JP2007010464A - 鋼板表面の酸化膜厚計測方法及び装置 - Google Patents

鋼板表面の酸化膜厚計測方法及び装置 Download PDF

Info

Publication number
JP2007010464A
JP2007010464A JP2005191184A JP2005191184A JP2007010464A JP 2007010464 A JP2007010464 A JP 2007010464A JP 2005191184 A JP2005191184 A JP 2005191184A JP 2005191184 A JP2005191184 A JP 2005191184A JP 2007010464 A JP2007010464 A JP 2007010464A
Authority
JP
Japan
Prior art keywords
infrared light
film thickness
steel sheet
light
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191184A
Other languages
English (en)
Inventor
Akira Torao
彰 虎尾
Yoichi Tobiyama
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005191184A priority Critical patent/JP2007010464A/ja
Publication of JP2007010464A publication Critical patent/JP2007010464A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

【課題】 鋼板製造工程の焼鈍工程である直火加熱炉出側に適用して、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができる鋼板表面の酸化膜厚計測方法及び装置を提案する。
【解決手段】 直火加熱炉の出側で走行鋼板の表面に赤外光を間欠的に照射し、前記赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、4つの異なる赤外波長帯域にてそれぞれ検出し、前記赤外光の間欠照射によって検出される8つの検出値を用い、演算により膜厚を求める。
【選択図】 図1

Description

本発明は、鋼板表面に生成される鉄系酸化物の膜厚をオンラインで連続的に測定する鋼板表面の酸化膜厚計測方法及び装置にかかり、特に、溶融亜鉛めっき鋼板製造工程の焼鈍工程である直火加熱炉出側に適用して好適な鋼板表面の酸化膜厚計測方法及び装置に関する。
溶融亜鉛めっき鋼板は、優れた耐食性、加工性、表面美観などの特性を有し、例えば自動車用鋼板として大量に使用されている。自動車の外板、内板などに使用される自動車用溶融亜鉛めっき鋼板に対しては、衝突安全特性の向上や軽量化などの目的から同一の板厚でも高い強度が要求されている。このような要求を満足させるため、近年では高張力鋼板を原板に使用した高張力溶融亜鉛めっき鋼板(以下、ハイテンGA鋼板という)が自動車用部材の一部に使用されてきており、その使用比率は高まりつつある。
また、使用部材によって様々なハイテンGA鋼板、すなわち、強度値の異なる鋼板が選択されている。ハイテンGA鋼板の製造においては、強度を向上させるためにSi、Mn等の易酸化性元素が鋼板中に添加されている。これらの易酸化性元素は、溶融亜鉛めっき鋼板製造工程の中間工程である焼鈍中に鋼板表面で選択的に酸化され、焼鈍の後工程であるめっき工程で鋼板表面にめっきを施す際、めっき特性に悪影響を与えることが知られている。
すなわち、Si、Mn等の成分が酸化して、鋼板表面に生成される鉄系酸化物が不めっき等の原因となることがある。
一方、焼鈍を行う直火加熱炉は、設備のコンパクト性、鋼板の通板性向上、熱応答特性等に優れ、経済的なメリットが大きく、また良好なめっき性を確保できる、Si、Mnの添加限界を高められる利点もある。このために、溶融亜鉛めっき鋼板製造ラインに設置された直火加熱炉は、鋼板の成分設計の自由度を広げ、より優れた材質特性を有する溶融亜鉛めっき鋼板の製造を可能にする特徴がある。直火加熱炉は、複数のゾーンに分かれ、負荷に応じた燃焼パターンが設定可能である。分割されたゾーンでは酸化促進加熱、還元加熱が連続して行われるが負荷に応じてゾーン単位で燃焼時間が制御され、加熱炉出側では鋼板温度として、数百℃以上までの加熱が達成される。短時間で急速に加熱された鋼板は、次工程の輻射管加熱炉にて焼鈍され、その後にめっき工程に導かれる。
前述したようにハイテンGA鋼板の製造では、易酸化性元素の酸化をいかに防ぐかが重要なポイントの1つになるが、590〜980MPa級のハイテンGA材では、Si、Mnの添加量も多くなるので、易酸化性元素の酸化防止はめっき性向上のためには必須である。この課題に対処するためにも直火加熱は有効な手段であることがわかってきている。すなわち、直火加熱炉の酸化防止ゾーンで、鋼板表面に生成される鉄系酸化物を純鉄層に変化させることでめっき特性を向上させることができるというものである。
従って、最終的なハイテンGA材のめっき特性の向上のためには、直火過熱炉後に生成されている酸化物層の特性把握が重要になる。また、ハイテンGA材に添加されている易酸化性元素の量は、強度など材質特性に応じて異なるので、ハイテンGA材毎に、生成される酸化物層の厚みも異なる。
従来から行われてきた解析方法としては、めっき特性と直火加熱条件との関係を、Si、Mn添加量毎に詳細に調査して加熱条件の変化量である空気比やバーナー火炎強度、燃焼ガス組成などを適正化するものであった。しかし、この方法では実際の溶融亜鉛めっき鋼板の製造工程においてプロセス量の変動が激しいこと、バーナー詰りや火炎異常などの発生、ガス組成変動などの影響により、実際に直火過熱炉出側で最適な酸化物層形成がなされていることを確認することが困難であった。
このため、酸化物層の膜厚を直接測定することが有用とされ、これまでにも多くの、酸化物膜厚の計測方法が提案されてきている。
通常、鋼板表面に生成される鉄系酸化物の膜厚をオンラインで連続的に測定する鋼板表面の酸化膜厚計測方法としては、蛍光X線を用いる方法や偏光解析法(エリプソメトリー法)、反射・吸収法などが応用されているが、直火過熱炉の出側に適用する場合には、鋼板が数百℃以上に加熱されているため、鋼板自体から熱放射があることから温度変化が誤差要因になること、さらに設置上の熱対策が複雑になること、設置コストが高くなることなどの経済的な観点からも適用が難しいという問題があった。
そこで、新たな方式としてカラーセンサを応用した方法が提案されている(特許文献1)。
特許文献1のカラーセンサを応用した鋼板表面の酸化膜厚計測方法では、酸化膜厚値と鋼板の明度や色相の値が関係することから、それらの関係を事前に求めておいて、酸化膜厚を推定するものである。
また、別の方法として、異なる測定条件で測定される2つの分光放射輝度間の関係と測定対象の放射率変化との関係式を予め求めておいて、放射率を推定した上で酸化膜厚を測定する方法が提案されている(特許文献2)。この場合、異なる測定条件としては、2つの波長での測定であるケース、2つの異なる測定角度での測定であるケースや2つの偏光成分での測定であるケースなどであり、放射率変動条件下で温度を測定するTrace温度計の応用である。
特開平4−43905号公報 特開平7−18341号公報
特許文献1のカラーセンサを応用した鋼板表面の酸化膜厚計測方法、特許文献2の放射率補正式温度計を応用した鋼板表面の酸化膜厚計測方法を、直火過熱炉出側での鋼板表面の酸化膜厚計測に適用する場合には、鉄系酸化物の一部が還元され、表層部に還元Feが点在するので、酸化膜厚を正確に測定できないという問題があることがわかった。すなわち、前述したように直火過熱炉の後段ゾーンでは還元雰囲気での加熱がなされるために、前段ゾーンで生成された鉄系酸化物の一部が還元され、表層に還元Feが点在して残される。
本発明は、鋼板製造工程の焼鈍工程である直火加熱炉出側に適用して、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができる鋼板表面の酸化膜厚計測方法及び装置を提案することを目的とする。
本発明は以下のとおりである。
1.直火過熱炉を備えた連続焼鈍工程で、走行鋼板の表面に生成される鉄系酸化物の膜厚を連続的に測定する鋼板表面の酸化膜厚計測方法であって、前記直火加熱炉の出側で走行鋼板の表面に赤外光を間欠的に照射し、前記赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、4つの異なる赤外波長帯域にてそれぞれ検出し、前記赤外光の間欠照射によって検出される8つの検出値を用い、演算により膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測方法。
2.直火過熱炉を備えた連続焼鈍ラインに設置する鋼板表面の酸化膜厚計測装置であって、前記直火加熱炉の出側で走行鋼板の表面に向けて赤外光を照射するための赤外光源と、該赤外光源からの赤外光を間欠的に照射するための光遮断装置と、前記赤外光が鋼板表面に照射される赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板表面から放射される自発光放射エネルギーのみを、4つの異なる赤外波長帯域にてそれぞれ検出するための光検出装置と、電気的に増幅する増幅処理装置と、前記赤外光の間欠照射によって検出される8つの検出値を用い、演算により膜厚を求める演算装置と、を具備したことを特徴とする鋼板表面の酸化膜厚計測装置。
3.前記光遮断装置は窓部を有する回転チョッパーを含むことを特徴とする上記2.に記載の鋼板表面の酸化膜厚計測装置。
4.前記光検出装置は複数のハーフミラーにより光路を分岐させ、前記4つの波長域で同時にエネルギーを検出する複数の素子を含むことを特徴とする上記2.又は3.に記載の鋼板表面の酸化膜厚計測装置。
本発明によれば、鋼板製造工程の焼鈍工程である直火加熱炉出側で、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができる。また、従来の直火加熱条件の管理・制御に代わり、本発明を用いることにより、直火加熱炉出側の鋼板表面に生成された鉄系酸化物の膜厚の情報に基づき、鋼板の放射率を推定することにより直火加熱炉出側の鋼板温度も同時に正確に推定することができるようになるから、より正確な直火燃焼制御も実現できる。
その結果、連続溶融亜鉛めっき鋼板製造工程に適用することにより、溶融亜鉛めっき鋼板の成分、連続溶融亜鉛めっきラインを走行する鋼板速度によらず、正確な直火燃焼制御を実現でき、鋼板速度を抑制する場合も少なくなり、生産性の向上とめっき特性の向上を達成することが可能となる。
以下に本発明の実施の形態について図を用いて詳細に説明する。
図1は、本発明の構成を模式的に示す断面図である。
図1中、1は走行鋼板を示し、2は、走行鋼板1を連続的に直火加熱するための直火加熱炉を示す。直火加熱炉2は、その内部が耐火物で覆われており、複数のゾーンに配置された直火バーナーにより走行する鋼板1を加熱する。空気比やガス組成、バーナー火炎条件を代えた複数のゾーンがラインに沿って直列に配置されている。このような直火加熱炉によって、走行する鋼板1が所定の燃焼パターンに従って加熱される。3は、本発明の実施の形態に係る酸化膜厚計測装置の反射、放射光強度検出装置を示す。
反射、放射光強度検出装置3の具体的構成については、後述するが(図3参照)、分光素子25〜28及び光検出素子29〜32を含む光検出装置である反射、放射光強度検出装置3は、図4に示すように、水冷式遮光管4内に内蔵するのが好ましい。また本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置は、水冷式遮光管4を有するのが好適である。
水冷式遮光管4はその一端部が走行する鋼板1と対向して炉内に延在され、測定用窓6が形成されている。この測定用窓6以外の部分からは、遮光管4を通過して、反射、放射光強度検出装置3(光検出装置)の集光レンズ系21に光が到達することがないように、背光雑音が遮蔽されている。
また、遮光管4は水冷式とされ、炉壁からの熱が酸化膜厚計測装置の反射、放射光強度検出装置3に伝わるのを抑制するのが好ましく、また 炉内ロール5は、走行鋼板1の上下方向のバタツキや振動を抑えるために配置するのが好ましい。
本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置は、図3に示すように、集光レンズ系21を有し、赤外光の照射時には、走行鋼板1の鋼板表面から放射される自発光放射エネルギーと、赤外光源41から照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、分光素子25〜28及び光検出素子29〜32を含む光検出装置で測定するように構成されている。一方、赤外光の照射を回転チョッパー42により遮断した時には、走行鋼板1の鋼板表面から放射される自発光放射エネルギーのみを、分光素子25〜28及び光検出素子29〜32を含む光検出装置で測定するように構成されている。
図3、図4中、33は、分光素子25〜28及び光検出素子29〜32を含む反射、放射光強度検出装置3(光検出装置ともいう)からの信号を電気的に増幅する増幅処理装置を示す。
ここで、増幅処理装置33の信号は演算処理装置34に送られ、演算処理装置34では、後述する所定の演算処理を行うことにより、走行鋼板1の表面に形成された膜厚や走行鋼板1の温度が求め、出力装置34に出力するように構成されている。なお、本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置は、図4に示すように、反射、放射光強度検出装置3の受光窓の中心と、水冷式遮光管4の一端部に形成した測定用窓6の中心とを結ぶ直線が走行鋼板1の表面と直交するように直火加熱炉2の出側に設置されている。44は、測定用窓6を形成した遮蔽板を示し、41は赤外光源を、42は回転チョッパーを示す。回転チョッパー42により、赤外光源41からの赤外光を間欠的に走行鋼板1の表面に照射する。43は、ハーフミラーを示し、45は回転タイミング検出装置を示す。
次いで反射、放射光強度検出装置3を具備した本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置により、走行鋼板1の表面に生成される鉄系酸化物の膜厚を連続的に測定する方法につき、その経緯を含めて説明する。
直火加熱炉2の条件(例えば空気比や燃焼温度・時間など)を変化させて、鋼板表面に生成される鉄系酸化物の膜厚を5段階に変えた鋼板サンプルを作成し、膜厚の異なる鋼板サンプルの赤外反射スペクトルを、鉄系酸化物が形成されていない下地鋼板に対する相対反射率をて測定した結果を図2に示す。
鋼板上の酸化物の膜厚の実測としては、標準サンプルの化学分析結果とグロー放電分析装置(GDS)による分析結果との対比から検量線を作成しておき、任意の鋼板サンプルの膜厚値をGDS分析により破壊測定した結果を用いた。この鋼板は、Si含有量が0.25%である。膜厚の単位としては、化学分析で得られるg/m2であり、単位面積当たりに換算した鉄系酸化物、例えばFe2O3、Fe3O4、FeOなどの総量(重量換算)である。グロー放電分析装置(GDS)による分析で測定した酸化物の膜厚は、図2中、(1)のものが最も鉄系酸化物の膜厚が厚く、次いで膜厚が(2)、(3)、(4)の順に薄くなり、(5)のものが最も鉄系酸化物の膜厚が薄い。
図2に示す結果から、酸化膜厚が増加するのに応じて特定の赤外波長領域で反射率が低下する傾向が見られる。また、Si含有量が0.6%以上の鋼種での赤外反射スペクトルを同様に調べた場合、図2に示す特定の赤外波長領域と別の特定の赤外波長領域で反射率が低下する傾向が見られた。これらの結果からある特定の赤外波長を選択すると、酸化膜厚と反射率とは鋼種ごとに一応の関係が得られた。従って、特定の反射率を測定することにより、鋼板上の酸化膜厚が推定可能性があることがわかる。
このような反射率測定を膜厚測定に利用する方法は一般的であり、反射・吸収法としてよく採用されている。例えば、金属表面の樹脂膜厚測定に樹脂被膜物質の吸収波長での反射強度測定値を用いる方式が実用化されている。
また、オンラインでの測定に際して測定対象の振動、バタツキの影響を除去したり、照射光源変動の影響を少なくする目的で、特定の2つの波長での反射比(反射光強度比)を利用する方式も一般的に用いられている。この対策の利点を考慮することにより、前記の鋼板表面の酸化膜厚測定に対しても2波長反射比を膜厚測定に利用することが可能である。本発明では、基本的にはこの方式を応用するものである。
すなわち、測定される2波長反射比R(λ2)/R(λ1)から鋼板上の酸化膜厚[d]を推定するようにしている。ここでλ2<λ1である。
また、鋼種が異なると被膜物性(屈折率等)が異なるので赤外反射スペクトルも異なるため、膜厚推定に利用する波長として別の波長を選択することが必要になる。例えば、別の波長λ3を利用して2波長反射比R(λ3)/R(λ2)から鋼板上の酸化物の膜厚[d]の推定が可能である。
ここで、前記の2つの波長を含めて、λ3<λ2<λ1である。また、反射率の測定には、前記の3つの波長λ1、λ2、λ3を含む赤外波長域に、十分な放射強度の赤外光を鋼板表面に照射する必要がある。このような方法を直火加熱炉出側での鋼板表面に生成される酸化膜厚の計測に利用するためには以下に説明する対策が必要である。すなわち、直火加熱炉出側の走行鋼板1は、鋼板自体が数百℃以上に加熱されているため、鋼板表面から赤外波長域で熱を放射している。従って、赤外光源から十分な放射強度の赤外光を鋼板表面に照射した場合には、鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、酸化膜厚計測装置3が検出することになる。そこで、本発明では、直火加熱炉出側で走行鋼板1の表面に、赤外光を間欠的に照射し、赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、赤外波長域の4つの異なる波長帯域にてそれぞれ同時に検出するようにした。
この本発明による酸化膜厚計測方法について、以下、式を用いて説明する。
ただし、
Ire(λ,T):光源にて対象を照射した場合の波長λでの測定強度(温度;T)、
Ira(λ,T):波長λでの自発光輝度強度(温度;T)、
R(λ):波長λでの反射率、
ε(λ):波長λでの放射率、
0(λ):波長λでの光源照射強度とする。
プランクの法則から
Lb(λ,T)=(2c/λ5){1/(exp(c2/λT)−1)}
(i)赤外光源から鋼板表面に赤外光を照射した場合の測定
Ire(λ1,T)=ε(λ1)・Lb(λ1,T)+I0(λ1)・R(λ1) ・・・・・(1)
Ire(λ2,T)=ε(λ2)・Lb(λ2,T)+I0(λ2)・R(λ2) ・・・・・(2)
(ii)赤外光源から鋼板表面に照射する赤外光を遮断した場合の測定(自発光輝度測定)
Ira(λ1,T)=ε(λ1)・Lb(λ1,T) ・・・・・(3)
Ira(λ2,T)=ε(λ2)・Lb(λ2,T) ・・・・・(4)
(1)から(4)を用いることで、
R(λ2)/R(λ1)={Ire(λ2,T)−Ira(λ2、T)}/{Ire(λ1,T)−Ira(λ1,T)}
・・・・・(5)
反射率比と酸化物の膜厚[d]との関係は前述したように、Si含有量の量に応じてある程度の鋼種に分類すると特定の一価の関数によって表現できる関係が得られるので、ある鋼種に対しての関係式をf1なる関数とすれば、
d=f1{R(λ2)/R(λ1)} ・・・・・(6)
と表現できる。別の鋼種に対して同様にして関係式を表す関数をf2とすれば、
d=f2{R(λ3)/R(λ2)} ・・・・・(7)
と表現できる。また、(6)、(7)の各式をまとめて一般化すると、以下の1つの式として表現可能である。
d=A1×f1{R(λ2)/R(λ1)}+A2×f2{R(λ3)/R(λ2)}・・・・・(8)
高張力鋼管での鋼種としてはSi、Mn等の成分含有量に応じて複数種類存在するが、(8)式での係数;A1、A2を適宜設定することにより、反射率比と酸化物の膜厚[d]とを結びつける関係式を導くことが可能である。
ここで、関数式f1やf2としては、例えば2次関数などが用いられる。
以上に説明した方法は、直火過熱炉の前段ゾーンで生成された鉄系酸化物の一部が後段ゾーンで還元されることで生成される還元Feが少ない場合には、十分な精度で鉄系酸化物の膜厚推定が可能であることが確認されている。しかし、実際に製造される溶融亜鉛めっき鋼板は、直火過熱炉の前段ゾーンで生成された鉄系酸化物の一部が直火加熱炉の後段のゾーンで還元性雰囲気で加熱処理されるため、前段ゾーンで生成された鉄系酸化物の最表面に還元Feが点在している例が多い。
従って、これまでに説明した3つの波長を選択して、溶融亜鉛めっき鋼板製造工程の中間工程である直火加熱炉出側に適用して、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に測定した場合には、大きな誤差が生じることがある。すなわち、前段ゾーンで生成された鉄系酸化物の一部が還元され、表層部に、還元Feが点在しているので、最表層を覆ってしまうことはない。しかし、鉄系酸化物の一部が還元され、表層部に還元Feが点在している状態となった場合には、鋼板表面での反射特性が異なるだけでなく、酸化物層への光の侵入状態も変化するため、表層部に還元Feが点在していない場合に比べて酸化物層での光の吸収特性も異なってくる。
そこで、鋼板表面に生成された鉄系酸化物層のより最表部での感度が相対的に優れた第4の波長λ4での反射情報の融合を試みた。すなわち、赤外光源から第4の波長λ4の赤外光を照射することによって鋼板表面に生成された鉄系酸化物の表層での反射状態を間接的に測定して補正に活用できるのか、否かを調査した結果、(8)式の関係式に、補正項として第4の波長λ4の反射情報を加えることで、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができることを確認した。得られた補正項として第4の波長λ4の反射比の情報を含む(9)式を下記に示す。
d=A1×f1{R(λ2)/R(λ1)}+A2×f2{R(λ3)/R(λ2)}
+A3×f3{R(λ4)/R(λ3)} ・・・・・(9)
ここで、前述の3波長を含めてλ4<λ3<λ2<λ1である。
以上説明したように、4つの波長を組み合わせて測定される反射率比と、予め得られている関係式とを組み合わせることで、最表面に還元Feが点在している状態となった場合でも鋼板表面に生成された鉄系酸化物の膜厚dを精度良く測定できる。
また、放射率と鋼板表面に生成された鉄系酸化物の膜厚とは鋼種毎にほぼ一定の関係があるので、f4をその関係を表す関数にすることにより、例えばλ4の放射率ε(λ4)は以下の(10)式から求めることが可能になる。
ε(λ4)=f4(d) ・・・・・(10)
このように、放射率が同定され、式(3)などと同様で実測されるIra(λ4,T)と同定されたε(λ4)とから温度Tが求められる。
従って、従来の直火加熱条件の管理・制御に代わり、本発明を用いることにより、直火加熱炉出側で走行鋼板1の鋼板表面に生成された鉄系酸化物の膜厚を精度良く測定することができる。また、本発明によれば、鋼板表面に生成された鉄系酸化物の膜厚の情報に基づき、鋼板の放射率を推定することも可能になるため、直火加熱炉出側で走行鋼板1の温度の測定も可能となり、直火加熱炉の燃焼制御をより厳密に行うことができる。
その場合、図3、4に示すように、窓部を有する回転チョッパー42を用い、走行鋼板の表面に赤外光を間欠的に照射し、また、複数のハーフミラー22〜24により光路を分岐させ、4つの波長域で同時にエネルギーを検出する光検出装置とするのが好ましい。
この理由は、走行鋼板1の表面での酸化膜の膜厚の長手方向変動が急激である場合でも、短い時間間隔で、走行鋼板の表面に赤外光を間欠的に照射することができ、また4つの波長域で同時にエネルギーを検出することができるから、赤外光の間欠照射によって検出される異なる8つの検出値を用い、演算により膜厚を迅速に求めることができる。従って、応答性に優れる鋼板表面の酸化膜厚計測装置とすることができる。
ただし、走行鋼板1の表面での酸化膜の膜厚の長手方向変動が緩やかである場合には、以下のような単一の光路での測定とすることもできる。例えば、FT-IR分光器を用いて遠隔でスペクトルを連続測定して必要な波長情報を取り出す方法、連続式分光フィルターを回転させスペクトルを順次測定する方法、検出波長帯の透過型干渉フィルターを複数個装着した回転板を回転させて各検出波長帯での測定を順次行う方式などが挙げられる。
直火過熱炉2を備えた連続溶融亜鉛めっき鋼板の製造ラインに設置して好適な鋼板表面の酸化膜厚計測装置の構成を図3により説明する。図3中、21は、分光素子25〜28及び光検出素子29〜32を含む光検出装置である反射、放射光強度検出装置3の集光レンズ系を示す。この直火過熱炉2の出側に設置して好適な実施例の光検出装置には、第一の波長として12μmを、第二の波長として7μmを、第三の波長として3.5μmを、第四の波長として2.5μmを使用し、分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度を同時に測定する。
集光レンズ系21透過した光は、第一のハーフミラー22により、2つの経路に分けられ、第二のハーフミラー23に一部の光が導かれ、残りの光が第三のハーフミラー24に導かれる。前記第二のハーフミラー23で光は、さらに2つの経路に分岐され、ハーフミラー23を透過した光が、干渉フィルター等の分光素子25を透過して12μm用検出素子である光検出素子29により反射光強度及び放射輝度測定される。ハーフミラー23で反射された光は、分光素子26を透過して7μm用検出素子である光検出素子30により反射光強度及び放射輝度測定される。第一のハーフミラー22を透過した光は、第三のハーフミラー24で2つの経路に分岐され、第三のハーフミラー24で反射した光が分光素子27を経て3.5μm用検出素子31により反射光強度及び放射輝度測定される。第三のハーフミラー24を透過した光が分光素子28を経て2.5μm用検出素子32により反射光強度及び放射輝度測定される。以上の4組の分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度が同時に測定され、測定された光強度信号は増幅処理装置33に送られる。また、測定対象の鋼種毎に前述した関係式f1、f2、f3や各係数A、A、A、さらにf4の関係式の情報は演算処理装置34に記憶されており、演算処理装置34ににより、所定の演算処理が実施されて、走行鋼板1の表面に生成された酸化膜の膜厚や走行鋼板1の温度の値が求められ、その結果が出力装置34に出力される。その際、走行鋼板1の表面には、赤外光源41から赤外光が間欠的に照射される。
図4を用いて説明する。赤外光源41からの赤外光は、回転チョッパー42の窓を経てハーフミラー43にて分けられ、走行鋼板1の表面に一部の赤外光が垂直に照射される。回転チョッパーには窓が形成されており、窓のない部分が回転して来て、赤外光源41からの赤外光が遮断された場合には、鋼板表面に光が照射されない。回転チョッパー42には、窓が一定の角度ごとに複数個開けられていてもかまわない。一定の角度ごとに、窓の有り、無し部を形成すれば、一定の時間毎に間欠的に赤外光が鋼板表面に照射される。回転タイミング装置45で、回転チョッパー42の窓部の通過を検出するようにすれば、照射のタイミングが検出される。鋼板表面で反射した赤外光は垂直に戻り、ハーフミラー43を再度透過して、分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度が同時に測定される。なお、回転タイミング検出装置45による検出信号は、図3に示した増幅処理装置33に送られて、4つの検出素子での測定タイミング制御に活用される。以上の説明では垂直照射の例を示したが、ある角度を持たせて赤外光の照射と、鋼板表面で反射した赤外光の受光を行うようにしてもよい。
また、赤外光源41から鋼板表面への赤外光の照射系や鋼板表面で反射した赤外光の受光系に赤外波長域での透過特性に優れた光ファイバを利用すれば、高温の鋼板表面から光学機器までの距離を遠ざけることも可能である。
また、酸化膜の膜厚を算出する関係式としては、2つの波長での反射率比の関数を3つ求めて、それらに一定の係数を乗算した重み付けをしているが、3組の反射率比の値から多重回帰式を算出した1つの関数式で代用することも可能である。
図5には、Si含有量の多少で2つの区分した鋼板に対して3つの波長λ、λ、λで算出した膜厚推定値とGDSにて実測した膜厚との関係を示した。この場合は、鉄系酸化物の最表面における還元Feが極少ない状態の走行鋼板1である。この結果から両者の対応は良好であることがわかる。しかし、鉄系酸化物の最表面に還元Feが点在する走行鋼板1に対する測定結果を同じ関係式で算出した場合を、図6のように重ね合わせて示すと推定誤差が大きくなり、実用上問題であることがわかる。○印は鋼板のSi含有量が0.25%の場合を示し、□印は鋼板のSi含有量が0.6%以上の場合を示し、△印は鋼板表層部に還元鉄層が存在する場合を示している。
そこで、前述したように第4の波長λを組み合せて新たな関係式をもとに演算処理を施し、全ての鋼板に対してプロットした結果を図7に示す。図7に示す結果から、鉄系酸化物の最表面に還元Feが点在する走行鋼板1に対して、測定誤差が低減されることが確認された。なお、これらの解析では、Si含有量の多少の区分は0.6%を境界に行った。Mn成分についても複数の条件があるので図2に示した反射スペクトルは厳密には同じではないため、SiとMnの成分量での区分けを細分化することも可能であり、細分化した各区分け毎に関係式や係数を設定することで更に高精度の膜厚推定が可能になる。
本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置を設置する場所を示す模式面図である。 鋼板表面に生成された酸化膜の膜厚が異なる鋼板での反射スペクトルを表す特性図である。 4つの赤外波長域で反射光強度及び放射輝度を同時に測定するための装置構成の一例を示す構成図である。 図1に示す本発明の実施の形態に係る鋼板表面の酸化膜厚計測装置の内部を示す概略構成図である。 鉄系酸化物層に点在する還元鉄が極少ない場合の酸化膜厚推定値と分析により得られた実際の酸化膜厚との関係を示す特性図である。 鉄系酸化物層に点在する還元鉄層が極少ない場合に加えて、鉄系酸化物層に還元鉄が点在する場合も含めた鋼板での酸化膜厚推定値と分析により得られた実際の酸化膜厚との関係を示す特性図である。 鉄系酸化物層に点在する還元鉄層が極少ない場合に加えて、鉄系酸化物層に還元鉄が点在する場合も含めた、本発明による演算処理を行った場合の酸化膜圧推定値と分析により得られた実際の酸化膜厚との関係を示す特性図である。
符号の説明
1 走行鋼板
2 直火加熱炉
3 反射、放射光強度検出装置
4 水冷式遮光管
5 ロール
6 測定用窓
7 熱電対
8 演算装置
9 記憶装置
10 出力装置
11 プロセス管理用生後装置
21 集光レンズ系
22、23、24 ハーフミラー
25〜28 分光素子
29〜32 光検出素子
33 増幅処理装置
34 演算処理装置
35 出力装置
41 赤外光源
42 回転チョッパー
43 ハーフミラー
44 測定用窓6を形成した遮蔽板
45 回転タイミング検出装置

Claims (4)

  1. 直火過熱炉を備えた連続焼鈍工程で、走行鋼板の表面に生成される鉄系酸化物の膜厚を連続的に測定する鋼板表面の酸化膜厚計測方法であって、前記直火加熱炉の出側で走行鋼板の表面に赤外光を間欠的に照射し、前記赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、4つの異なる赤外波長帯域にてそれぞれ検出し、前記赤外光の間欠照射によって検出される8つの検出値を用い、演算により膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測方法。
  2. 直火過熱炉を備えた連続焼鈍ラインに設置する鋼板表面の酸化膜厚計測装置であって、前記直火加熱炉の出側で走行鋼板の表面に向けて赤外光を照射するための赤外光源と、該赤外光源からの赤外光を間欠的に照射するための光遮断装置と、前記赤外光が鋼板表面に照射される赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板表面から放射される自発光放射エネルギーのみを、4つの異なる赤外波長帯域にてそれぞれ検出するための光検出装置と、該光検出装置の信号を電気的に増幅する増幅処理装置と、前記赤外光の間欠照射によって検出される8つの検出値を用い、演算により膜厚を求める演算装置と、を具備したことを特徴とする鋼板表面の酸化膜厚計測装置。
  3. 前記光遮断装置は窓部を有する回転チョッパーを含むことを特徴とする請求項2に記載の鋼板表面の酸化膜厚計測装置。
  4. 前記光検出装置は複数のハーフミラーにより光路を分岐させ、前記4つの波長域で同時にエネルギーを検出する複数の素子を含むことを特徴とする請求項2又は3に記載の鋼板表面の酸化膜厚計測装置。
JP2005191184A 2005-06-30 2005-06-30 鋼板表面の酸化膜厚計測方法及び装置 Pending JP2007010464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191184A JP2007010464A (ja) 2005-06-30 2005-06-30 鋼板表面の酸化膜厚計測方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191184A JP2007010464A (ja) 2005-06-30 2005-06-30 鋼板表面の酸化膜厚計測方法及び装置

Publications (1)

Publication Number Publication Date
JP2007010464A true JP2007010464A (ja) 2007-01-18

Family

ID=37749181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191184A Pending JP2007010464A (ja) 2005-06-30 2005-06-30 鋼板表面の酸化膜厚計測方法及び装置

Country Status (1)

Country Link
JP (1) JP2007010464A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250783A (ja) * 2008-04-07 2009-10-29 Sonac Kk 多層薄膜の膜厚測定方法
KR101207684B1 (ko) * 2010-12-27 2012-12-03 주식회사 포스코 박막 두께 측정장치 및 박막 두께 측정방법
KR101281392B1 (ko) * 2011-11-21 2013-07-02 주식회사 포스코 고온 강판의 산화층 두께 측정 장치 및 방법
JP2019023635A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 温度測定装置、温度測定方法及びプログラム
JP2020008484A (ja) * 2018-07-11 2020-01-16 株式会社神戸製鋼所 酸化膜厚測定装置および該方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987307A (ja) * 1982-11-11 1984-05-19 Nippon Kokan Kk <Nkk> 表面被膜の膜厚測定装置
JPS63235805A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 膜厚測定方法及び装置
JPH10206125A (ja) * 1997-01-27 1998-08-07 Nippon Steel Corp 酸化膜厚さ測定装置及び測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987307A (ja) * 1982-11-11 1984-05-19 Nippon Kokan Kk <Nkk> 表面被膜の膜厚測定装置
JPS63235805A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 膜厚測定方法及び装置
JPH10206125A (ja) * 1997-01-27 1998-08-07 Nippon Steel Corp 酸化膜厚さ測定装置及び測定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250783A (ja) * 2008-04-07 2009-10-29 Sonac Kk 多層薄膜の膜厚測定方法
KR101207684B1 (ko) * 2010-12-27 2012-12-03 주식회사 포스코 박막 두께 측정장치 및 박막 두께 측정방법
KR101281392B1 (ko) * 2011-11-21 2013-07-02 주식회사 포스코 고온 강판의 산화층 두께 측정 장치 및 방법
JP2019023635A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 温度測定装置、温度測定方法及びプログラム
JP7024644B2 (ja) 2017-07-21 2022-02-24 日本製鉄株式会社 温度測定装置、温度測定方法及びプログラム
JP2020008484A (ja) * 2018-07-11 2020-01-16 株式会社神戸製鋼所 酸化膜厚測定装置および該方法
JP7120834B2 (ja) 2018-07-11 2022-08-17 株式会社神戸製鋼所 酸化膜厚測定装置および該方法

Similar Documents

Publication Publication Date Title
US4881823A (en) Radiation thermometry
US10859370B2 (en) Method for the fabrication of a steel product comprising a step of characterization of a layer of oxides on a running steel substrate
JP7024644B2 (ja) 温度測定装置、温度測定方法及びプログラム
JP2007010464A (ja) 鋼板表面の酸化膜厚計測方法及び装置
EP2299250B1 (en) Pyrometer adapted for detecting UV-radiation and use thereof
JP2011202968A (ja) 鋼板表面の酸化膜厚計測方法および装置
JP2007292498A (ja) 酸化膜厚計測方法及びその装置
JPH06500387A (ja) 多波長高温計
GB2569644A (en) Measurement system for metal strip production line
JPH0933517A (ja) 鋼板の材質計測方法
CN115979425A (zh) 一种多波长移动窄带窗口寻优光谱测温方法
KR20230069189A (ko) 강 스트립의 온도 및 산화물 두께의 추정 방법
JPH0933464A (ja) 鋼板の表面スケール測定方法及び材質測定方法
JP2022512428A (ja) 金属基板上のポリマーコーティングの結晶化度の測定法
JPH08219891A (ja) 鋼板の表面性状測定方法及び鋼板温度測定方法
JP2021113765A (ja) 酸化膜の平均膜厚推定方法
JP6520865B2 (ja) 亜鉛めっき鋼板の合金化度および/またはめっき付着量測定方法
ES2713268T3 (es) Procedimiento para la medición simultánea del grosor y de la temperatura de una capa de óxido
JP2007107939A (ja) 鋼板の温度測定方法および温度測定装置
JP2006091001A (ja) 被膜付着量測定方法及び被膜付着量測定装置、並びに赤外分光光度計
RU2806259C1 (ru) Способ оценки температуры и толщины оксида полосовой стали
JP2005283273A (ja) 皮膜付着量測定方法
JPH08254502A (ja) 鋼材のスケール性状測定方法及び装置
JPH0227571B2 (ja) Nenshojotaishindanhoho
Hayk High quality, high accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Effective date: 20100901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101108

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110316

Free format text: JAPANESE INTERMEDIATE CODE: A02