれば、スクリーン面内の結像画素はアスペクト比(x-y面内の長さ/z軸方向の長さ)=sinφ1/sinφ2の長方形になるが、これは、前述のように請求項8又は請求項11の手段を用いることで正方形に補正することができる。
又、図4においてレンズ1とレンズ2の光軸をずらした光学系では、図9の場合と同様な解析により、図11に示すような形状の結像格子4が得られる。この結像格子4の形状は、物体格子3に図3と同じ伸び変形(x軸方向伸び倍率=(f2/f1)2,y-z面内方向伸び倍率=-f2/f1)と図9と同じせん断変形(但し、図11の場合はf=f2につき、y軸方向せん断歪=tanβ=b/f2)とが複合した変形が加わったものとなっている。尚、図11では、「空間1」内のx1-y1座標が(-a0-f1,y0)の点P0からの散乱光が「空間3」内に集光する点Qのx3-y3座標は(-(f2/f1)2a0,-(f2/f1)y0-(b/f1)(f2/f1)a0)である。
図11では、スクリーン13のスクリーン面内の結像画素のアスペクト比は、数4と同じ記号を用いて次式で表される。
Figure 2007017813
尚、b:レンズ1とレンズ2の光軸間距離である。
よって、前述のように、請求項8や請求項11の手段により、画素アスペクト比(py/pz)をsinφ2/(ksinφ1)にすることで、結像画素を正方形となし得る。
次に、請求項4では、請求項3記載の光学系において、光軸の少なくとも何れか2本の内、1本が他の1本に対し、許容範囲である±30度の範囲内の回転角度で回転したものとした。一般に、結像光学系において、或る光軸が他の光軸に対し回転した場合は、結像に非線型歪(ゆがみ)が生じてしまい、厳密な意味での3次元線型空間結像光学系とはならない。然しながら、前記許容範囲とした±30度の範囲内での回転であれば、3次元線型空間結像からのずれが無視し得る程度に小さく、実用上全く問題がないことを、本発明者らは実験により確認した。よって、本発明では、この場合も含めて3次元線型空間結像光学系と称することとした。尚、前記許容範囲は、好ましくは±20度、より好ましくは±10度である。
図5〜6に示した光学系において、請求項11に対応する実施例として、画面(スクリーン面)サイズが対角60インチ、画像表示デバイスのサイズが0.7インチFull HDの場合について、倍率k=85.7倍、k=tanφ2/tanφ1より、画像表示デバイスの傾き角φ1を表1に示すように変化させ、結像画素が正方形になるために要求される画面の傾き角φ2及び画素アスペクト比(cosφ2/cosφ1)を数4の式で計算した結果を表1に示す。
Figure 2007017813
表1のφ1=2度の場合に対応した投写光学系の例を図7に示す。3LCD式透過型の光学エンジン17を用い、該光学エンジン17のLCD(液晶画像表示デバイス)12R,12B,12Gの各表示面を光軸6に直交する平面と光学的に等価なクロスキューブ16面に対し2度傾け、各LCDの画素アスペクト比=1:3.15とし、スクリーン13のスクリーン面の傾き角φ2=71.52度としているので、スクリーン面内の結像画素15は正方形となり、よって、対角60インチ画面で厚み20cm未満の超薄型高品位リアプロジェクションディスプレイを実現し得ることが示されている。又、各LCDは従来の正方形画素のものに比べ約1/3幅であるから、光学エンジン17も従来に比し薄型にすることができる。
又、図7において、3LCD式透過型の光学エンジン17に代えて、フィールドシーケンシャル方式で駆動される単板式反射型LCOS(Liquid Crystal on Silicon)からなる光学エンジン(図示省略)を用いることにより、更なる薄型化が可能である。
請求項1記載の光学系の機能の概念を示す図である。 光線行列を説明するための図である。 請求項1,3,5,7に記載の光学系の基本形態を示す図である。 請求項2記載の光学系の基本形態を示す図である。 図4の光学系により結像される2軸等方モードの伸び変形像の概要を示す図である。 結像画素のアスペクト比の求め方を示す図である。 請求項11に対応する実施例を示す図である。 請求項8記載の光学系の例を示す図である。 図3において2枚のレンズの光軸を互いにずらした光学系を示す図である。 図9の光学系によるせん断変形結像の概要を示す図である。 図4において2枚のレンズの光軸を互いにずらした光学系による伸び及びせん断の複合変形結像の概要を示す図である。
符号の説明
1、2 レンズ
3 物体格子
4 結像格子
5 光学系(3次元線型空間結像光学系又はこれを用いた投写光学系)
6、61、62 光軸(レンズ光軸)
7、71、72 レンズ主平面
8、9 光線
10 レンズ中心を通る直線
11 f=∞のレンズ
12 画像表示デバイス
12R,12G,12B 液晶画像表示デバイス(R,G,Bは赤,緑,青を表す)
13 スクリーン
14 画素
15 結像画素
16 クロスキューブ
17 光学エンジン
18 アスペクト比変換像
19、20 シリンドリカルレンズ
21 3次元線型空間結像系
22 アスペクト比変換光学系
FS 焦点面

Claims (11)

  1. 3次元物体の無変形像を別の空間に結像させる3次元線型空間結像光学系。
  2. 3次元物体の変形像を別の空間に結像させる光学系において、前記変形は直交座標系の3軸の各軸方向で一様な伸び縮み変形及びせん断変形の何れか又はこれらの組合せであることを特徴とする3次元線型空間結像光学系。
  3. 前記3次元線型空間結像光学系は、レンズ、球面若しくは非球面反射鏡、集光結像機能を有する光学デバイスの何れか1種又は2種以上を少なくとも2枚用い、それらの光軸を互いに一致させ或いはずらして、配置したものである請求項1又は2に記載の3次元線型空間結像光学系。
  4. 前記光軸の少なくとも何れか2本の内、1本が他の1本に対し、±30度の範囲内の回転角度で回転した請求項3記載の3次元線型空間結像光学系。
  5. n枚のレンズ又は反射鏡等の結像能力のある光学素子により構成された光学系において、光情報入力側の物体としての画像表示デバイス上の点(a0,y0)からθ0方向に出射し、n番目の光学素子を通過又は反射した光が、該光のn番目の光学素子における同素子光軸に対する垂直方向位置yn及び方向θnをyn=Yn(a0,y00)、θnn(a0,y00)で表すと、n番目の光学素子以降の空間で直線y=x・tanΘn(a0,y00)+Yn(a0,y00)をなし、該直線上の或る1点(xfn,yfn)がxfn=Xfn(a0,y0),yfn=Yfn(a0,y0)なるθ0に非依存の形となり、且つxfnとyfnとはa0及びy0の2次以上の項を含まないことを特徴とする3次元線型空間結像光学系。
  6. 前記xfn=Xfn(a0,y0),yfn=Yfn(a0,y0)及び前記画像表示デバイスの画素位置y0=P(a0)、又は前記xfn=Xfn(a0,y0),yfn=Yfn(a0,y0)及び平板状の画像表示デバイスを用い光学系や光学素子の機能により光学的に実現した画素位置y0=P(a0)を用いて表される、n番目の光学素子以降の空間における点(xfn,yfn)の軌跡が曲面をなすことを特徴とする請求項5記載の3次元線型空間結像光学系。
  7. 請求項1〜6の何れかに記載された3次元線型空間結像光学系を用いた投写光学系であって、前記3次元物体として、平板状の画像表示デバイスを前記3次元線型空間結像光学系の光軸に対しティルトさせて設置し、或いは曲板状の画像表示デバイスを設置し、又は、平板状の画像表示デバイスに光学的に画素位置y0=P(a0)を実現する光学系又は光学素子を付加したシステム若しくはデバイスを設置し、これのほぼ結像位置にスクリーンを設置したことを特徴とする、3次元線型空間結像光学系を用いた投写光学系。
  8. 前記画像表示デバイスの画素アスペクト比を光学的に変化させる手段として、シリンドリカルレンズ、シリンドリカル反射鏡等を組合せたアスペクト比変換光学系を、前記3次元線型空間結像光学系の前段に結合したことを特徴とする請求項7記載の投写光学系。
  9. 前記スクリーンが、フレネルレンズ等の光偏向素子、レンティキュラレンズ等の光拡散素子、ブラックマトリクス、拡散フィルムのうちの1種又は2種以上の組合せからなるスクリーンであることを特徴とする請求項7又は8に記載の投写光学系。
  10. 前記3次元線型空間結像光学系の光軸に対する前記画像表示デバイス面の法線の角度と同光軸に対する前記結像面の法線の角度とが互いに異なることを特徴とする請求項7〜9の何れかに記載の投写光学系。
  11. 前記画像表示デバイスの画素形状を長方形、平行四辺形又は台形としたことを特徴とする請求項7〜10の何れかに記載の投写光学系。
JP2005200969A 2005-07-08 2005-07-08 3次元線型空間結像光学系及びこれを用いた投写光学系 Pending JP2007017813A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200969A JP2007017813A (ja) 2005-07-08 2005-07-08 3次元線型空間結像光学系及びこれを用いた投写光学系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200969A JP2007017813A (ja) 2005-07-08 2005-07-08 3次元線型空間結像光学系及びこれを用いた投写光学系

Publications (1)

Publication Number Publication Date
JP2007017813A true JP2007017813A (ja) 2007-01-25

Family

ID=37755023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200969A Pending JP2007017813A (ja) 2005-07-08 2005-07-08 3次元線型空間結像光学系及びこれを用いた投写光学系

Country Status (1)

Country Link
JP (1) JP2007017813A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006139A1 (de) 2007-01-29 2008-10-09 Aisin Seiki K.K., Kariya Fahrzeugsitz
CN103959126A (zh) * 2011-12-01 2014-07-30 三菱电机株式会社 投影光学系统和投影型图像显示装置
JP2016200660A (ja) * 2015-04-08 2016-12-01 国立大学法人東北大学 空中像および虚像表示装置
JP2021049426A (ja) * 2020-12-25 2021-04-01 京楽産業.株式会社 遊技機
JP2021053459A (ja) * 2020-12-25 2021-04-08 京楽産業.株式会社 遊技機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147218A (ja) * 1992-11-12 1995-06-06 Internatl Business Mach Corp <Ibm> 3次元結像システムおよび方法
JPH07311363A (ja) * 1995-06-08 1995-11-28 Casio Comput Co Ltd 投影型表示装置
JPH09243961A (ja) * 1996-03-12 1997-09-19 Sharp Corp 三次元像投写装置
JP2005010755A (ja) * 2003-05-27 2005-01-13 Nippon Hoso Kyokai <Nhk> アフォーカル立体光学装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147218A (ja) * 1992-11-12 1995-06-06 Internatl Business Mach Corp <Ibm> 3次元結像システムおよび方法
JPH07311363A (ja) * 1995-06-08 1995-11-28 Casio Comput Co Ltd 投影型表示装置
JPH09243961A (ja) * 1996-03-12 1997-09-19 Sharp Corp 三次元像投写装置
JP2005010755A (ja) * 2003-05-27 2005-01-13 Nippon Hoso Kyokai <Nhk> アフォーカル立体光学装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006139A1 (de) 2007-01-29 2008-10-09 Aisin Seiki K.K., Kariya Fahrzeugsitz
DE102008006139B4 (de) * 2007-01-29 2010-02-04 Kabushiki Kaisha Toyota Jidoshokki, Kariya Fahrzeugsitz
CN103959126A (zh) * 2011-12-01 2014-07-30 三菱电机株式会社 投影光学系统和投影型图像显示装置
JP5615449B2 (ja) * 2011-12-01 2014-10-29 三菱電機株式会社 投写光学系および投写型画像表示装置
US9261758B2 (en) 2011-12-01 2016-02-16 Mitsubishi Electric Corporation Projection optical system and projection-type image display apparatus
JP2016200660A (ja) * 2015-04-08 2016-12-01 国立大学法人東北大学 空中像および虚像表示装置
JP2021049426A (ja) * 2020-12-25 2021-04-01 京楽産業.株式会社 遊技機
JP2021053459A (ja) * 2020-12-25 2021-04-08 京楽産業.株式会社 遊技機

Similar Documents

Publication Publication Date Title
WO2021169406A1 (zh) 一种全息光波导镜片及增强现实显示装置
US6406150B1 (en) Compact rear projections system
JP2023052497A (ja) 相互遮蔽および不透明度制御能力を有する光学式シースルー型ヘッドマウントディスプレイのための装置
KR101169446B1 (ko) 구면 및 비구면 기판들을 가지는 출사동공 확장기들
WO2016162928A1 (ja) 投影光学系およびそれを用いたヘッドアップディスプレイ装置
TW200820158A (en) Display device
JP2007017813A (ja) 3次元線型空間結像光学系及びこれを用いた投写光学系
JP2001264627A (ja) リアプロジェクション光学系
JP2003029149A (ja) 投影光学系、該投影光学系を用いて構成した表示装置、該表示装置を有する画像処理装置
JP4706967B2 (ja) 三次元画像表示装置
JP2001264634A (ja) リアプロジェクション光学系
JP2022160329A (ja) 投射光学系
JP4016007B2 (ja) 結像光学系
JP2007206683A (ja) フラットプロジェクションテレビ
JPH0580418A (ja) 投射型表示装置
JP3380083B2 (ja) 投影装置及び投影装置のピント調整方法
KR102492059B1 (ko) 초단초점 프로젝터 장치
JP2906348B2 (ja) 投影型表示装置
EP1625755B1 (en) Method and apparatus for reducing stray light in a projection system
JPH05113600A (ja) 投射型表示装置
JPH05119395A (ja) 投射型表示装置
CN101144911A (zh) 准轴向成像的光学投影显示系统
WO2023112363A1 (ja) 光学系、マルチビーム投写光学系、マルチビーム投写装置、画像投写装置および撮像装置
JPH07151994A (ja) 投影型表示装置
CN113348403B (zh) 投影仪和用于提高投影光强度的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228