JP2007012894A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2007012894A
JP2007012894A JP2005192238A JP2005192238A JP2007012894A JP 2007012894 A JP2007012894 A JP 2007012894A JP 2005192238 A JP2005192238 A JP 2005192238A JP 2005192238 A JP2005192238 A JP 2005192238A JP 2007012894 A JP2007012894 A JP 2007012894A
Authority
JP
Japan
Prior art keywords
semiconductor device
wiring
insulating films
hole
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005192238A
Other languages
Japanese (ja)
Inventor
Yukitoshi Ota
行俊 太田
Takeshi Hamaya
毅 濱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005192238A priority Critical patent/JP2007012894A/en
Publication of JP2007012894A publication Critical patent/JP2007012894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a pattern for peeling-off prevention that can correspond to the further microfabrication of a wiring layer and the reduction of a dielectric constant of an interlayer insulating film, and to provide its manufacturing method. <P>SOLUTION: The semiconductor device having a multilayered wiring structure is composed so that a plurality of insulating films 2-7 are formed on a semiconductor substrate 1, wiring 32, 42, 52, 62, and 72 embedded in a plurality of the insulating films 3-7 are provided, and a plurality of the insulating films 3, 4 are those using materials having low dielectric constants. A through-hole penetrating all the insulating films 2-7 is formed at the corner of the semiconductor device. A through-via 10 is formed at the whole through-hole. By this, it is possible to prevent the insulating films from peeling off. Effects of the peeling-off prevention are significant since the through-via does not have a part where a via and the wiring are connected with a cap layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁膜に低誘電率材料を使用した多層配線構造を有する半導体装置に関するものであり、特に機械的ないし熱的なストレスによる絶縁膜の剥離を防止できる半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device having a multilayer wiring structure using a low dielectric constant material for an insulating film, and more particularly to a semiconductor device capable of preventing peeling of the insulating film due to mechanical or thermal stress and a method for manufacturing the same. It is.

デジタル化社会が進むにつれ、半導体装置の高機能化・高速化の要望が強まっている。このような半導体装置の大規模高集積化に伴い、配線の多層化さらには配線層の微細化が進んでいる。近年、配線の微細化によって生じる寄生容量を抑制し、半導体装置の高速化に対応するために、従来のシリコン酸化膜やシリコン窒化膜などの酸化物誘電体よりも誘電率の低い低誘電率材料を絶縁膜に用いられるようになった。低誘電率材料は、従来の酸化膜誘電体と比較して、ヤング率が低い、硬度が低い、熱膨張率が高い、絶縁膜界面の密着性が低いといった物理的特性の著しい違いが存在し、この物理特性の違いは誘電率が低くなるほど大きくなる。   As the digital society progresses, there is a growing demand for higher functionality and higher speed of semiconductor devices. Along with the large scale and high integration of such semiconductor devices, the number of wiring layers and the size of wiring layers are increasing. In recent years, low dielectric constant materials with lower dielectric constants than conventional oxide dielectrics such as silicon oxide films and silicon nitride films in order to suppress parasitic capacitance caused by miniaturization of wiring and to cope with higher speed of semiconductor devices Has been used for insulating films. Low dielectric constant materials have significant differences in physical properties such as low Young's modulus, low hardness, high coefficient of thermal expansion, and low adhesion at the insulating film interface compared to conventional oxide film dielectrics. The difference in physical characteristics increases as the dielectric constant decreases.

このため低誘電率材料を用いた半導体装置において、封止時や封止後の熱応力によりチップコーナ部の絶縁膜の境界面で剥離が発生し問題となっている。特に、このような剥離は物理特性に違いがある酸化膜誘電体の絶縁膜と低誘電率材料の絶縁膜の境界面で起こりやすい。絶縁膜の剥離は配線間のリークや断線を引き起こすため、半導体装置にとっては致命的となる。   For this reason, in a semiconductor device using a low dielectric constant material, peeling occurs at the boundary surface of the insulating film at the chip corner portion due to thermal stress at the time of sealing or after sealing. In particular, such delamination is likely to occur at the interface between an oxide dielectric dielectric film and a low dielectric constant material dielectric film having different physical characteristics. The separation of the insulating film causes leakage between wires and disconnection, which is fatal for the semiconductor device.

チップコーナ部の絶縁膜の剥離を防止する方法として、配線層に内部回路に接続していない配線を配置し、その配線同士をビアで接続した配線パターンをチップコーナ部に配置し強化する方法がある。以下、図10および図11を用いてその配線パターンについて、例としてデュアルダマシンプロセスの場合を用いて説明する。   As a method for preventing the peeling of the insulating film at the chip corner, there is a method in which wiring that is not connected to the internal circuit is arranged in the wiring layer, and a wiring pattern in which the wiring is connected by vias is arranged in the chip corner and strengthened. is there. Hereinafter, the wiring pattern will be described with reference to FIGS. 10 and 11 using a dual damascene process as an example.

図10は配線とビアの断面図である。図10で示すように、絶縁膜2a、絶縁膜3a間にはSiC膜などのキャップ層100があり、配線32aと絶縁膜3a間、ビア31aと絶縁膜3a間、ビア31aと下層配線22a間にはTaNなどのバリアメタル101がある。絶縁膜2aと絶縁膜3aの間のキャップ層100との密着性と比較すると、ビア31aと下層配線22a間のTaN膜101での接続は密着性が高い。よって、配線22a、32aをビア31aで接続した配線パターンは絶縁膜3a、2aの剥離の発生、進展を防ぐことが出来る。   FIG. 10 is a cross-sectional view of wiring and vias. As shown in FIG. 10, there is a cap layer 100 such as a SiC film between the insulating film 2a and the insulating film 3a, between the wiring 32a and the insulating film 3a, between the via 31a and the insulating film 3a, and between the via 31a and the lower layer wiring 22a. Has a barrier metal 101 such as TaN. Compared with the adhesiveness between the insulating film 2a and the cap layer 100 between the insulating film 3a, the connection at the TaN film 101 between the via 31a and the lower layer wiring 22a has high adhesiveness. Therefore, the wiring pattern in which the wirings 22a and 32a are connected by the via 31a can prevent the insulating films 3a and 2a from peeling off and progressing.

図11は剥離防止の配線パターンを配置したチップコーナ部の断面図である。1は半導体基板、2〜7は絶縁膜、8はシールリング、9は内部回路、21はコンタクトプラグ、31、41、51、61、71はビア、32、42、52、62、72は配線である。17は剥離防止の配線パターンの内部回路に接続していない配線とその接続ビアである。シールリング8、並びに内部回路9に接続していない配線と接続ビア17はそれぞれ内部回路9を構成する配線層と同一の層からなる。   FIG. 11 is a cross-sectional view of a chip corner portion where a wiring pattern for preventing peeling is arranged. 1 is a semiconductor substrate, 2 to 7 are insulating films, 8 is a seal ring, 9 is an internal circuit, 21 is a contact plug, 31, 41, 51, 61 and 71 are vias, 32, 42, 52, 62 and 72 are wiring It is. Reference numeral 17 denotes a wiring that is not connected to the internal circuit of the peeling prevention wiring pattern and its connection via. The seal ring 8, the wiring not connected to the internal circuit 9 and the connection via 17 are made of the same layer as the wiring layer constituting the internal circuit 9.

配線パターンの形成方法は、図12(a)で示すように、CVDにより絶縁膜を形成し、エッチングにより内部回路9のビア孔と配線溝の形成と同時に配線パターン17の配線溝とビア孔を形成し、図12(b)で示すように電解めっきにより内部回路9のビアと配線の形成と同時に配線パターン17の配線とビアを形成する。
特開2004−153015
As shown in FIG. 12A, the wiring pattern is formed by forming an insulating film by CVD and simultaneously forming the via hole and the wiring groove of the internal circuit 9 by etching to form the wiring groove and the via hole of the wiring pattern 17. Then, as shown in FIG. 12B, the wiring and vias of the wiring pattern 17 are formed simultaneously with the formation of the vias and wirings of the internal circuit 9 by electrolytic plating.
JP 2004-153015 A

配線層の微細化、絶縁膜の低誘電率化は進み続けている。更に配線層が微細化すると、剥離防止のためのチップコーナ部の配線パターンは、内部の回路と同時に形成するため、剥離防止の配線パターンのビアも微細化する。これにより、元々キャップ層により配線とビアが接続されているので、単体である配線部やビアと比較して弱い部分であるビアと配線の接続面積が小さくなり、配線パターンの剥離防止の効果が弱くなってしまう。また、更に低誘電率な材料を絶縁膜へ使用することにより、密着性は悪くなり、絶縁膜にかかる熱応力が大きくなってしまう。このため、上記の配線パターンをコーナ部に配置しても絶縁膜の剥離が発生するようになってきている。   The miniaturization of wiring layers and the reduction of dielectric constant of insulating films continue to advance. When the wiring layer is further miniaturized, the wiring pattern of the chip corner portion for preventing peeling is formed at the same time as the internal circuit. Therefore, the via of the wiring pattern for preventing peeling is also miniaturized. As a result, since the wiring and via are originally connected by the cap layer, the connection area between the via and the wiring, which is a weak part, is smaller than that of the single wiring part and via, and the effect of preventing the peeling of the wiring pattern is achieved. It becomes weak. Further, by using a material having a lower dielectric constant for the insulating film, the adhesion is deteriorated and the thermal stress applied to the insulating film is increased. For this reason, even if the wiring pattern is arranged at the corner, the insulating film is peeled off.

したがって、本発明の目的は、更なる配線層の微細化、絶縁膜の低誘電率化に対応することが出来る剥離防止のパターンを有する半導体装置およびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a semiconductor device having an anti-peeling pattern that can cope with further miniaturization of a wiring layer and a lower dielectric constant of an insulating film, and a manufacturing method thereof.

上記目的を達成するために、この発明の請求項1記載の半導体装置は、半導体基板上に積層された複数の絶縁膜と、複数の絶縁膜の少なくとも一部に埋設された配線とを備え、複数の絶縁膜の一部もしくは全てに低誘電率材料を用いた多層配線構造の半導体装置であって、
半導体装置のコーナ部にすべての絶縁膜を貫通する貫通孔を有し、貫通孔の全体に貫通ビアを有する。
In order to achieve the above object, a semiconductor device according to claim 1 of the present invention includes a plurality of insulating films stacked on a semiconductor substrate, and wiring embedded in at least a part of the plurality of insulating films, A semiconductor device having a multilayer wiring structure using a low dielectric constant material for some or all of a plurality of insulating films,
The corner portion of the semiconductor device has a through hole penetrating all the insulating films, and the entire through hole has a through via.

請求項2記載の半導体装置は、半導体基板上に積層された複数の絶縁膜と、複数の絶縁膜の少なくとも一部に埋設された配線とを備え、複数の絶縁膜の一部もしくは全てに低誘電率材料を用いた多層配線構造の半導体装置であって、
半導体装置のコーナ部にすべての絶縁膜および半導体基板を貫通する貫通孔を有し、貫通孔の全体に貫通ビアを有する。
According to a second aspect of the present invention, there is provided a semiconductor device comprising: a plurality of insulating films stacked on a semiconductor substrate; and a wiring embedded in at least a part of the plurality of insulating films. A semiconductor device having a multilayer wiring structure using a dielectric constant material,
The corner portion of the semiconductor device has a through hole penetrating all the insulating films and the semiconductor substrate, and the entire through hole has a through via.

請求項3記載の半導体装置は、半導体基板上に積層された複数の絶縁膜と、複数の絶縁膜の少なくとも一部に埋設された配線とを備え、複数の絶縁膜の一部もしくは全てに低誘電率材料を用いた多層配線構造の半導体装置であって、
半導体装置のコーナ部にすべての絶縁膜を貫通し、かつ貫通端部が半導体基板の内部に達しているが貫通はしていない貫通孔を有し、貫通孔の全体に貫通ビアを有する。
According to a third aspect of the present invention, there is provided a semiconductor device comprising: a plurality of insulating films stacked on a semiconductor substrate; and a wiring embedded in at least a part of the plurality of insulating films. A semiconductor device having a multilayer wiring structure using a dielectric constant material,
The corner portion of the semiconductor device has a through hole that penetrates all of the insulating film, and the through end portion reaches the inside of the semiconductor substrate but does not penetrate, and the entire through hole has a through via.

請求項4記載の半導体装置は、半導体基板上に積層された複数の絶縁膜と、複数の絶縁膜の少なくとも一部に埋設された配線とを備え、複数の絶縁膜が低誘電率材料を含む複数の種類の材料を用いた多層配線構造の半導体装置であって、
半導体装置のコーナ部に複数の絶縁膜のうち複数の種類の絶縁膜にまたがって貫通した貫通孔を有し、
貫通孔の全体に貫通ビアを有する。
The semiconductor device according to claim 4 includes a plurality of insulating films stacked on a semiconductor substrate and wiring embedded in at least a part of the plurality of insulating films, and the plurality of insulating films include a low dielectric constant material. A semiconductor device having a multilayer wiring structure using a plurality of types of materials,
A corner portion of the semiconductor device has a through-hole penetrating a plurality of types of insulating films among a plurality of insulating films,
A through via is provided in the entire through hole.

請求項5記載の半導体装置は、請求項1、請求項2、請求項3または請求項4記載の貫通ビアにおいて、貫通ビアがシールリングの外に配置されている。   According to a fifth aspect of the present invention, in the through via according to the first, second, third, or fourth aspect, the through via is disposed outside the seal ring.

請求項6記載の半導体装置は、請求項1、請求項2、請求項3、請求項4または請求項5記載の貫通ビアにおいて、貫通ビアが貫通ビアの最上層に配線を有する。   According to a sixth aspect of the present invention, in the through via according to the first, second, third, fourth, or fifth aspect, the through via has a wiring in the uppermost layer of the through via.

請求項7記載の半導体装置は、請求項1、請求項2、請求項3、請求項4、請求項5または請求項6記載の貫通ビアにおいて、貫通ビアを絶縁体で形成している。   According to a seventh aspect of the present invention, in the through via according to the first, second, third, fourth, fifth, or sixth aspect, the through via is formed of an insulator.

請求項8記載の半導体装置は、請求項1から請求項7のいずれか1項において、複数の絶縁膜が、その一部もしくは全てに低誘電率材料を用いたものである。   A semiconductor device according to an eighth aspect is the semiconductor device according to any one of the first to seventh aspects, wherein the plurality of insulating films use a low dielectric constant material for a part or all of them.

請求項9記載の半導体装置の製造方法は、半導体基板上に絶縁膜を形成する工程と、絶縁膜にビア孔を形成する工程と、絶縁膜に配線溝を形成する工程と、ビア孔にビアを形成する工程と、配線溝に配線を形成する工程とを含み、各工程を繰り返すことにより絶縁膜を複数積層した多層配線構造を形成する半導体装置の製造方法であって、
一部もしくはすべての絶縁膜を貫通する貫通孔を半導体装置のコーナ部に一括に形成し、貫通孔の全体に貫通ビアを形成することを特徴とする。
10. The method of manufacturing a semiconductor device according to claim 9, wherein a step of forming an insulating film on the semiconductor substrate, a step of forming a via hole in the insulating film, a step of forming a wiring groove in the insulating film, and a via in the via hole A method of manufacturing a semiconductor device, including a step of forming a wiring and a step of forming a wiring in a wiring groove, and forming a multilayer wiring structure in which a plurality of insulating films are stacked by repeating each step,
A through hole penetrating a part or all of the insulating film is collectively formed in a corner portion of the semiconductor device, and a through via is formed in the entire through hole.

請求項10記載の半導体装置の製造方法は、半導体基板上に絶縁膜を形成する工程と、絶縁膜にビア孔を形成する工程と、絶縁膜に配線溝を形成する工程と、ビア孔にビアを形成する工程と、配線溝に配線を形成する工程とを含み、各工程を繰り返すことにより絶縁膜を複数積層した多層配線構造を形成する半導体装置の製造方法であって、
一部もしくはすべての絶縁膜を貫通する貫通孔を半導体装置のコーナ部にビア孔の形成および配線溝の形成と同時に絶縁膜ごとに一部づつ形成し、
貫通孔の全体に貫通ビアを形成することを特徴とする。
11. The method of manufacturing a semiconductor device according to claim 10, wherein a step of forming an insulating film on the semiconductor substrate, a step of forming a via hole in the insulating film, a step of forming a wiring groove in the insulating film, and a via in the via hole A method of manufacturing a semiconductor device, including a step of forming a wiring and a step of forming a wiring in a wiring groove, and forming a multilayer wiring structure in which a plurality of insulating films are stacked by repeating each step,
Through holes that penetrate part or all of the insulating film are formed part by part for each insulating film at the same time as the formation of via holes and wiring grooves at the corners of the semiconductor device.
A through via is formed in the entire through hole.

この発明の請求項1記載の半導体装置によれば、半導体装置のコーナ部にすべての絶縁膜を貫通する貫通孔を有し、貫通孔に一括に形成した貫通ビアを有するので、剥離の発生、進展を防止することが出来る。さらに、剥離防止のパターンである一括に形成した貫通ビアは、ビアと配線をキャップ層で接続する部分が存在しないので、配線をビアで接続した配線パターンよりも強度が強く、剥離防止の効果は大きい。   According to the semiconductor device of the first aspect of the present invention, the corner portion of the semiconductor device has a through-hole penetrating all the insulating films, and the through-via formed in the through-hole at the same time. Progress can be prevented. Furthermore, the through vias formed in a lump that is a pattern for preventing peeling does not have a portion where the via and the wiring are connected by the cap layer, so the strength is stronger than the wiring pattern in which the wiring is connected by the via, and the effect of preventing peeling is large.

請求項2記載の半導体装置によれば、半導体装置のコーナ部にすべての絶縁膜と半導体基板を貫通する貫通孔を有し、貫通孔に一括に形成した貫通ビアを有するので、半導体基板と貫通ビアとの接続がキャップ層での接続ではなくなり、また貫通ビアと半導体基板との接続面積が広くなるため、絶縁膜の剥離だけでなく、半導体基板と絶縁膜の剥離の発生、進展の防止効果を大きくすることが出来る。   According to the semiconductor device of the second aspect, since the corner portion of the semiconductor device has the through holes penetrating all the insulating films and the semiconductor substrate, and the through vias formed in the through holes at once, Since the connection with the via is not the connection with the cap layer, and the connection area between the through via and the semiconductor substrate is widened, not only the insulation film is peeled off but also the effect of preventing the occurrence and progress of the peeling of the semiconductor substrate and the insulation film. Can be increased.

請求項3記載の半導体装置によれば、半導体装置のコーナ部にすべての絶縁膜を貫通し、半導体基板の一部には達しているが貫通はしていない貫通孔を有し、貫通孔に一括に形成した貫通ビアを有するので、絶縁膜の剥離と、半導体基板と絶縁膜の剥離の発生、進展を防止することができる。さらに、貫通ビアが半導体基板を貫通するほど長くないため、貫通孔と貫通ビアを比較的小さい大きさで、精度良く、容易に形成することが可能である。   According to a third aspect of the present invention, the semiconductor device has a through-hole that penetrates all the insulating films in the corner portion of the semiconductor device and reaches a part of the semiconductor substrate but does not penetrate. Since the through vias formed in a lump are provided, it is possible to prevent the peeling of the insulating film and the peeling and peeling of the semiconductor substrate and the insulating film. Further, since the through via is not so long as to penetrate the semiconductor substrate, the through hole and the through via can be easily formed with a relatively small size and high accuracy.

請求項4記載の半導体装置によれば、半導体装置のコーナ部に複数の種類の絶縁膜を貫通した貫通孔を有し、貫通孔に一括に形成した貫通ビアを有するので、剥離の発生しやすい異なる種類の絶縁膜の境界面の剥離を最小限の貫通ビアで防止することができ、貫通孔と貫通ビアを更に小さい大きさで、精度良く、容易に形成することが可能である。   According to the semiconductor device of the fourth aspect, the corner portion of the semiconductor device has a through-hole penetrating a plurality of types of insulating films, and has a through-via formed in the through-hole at a time, so peeling is likely to occur. Separation of the boundary surface between different types of insulating films can be prevented with a minimum number of through-vias, and the through-holes and the through-vias can be easily formed with high precision and accuracy.

請求項5記載の半導体装置によれば、貫通ビアがシールリングの外に配置されているので、シールリング内に配置する場合より、剥離の起点となる半導体装置の角近くに配置されることになり、剥離防止の効果を強くすることが出来る。   According to the semiconductor device of the fifth aspect, since the through via is arranged outside the seal ring, the through via is arranged near the corner of the semiconductor device that is a starting point of the peeling, compared to the case where the through via is arranged in the seal ring. Thus, the effect of preventing peeling can be strengthened.

請求項6記載の半導体装置によれば、貫通ビアが最上層に配線構造を有するので、絶縁膜を上から押さえることになり、剥離防止の効果を強くすることが出来る。   According to the semiconductor device of the sixth aspect, since the through via has a wiring structure in the uppermost layer, the insulating film is pressed from above, and the effect of preventing peeling can be strengthened.

請求項7記載の半導体装置によれば、貫通ビアを絶縁体で形成するので、貫通ビアが帯電することがなく、貫通ビア近くに内部回路の配線パターンが形成されていても貫通ビアからの電気的な影響を受けることはない。   According to the semiconductor device of the seventh aspect, since the through via is formed of an insulator, the through via is not charged, and even if the wiring pattern of the internal circuit is formed near the through via, Will not be affected.

請求項8記載の半導体装置によれば、剥離防止効果が大きいことにより、絶縁膜が低誘電率材料である場合も有効である。   According to the semiconductor device of the eighth aspect, since the peeling prevention effect is large, it is effective even when the insulating film is a low dielectric constant material.

請求項9記載の半導体装置の製造方法によれば、多層配線構造の一部もしくはすべての絶縁膜を貫通する貫通孔を半導体装置のコーナ部に一括に形成し、貫通孔に一括に貫通ビアを形成するので、貫通孔と貫通ビアの大きさや組成は、内部回路のビアや配線層の大きさや組成に影響を受けない。   According to the method for manufacturing a semiconductor device according to claim 9, through holes penetrating a part or all of the insulating film of the multilayer wiring structure are collectively formed in the corner portion of the semiconductor device, and through vias are collectively formed in the through holes. Since they are formed, the sizes and compositions of the through holes and the vias are not affected by the sizes and compositions of the internal circuit vias and wiring layers.

請求項10記載の半導体装置の製造方法によれば、一部もしくはすべての多層配線構造の絶縁膜を貫通する貫通孔を半導体装置のコーナ部に、内部回路のビア孔の形成および配線溝の形成と同時に形成するので、深い貫通孔を形成できる装置は必要とせず、通常の多層配線構造を形成する装置ですべての絶縁膜を貫通する貫通孔を形成することが出来る。   According to the method for manufacturing a semiconductor device according to claim 10, formation of a via hole of an internal circuit and formation of a wiring groove are formed in a corner portion of the semiconductor device with a through hole penetrating an insulating film of a part or all of the multilayer wiring structure. Since it is formed at the same time, a device capable of forming a deep through-hole is not required, and a through-hole penetrating all the insulating films can be formed by a device for forming a normal multilayer wiring structure.

本発明の実施形態の説明はすべて、例として配線層が低誘電率材料の2層の絶縁膜、酸化物誘電体の4層の絶縁膜で構成され、デュアルダマシンプロセスの半導体装置で行う。   All the embodiments of the present invention will be described with reference to a dual damascene process semiconductor device in which the wiring layer is composed of, for example, a two-layer insulating film of a low dielectric constant material and a four-layer insulating film of an oxide dielectric.

本発明の第1の実施形態の構造について図1を用いて説明する。図1(a)は本発明の第1の実施形態における半導体装置の構造を示す平面図である。図1(a)に示すように、半導体装置領域の周縁にはシールリング8が配置され、その近傍に貫通ビア10が配置されている。図1(b)は本発明の第1の実施形態における半導体装置の構造を示す図1(a)のA−A′線に沿った概略断面図である。シールリング8および貫通ビア10の内側に内部回路9が配置されている。トランジスタの形成されている半導体基板1上に絶縁膜2、3、4、5、6、7が積層されている。絶縁膜3、4は、低誘電率材料の絶縁膜と例えばSiCなどのキャップ層との積層構造になっており、絶縁膜2、5、6、7は酸化物誘電体の絶縁膜とキャップ層の構造になっている。絶縁膜2にはコンタクトプラグ21が埋め込まれている。絶縁膜3、4、5、6、7には各々ビアと配線が埋め込まれ、例えば絶縁膜3にはビア31と配線32が埋め込まれている。同様に他の絶縁膜4〜7において、41、51、61、71はビア、42、52、62、72は配線である。また、ビア41と配線32間のように、ビアとその直下の配線の間と、絶縁膜3とビア31・配線32間のようにビア・配線とその周囲の絶縁膜間にはバリアメタルがある。内部回路9とシールリング8はビアと配線の組み合わせでできている。貫通ビア10はすべての絶縁膜2〜7を貫通しており、絶縁膜2〜7と貫通ビア10間、貫通ビア10と半導体基板1間にもバリアメタルがある。   The structure of the 1st Embodiment of this invention is demonstrated using FIG. FIG. 1A is a plan view showing the structure of the semiconductor device according to the first embodiment of the present invention. As shown in FIG. 1A, a seal ring 8 is disposed at the periphery of the semiconductor device region, and a through via 10 is disposed in the vicinity thereof. FIG. 1B is a schematic cross-sectional view along the line AA ′ of FIG. 1A showing the structure of the semiconductor device according to the first embodiment of the present invention. An internal circuit 9 is disposed inside the seal ring 8 and the through via 10. Insulating films 2, 3, 4, 5, 6, and 7 are stacked on a semiconductor substrate 1 on which a transistor is formed. The insulating films 3 and 4 have a laminated structure of an insulating film made of a low dielectric constant material and a cap layer such as SiC, and the insulating films 2, 5, 6, and 7 are oxide dielectric insulating films and cap layers. It has a structure. A contact plug 21 is embedded in the insulating film 2. Vias and wirings are embedded in the insulating films 3, 4, 5, 6, and 7, respectively. For example, vias 31 and wirings 32 are embedded in the insulating film 3. Similarly, in the other insulating films 4 to 7, 41, 51, 61, and 71 are vias, and 42, 52, 62, and 72 are wirings. Further, there is a barrier metal between the via and the wiring immediately below the via 41 and between the via 41 and the wiring 32, and between the via and wiring and the surrounding insulating film between the insulating film 3 and the via 31 / wiring 32. is there. The internal circuit 9 and the seal ring 8 are made of a combination of vias and wiring. The through via 10 penetrates all the insulating films 2 to 7, and there is a barrier metal between the insulating films 2 to 7 and the through via 10, and between the through via 10 and the semiconductor substrate 1.

次に本実施形態による半導体装置の第1の製造方法について図2を用いて説明する。図2(a)のようにまず複数の絶縁膜をもつ多層配線構造の半導体装置を形成する。形成方法は、低誘電率材料の絶縁膜3の配線層の場合は、材質にもよるが、例えばスピンコート法により低誘電材料の絶縁膜を形成し、次いで、例えばCVD法によりキャップ層のSiC膜を形成する。次いで、フォトリソグラフィーとエッチングによりビア孔と配線溝を形成する。次いで、例えばスパッタ法によりバリアメタルのTaN膜と、Cuシード膜を形成する。次いで、Cuシード膜上に電解めっきによりCu膜を堆積させ、内部回路9のビア31と配線32およびシールリング8のビアと配線を形成する。ついで、例えばCMP法により絶縁膜3のSiC膜が露出するまでCu膜とバリアメタルを除去する。低誘電率材料の絶縁膜4の配線層も同様に形成する。酸化物誘電体の絶縁膜5の配線層の場合は、例えばCVD法により酸化物誘電体の絶縁膜を形成し、次いで、例えばCVD法によりキャップ層のSiC膜を形成する。次いで、フォトリソグラフィーとエッチングによりビア孔と配線溝を形成する。次いで、例えばスパッタ法によりバリアメタルのTaN膜と、Cuシード膜を形成する。次いで、Cuシード膜上に電解めっきによりCu膜を堆積させ、内部回路9のビア51と配線52およびシールリング8のビアと配線を形成する。ついで、例えばCMP法により絶縁膜5のSiC膜が露出するまでCu膜とバリアメタルを除去する。酸化物誘電体の絶縁膜6、7の配線層も同様に形成する。酸化物誘電体の絶縁膜2の場合も配線層を形成しないこと以外は、同様に形成する。   Next, the first manufacturing method of the semiconductor device according to the present embodiment will be explained with reference to FIGS. First, as shown in FIG. 2A, a semiconductor device having a multilayer wiring structure having a plurality of insulating films is formed. The formation method depends on the material in the case of the wiring layer of the insulating film 3 made of the low dielectric constant material, but the insulating film made of the low dielectric material is formed by, for example, spin coating, and then the SiC of the cap layer is formed by, for example, CVD. A film is formed. Next, a via hole and a wiring groove are formed by photolithography and etching. Next, a barrier metal TaN film and a Cu seed film are formed by sputtering, for example. Next, a Cu film is deposited on the Cu seed film by electrolytic plating, and the via 31 and wiring 32 of the internal circuit 9 and the via and wiring of the seal ring 8 are formed. Next, the Cu film and the barrier metal are removed until the SiC film of the insulating film 3 is exposed by, for example, the CMP method. The wiring layer of the insulating film 4 made of a low dielectric constant material is formed in the same manner. In the case of the wiring layer of the oxide dielectric insulating film 5, an oxide dielectric insulating film is formed by, for example, a CVD method, and then, a cap layer SiC film is formed by, for example, the CVD method. Next, a via hole and a wiring groove are formed by photolithography and etching. Next, a barrier metal TaN film and a Cu seed film are formed by sputtering, for example. Next, a Cu film is deposited on the Cu seed film by electrolytic plating, and the via 51 and wiring 52 of the internal circuit 9 and the via and wiring of the seal ring 8 are formed. Next, the Cu film and the barrier metal are removed until the SiC film of the insulating film 5 is exposed, for example, by the CMP method. The wiring layers of the oxide dielectric insulating films 6 and 7 are formed in the same manner. The oxide dielectric insulating film 2 is formed in the same manner except that the wiring layer is not formed.

図2(b)で示すように、このように形成された複数の絶縁膜をもつ多層配線構造の半導体装置に例えばエッチングと保護膜の形成を交互に行うことにより深堀エッチングを行うボッシュプロセスを用いて、すべての絶縁膜2〜7を貫通する貫通孔11を形成する。ボッシュプロセスを用いれば深さ80μmなら幅4μm、深さ180μmなら幅25μmの貫通孔を形成することができる。半導体基板1上の絶縁膜2〜7の厚さは、トータルでも10μm〜20μmであるので、大きさ1〜2μmの貫通孔11を形成することが出来る。次いで、図2(c)で示すように、例えばスパッタ法によりバリアメタルのTaN膜と、Cuシード膜を形成する。次いで、Cuシード膜上に電解めっきによりCu膜を堆積させ、貫通ビア10を形成する。   As shown in FIG. 2B, for example, a Bosch process in which deep etching is performed by alternately forming etching and forming a protective film on a semiconductor device having a multilayer wiring structure having a plurality of insulating films formed as described above is used. Thus, the through holes 11 penetrating all the insulating films 2 to 7 are formed. If the Bosch process is used, it is possible to form a through hole having a width of 4 μm if the depth is 80 μm and a width of 25 μm if the depth is 180 μm. Since the total thickness of the insulating films 2 to 7 on the semiconductor substrate 1 is 10 μm to 20 μm, the through hole 11 having a size of 1 to 2 μm can be formed. Next, as shown in FIG. 2C, a barrier metal TaN film and a Cu seed film are formed by sputtering, for example. Next, a Cu film is deposited on the Cu seed film by electrolytic plating to form a through via 10.

次に本実施形態による半導体装置の第2の製造方法について図3を用いて説明する。この製造方法は第1の製造方法で説明した多層配線構造の半導体装置の形成方法とほぼ同じであるので、相違点のみを詳しく説明する。図3(a)に示すようにまず絶縁膜3に、フォトリソグラフィーとエッチングによりビア孔と配線溝と貫通孔の一部を形成する。次いで、例えばレジスト膜33などエッチングしやすい物質でビア孔と配線溝と貫通孔の一部を埋める。絶縁膜3が露出するまでレジスト膜をエッチングする。次いで、フォトリソグラフィーとエッチングによりビア孔と配線溝のレジスト膜のみをエッチングする。例えばスパッタ法によりバリアメタルのTaN膜と、Cuシード膜を形成する。次いで、Cuシード膜上に電解めっきによりCu膜を堆積させ、ビアと配線を形成する。ついで、例えばCMP法により絶縁膜3のSiC膜が露出するまでCu膜とバリアメタルを除去する。この方法により、図3(b)に示すように内部回路9の配線32とビア31とレジスト膜などエッチングしやすい物質で埋められた貫通孔の一部とシールリング8のビアと配線が形成される。これを繰り返すことにより図3(c)に示すように多層配線構造が形成される。絶縁膜2の場合も配線層を形成しないこと以外は、同様に形成する。最後に貫通孔に埋められたレジスト膜23、33、43、53、63、73をエッチングすることにより貫通孔を形成することが出来る。ここに、スパッタ法によりバリアメタルのTaN膜と、Cuシード膜を形成する。次いで、Cuシード膜上に電解めっきによりCu膜を堆積させ、貫通ビアを形成する。   Next, the second manufacturing method of the semiconductor device according to the present embodiment will be explained with reference to FIGS. Since this manufacturing method is almost the same as the method for forming the semiconductor device having the multilayer wiring structure described in the first manufacturing method, only the differences will be described in detail. As shown in FIG. 3A, first, a via hole, a wiring groove, and a part of the through hole are formed in the insulating film 3 by photolithography and etching. Next, the via hole, the wiring groove, and a part of the through hole are filled with a material that can be easily etched, such as the resist film 33. The resist film is etched until the insulating film 3 is exposed. Next, only the resist film in the via hole and the wiring groove is etched by photolithography and etching. For example, a TaN film of barrier metal and a Cu seed film are formed by sputtering. Next, a Cu film is deposited on the Cu seed film by electrolytic plating to form a via and a wiring. Next, the Cu film and the barrier metal are removed until the SiC film of the insulating film 3 is exposed by, for example, the CMP method. By this method, as shown in FIG. 3B, the wiring 32 and the via 31 of the internal circuit 9 and a part of the through hole filled with a material that can be easily etched such as a resist film and the via and wiring of the seal ring 8 are formed. The By repeating this, a multilayer wiring structure is formed as shown in FIG. The insulating film 2 is formed in the same manner except that the wiring layer is not formed. Finally, the through holes can be formed by etching the resist films 23, 33, 43, 53, 63, and 73 buried in the through holes. Here, a TaN film of barrier metal and a Cu seed film are formed by sputtering. Next, a Cu film is deposited on the Cu seed film by electrolytic plating to form a through via.

この発明の第2の実施形態の構造について図4を用いて説明する。図4は本発明の第2の実施形態における半導体装置の構造を示す概略断面図である。図4で示すように貫通ビア12が半導体基板1を貫通している。
本実施形態による半導体装置の製造方法は、第1の実施形態の第1の製造方法とほぼ同じで、相違点は、ボッシュプロセスによる深堀エッチングを例えば厚さ200μmなど最終の半導体基板1まで行い、そこに貫通ビア12を形成し、バックグラインド時に貫通ビア12を裏面に露出させる点である。
The structure of the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the structure of the semiconductor device according to the second embodiment of the present invention. As shown in FIG. 4, the through via 12 penetrates the semiconductor substrate 1.
The manufacturing method of the semiconductor device according to the present embodiment is almost the same as the first manufacturing method of the first embodiment. The difference is that deep etching by a Bosch process is performed to the final semiconductor substrate 1 having a thickness of 200 μm, for example. The through via 12 is formed there, and the through via 12 is exposed to the back surface during back grinding.

この発明の第3の実施形態の構造について図5を用いて説明する。図5は本発明の第3の実施形態における半導体装置の構造を示す概略断面図である。図5で示すように貫通ビア13が半導体基板1内に一部達しているが、貫通はしていない。   The structure of the third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic sectional view showing the structure of a semiconductor device according to the third embodiment of the present invention. As shown in FIG. 5, the through via 13 partially reaches the semiconductor substrate 1, but does not penetrate.

本実施形態による半導体装置の製造方法は、第1の実施形態の第1の製造方法とほぼ同じで、相違点は、ボッシュプロセスによる深堀エッチングを例えば10μmの深さで半導体基板1内まで行い、そこに貫通ビア13を形成する点である。   The manufacturing method of the semiconductor device according to the present embodiment is substantially the same as the first manufacturing method of the first embodiment. The difference is that deep etching by a Bosch process is performed to a depth of, for example, 10 μm into the semiconductor substrate 1. The point is that a through via 13 is formed there.

この発明の第4の実施形態の構造について図6を用いて説明する。図6は本発明の第4の実施形態における半導体装置の構造を示す概略断面図である。図6で示すように貫通ビア14が酸化物誘電体の絶縁膜2と低誘電率の材料の絶縁膜3を貫通している。   The structure of the fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic sectional view showing the structure of a semiconductor device according to the fourth embodiment of the present invention. As shown in FIG. 6, the through via 14 penetrates the insulating film 2 made of an oxide dielectric and the insulating film 3 made of a low dielectric constant material.

本実施形態による半導体装置の第1の製造方法は、第1の実施形態の第1の製造方法とほぼ同じで、相違点は、ボッシュプロセスによる深堀エッチングを絶縁膜3の形成後に行い、そこに貫通ビア14を形成する点である。   The first manufacturing method of the semiconductor device according to the present embodiment is almost the same as the first manufacturing method of the first embodiment, and the difference is that the deep etching by the Bosch process is performed after the formation of the insulating film 3, and there is This is the point at which the through via 14 is formed.

本実施形態による半導体装置の第2の製造方法は、第1の実施形態の第2の製造方法とほぼ同じで、相違点は、貫通孔に埋め込まれているレジスト膜などエッチングしやすい物質のエッチングを絶縁膜3の形成後に行い、そこに貫通ビア14を形成する点である。   The second manufacturing method of the semiconductor device according to the present embodiment is almost the same as the second manufacturing method of the first embodiment, and the difference is that an easily etched material such as a resist film embedded in the through hole is etched. Is performed after the insulating film 3 is formed, and the through via 14 is formed there.

この発明の第5の実施形態の構造について図7を用いて説明する。図7は本発明の第1の実施形態における半導体装置の構造を示す平面図である。図7で示すように貫通ビア10がシールリング8の外側に配置されている。なお第5の実施の形態は上記した他の実施の形態および後述の実施の形態にも適用可能である。   The structure of the fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a plan view showing the structure of the semiconductor device according to the first embodiment of the present invention. As shown in FIG. 7, the through via 10 is disposed outside the seal ring 8. The fifth embodiment can also be applied to the other embodiments described above and the embodiments described later.

この発明の第6の実施形態の構造について図8を用いて説明する。図8は本発明の第6の実施形態における半導体装置の構造を示す平面である。図8(b)は図8(a)のB−B′線に沿った概略断面図である。第1の実施形態において、図8(b)で示すように貫通ビア15の最上層部に配線72が形成されている。なお、第6の実施の形態は上記した他の実施の形態および後述の実施の形態にも適用可能である。   The structure of the sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a plan view showing the structure of the semiconductor device according to the sixth embodiment of the present invention. FIG. 8B is a schematic cross-sectional view along the line BB ′ in FIG. In the first embodiment, as shown in FIG. 8B, the wiring 72 is formed in the uppermost layer portion of the through via 15. Note that the sixth embodiment can also be applied to the other embodiments described above and the embodiments described later.

この発明の第7の実施形態の構造について図9を用いて説明する。図9は本発明の第7の実施形態における半導体装置の構造を示す概略断面図である。上記各実施の形態において、図9で示すように絶縁体で形成された貫通ビア16が配置されている。   The structure of the seventh embodiment of the present invention will be described with reference to FIG. FIG. 9 is a schematic sectional view showing the structure of the semiconductor device according to the seventh embodiment of the present invention. In each of the embodiments described above, the through via 16 formed of an insulator is disposed as shown in FIG.

本実施形態による半導体装置の製造方法は、第1の実施形態の第1の製造方法、第2の製造方法と貫通孔の形成までは同じで、貫通ビア16が絶縁体であるため、例えば酸化誘電膜の場合CVDにより貫通ビア16を形成し、例えばCMP法により、絶縁膜7が露出するまで、絶縁膜7上に形成された酸化誘電膜を除去する。   The semiconductor device manufacturing method according to the present embodiment is the same as the first manufacturing method and the second manufacturing method of the first embodiment up to the formation of the through hole, and the through via 16 is an insulator. In the case of a dielectric film, the through via 16 is formed by CVD, and the oxide dielectric film formed on the insulating film 7 is removed by CMP, for example, until the insulating film 7 is exposed.

なお、上記実施の形態では低誘電率材料を用いた絶縁膜が一部のみであったが、第4の実施形態を除く他の実施形態において、半導体基板上の絶縁膜を全て低誘電率材料を用いた絶縁膜により形成してもよい。   In the above embodiment, only a part of the insulating film using the low dielectric constant material is used. However, in other embodiments except the fourth embodiment, the insulating film on the semiconductor substrate is entirely made of the low dielectric constant material. You may form by the insulating film using this.

本発明の半導体装置と半導体装置の製造方法は、多層配線構造における絶縁膜の剥離防止効果が大きいという効果を有し、低誘電材料の層間絶縁膜を用いた配線の微細化した半導体装置とその製造に対して有用である。   INDUSTRIAL APPLICABILITY The semiconductor device and the method for manufacturing the semiconductor device according to the present invention have an effect that the effect of preventing the peeling of the insulating film in the multilayer wiring structure is large, and the semiconductor device in which the wiring using the low-dielectric material interlayer insulating film is miniaturized Useful for manufacturing.

(a)は本発明の第1の実施形態にかかる半導体装置の部分平面図、(b)は貫通ビアの配置を示す図(a)のA−A′線断面図である。(A) is a partial top view of the semiconductor device concerning the 1st Embodiment of this invention, (b) is the sectional view on the AA 'line of figure (a) which shows arrangement | positioning of a penetration via. 本発明の第1の実施形態にかかる半導体装置の第1の製造方法にかかわる工程断面図である。It is process sectional drawing related to the 1st manufacturing method of the semiconductor device concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる半導体装置の第2の製造方法にかかわる工程断面図である。It is process sectional drawing concerning the 2nd manufacturing method of the semiconductor device concerning the 1st Embodiment of this invention. 本発明の第2の実施形態にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning the 4th Embodiment of this invention. 本発明の第5の実施形態にかかる半導体装置の平面図である。It is a top view of the semiconductor device concerning the 5th Embodiment of this invention. (a)は本発明の第6の実施形態にかかる半導体装置の部分平面図、(b)はそのB−B′線断面図である。(A) is the fragmentary top view of the semiconductor device concerning the 6th Embodiment of this invention, (b) is the BB 'sectional view taken on the line. 本発明の第7の実施形態にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning the 7th Embodiment of this invention. 配線とビアの断面を示す図である。It is a figure which shows the cross section of wiring and a via | veer. 従来の剥離防止の配線パターンを配置した半導体装置の断面図である。It is sectional drawing of the semiconductor device which has arrange | positioned the conventional wiring pattern of peeling prevention. 従来の剥離防止の配線パターンを配置した半導体装置の製造方法にかかわる工程断面図である。It is process sectional drawing concerning the manufacturing method of the semiconductor device which has arrange | positioned the conventional wiring pattern of peeling prevention.

符号の説明Explanation of symbols

1 半導体基板
2、3、4、5、6、7 絶縁膜
8 シールリング
9 内部回路
10、12、13、14、15、16 貫通ビア
11 貫通孔
17 剥離防止用の配線パターン
21、21a、31、31a、41、51、61、71 ビア
22、22a、32、32a、42、52、62、72 配線
23、33、73 レジスト膜
100 キャップ層
101 バリアメタル
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2, 3, 4, 5, 6, 7 Insulating film 8 Seal ring 9 Internal circuit 10, 12, 13, 14, 15, 16 Through-via
11 Through-hole 17 Wiring pattern 21, 21 a, 31, 31 a, 41, 51, 61, 71 for preventing peeling Via 22, 22 a, 32, 32 a, 42, 52, 62, 72 Wiring 23, 33, 73 Resist film 100 Cap layer 101 Barrier metal

Claims (10)

半導体基板上に積層された複数の絶縁膜と、前記複数の絶縁膜の少なくとも一部に埋設された配線とを備えた多層配線構造の半導体装置であって、
前記半導体装置のコーナ部にすべての前記絶縁膜を貫通する貫通孔を有し、前記貫通孔の全体に貫通ビアを有する半導体装置。
A semiconductor device having a multilayer wiring structure comprising a plurality of insulating films stacked on a semiconductor substrate, and wiring embedded in at least a part of the plurality of insulating films,
A semiconductor device having a through hole penetrating all the insulating films in a corner portion of the semiconductor device, and having a through via in the entire through hole.
半導体基板上に積層された複数の絶縁膜と、前記複数の絶縁膜の少なくとも一部に埋設された配線とを備えた多層配線構造の半導体装置であって、
前記半導体装置のコーナ部にすべての前記絶縁膜および前記半導体基板を貫通する貫通孔を有し、前記貫通孔の全体に貫通ビアを有する半導体装置。
A semiconductor device having a multilayer wiring structure comprising a plurality of insulating films stacked on a semiconductor substrate, and wiring embedded in at least a part of the plurality of insulating films,
A semiconductor device having a through hole penetrating all the insulating films and the semiconductor substrate in a corner portion of the semiconductor device, and having a through via in the entire through hole.
半導体基板上に積層された複数の絶縁膜と、前記複数の絶縁膜の少なくとも一部に埋設された配線とを備えた多層配線構造の半導体装置であって、
前記半導体装置のコーナ部にすべての前記絶縁膜を貫通し、かつ貫通端部が前記半導体基板の内部に達しているが貫通はしていない貫通孔を有し、前記貫通孔の全体に貫通ビアを有する半導体装置。
A semiconductor device having a multilayer wiring structure comprising a plurality of insulating films stacked on a semiconductor substrate, and wiring embedded in at least a part of the plurality of insulating films,
The corner of the semiconductor device has a through hole that penetrates all of the insulating film and has a penetrating end that reaches the inside of the semiconductor substrate but does not penetrate, and the entire through hole has a through via. A semiconductor device.
半導体基板上に積層された複数の絶縁膜と、前記複数の絶縁膜の少なくとも一部に埋設された配線とを備え、前記複数の絶縁膜が複数の種類の材料を用いた多層配線構造の半導体装置であって、
前記半導体装置のコーナ部に前記複数の絶縁膜のうち複数の種類の前記絶縁膜にまたがって貫通した貫通孔を有し、
前記貫通孔の全体に貫通ビアを有する半導体装置。
A semiconductor having a multilayer wiring structure comprising a plurality of insulating films stacked on a semiconductor substrate and wirings embedded in at least a part of the plurality of insulating films, wherein the plurality of insulating films use a plurality of types of materials A device,
The corner portion of the semiconductor device has a through-hole penetrating over a plurality of types of the insulating films among the plurality of insulating films,
A semiconductor device having a through via in the entire through hole.
請求項1、請求項2、請求項3または請求項4記載の貫通ビアにおいて、貫通ビアがシールリングの外に配置されている半導体装置。   5. The semiconductor device according to claim 1, 2, 3, or 4, wherein the through via is disposed outside the seal ring. 請求項1、請求項2、請求項3、請求項4または請求項5記載の貫通ビアにおいて、貫通ビアが前記貫通ビアの最上層に配線を有する半導体装置。   6. The semiconductor device according to claim 1, 2, 3, 4, or 5, wherein the through via has a wiring in an uppermost layer of the through via. 請求項1、請求項2、請求項3、請求項4、請求項5または請求項6記載の前記貫通ビアにおいて、前記貫通ビアを絶縁体で形成した半導体装置。   The semiconductor device according to claim 1, wherein the through via is formed of an insulator in the through via according to any one of claims 1, 2, 3, 4, 5, or 6. 複数の絶縁膜は、その一部もしくは全てに低誘電率材料を用いた請求項1から請求項7のいずれか1項記載の半導体装置。   The semiconductor device according to claim 1, wherein a low dielectric constant material is used for a part or all of the plurality of insulating films. 半導体基板上に絶縁膜を形成する工程と、前記絶縁膜にビア孔を形成する工程と、前記絶縁膜に配線溝を形成する工程と、前記ビア孔にビアを形成する工程と、前記配線溝に配線を形成する工程とを含み、各前記工程を繰り返すことにより前記絶縁膜を複数積層した多層配線構造を形成する半導体装置の製造方法であって、
一部もしくはすべての前記絶縁膜を貫通する貫通孔を前記半導体装置のコーナ部に一括に形成し、前記貫通孔の全体に貫通ビアを形成することを特徴とする半導体装置の製造方法。
Forming an insulating film on the semiconductor substrate; forming a via hole in the insulating film; forming a wiring groove in the insulating film; forming a via in the via hole; and the wiring groove Forming a wiring on the semiconductor device, and repeating the above steps to form a multilayer wiring structure in which a plurality of the insulating films are stacked,
A manufacturing method of a semiconductor device, wherein through holes penetrating a part or all of the insulating film are collectively formed in a corner portion of the semiconductor device, and a through via is formed in the entire through hole.
半導体基板上に絶縁膜を形成する工程と、前記絶縁膜にビア孔を形成する工程と、前記絶縁膜に配線溝を形成する工程と、前記ビア孔にビアを形成する工程と、前記配線溝に配線を形成する工程とを含み、各前記工程を繰り返すことにより前記絶縁膜を複数積層した多層配線構造を形成する半導体装置の製造方法であって、
一部もしくはすべての前記絶縁膜を貫通する貫通孔を前記半導体装置のコーナ部に前記ビア孔の形成および前記配線溝の形成と同時に前記絶縁膜ごとに一部づつ形成し、
前記貫通孔の全体に貫通ビアを形成することを特徴とする半導体装置の製造方法。
Forming an insulating film on the semiconductor substrate; forming a via hole in the insulating film; forming a wiring groove in the insulating film; forming a via in the via hole; and the wiring groove Forming a wiring on the semiconductor device, and repeating the above steps to form a multilayer wiring structure in which a plurality of the insulating films are stacked,
Forming a through-hole penetrating a part or all of the insulating film for each insulating film at the same time as forming the via hole and the wiring groove in the corner portion of the semiconductor device;
A method of manufacturing a semiconductor device, wherein a through via is formed in the entire through hole.
JP2005192238A 2005-06-30 2005-06-30 Semiconductor device and its manufacturing method Pending JP2007012894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192238A JP2007012894A (en) 2005-06-30 2005-06-30 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192238A JP2007012894A (en) 2005-06-30 2005-06-30 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007012894A true JP2007012894A (en) 2007-01-18

Family

ID=37751008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192238A Pending JP2007012894A (en) 2005-06-30 2005-06-30 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007012894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001520A1 (en) * 2009-07-01 2011-01-06 株式会社日立製作所 Semiconductor device and method for manufacturing same
JP2012204510A (en) * 2011-03-24 2012-10-22 Ulvac Japan Ltd Silicon substrate etching method, and silicon substrate etching device
JP2015181177A (en) * 2008-12-02 2015-10-15 アイメックImec Method for producing interconnecting structure for integrated circuit
US12014997B2 (en) 2021-09-02 2024-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. Dummy stacked structures surrounding TSVs and method forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159125A (en) * 1989-11-17 1991-07-09 Hitachi Ltd Semiconductor device
JPH07142481A (en) * 1993-11-19 1995-06-02 Oki Electric Ind Co Ltd Semiconductor device
JP2002217198A (en) * 2001-01-19 2002-08-02 Hitachi Ltd Semiconductor device
JP2004296905A (en) * 2003-03-27 2004-10-21 Toshiba Corp Semiconductor device
JP2005327875A (en) * 2004-05-13 2005-11-24 Toshiba Corp Semiconductor integrated circuit device
JP2006147626A (en) * 2004-11-16 2006-06-08 Renesas Technology Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159125A (en) * 1989-11-17 1991-07-09 Hitachi Ltd Semiconductor device
JPH07142481A (en) * 1993-11-19 1995-06-02 Oki Electric Ind Co Ltd Semiconductor device
JP2002217198A (en) * 2001-01-19 2002-08-02 Hitachi Ltd Semiconductor device
JP2004296905A (en) * 2003-03-27 2004-10-21 Toshiba Corp Semiconductor device
JP2005327875A (en) * 2004-05-13 2005-11-24 Toshiba Corp Semiconductor integrated circuit device
JP2006147626A (en) * 2004-11-16 2006-06-08 Renesas Technology Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181177A (en) * 2008-12-02 2015-10-15 アイメックImec Method for producing interconnecting structure for integrated circuit
WO2011001520A1 (en) * 2009-07-01 2011-01-06 株式会社日立製作所 Semiconductor device and method for manufacturing same
JP5451762B2 (en) * 2009-07-01 2014-03-26 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP2012204510A (en) * 2011-03-24 2012-10-22 Ulvac Japan Ltd Silicon substrate etching method, and silicon substrate etching device
US12014997B2 (en) 2021-09-02 2024-06-18 Taiwan Semiconductor Manufacturing Co., Ltd. Dummy stacked structures surrounding TSVs and method forming the same

Similar Documents

Publication Publication Date Title
JP4699172B2 (en) Semiconductor device
WO2017150146A1 (en) Semiconductor device and method for manufacturing same
US20030155642A1 (en) Unique feature design enabling structural integrity for advanced low k semiconductor chips
WO2010035481A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2011139103A (en) Semiconductor device
JP5096278B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20040012499A (en) Semiconductor device and method for fabricating the same
JP2006005288A (en) Semiconductor device
JP2007012894A (en) Semiconductor device and its manufacturing method
JP5078823B2 (en) Semiconductor device
JP2005150389A (en) Semiconductor device
JP2005116788A (en) Semiconductor device
JP4302505B2 (en) Semiconductor device
JP4361517B2 (en) Semiconductor device and manufacturing method thereof
JP2008124070A (en) Semiconductor device
JP4814694B2 (en) Semiconductor device
JP2010206226A (en) Method of manufacturing semiconductor device
JP2007073808A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2008016573A (en) Semiconductor element and method for manufacturing the same
JP2006324388A (en) Semiconductor device and its manufacturing method
US8536710B2 (en) Semiconductor device and manufacturing method thereof
JP5424551B2 (en) Semiconductor device
JP2006114723A (en) Semiconductor device and its manufacturing method
JP2006093402A (en) Method for manufacturing semiconductor device
JP2007027234A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061110

A621 Written request for application examination

Effective date: 20071228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

RD02 Notification of acceptance of power of attorney

Effective date: 20110124

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110228

A131 Notification of reasons for refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206