WO2021169406A1 - 一种全息光波导镜片及增强现实显示装置 - Google Patents
一种全息光波导镜片及增强现实显示装置 Download PDFInfo
- Publication number
- WO2021169406A1 WO2021169406A1 PCT/CN2020/127980 CN2020127980W WO2021169406A1 WO 2021169406 A1 WO2021169406 A1 WO 2021169406A1 CN 2020127980 W CN2020127980 W CN 2020127980W WO 2021169406 A1 WO2021169406 A1 WO 2021169406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grating
- waveguide
- dimensional
- dimensional grating
- holographic optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 17
- 239000013598 vector Substances 0.000 claims description 40
- 230000000737 periodic effect Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 8
- 239000004038 photonic crystal Substances 0.000 claims description 8
- 239000002086 nanomaterial Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 8
- 238000003384 imaging method Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000003993 interaction Effects 0.000 description 4
- 230000010344 pupil dilation Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1814—Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1814—Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
- G02B5/1819—Plural gratings positioned on the same surface, e.g. array of gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Definitions
- the invention relates to virtual reality display technology, in particular to a holographic optical waveguide lens and an augmented reality display device.
- Augmented reality (AR) technology is a new technology that "seamlessly" integrates real world information and virtual world information. It not only displays real world information, but also displays virtual information at the same time. The two kinds of information complement each other, Overlay.
- FIG. 1 shows a grating waveguide structure using coupling-in-turn-out in the prior art, which includes a waveguide 10, a coupling region 20, a turning region 30, and a coupling-out region 40.
- Gratings are arranged in the entrance area 20, the turning area 30, and the coupling-out area 40.
- the image light is incident from the coupling area 20 and diffracted in the coupling area 20.
- the light that meets the total reflection condition is transmitted to the turning area 30 through total reflection in the waveguide 10, and the light interacts with the grating in the turning area 30 and realizes the optical path bending.
- the bent light continues to be transmitted to the coupling-out area 40 in the manner of total reflection conduction, and is finally coupled to the human eye by the coupling-out area 40 to realize virtual imaging.
- the light is transmitted from the coupling area 20 to the turning area 30 to achieve stretching and expansion in the X-axis direction, and the light is transmitted from the turning area 30 to the coupling area 40 to achieve the stretching and expansion in the Y-axis direction. , So as to achieve pupil dilation in two-dimensional space.
- This kind of pupil dilation solution using three separate areas requires a large-area waveguide, which is not suitable for micro-display systems (such as AR glasses).
- Another problem is that this two-way one-way diffraction expansion method requires a large number of diffraction interactions (each diffraction interaction will cause scattering loss), which reduces the contrast of the image and affects the visual effect.
- the first aspect of the present invention provides a holographic optical waveguide lens, which can achieve two-dimensional expansion of image light only by setting two functional areas.
- the specific technical solutions are as follows:
- a holographic optical waveguide lens which is characterized in that it comprises:
- a functional area with optical diffraction function located on the upper or lower surface of the waveguide, the functional area includes:
- An incident functional area in which a one-dimensional grating for coupling external image light to a waveguide is arranged;
- the exit functional area is provided with a two-dimensional grating that couples the image light transmitted in the waveguide out of the waveguide and realizes the expansion of the image light.
- the grating period vector of the one-dimensional grating is parallel to the grating period vector of the two-dimensional grating in one of its orientations, and the grating period vectors of the two-dimensional grating in its two orientations are equal and equal to The grating period vector of the one-dimensional grating.
- the refractive index of the waveguide is set to 1.7-2.0
- the grating period of the one-dimensional grating and the grating period of the two-dimensional grating in its two orientations are 290-710 nm.
- the one-dimensional grating is a rectangular grating with wavelength selectivity, an oblique grating, and a scintillation grating.
- the two-dimensional grating is an arrayed waveguide grating with a two-dimensional periodic structure.
- the arrayed waveguide grating includes a cylindrical arrayed waveguide grating, a rectangular columnar arrayed waveguide grating, and a wedge-shaped columnar arrayed waveguide grating.
- the arrayed waveguide grating is provided by a two-dimensional photonic crystal formed in the waveguide, and the two-dimensional photonic crystal has periodic nanostructures in two crossing directions.
- the two-dimensional grating is formed by two superimposed exposures, and the two superimposed exposures are:
- the exposure light source is kept still, the waveguide is rotated by a predetermined angle along the center, the second exposure is completed, and the two-dimensional grating is obtained;
- the exposure light source is composed of two plane waves, and the two plane waves form an exposure interference surface.
- the present invention only needs to provide two functional areas, an incident functional area and an outgoing functional area, which reduces the area requirement for a waveguide and is suitable for a micro display system.
- the two-dimensional grating in the exit functional area realizes the two-dimensional expansion of light based on multi-directional diffraction, thereby improving the image contrast and ensuring the imaging effect.
- the second aspect of the present invention provides an augmented reality display device, which includes:
- Micro-projection device for generating image light
- the optical waveguide lens which is the holographic optical waveguide lens provided by any one of the first aspect of the present invention.
- the number of the micro-projection device is two, and they are respectively arranged corresponding to the holographic optical waveguide lenses corresponding to the left and right eyes.
- FIG. 1 is a schematic diagram of the structure of an optical waveguide lens with a two-dimensional pupil dilation effect in the prior art
- FIG. 2 is a schematic diagram of the structure of the holographic optical waveguide lens of the present invention.
- Fig. 3 is a schematic diagram of the optical path of the holographic optical waveguide lens of the present invention.
- Fig. 4 is a schematic diagram of the optical path of light in the incident functional area and the exit functional area;
- Figure 5 is a schematic diagram of the light path of the light exiting the functional area
- Fig. 6 is a schematic diagram of the principle of light diffraction of a rectangular grating
- Fig. 7 is a schematic diagram of the principle of light diffraction of a tilted grating
- Fig. 8 is a schematic diagram of the principle of light diffraction of a scintillation grating
- Figure 9 is a schematic diagram of the structure of several common two-dimensional array gratings.
- Fig. 10 is a schematic diagram of setting the grating period vector of a two-dimensional array grating
- FIG. 11 is an imaging principle diagram of the augmented reality display device of the present invention.
- the holographic optical waveguide lens includes:
- the functional area with optical diffraction function located on the upper or lower surface of the waveguide 1, as shown in Fig. 2. If the upper surface is defined as the side where the image light enters and exits, the two functional areas in the embodiment of Fig. 2 They are all set on the upper surface of the waveguide.
- the functional area includes the incident functional area 2 and the outgoing functional area 3. Among them:
- a one-dimensional grating that couples external image light into the waveguide 1 is provided in the incident functional area 2.
- a two-dimensional grating that couples the image light transmitted in the waveguide out of the waveguide 1 and realizes the expansion of the image light is provided in the exit functional area 3.
- the grating period vector p0 of the one-dimensional grating is parallel to the grating period vector p2 of the two-dimensional grating in one of its orientations.
- the grating period vectors of the two-dimensional grating in the two orientations are equal and equal to the grating period vectors of the one-dimensional grating.
- the grating period vector mentioned here refers to a direction vector perpendicular to the orientation of the grating (the extending direction of the grating channel). Since the one-dimensional grating is formed by a set of grating channels arranged parallel to each other, it has only one grating period vector p0, and the two-dimensional grating has two grating period vectors p1 and p2.
- X axis the width direction of the waveguide 1, which is also the connection direction of the user's eyes;
- Y axis the height direction of the waveguide 1, and also the extension direction of the user's nose bridge;
- Z axis the direction perpendicular (or orthogonal) to the X-Y plane defined by the X axis and the Y axis.
- the incident functional area 2 and the outgoing functional area 3 in the present invention are located on the X-Y plane.
- the image light emitted by the micro-projection device is incident on the incident functional area 2 at a certain diffusion angle, and the light interacts with the one-dimensional grating in the incident functional area 2, forming a propagation direction perpendicular to one Diffracted light in the channel direction of the dimensional grating.
- the diffracted light satisfies the total reflection condition of the waveguide, so that it is conducted in the waveguide 1 in the form of total reflection and is finally conducted to the exit functional area 3.
- the light After the light reaches the exit functional area 3, it interacts with the two-dimensional grating in the exit functional area 3. Part of the light continues to be transmitted forward in the form of total reflection, and some of the light is diffracted into three-way diffracted light, one of which is diffracted light Transmissive diffraction, which transmits through the functional area 3 and is observed by the human eye, and the other two diffracted lights are reflective diffracted lights, which are reflected back into the waveguide and continue to interact with the two-dimensional grating.
- the image light transmitted from the incident functional area 2 can not only be coupled out of the waveguide 1 to achieve imaging, in addition, after multiple interactions with the two-dimensional grating In the process, the image light can realize multi-directional expansion and stretching in the X-Y plane, so as to realize the two-dimensional pupil dilation of the image.
- each position of the two-dimensional grating in the exit functional area 3 can couple out image light. Therefore, the human eye can see a clear and balanced image in the entire exit functional area 3.
- the grating orientation and grating period of the two-dimensional grating must match the grating orientation and grating period of the one-dimensional grating. Therefore, the grating parameters of the one-dimensional grating and the two-dimensional grating need to be correspondingly determined based on the grating diffraction formula. Calculate, and perform the layout and shaping of the grating according to the calculation result.
- the specific calculation process and the layout and shaping process of the grating are well known to those of ordinary skill in the art, and will not be repeated here. After seeing the technical solution of the present invention, a person of ordinary skill in the art is fully capable of completing the specific calculation process and the layout of the grating without any creative work.
- the one-dimensional grating in the present invention can be a rectangular grating, a tilted grating or a scintillation grating with wavelength selectivity, specifically:
- FIG. 6 it shows the light diffraction process of a rectangular grating.
- the incident light enters the surface of the rectangular grating at a certain angle of incidence and is diffracted.
- the diffracted light includes zero-order diffracted light T 0 , and -1 order diffracted light.
- Light T -1 and first-order diffracted light T 1 are shown in the example in FIG. 6, the diffraction efficiency of zero-order diffracted light T 0 is the highest, the -1 order diffracted light T -1 is second, and the first-order diffracted light T 1 has the lowest diffraction efficiency.
- the present invention can use the rectangular grating shown in FIG. 6 as the one-dimensional grating in the incident functional area, and by setting the grating parameters, the -1st order diffracted light T -1 is transmitted toward the exit functional area 3. In this way, The diffraction efficiency of the present invention can be improved.
- FIG 7 it shows a light diffraction process of a tilted grating.
- the incident light enters the surface of the tilted grating at a certain angle of incidence and is diffracted.
- the diffracted light includes zero-order diffracted light T 0 , and -1 order diffracted light.
- Light T -1 and first-order diffracted light T 1 are Among them: as shown in the example in Figure 7, the diffraction efficiency of the -1st order diffracted light T -1 is the highest (currently up to 90%), the diffraction efficiency of the zeroth order diffracted light T 0 is second, and the diffraction efficiency of the 1st order diffracted light T 1 lowest.
- the present invention can use the oblique grating shown in Fig. 7 as the one-dimensional grating in the incident functional area, and by setting the grating parameters, the ⁇ 1st-order diffracted light T -1 is transmitted toward the exit functional area 3. In this way, The diffraction efficiency of the present invention can be improved.
- FIG 8 it shows the light diffraction process of a scintillation grating.
- the incident light enters the surface of the scintillation grating at a certain angle of incidence and is diffracted.
- the diffracted light includes zero-order diffracted light T 0 , and -1 order diffracted light.
- Light T -1 and first-order diffracted light T 1 are examples of diffracted light.
- the diffraction efficiency of the -1 order diffracted light T -1 is very (almost to 1)
- the diffraction efficiency of the zero order diffracted light T 0 and the first order diffracted light T 1 is very low (almost zero) .
- the present invention can use the scintillation grating shown in Fig. 8 as the one-dimensional grating in the incident functional area, and by setting the grating parameters, the ⁇ 1st-order diffracted light T -1 is transmitted toward the exit functional area 3. In this way, The diffraction efficiency of the present invention can be improved.
- one-dimensional grating structures can be formed on the surface of the waveguide 1 by using a known grating forming process, such as exposure and etching using an interference light source.
- the two-dimensional grating in the present invention adopts an arrayed waveguide grating with a two-dimensional periodic structure, or is called a volume grating.
- a is a rectangular column arrayed waveguide grating structure
- c is a wedge-shaped columnar arrayed waveguide grating structure
- b and d are Two cylindrical arrayed waveguide gratings with different grating parameters.
- the above-mentioned various arrayed waveguide grating structures with a two-dimensional periodic structure can be provided by a two-dimensional photonic crystal formed in the waveguide, and the two-dimensional photonic crystal has two intersecting directions.
- Periodic nanostructures Periodic nanostructures.
- the two-dimensional grating is formed by two superimposed exposures, and the two superimposed exposures are:
- the exposure light source remains stationary, and the waveguide rotates a predetermined angle along the center to complete the second exposure to obtain the two-dimensional grating.
- the exposure light source is composed of two plane waves, and the two plane waves form an exposure interference surface.
- the waveguide is rotated by 90° ⁇ 1° along the center and then the second exposure is performed. Among them, the waveguide is preferably rotated by 90° along the center.
- the cylindrical arrayed waveguide grating structure in FIG. 9 includes two grating orientations, a first grating channel direction M and a second grating channel direction N.
- the rectangular columnar arrayed waveguide grating structure includes two gratings.
- Period vector the first grating period vector P1 perpendicular to the first grating channel direction M, and the second grating period vector P2 perpendicular to the second grating channel direction N.
- the wave vector is decomposed into periodic vectors p1(x’), p2(y’):
- ⁇ is the angle of incidence
- ⁇ mn is the diffraction angle
- ⁇ is the complementary angle of the periodic vector included angle
- x', y' are the non-orthogonal coordinate system composed of periodic vectors P1 and P2.
- m and n are the diffraction orders.
- ⁇ mn is the diffraction angle
- ⁇ mn is the diffraction azimuth angle
- ⁇ is the angle between the periodic vector p1 and the x-axis.
- the refractive index of the waveguide 1 is generally set to 1.7 to 2.0.
- the grating period of the one-dimensional grating in the incident functional area 2 is generally set to 290-710 nm, and the angle between its period vector p0 and the x-axis is generally set to be 30°-60°.
- the size of the two grating period vectors of the two-dimensional grating in the exit functional area 2 is equal to the size of the grating period vector of the one-dimensional grating in the incident functional area 2, and the period vector of the one-dimensional grating in the incident functional area 2 p0 is parallel to one of the periodic vectors (p1 or p2) of the two-dimensional grating in the exit functional area 2.
- the angle between the two periodic vectors p1 and p2 of the preferred two-dimensional grating is 90° ⁇ 1°. That is, the two periodic vectors p1 and p2 of the two-dimensional grating are orthogonally set. Such a setting can avoid ghost images in the image and improve the imaging effect.
- the waveguide 1, the incident functional area 2, and the outgoing functional area 3 of the holographic optical waveguide lens of the present invention are set as follows:
- the refractive index of the waveguide 1 is 1.84, and the corresponding total reflection angle is 32.92°.
- the grating period of the one-dimensional grating in the incident functional area 2 is 420 nm, and the angle between the period vector p0 and the x-axis is 45°.
- the two grating periods of the two-dimensional grating in the exit functional area 3 are both 420nm, the angle between the period vectors p1 and p2 is 90°, and the angle between one of the period vectors p1 (or p2) and the x-axis is 45°.
- the present invention also provides an augmented reality display device, which includes: a micro-projection device for generating image light; and an optical waveguide lens, which adopts the holographic optical waveguide lens provided by any of the above-mentioned embodiments of the present invention.
- the micro-projection device may use light-emitting diodes (LEDs), LCOS (liquid crystal on silicon) devices, OLED (organic light-emitting diode) arrays, MEMS (micro-electromechanical systems) devices, or any other suitable micro-projection devices.
- LEDs light-emitting diodes
- LCOS liquid crystal on silicon
- OLED organic light-emitting diode
- MEMS micro-electromechanical systems
- an augmented reality display device when constructing an augmented reality display device, it generally includes two sets of micro-projection devices and two mixing-type monolithic waveguide lenses, which correspond to left and right eye displays respectively.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一种全息光波导镜片及增强现实显示装置,全息光波导镜片包括:波导(1);位于波导(1)上表面或下表面的具有光学衍射功能的功能性区域,功能性区域包括:入射功能性区域(2),入射功能性区域内设置有将外部图像光耦合至波导(1)的一维光栅;出射功能性区域(3),出射功能性区域内设置有将波导内(1)传输过来的图像光耦合出波导(1)并实现图像光扩展的二维光栅。只需设置入射功能性区域(2)和出射功能性区域(3)两个功能性区域,降低了对波导(1)的面积需求,适合微型显示系统。通过在出射功能性区域(3)内的二维光栅基于多向衍射实现光线的二维扩展,提升了图像对比度,保证了成像效果。
Description
本发明涉及虚拟现实显示技术,具体涉及一种全息光波导镜片及增强现实显示装置。
增强现实(AR)技术,是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。
一种可行的解决方案是提供在显示器的整个宽度上扩展视场的光栅波导结构。如图1所示,其示出了现有技术中的一种采用耦入-转折-耦出的光栅波导结构,其包括波导10、耦入区域20、转折区域30及耦出区域40,耦入区域20、转折区域30及耦出区域40内均设置有光栅。图像光从耦入区域20入射并在耦入区域20内发生衍射,满足全反射条件的光线经在波导10内经全反射传导至转折区域30,光线与转折区域30内的光栅交互并实现光路弯折,弯折后的光线继续以全反射传导的方式传导至耦出区域40,并最终被耦出区域40耦出至人眼以实现虚拟成像。上述过程中,光线从耦入区域20传导至转折区域30实现了在X轴方向的拉伸、扩展,光线从转折区域30传导至耦出区域40则实现了在Y轴方向的拉伸、扩展,从而实现了二维空间的扩瞳。
这种采用三个分离区域的扩瞳解决方案需要配置大面积波导,在微型显示系统(如AR眼镜)并不适用。另一问题是,这种采取两次单向衍射扩展的方式需要大量的衍射交互(每个衍射交互均会导致散射损失),从而降低了图像的对比度、影响了视觉效果。
发明内容
为解决现有技术存在的上述技术问题,本发明第一方面提供了一种全息光波导镜片,其仅通过设置两个功能区域即能实现对图像光的二维扩展,其具体技术方案如下:
一种全息光波导镜片,其特征在于,其包括:
波导;
位于波导上表面或下表面的具有光学衍射功能的功能性区域,所述功能性区域包括:
入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导的一维光栅;
出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的图像光耦合出波导并实现图像光扩展的二维光栅。
在一些实施例中,所述一维光栅的光栅周期矢量与所述二维光栅在其一个取向上的光栅周期矢量平行,所述二维光栅在其两个取向上的光栅周期矢量相等且等于所述一维光栅的光栅周期矢量。
在一些实施例中,所述波导的折射率设置为1.7~2.0,所述一维光栅的光栅周期、所述二维光栅在其两个取向上的光栅周期为290~710nm。
在一些实施例中,所述一维光栅为具有波长选择性的矩形光栅、倾斜光栅及闪烁光栅。
在一些实施例中,所述二维光栅为具有二维周期结构的阵列波导光栅。
在一些实施例中,所述阵列波导光栅包括圆柱阵列波导光栅、矩形柱阵列波导光栅及楔形柱阵列波导光栅。
在一些实施例中,所述阵列波导光栅由形成于所述波导内的二维光子晶体提供,所述二维光子晶体在两个交叉的方向上均具有周期性纳米结构。
在一些实施例中,所述二维光栅经两次叠加曝光形成,所述两次叠加曝光为:
固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构;
曝光光源保持不动,波导沿中心旋转预定角度,完成第二次曝光,获得所述二维光栅;
所述曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
与现有技术相比,本发明只需要设置入射功能性区域和出射功能性区域两个功能区域,其降低了对波导的面积需求,适合微型显示系统。此外,通过在出射功能性区域内的二维光栅基于多向衍射实现光线的二维扩展,从而提升了图像对比度,保证了成像效果。
本发明的第二方面提供了一种增强现实显示装置,其包括:
微投影装置,用于产生图像光;
光波导镜片,所述光波导镜片为本发明的第一方面任一项所提供的全息光波导镜片。
在一些实施例中,所述微投影装置的数目为两个,并分别与对应左右眼的全息光波导镜片对应设置。
图1为现有技术中的具有二维扩瞳效果的光波导镜片的结构示意图;
图2为本发明的全息光波导镜片的结构示意图;
图3为本发明的全息光波导镜片的光路示意图;
图4为光线在入射功能性区域、出射功能性区域的光路示意图;
图5为光线在出射功能性区域的光路示意图;
图6为矩形光栅的光线衍射原理示意图;
图7为倾斜光栅的光线衍射原理示意图;
图8为闪烁光栅的光线衍射原理示意图;
图9为几种常见的二维阵列光栅的结构示意图;
图10为二维阵列光栅的光栅周期矢量的设置示意图;
图11为本发明的增强现实显示装置的成像原理图。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的抬头显示系统及汽车的具体实施方式、结构、特征及其功效,详细说明如下:
有关本发明的前述及其它技术内容、特点及功效,在以下配合参考图式的较佳实施例的详细说明中将可清楚呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
图2为本发明的全息光波导镜片的结构示意图,该全息光波导镜片用作增强现实显示装置的显示屏。如图1所示,该全息光波导镜片包括:
波导1;
位于波导1的上表面或下表面的具有光学衍射功能的功能性区域,如图2所示,如果定义图像光入射及出射的一面为上表面,则图2实施例中,两个功能性区域均设置在波导的上表面。
功能性区域包括入射功能性区域2和出射功能性区域3,其中:
入射功能性区域2内设置有将外部图像光耦合至波导1内的一维光栅。
出射功能性区域3内设置有将波导内传输过来的图像光耦合出波导1,并实现图像光扩展的二维光栅。
且如图2所示,本发明中,在光栅布置上,一维光栅的光栅周期矢量p0与二维光栅的在其一个取向上的光栅周期矢量p2平行。此外,所述二维光栅在两个取向上的光栅周期矢量相等且均等于所述一维光栅的光栅周期矢量。
此处所提及的光栅周期矢量是指垂直于光栅取向(光栅的沟道延伸方向)的方向矢量。由于一维光栅由一组相互平行的光栅沟道排布形成,因此其仅具有一个光栅周期矢量p0,二维光栅则具有两个光栅周期矢量p1、p2。
下文将对本发明的全息光波导镜片的光学原理进行介绍,在此之前,我们定义如下坐标轴:
X轴:波导1的宽度方向,同时也是用户的双眼连线方向;
Y轴:波导1的高度方向,同时也是用户的鼻梁的延伸方向;
Z轴:与X轴、Y轴限定的X—Y平面垂直(或正交)的方向。
可见,本发明中的入射功能性区域2、出射功能性区域3位于X—Y平面上。
请参考图3至5所示:微投影装置发出的图像光以一定的扩散角入射至入射功能性区域2,光线与入射功能性区域2内的一维光栅产生交互,形成传播方向垂直于一维光栅沟道方向的衍射光。衍射光满足波导的全反射条件,从而以全反射形态在波导1内传导并最终传导至出射功能性区域3。
光线到达出射功能性区域3后与出射功能性区域3内的二维光栅产生交互,部分光线以全反射形态继续向前传导,部分光线则被衍射成三路衍射光,其中的一路衍射光为透射式衍射,其透射出功能性区域3并被人眼观察到,另外两路衍射光为反射式衍射光,其被反射回波导内并继续与二维光栅交互。可见,通过与出射功能性区域3内的二维光栅的交互,自入射功能性区域2传导过来的图像光不仅能够被耦合出波导1以实现成像,此外,在与二维光栅的多次交 互过程中,图像光能够实现在X—Y平面内的多向扩展、拉伸,从而实现对图像的二维扩瞳。此外,本发明中,出射功能性区域3内的二维光栅的各个位置均能耦出图像光线,因此,人眼在整个出射功能性区域3内均能看到清晰的、均衡的图像。
当然为了实现上述衍射效果,二维光栅的光栅取向、光栅周期必须与一维光栅的光栅取向、光栅周期相匹配,因此需要基于光栅衍射公式对一维光栅、二维光栅的光栅参数进行相应的计算,并根据计算结果进行光栅的布局成型,具体计算过程及光栅的布局成型工艺为本领域一般技术人员所熟知,此处不进行赘述。本领域一般技术人员在看到本发明的技术方案后,完全有能力完成具体的计算过程及光栅的布局成型,其不需要付出任何创造性的劳动。
当然,为了便于本领域技术人员更好地理解本发明,后文中我们将对二维光栅的光栅衍射公式进行简要介绍,当然这些技术内容均为本领域技术人员所熟悉的公知性知识,其并非本发明要保护的对象。
本发明中的一维光栅可以采用具有波长选择性的矩形光栅、倾斜光栅或闪烁光栅,具体的:
如图6所示,其示出了一种矩形光栅的光线衍射过程,入射光线以一定的入射角入射至矩形光栅的表面并发生衍射,衍射光线包括零级衍射光T
0,-1级衍射光T
-1和1级衍射光T
1。其中:就图6示例所示,零级衍射光T
0的衍射效率最高,-1级衍射光T
-1次之,1级衍射光T
1的衍射效率最低。本发明可以采用图6所示的矩形光栅作为入射功能性区域内的一维光栅,并通过对其光栅参数进行设置,使得-1级衍射光T
-1朝向出射功能性区域3传导,如此,能够提升本发明的衍射效率。
如图7所示,其示出了一种倾斜光栅的光线衍射过程,入射光线以一定的入射角入射至倾斜光栅的表面并发生衍射,衍射光线包括零级衍射光T
0,-1级衍射光T
-1和1级衍射光T
1。其中:就图7示例所示,-1级衍射光T
-1的衍射效率最高(目前可以达到90%)、零级衍射光T
0的衍射效率次之,1级衍射光T
1的衍射效率最低。本发明可以采用图7所示的倾斜光栅作为入射功能性区域内的一维光栅,并通过对其光栅参数进行设置,使得-1级衍射光T
-1朝向出射功能性区域3传导,如此,能够提升本发明的衍射效率。
如图8所示,其示出了一种闪烁光栅的光线衍射过程,入射光线以一定的入射角入射至闪烁光栅的表面并发生衍射,衍射光线包括零级衍射光T
0,-1级衍射光T
-1和1级衍射光T
1。其中:就图8示例所示,-1级衍射光T
-1的衍射效率非常(几乎达到1)、零级衍射光T
0和1级衍射光T
1的衍射效率非常低(几乎为零)。本发明可以采用图8所示的闪烁光栅作为入射功能性区域内的一维光栅,并通过对其光栅参数进行设置,使得-1级衍射光T
-1朝向出射功能性区域3传导,如此,能够提升本发明的衍射效率。
上述各种形式的一维光栅结构可以采用已知的光栅成型工艺形成于波导1的表面,如采用干涉光源曝光、蚀刻等。
优选的,本发明中的二维光栅采用具有二维周期结构的阵列波导光栅,或者称为体光栅。如图9所示,其示出了几种典型的具有二维周期结构的阵列波导光栅结构,其中的a为矩形柱阵列波导光栅结构,c为楔形柱阵列波导光栅结构,b和d则为两种具有不同光栅参数的圆柱阵列波导光栅。
在一些实施例中,上述各种具有二维周期结构的阵列波导光栅结构阵列波导光栅可以由形成于所述波导内的二维光子晶体提供,二维光子晶体在两个交叉的方向上均具有周期性纳米结构。
在一些实施例中,二维光栅经两次叠加曝光形成,所述两次叠加曝光为:
固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构。曝光光源保持不动,波导沿中心旋转预定角度,完成第二次曝光,获得所述二维光栅。其中的曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。第一次曝光结束后,波导沿中心旋转90°±1°后再实施第二次曝光,其中,优选为波导沿中心旋转90°。
下文中,我们将对具有二维周期结构的阵列波导光栅的进行简要介绍,以方便本领域技术人员更好地理解本发明的技术方案。以图9中的圆柱阵列波导光栅结构为例,其包括两个光栅取向,第一光栅沟道方向M和第二光栅沟道方向N,相应的,该矩形柱阵列波导光栅结构包括两个光栅周期矢量:垂直于第一光栅沟道方向M的第一光栅周期矢量P1,垂直于第二光栅沟道方向N的第二光栅周期矢量P2。结合图9,参考图10所示,二维光栅的光栅衍射公式的推导过程如下:
(1)、波矢分解到周期矢量p1(x’)、p2(y’):
其中,
(3)、转换至xyz直角坐标系:
Θ
mn=θ
mn
Θ
mn为衍射角,Φ
mn为衍射方位角,γ为周期矢量p1与x轴的夹角。
本发明中的全息光波导镜片中:
波导1的折射率一般设置为1.7~2.0。
入射功能性区域2内的一维光栅的光栅周期一般设置为290~710nm,其周期矢量p0与x轴夹角一般设置为30°~60°。
出射功能性区域2内的二维光栅的两个光栅周期矢量大小均与入射功能性区域2内的一维光栅的光栅周期矢量大小相等,且入射功能性区域2内的一维光栅的周期矢量p0与出射功能性区域2内的二维光栅的其中的一个周期矢量(p1或p2)平行。
优选的二维光栅的两个周期矢量p1、p2的夹角为90°±1°。即二维光栅的两个周期矢量p1、p2为正交设置,如此设置,可以避免图像中产生重影,提升成像效果。
下文将结合上文提及的光栅衍射公式,用一个具体实施例介绍本发明中的全息光波导镜片的衍射原理:
该具体实施例中,本发明中的全息光波导镜片的波导1、入射功能性区域2、出射功能性区域3进行如下设置:
波导1为折射率为1.84,对应的全反射角为32.92°。
入射功能性区域2内的一维光栅的光栅周期为420nm,其周期矢量p0与x轴夹角为45°。
出射功能性区域3内的二维光栅的两个光栅周期均为420nm,周期矢量p1、p2之间的夹角为90°,其中的一个周期矢量p1(或者p2)与x轴的夹角为45°。
以波长为620nm波长的入射光为例:
当入射光的入射角为0°,方位角为0°,根据上述光栅衍射公式,可计算出传向出射功能性区域3的衍射级次的衍射角和方位角:Θ
10=53.3481°,Φ
10=0°(Θ
-10=53.3481°,Φ
-10=180°),衍射角大于全反射角,所以此光线可传导至出射功能性区域3。再次运用光栅衍射公式,可计算的仅有一个耦出级次,Θ
-10=0°,Φ
-10=0°,而从出射功能性区域3的二维光栅反射的衍射级次有Θ
-1-1=53.3481°,Φ
-1-1=-90°;Θ
-11=53.3481°,Φ
-11=90°;Θ
00=53.3481°,Φ
00=0°,这三束衍射光仍满足全反射,所以再次遇到二维 耦出光栅时,仍可发生衍射,出射波导的衍射角均为0°。
当入射光的入射角为10°,方位角为0°,根据上述光栅衍射公式,可计算出传向出射功能性区域3的衍射级次的衍射角和方位角:Θ
10=45.0646°,Φ
10=0°(Θ
-10=63.7213°,Φ
-10=180°),衍射角大于全反射角,所以此光线可传导至出射功能性区域3。再次运用光栅衍射公式,可计算的仅有一个耦出级次,Θ
-10=0°,Φ
-10=180°,而从耦出区域二维光栅反射的衍射级次有Θ
-1-1=53.8824°,Φ
-1-1=-96.7090°;Θ
-11=53.8824°,Φ
-11=-96.7090°;Θ
00=45.0646°,Φ
00=0°,这三束衍射光仍满足全反射,所以再次遇到二维耦出光栅时,仍可发生衍射,出射波导的衍射角均为10°。
本发明还提供了一种增强现实显示装置,其包括:微投影装置,用于产生图像光;光波导镜片,该光波导镜片采用本发明上述任一实施例提供的全息光波导镜片。
微投影装置可以采用发光二极管(LEDs)、LCOS(硅上的液晶)器件、OLED(有机发光二极管)阵列、MEMS(微电子机械系统)器件,或任何其他适当的微投影装置。
如图11所示,在构建一套增强现实显示装置,一般会包括两套微投影装置和两片混频式单片波导镜片,分别对应左右眼显示。
上文对本发明进行了足够详细的具有一定特殊性的描述。所属领域内的普通技术人员应该理解,实施例中的描述仅仅是示例性的,在不偏离本发明的真实精神和范围的前提下做出所有改变都应该属于本发明的保护范围。本发明所要求保护的范围是由所述的权利要求书进行限定的,而不是由实施例中的上述描述来限定的。
Claims (16)
- 一种全息光波导镜片,其特征在于,其包括:波导;位于波导上表面或下表面的具有光学衍射功能的功能性区域,所述功能性区域包括:入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导的一维光栅;出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的图像光耦合出波导并实现图像光扩展的二维光栅。
- 如权利要求1所述的全息光波导镜片,其特征在于,所述一维光栅的光栅周期矢量与所述二维光栅在其一个取向上的光栅周期矢量平行,所述二维光栅在其两个取向上的光栅周期矢量相等且等于所述一维光栅的光栅周期矢量。
- 如权利要求2所述的全息光波导镜片,其特征在于,所述波导的折射率设置为1.7~2.0,所述一维光栅的光栅周期、所述二维光栅在其两个取向上的光栅周期为290~710nm。
- 如权利要求1所述的全息光波导镜片,其特征在于,所述一维光栅为矩形光栅、倾斜光栅及闪烁光栅。
- 如权利要求1所述的全息光波导镜片,其特征在于,所述二维光栅为具有二维周期结构的阵列波导光栅。
- 如权利要求5所述的全息光波导镜片,其特征在于,所述阵列波导光栅包括圆柱阵列波导光栅、矩形柱阵列波导光栅及楔形柱阵列波导光栅。
- 如权利要求5所述的全息光波导镜片,其特征在于,所述阵列波导光栅由形成于所述波导内的二维光子晶体提供,所述二维光子晶体在两个交叉的方向上均具有周期性纳米结构。
- 如权利要求1所述的全息光波导镜片,其特征在于,所述二维光栅经两次叠加曝光形成,所述两次叠加曝光为:固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构;曝光光源保持不动,波导沿中心旋转预定角度,完成第二次曝光,获得所 述二维光栅;所述曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
- 一种增强现实显示装置,其特征在于:其包括:微投影装置,用于产生图像光;光波导镜片,所述光波导镜片为全息光波导镜片,所述全息光波导镜片包括:波导和位于波导上表面或下表面的具有光学衍射功能的功能性区域,所述功能性区域包括:入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导的一维光栅;出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的图像光耦合出波导并实现图像光扩展的二维光栅。
- 如权利要求9所述的增强现实显示装置,其特征在于:所述微投影装置的数目为两个,并分别与对应左右眼的全息光波导镜片对应设置。
- 如权利要求9所述的增强现实显示装置,其特征在于:所述一维光栅的光栅周期矢量与所述二维光栅在其一个取向上的光栅周期矢量平行,所述二维光栅在其两个取向上的光栅周期矢量相等且等于所述一维光栅的光栅周期矢量。
- 如权利要求11所述的增强现实显示装置,其特征在于:所述波导的折射率设置为1.7~2.0,所述一维光栅的光栅周期、所述二维光栅在其两个取向上的光栅周期为290~710nm。
- 如权利要求11所述的增强现实显示装置,其特征在于:所述一维光栅为矩形光栅、倾斜光栅及闪烁光栅,所述二维光栅为具有二维周期结构的阵列波导光栅。
- 如权利要求13所述的增强现实显示装置,其特征在于:所述阵列波导光栅包括圆柱阵列波导光栅、矩形柱阵列波导光栅及楔形柱阵列波导光栅。
- 如权利要求13所述的增强现实显示装置,其特征在于:所述阵列波导光栅由形成于所述波导内的二维光子晶体提供,所述二维光子晶体在两个交叉的方向上均具有周期性纳米结构。
- 如权利要求9所述的增强现实显示装置,其特征在于:,所述二维光栅经两次叠加曝光形成,所述两次叠加曝光为:固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构;曝光光源保持不动,波导沿中心旋转预定角度,完成第二次曝光,获得所述二维光栅;所述曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010130229.2A CN113325506A (zh) | 2020-02-28 | 2020-02-28 | 一种全息光波导镜片及增强现实显示装置 |
CN202010130229.2 | 2020-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021169406A1 true WO2021169406A1 (zh) | 2021-09-02 |
Family
ID=77413358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/127980 WO2021169406A1 (zh) | 2020-02-28 | 2020-11-11 | 一种全息光波导镜片及增强现实显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113325506A (zh) |
WO (1) | WO2021169406A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113960799A (zh) * | 2021-11-08 | 2022-01-21 | 北京枭龙防务科技有限公司 | 用于ar近眼显示设备的高光效衍射波导元件 |
CN114371528A (zh) * | 2022-01-13 | 2022-04-19 | 北京理工大学 | 衍射光波导和基于衍射光波导的显示方法 |
CN114994825A (zh) * | 2022-05-13 | 2022-09-02 | 嘉兴驭光光电科技有限公司 | 衍射光波导及其设计方法和形成方法、以及显示设备 |
CN115166884A (zh) * | 2022-09-08 | 2022-10-11 | 北京亮亮视野科技有限公司 | 二维超表面光栅、二维衍射光波导和近眼显示设备 |
CN118131493A (zh) * | 2024-05-08 | 2024-06-04 | 南昌虚拟现实研究院股份有限公司 | 一种用于制备光波导镜片系统 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114167532A (zh) * | 2021-12-10 | 2022-03-11 | 谷东科技有限公司 | 衍射光栅波导及其制备方法和近眼显示设备 |
CN114236819B (zh) * | 2021-12-29 | 2022-09-27 | 东南大学 | 一种基于偏振体全息光栅的波导显示二维扩瞳方法 |
US20230213756A1 (en) * | 2021-12-30 | 2023-07-06 | Goertek Inc. | Optical display system and augmented reality electronic device |
CN115166897B (zh) * | 2022-01-13 | 2023-04-07 | 北京驭光科技发展有限公司 | 衍射光波导及显示设备 |
CN116699751B (zh) * | 2022-02-28 | 2024-05-24 | 荣耀终端有限公司 | 光波导及近眼显示设备 |
CN114660818B (zh) * | 2022-03-29 | 2023-02-28 | 歌尔股份有限公司 | 光波导系统及增强现实设备 |
CN114624802B (zh) * | 2022-05-13 | 2022-09-02 | 深圳珑璟光电科技有限公司 | 一种二维光栅及其形成方法、光波导及近眼显示设备 |
CN115128809B (zh) * | 2022-05-17 | 2023-11-28 | 南京工业职业技术大学 | 一种实现全息波导显示系统均匀成像的光栅效率分布表征与优化方法 |
CN114779479B (zh) * | 2022-06-21 | 2022-12-02 | 北京灵犀微光科技有限公司 | 近眼显示装置及穿戴设备 |
CN115236788B (zh) * | 2022-06-27 | 2024-09-06 | 北京灵犀微光科技有限公司 | 光波导器件、近眼显示装置以及智能眼镜 |
CN115166987B (zh) * | 2022-06-30 | 2024-07-02 | 北京灵犀微光科技有限公司 | 实物全息复现装置和方法 |
CN115903122B (zh) * | 2023-01-06 | 2023-06-06 | 北京至格科技有限公司 | 一种用于增强现实显示的光栅波导装置及波导系统 |
CN116430495A (zh) * | 2023-04-27 | 2023-07-14 | 广纳四维(广东)光电科技有限公司 | 一种体全息光波导光栅的曝光方法及曝光光路、曝光系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109239920A (zh) * | 2017-07-11 | 2019-01-18 | 苏州苏大维格光电科技股份有限公司 | 一种全息波导镜片及增强现实显示装置 |
US20190114484A1 (en) * | 2017-10-13 | 2019-04-18 | Corning Incorporated | Waveguide-based optical systems and methods for augmented reality systems |
US10295723B1 (en) * | 2018-05-01 | 2019-05-21 | Facebook Technologies, Llc | 2D pupil expander using holographic Bragg grating |
WO2019122529A1 (en) * | 2017-12-22 | 2019-06-27 | Dispelix Oy | Waveguide display and display element with novel grating configuration |
CN110764261A (zh) * | 2019-09-18 | 2020-02-07 | 深圳市瞐客科技有限公司 | 一种光波导结构、ar设备光学成像系统及ar设备 |
CN211236331U (zh) * | 2020-02-26 | 2020-08-11 | 浙江水晶光电科技股份有限公司 | 光栅波导出瞳扩展器及增强现实显示模组 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8160411B2 (en) * | 2006-12-28 | 2012-04-17 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
GB2529003B (en) * | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
CN108873350A (zh) * | 2018-07-24 | 2018-11-23 | 上海鲲游光电科技有限公司 | 一种波导显示装置 |
-
2020
- 2020-02-28 CN CN202010130229.2A patent/CN113325506A/zh active Pending
- 2020-11-11 WO PCT/CN2020/127980 patent/WO2021169406A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109239920A (zh) * | 2017-07-11 | 2019-01-18 | 苏州苏大维格光电科技股份有限公司 | 一种全息波导镜片及增强现实显示装置 |
US20190114484A1 (en) * | 2017-10-13 | 2019-04-18 | Corning Incorporated | Waveguide-based optical systems and methods for augmented reality systems |
WO2019122529A1 (en) * | 2017-12-22 | 2019-06-27 | Dispelix Oy | Waveguide display and display element with novel grating configuration |
US10295723B1 (en) * | 2018-05-01 | 2019-05-21 | Facebook Technologies, Llc | 2D pupil expander using holographic Bragg grating |
CN110764261A (zh) * | 2019-09-18 | 2020-02-07 | 深圳市瞐客科技有限公司 | 一种光波导结构、ar设备光学成像系统及ar设备 |
CN211236331U (zh) * | 2020-02-26 | 2020-08-11 | 浙江水晶光电科技股份有限公司 | 光栅波导出瞳扩展器及增强现实显示模组 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113960799A (zh) * | 2021-11-08 | 2022-01-21 | 北京枭龙防务科技有限公司 | 用于ar近眼显示设备的高光效衍射波导元件 |
CN114371528A (zh) * | 2022-01-13 | 2022-04-19 | 北京理工大学 | 衍射光波导和基于衍射光波导的显示方法 |
CN114994825A (zh) * | 2022-05-13 | 2022-09-02 | 嘉兴驭光光电科技有限公司 | 衍射光波导及其设计方法和形成方法、以及显示设备 |
CN114994825B (zh) * | 2022-05-13 | 2023-03-10 | 嘉兴驭光光电科技有限公司 | 衍射光波导及其设计方法和形成方法、以及显示设备 |
CN115166884A (zh) * | 2022-09-08 | 2022-10-11 | 北京亮亮视野科技有限公司 | 二维超表面光栅、二维衍射光波导和近眼显示设备 |
CN115166884B (zh) * | 2022-09-08 | 2022-11-29 | 北京亮亮视野科技有限公司 | 二维超表面光栅、二维衍射光波导和近眼显示设备 |
CN118131493A (zh) * | 2024-05-08 | 2024-06-04 | 南昌虚拟现实研究院股份有限公司 | 一种用于制备光波导镜片系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113325506A (zh) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169406A1 (zh) | 一种全息光波导镜片及增强现实显示装置 | |
EP3787999B1 (en) | Diffraction gratings for beam redirection | |
US11822112B2 (en) | Projector architecture incorporating artifact mitigation | |
US10935730B1 (en) | Waveguide display device | |
US10061124B2 (en) | Robust architecture for large field of view components | |
CN109073884B (zh) | 具有改进的强度分布的波导出射光瞳扩展器 | |
JP6714797B2 (ja) | 射出瞳を拡大する回折光導波路装置 | |
US10386642B2 (en) | Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system | |
Kress et al. | Optical architecture of HoloLens mixed reality headset | |
JP7149350B2 (ja) | 最適効率のための導波路の回転格子の設計 | |
EP2153266B1 (en) | A diffractive beam expander and a virtual display based on a diffractive beam expander | |
US20170299864A1 (en) | Waveguides with extended field of view | |
CN113568167B (zh) | 镜片单元和包括镜片单元的ar设备 | |
US11994684B2 (en) | Image light guide with zoned diffractive optic | |
CN110036235B (zh) | 具有用于再循环光的外围侧面几何形状的波导 | |
WO2021169383A1 (zh) | 用于呈现增强现实图像的装置和包含该装置的系统 | |
TW202020503A (zh) | 用於擴增實境或虛擬實境顯示之裝置 | |
CN111175971A (zh) | 一种近眼光学显示系统、增强现实眼镜 | |
WO2021218454A1 (zh) | 镜片单元和包括镜片单元的ar设备 | |
WO2022267610A1 (zh) | 光学设备及电子设备 | |
WO2022236113A1 (en) | Waveguide combiners having a pass-through in-coupler grating | |
CN116203668A (zh) | 波导型显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20920819 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20920819 Country of ref document: EP Kind code of ref document: A1 |