JP2007009709A - リニア空燃比センサの劣化診断装置 - Google Patents

リニア空燃比センサの劣化診断装置 Download PDF

Info

Publication number
JP2007009709A
JP2007009709A JP2005187895A JP2005187895A JP2007009709A JP 2007009709 A JP2007009709 A JP 2007009709A JP 2005187895 A JP2005187895 A JP 2005187895A JP 2005187895 A JP2005187895 A JP 2005187895A JP 2007009709 A JP2007009709 A JP 2007009709A
Authority
JP
Japan
Prior art keywords
fuel ratio
disturbance
ratio sensor
value
linear air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005187895A
Other languages
English (en)
Other versions
JP4548247B2 (ja
Inventor
Minoru Miyakoshi
穂 宮腰
Koji Miyamoto
浩二 宮本
Koichi Terada
浩市 寺田
Hiroyuki Takebayashi
広行 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005187895A priority Critical patent/JP4548247B2/ja
Publication of JP2007009709A publication Critical patent/JP2007009709A/ja
Application granted granted Critical
Publication of JP4548247B2 publication Critical patent/JP4548247B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行すること。
【解決手段】 フィードバック制御系にインパルス状の外乱LR、RLを所定回数出力する。外乱LR、RLの出力後にリニア空燃比センサSW4の出力PFを微分した微分値DO2を出力する。この微分値DO2に基づいてリニア空燃比センサのむだ時間Lと時定数τとを判定パラメータとして演算する。リニア空燃比センサSW4の出力PFが収束しているか否かを判定し、演算されたむだ時間Lの終了時点で外乱の生成をリセットする。これとともに、外乱RL、LRのリセット後にリニア空燃比センサSW4の出力PFの収束を判定した場合に次回の外乱RL、LRを生成する。次回の外乱RL、LRの絶対値|Hdis|は、前回の外乱RL、LRに係る微分ピーク値DO2PKが所定のしきい値ThPを下回ったときに初めて増量される。
【選択図】 図6

Description

本発明はリニア空燃比センサの劣化診断装置に関し、より詳細には、エンジンの排気系に設けられ、排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサの劣化を検出するリニア空燃比センサの劣化診断装置に関する。
従来、この種のリニア空燃比センサの劣化診断装置としては、例えば特許文献1に開示されている技術がある。この特許文献1に開示されている技術では、通常運転時では、PID動作によって空燃比のフィードバック制御を実行するとともに、診断時には、フィードバック制御系のD動作を禁止してPI動作に切り換えることにより、リニア空燃比センサの出力変動を拡大し、センサ劣化度合いが大きい程、応答周期が長くなることに基づいて、リニア空燃比センサの応答劣化を拡大して検出するようにしている。
特許第3377336号公報
特許文献1に開示されている装置では、リニア空燃比センサの出力変動を拡大しているのでリニア空燃比センサの劣化判定が容易になる反面、診断時にD動作を禁止してPI動作に切り換えているので、目標空燃比に対する追従性が低下する結果、診断時のエミッション低下が不可避になるという問題があった。
本発明は上記課題に鑑みてなされたものであり、診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行することのできるリニア空燃比センサの劣化診断装置を提供することを課題としている。
上記課題を解決するために本発明は、エンジンの目標空燃比を制御するフィードバック制御系に設けられ、排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサの劣化診断装置であって、前記フィードバック制御系にインパルス状の外乱を所定回数出力する外乱発生手段と、外乱発生手段による外乱出力後にリニア空燃比センサの出力の微分値を出力する微分手段と、微分手段が出力した微分値に基づいてリニア空燃比センサのむだ時間と時定数の少なくとも一方を劣化判定の判定パラメータとして演算する判定パラメータ演算手段と、リニア空燃比センサの出力が収束しているか否かを判定する収束判定手段と、外乱発生手段が発生する外乱の値を設定する外乱値設定手段とを備え、前記外乱値設定手段は、前回の外乱の発生によって得られた微分ピーク値が所定のしきい値を下回った場合に次回の外乱の絶対値を増加するものであることを特徴とするリニア空燃比センサの劣化診断装置である。この態様では、外乱値設定手段を設け、微分ピーク値(微分手段が出力した微分値のピーク値)が所定のしきい値を下回った場合に次回の外乱の絶対値を増加するようにしている。これは、リニア空燃比センサの劣化が進む程、微分ピーク値が低くなることに着目したものであり、劣化の進んでいないリニア空燃比センサを診断する場合には、外乱の絶対値が小さい状態で劣化診断を実行することができる結果、診断のための外乱による目標空燃比への影響を可及的に抑制することが可能になる。この発明において、エンジンの目標空燃比は、原則として理論空燃比(λ=1)に設定される。さらに、外乱発生手段が生成する「外乱」とは、空燃比のフィードバック制御系の状態を一時的に乱す外的作用をいい、具体的な例としては、燃料噴射量を意図的にリッチ側またはリーン側に変動させることにより、空燃比のフィードバック制御系に付加されるものである。
好ましい態様において、前記外乱発生手段は、微分手段の出力した微分値が所定のしきい値を越えたことに基づいて、外乱をリセットするものであり、前記しきい値は、外乱の絶対値が大きくなる程、小さくなるように設定されるものである。この態様では、リニア空燃比センサの劣化が進んでいない状態では、微分ピーク値が高くなり、劣化が進むに連れて微分ピーク値が下がる特性に鑑み、劣化の進んでいない状態では、しきい値を比較的高く設定することができる。従って、リニア空燃比センサの劣化が進んでいない状態では、リニア空燃比センサによる外乱のフィードバックを確実に検出することができ、定常変動によるノイズを誤検出するおそれがなくなる。
好ましい態様において、前記外乱発生手段は、空燃比をリッチ側とリーン側とに交互に変更するものであり、前記外乱値設定手段は、リッチ側の外乱同士、リーン側の外乱同士で微分ピーク値をしきい値と比較するものである。この態様では、外乱を目標空燃比からリッチ側とリーン側とに交互に変更して劣化診断が実行されるので、リッチ側の外乱とリーン側の外乱とが相互に中和され、目標空燃比に対するずれが生じにくくなる。また、判定パラメータをリッチ側、リーン側毎に演算することが可能になり、よりきめの細かい劣化診断を実行することが可能になる。さらに、リッチ側とリーン側とでリニア空燃比センサのむだ時間や時定数が異なる場合であっても、リッチ側、リーン側毎に必要充分な増量で外乱の絶対値を増加することが可能になる。
以上説明したように本発明によれば、劣化の進んでいないリニア空燃比センサを診断する場合には、外乱の絶対値が小さい状態で劣化診断を実行することができる結果、診断のための外乱による目標空燃比への影響を可及的に抑制することが可能になるので、むだ時間、時定数毎に劣化診断が可能なことと相俟って、診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行することができるという顕著な効果を奏する。
以下、添付図面を参照しながら本発明の好ましい実施形態について詳述する。
図1は本発明の実施の一形態に係るエンジン10の系統図である。
図1を参照して、本実施形態の劣化判定装置1に係るエンジン10には、複数の気筒11が設けられるとともに、各気筒11の内部には、図略のクランクシャフトに連結されたピストン12が嵌挿されることにより、その上方に燃焼室14が形成されている。エンジン10には、前記クランクシャフトのエンジン回転速度Neを検出する回転角度センサSW1が設けられている。
エンジン10のシリンダヘッドには、前記気筒11毎に燃焼室14に向かって開口する吸気ポート15、排気ポート16がそれぞれ形成されているとともに、これらのポート15、16には、吸気弁17および排気弁18がそれぞれ装備されている。
吸気ポート15には、吸気システム20が、排気ポート16には排気システム30がそれぞれ設けられている。
吸気システム20は、吸入空気を浄化するエアクリーナ21を上流端に備えている。エアクリーナ21には、エレメント22が内蔵されている。エアクリーナ21の下流側には、スロットルボディ23が設けられている。スロットルボディ23には、吸気システム20内を流通する吸入空気量Qaを調整するスロットルバルブ24が設けられている。そして、スロットルボディ23の下流側には、インテークマニホールド25が設けられ、このインテークマニホールド25の下流端に設けられた分岐吸気通路26が対応する気筒11の吸気ポート15に接続されている。図示の例では、分岐吸気通路26に燃料噴射弁27が設けられている。この吸気システム20には、エアクリーナ21とスロットルボディ23の間にエアフローセンサSW2が配置されている。エアフローセンサSW2は、エレメント22に濾過された吸入空気の吸入空気量Qaを出力するものである。さらに、スロットルボディ23には、当該スロットルバルブ24のスロットル開度TVOを検出するスロットルセンサSW3が設けられている。
排気システム30は、排気ポート16に接続されるエキゾーストマニホールド31と、このエキゾーストマニホールド31の下流側に配置され、当該エキゾーストマニホールド31内に排出された既燃ガスを浄化する三元触媒32とが設けられている。そして、この排気システム30には、三元触媒32の上流側に配置されたリニア空燃比センサSW4と、下流側に配置された酸素濃度センサSW5とが設けられている。リニア空燃比センサSW4は、既燃ガスから酸素濃度に概ね比例する信号を出力するためのものである。酸素濃度センサSW5は、理論空燃比に相当する酸素濃度で出力電圧が急変するように構成されており、理論空燃比に対し酸素濃度が多いか少ないかをオンオフ的に検出することにより、空燃比のフィードバック制御を実行するためのものである。リニア空燃比センサSW4は、フィードバック制御の実空燃比に相当する出力を演算するものであるのに対し、酸素濃度センサSW5は、浄化後の既燃ガスの酸素濃度に相当する検出値を演算するものである。本実施形態において、エンジンの目標空燃比は、原則として理論空燃比(λ=1)に設定される。
上述した各センサSW1〜SW5並びに燃料噴射弁27は、コントロールユニット100に接続されることにより、空燃比のフィードバック制御系を構成している。
図2は本実施形態に係る劣化判定装置1の制御回路ブロック図であり、図3は図2の制御回路によって実現される劣化判定装置1のブロック線図である。
まず、図2を参照して、コントロールユニット100は、CPU101、ROMで具体化される補助記憶装置102、RAMで具体化される主記憶装置103を含んでいる。上述した各センサSW1〜SW5は、CPU101に接続されており、それぞれ対応する信号Ne、Qa、TVO、PF、SFをCPU101に出力するように構成されている。
CPU101は、補助記憶装置102に記憶されているプログラムに基づいて、各センサSW1〜SW5の出力した信号Ne、Qa、TVO、PF、SFを処理し、燃料噴射弁27を制御して空燃比をフィードバック制御するように構成されている。
補助記憶装置102には、詳しくは後述する劣化診断プログラムが記憶されている。
主記憶装置103は、補助記憶装置102に記憶されたプログラムを実行する過程で、各センサSW1〜SW5が出力した信号Ne、Qa、TVO、PF、SFやこれに基づいて演算された演算値を記憶するように構成されている。さらに本実施形態では、プログラムの実行時において、主記憶装置103に所定の制御マップ200、220が記憶されるように構成されている。
図3を参照して、コントロールユニット100は、同図に示すフィードバック制御系110を構成している。このフィードバック制御系110は、目標空燃比(λ=1)を目標値DVとする基準入力要素111と、基準入力要素111の出力した基準入力IPに補正をかけるBIAS補正要素112と、BIAS補正要素112に補正された動作信号ASに基づいて、エンジン10(より詳細には燃料噴射弁27)への操作量OVを決定する主制御要素114とを含んでいる。
BIAS補正要素112と主制御要素114との間には、リニア空燃比センサSW4により検出された実空燃比に相当する出力PFが入力されるようになっており、主制御要素114は、基準入力要素111の基準入力IPからBIAS補正要素112の補正量SSを差し引き、さらにリニア空燃比センサSW4の出力PFを差し引いた動作信号ASを受けて、ゲインKPを含む所定の伝達関数GP(S)に基づき、操作量OVを出力するように構成されている。
次に、基準入力要素111とBIAS補正要素112との間には、副制御要素115が接続されている。この副制御要素115は、酸素濃度センサSW5からの検出値SFを受けて、ゲインKSを含む所定の伝達関数GS(S)に基づき、副補正量SbSを出力するように構成されている。従って、主制御要素114には、この副補正量SbSが差し引かれた動作信号ASが入力されることになっている。
さらに、本実施形態に係るフィードバック制御系110には、外乱LR、RLを交互に発生させる外乱発生手段116が機能的に構成されている。この外乱発生手段116は、補助記憶装置102に記憶されたプログラムが実行されることにより、次に説明するリニア空燃比センサSW4の劣化診断時において、動作するものである。外乱発生手段116は、燃料噴射量にインパルス状の外乱を与えることによって、過渡的に空燃比をリッチ側またはリーン側に変更するように構成されている。この明細書では、リッチ側に空燃比を変化させるときの外乱はLRと表記し、リーン側に空燃比を変化させるときの外乱はRLと表記する。外乱発生手段116が出力する外乱LR、RLの絶対値|Hdis|の初期値は、新品のリニア空燃比センサSW4が検出するのに必要充分な値に設定される。外乱発生手段116が出力した外乱LR、RLの発生回数NLR、NRLは、それぞれ主記憶装置103に記憶されるようになっている。そして、予め劣化診断プログラムに設定されている出力回数NENDだけ外乱LR、RLを交互に同数出力するように設定されている。これにより、診断によって意図的に変更された空燃比が中和され、主制御要素114によって制御されている空燃比が必要以上に乱されないようにして、エミッションの低下を阻止するようにしている。
図4および図5は本実施形態における劣化診断プログラムのフローチャートである。また図6は図4および図5のフローチャートを実行することによって得られた信号のタイミングチャートである。
まず、図4および図6を参照して、劣化診断プログラムが実行されると、CPU101は診断条件が成立するのを待機する(ステップS1)。ここで診断条件とは、
(1) 回転角度センサSW1で検出されるエンジン回転速度Neの変化量が所定変化量以下であり、
(2) スロットルセンサSW3によって検出されるスロットル開度TVOの変化量が所定変化量以下であり、且つ
(3) CE=Qa/Neで演算される充填効率CEの変化量が所定変化量以下である
という条件を全て満たすいわゆる定常運転時であることをいう。
仮に加速時等、診断条件を満たさない場合には、診断条件を満たすまで待機し、診断条件が成立している場合には、次に収束判定しきい値設定サブルーチンに移行し、収束判定しきい値ThC、dThCが設定される(ステップS2)。
収束判定しきい値ThC、dThCが設定されると、今度はこの収束判定しきい値ThC、dThCに基づいて、収束判定が実行される(ステップS3)。この収束判定では、外乱発生手段116による外乱RL、LRがリセットされている状態において、図6に示すように、リニア空燃比センサSW4の出力PFの変動幅OPとしきい値ThCとが比較されるとともに、微分値DO2の変動幅dOPとしきい値dThCとが比較され、各変動幅OP、dOPが何れも対応するしきい値ThC、dThC未満である場合に空燃比が収束したと判定する。このように本実施形態では、CPU101がリニア空燃比センサSW4の出力PFが収束しているか否かを判定する収束判定手段を機能的に構成している。
空燃比が収束したと判定されると、CPU101は、タイマをスタートし(ステップS4)、タイマのカウントダウンにより、そのタイマ時間が0になるのを待機する(ステップS5)。そして、タイマ時間が0になった後、診断を開始してから外乱LR、RLの発生回数NLR、NRLが比較され(ステップS6)、NRL>NLRが成立する場合には外乱LRがフィードバック制御系110に出力されるとともに(ステップS7)、不成立の場合には、外乱RLがフィードバック制御系110に出力される(ステップS8)。これにより、例えば、図6に示すように、まず、外乱LRが出力され、これによってリニア空燃比センサSW4の出力が変化することになる。
外乱発生手段116が外乱LR(またはRL)を出力すると、CPU101は、リニア空燃比センサSW4の出力PFの微分値DO2を演算する(ステップS9)。これにより、リニア空燃比センサSW4の出力PFが外乱LR(またはRL)によってどのように変化するか把握することが可能になる。このように本実施形態のCPU101は、外乱発生手段116による外乱出力後にリニア空燃比センサSW4の出力PFを微分した微分値DO2を出力する微分手段を機能的に構成している。
ここで、リニア空燃比センサSW4の検出値は、通常、所定のむだ時間Lと時定数τを伴うものである。
図7はリニア空燃比センサSW4のステップ応答特性を示すグラフである。
図7を参照して、リニア空燃比センサSW4の入力x(t)と出力y(t)との間には
y(t)=x(t−L) (L≧0) (1)
という関係が成立し、むだ時間要素としてのリニア空燃比センサSW4は、次式の伝達関数に従う。
G(s)=Y(s)/X(s)=e-Ls (2)
但し、Y(s):出力の複素関数、X(s):入力の複素関数
従って、むだ時間要素としてのリニア空燃比センサSW4のステップ応答h(t)は、逆ラプラス変換により、次式の通りとなり、図7のように決まる。
h(t)=u(t−L) (3)
但し、u(t):単位ステップ関数(1(t≧0)且つ0(t<0))
そこで、本実施形態では、むだ時間Lが経過するのを待機し、むだ時間Lの終了を検出して外乱LR、RLをリセットするようにしている。かかる制御を実行するために、CPU101は、図4に示すように、演算された微分値±DO2と所定のしきい値±ThDとを比較し、+DO2>+ThDまたは−DO2<−ThDが成立するのを待機し(ステップS10)、成立した場合には、リニア空燃比センサSW4のむだ時間Lを演算し(ステップS11)、外乱発生手段116による外乱をリセットする(ステップS12)。
次に、時定数τは、一次遅れ要素の伝達関数
G(s)=Y(s)/X(s)=K/(1−τ) (4)
の定数である。
この式(4)から逆ラプラス変換によって得られるステップ応答h(t)
h(t)=K(1−e-t/M) (5)
但し、K、T:定数
から、
h(t)|τ=M =0.632K (6)
が得られることから、これにむだ時間Lの特性を加えると、時定数τとリニア空燃比センサSW4のステップ応答h(t)とは図7で示す関係になる。
図7から明らかなように、時定数τが大きい程、ステップ応答波形の立ち上がりが遅くなり、最終値に達するまでの時間がかかる。そして、リニア空燃比センサSW4の劣化が進む程、時定数τは長くなる。
図5を参照して、そこで本実施形態では、時定数τを劣化診断の要素として取り入れるために、リニア空燃比センサSW4の出力の微分ピーク値(CPU101が出力した微分値±DO2のピーク値)DO2PKを演算し(ステップS14)、この微分ピーク値DO2PKからリニア空燃比センサSW4の時定数τを演算するようにしている(ステップS15)。
ここで、本実施形態では、ステップS15の時定数τの演算が終了した後、微分ピーク値DO2PKが所定のしきい値ThP以上であるか否かを判定する(ステップS16)。この判定は、外乱LR、RLの値±Hdisが適切であるか否かを判定するものであり、仮にステップS16において、微分ピーク値DO2PKが所定のしきい値ThP以上である場合には、補正値hを0に設定して外乱LR、RLの値±Hdisをそのまま維持し(ステップS17)、微分ピーク値DO2PKが所定のしきい値ThPに満たない場合には、次の出力時に絶対値|Hdis|に所定の増加量Nだけ補正値hが加算されるように設定している(ステップS18)。さらに本実施形態では、リッチ側の外乱LRとリーン側の外乱RLとを交互に実行していることから、外乱値設定手段としてのCPU101も、リッチ側、リーン側毎に外乱LR、RLの値±Hdisを管理している。そして、ステップS16における判定は、リッチ側同士、リーン側同士で実行される。
時定数τの演算が終了し、外乱LR、RLの補正値hを決定すると、CPU101は、外乱発生手段116が生成した外乱が、燃料を減量するものであったか、増量するものであったかを判定し(ステップS19)、減量の場合はRLとして、増量の場合はLRとして、それぞれ判定パラメータ(演算されたむだ時間L、時定数τ)を主記憶装置103に保存し(ステップS20、S21)、主記憶装置103に記憶されている発生回数NLR、NRLをインクリメントする(ステップS22、S23)。
次いで、リーン側の外乱RLの場合には、ステップS17またはS18で設定された補正値hが外乱LR、RLの値Hdisから差し引かれ(ステップS24)、リッチ側の外乱LRの場合には、ステップS17またはS18で設定された補正値hが外乱LR、RLの値Hdisに加算される(ステップS25)。このように本実施形態におけるCPU101は、外乱発生手段116が発生する外乱LR、RLの値±Hdisを設定する外乱値設定手段を機能的に構成している。
その後、各外乱LR、RLについて、所要の回数NENDを終了したか否かが判定される(ステップS26、S27)。
ここで、何れかの発生回数NLR、NRLが所要の回数NENDに満たない場合には、主記憶装置103に予め記憶されている制御マップ200から、リセット計数Dkを索引し(ステップS28)、索引したリセット計数Dkを現在のしきい値±ThDに乗じてしきい値を設定するようにしている(ステップS29)。制御マップ200には、外乱LR、RLの絶対値|Hdis|が大きくなる程、値が小さくなるリセット計数Dkが設定されている。この結果、本実施形態では、ステップS24、25によって外乱LR、RLの絶対値|Hdis|が変更された場合、この変更に伴って、しきい値±ThDが低くなるように設定される。そして、このステップS29の後、ステップS1に戻って処理が繰り返される。
他方、ステップS26、S27において、双方の発生回数NLR、NRLが何れも終了している場合には、劣化判定処理に移行する。
図8は劣化判定処理の詳細を示すフローチャートである。
図8を参照して、ここでは、劣化判定を行うために、むだ時間Lと時定数τの和を過渡時間Tとして定義し、ステップS22までの処理が終了すると、CPU101は、リッチ側の外乱LRとリーン側の外乱RLに係る平均過渡時間TLR、TRLをそれぞれ演算する(ステップS211)。次いで、両平均過渡時間TLR、TRLの絶対値の差を演算し、その値が所定のしきい値ThBを越えていないかどうか判定する(ステップS212)。各平均過渡時間TLR、TRLにおいて、絶対値の差が大きい場合には、主制御要素114による空燃比制御がリッチ側またはリーン側にずれてしまうので、そのようなずれを防止するために、両平均過渡時間TLR、TRLの絶対値の差が演算されている。
仮に両平均過渡時間TLR、TRLの絶対値の差がしきい値ThB以下の場合、今度は、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えているか否かが判定される(ステップS213)。両平均過渡時間TLR、TRLの絶対値の和が大きい場合には、酸素濃度センサSW5でサブフィードバック制御を実行していることもあり、フィードバック制御が過補正になり、制御が緩慢になって発散しやすくなるからである。
仮に、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThA以下の場合には、過渡時間について正常と判定される(ステップS214)。他方、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えている場合には、リニア空燃比センサSW4の劣化がリッチ側でもリーン側でも起きていると判定される(ステップS215)。
他方、ステップS212において、両平均過渡時間TLR、TRLの絶対値の差がしきい値ThBを越えている場合、リッチ側の平均過渡時間TLRとリッチ側のしきい値ThRとが比較されてリッチ側で過渡時間劣化が生じているか否かが判定され(ステップS216)、しきい値ThRを越えている場合には、リッチ側過渡時間TLR劣化が生じていると判定される(ステップS217)。他方、平均過渡時間TLRがしきい値ThR以下の場合には、さらにリーン側の平均過渡時間TRLとリーン側のしきい値ThLとが比較され、リーン側で過渡時間劣化が生じているか否かが判定される(ステップS218)。リーン側の平均過渡時間TRLがしきい値ThLを越えている場合には、リーン側過渡時間TRL劣化が生じていると判定され(ステップS219)、しきい値ThL以内である場合には、正常判定がなされる。なおしきい値ThB、ThAの設定によっては、ステップS218を省略し、ステップS216でNOと判定された場合には、そのままステップS219の判定を実行するようにしてもよい。
そして、ステップS214、S215、S217、S219の何れかが終了すると、処理が終了する。このように本実施形態では、CPU101が図4のステップS11並びに図5のステップS15を実行することにより、微分手段が出力した微分値DO2に基づいてリニア空燃比センサSW4のむだ時間Lと時定数τとを劣化判定の判定パラメータとして演算する判定パラメータ演算手段を機能的に構成している。
次に、図4における収束判定しきい値設定サブルーチン(ステップS2)について詳述する。
図9は、図4における収束判定しきい値設定サブルーチン(ステップS2)の一例を示すフローチャートである。
図9を参照して、この例では、予め、吸入空気量Qaからしきい値ThC、dThCを求めるマップ220を主記憶装置103内に記憶させておき、エアフローセンサSW2から検出された吸入空気量Qaからしきい値ThC、dThCを索引して(ステップS205)、収束判定しきい値ThC、dThCを設定するようにしている(ステップS206)。この形態では、吸入空気量Qaが少なくなるに連れて収束判定しきい値ThC、dThCの値を小さく設定し、収束判定を厳格にすることが可能になる。このように図9の実施形態では、エンジン10の吸入空気量Qaを検出するエアフローセンサSW2を設け、CPU101が機能的に構成する収束判定手段は、吸入空気量Qaが少ないほど収束条件を厳しくし、吸入空気量Qaの変化に伴う時定数τの判定基準を補正することができる結果、誤判定を回避することが可能になる。
以上説明したように本実施形態では、実空燃比に相当する制御量をフィードバックするリニア空燃比センサSW4の劣化を診断するに当たり、外乱LR、RLを生成した後、むだ時間Lを演算し、むだ時間Lの演算終了後に、外乱LR、RLをリセットするようにしているので、フィードバック制御系110の目標空燃比を維持したままの状態で、劣化診断を実行することが可能になるため、エミッションの低下も可及的に抑制することが可能になる。しかも、微分ピーク値DO2PKが所定のしきい値ThPを下回ったときに初めて外乱LR、RLの絶対値|Hdis|を増加させているので、劣化の進んでいないリニア空燃比センサSW4を診断する場合には、外乱LR、RLの絶対値|Hdis|が小さい状態で劣化診断を実行することができる結果、診断のための外乱LR、RLによる目標空燃比への影響を可及的に抑制することが可能になる。
また本実施形態では、CPU101の出力した微分値±DO2が所定のしきい値±ThDを越えたことに基づいて、外乱LR、RLをリセットするものであり、前記しきい値±ThDは、図5のステップS28、S29により、外乱LR、RLの絶対値|Hdis|が大きくなる程、小さくなるように設定されるものである。このため本実施形態では、リニア空燃比センサSW4の劣化の進んでいない状態では、しきい値±ThDを比較的高く設定することができる。従って、リニア空燃比センサSW4の劣化が進んでいない状態では、リニア空燃比センサSW4による外乱LR、RLのフィードバックを確実に検出することができ、定常変動によるノイズを誤検出するおそれがなくなる。
また本実施形態では、空燃比をリッチ側とリーン側とに交互に変更するものであり、リッチ側の外乱LR同士、リーン側の外乱RL同士で微分ピーク値DO2PKをしきい値と比較するものである。このため本実施形態では、外乱LR、RLを目標空燃比からリッチ側とリーン側とに交互に変更して劣化診断が実行されるので、リッチ側の外乱LR、RLとリーン側の外乱LR、RLとが相互に中和され、目標空燃比に対するずれが生じにくくなる。また、判定パラメータをリッチ側、リーン側毎に演算することが可能になり、よりきめの細かい劣化診断を実行することが可能になる。さらに、リッチ側とリーン側とでリニア空燃比センサSW4のむだ時間Lや時定数τが異なる場合であっても、リッチ側、リーン側毎に必要充分な増量で外乱LR、RLの絶対値|Hdis|を増加することが可能になる。
上述した実施形態は本発明の好ましい具体例を説明したものに過ぎず、本発明は上述した実施形態に限定されない。例えば、劣化診断を具体化するに当たり、図8で示したフローチャートをむだ時間L毎、時定数τ毎に実行し、それぞれの劣化状態を判定するようにしてもよい。
その他、本発明の特許請求の範囲内で種々の変更が可能であることはいうまでもない。
本発明の実施の一形態に係るエンジンの系統図である。 本実施形態に係る劣化判定装置の制御回路ブロック図である。 図2の制御回路によって実現される劣化判定装置のブロック線図である。 本実施形態における劣化診断プログラムのフローチャートである。 本実施形態における劣化診断プログラムのフローチャートである。 図4および図5のフローチャートを実行することによって得られた信号のタイミングチャートである。 リニア空燃比センサのステップ応答特性を示すグラフである。 劣化判定処理の詳細を示すフローチャートである。 図4における収束判定しきい値設定サブルーチンの一例を示すフローチャートである。
符号の説明
1 劣化判定装置
10 エンジン
20 吸気システム
27 燃料噴射弁
30 排気システム
32 三元触媒
100 コントロールユニット
101 CPU(微分手段、判定パラメータ演算手段、収束判定手段、外乱値設定手段の一例)
102 補助記憶装置
103 主記憶装置
110 フィードバック制御系
116 外乱発生手段
200 マップ
O2 微分値
O2PK 微分ピーク値
DV 目標値
IP 基準入力
L むだ時間
Ne エンジン回転速度
END 出力回数
LR、NRL 発生回数
OV 操作量
PF 実空燃比に相当するリニア空燃比センサの出力
Qa 吸入空気量
LR、RL 外乱
SW1 回転角度センサ
SW2 エアフローセンサ(吸入空気量検出手段の一例)
SW3 スロットルセンサ
SW4 リニア空燃比センサ
SW5 酸素濃度センサ
T 過渡時間
ThA、ThB、ThC、dThC、+ThD、−ThD、ThL、ThR しきい値

Claims (3)

  1. エンジンの目標空燃比を制御するフィードバック制御系に設けられ、排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサの劣化診断装置であって、
    前記フィードバック制御系にインパルス状の外乱を所定回数出力する外乱発生手段と、
    外乱発生手段による外乱出力後にリニア空燃比センサの出力の微分値を出力する微分手段と、
    微分手段が出力した微分値に基づいてリニア空燃比センサのむだ時間と時定数の少なくとも一方を劣化判定の判定パラメータとして演算する判定パラメータ演算手段と、
    リニア空燃比センサの出力が収束しているか否かを判定する収束判定手段と、
    外乱発生手段が発生する外乱の値を設定する外乱値設定手段と
    を備え、
    前記外乱値設定手段は、前回の外乱の発生によって得られた微分ピーク値が所定のしきい値を下回った場合に次回の外乱の絶対値を増加するものである
    ことを特徴とするリニア空燃比センサの劣化診断装置。
  2. 請求項1記載のリニア空燃比センサの劣化診断装置において、
    前記外乱発生手段は、微分手段の出力した微分値が所定のしきい値を越えたことに基づいて、外乱をリセットするものであり、
    前記しきい値は、外乱の絶対値が大きくなる程、小さくなるように設定されるものである
    ことを特徴とするリニア空燃比センサの劣化診断装置。
  3. 請求項1または2記載のリニア空燃比センサの劣化診断装置において、
    前記外乱発生手段は、空燃比をリッチ側とリーン側とに交互に変更するものであり、
    前記外乱値設定手段は、リッチ側の外乱同士、リーン側の外乱同士で微分ピーク値をしきい値と比較するものである
    ことを特徴とするリニア空燃比センサの劣化診断装置。
JP2005187895A 2005-06-28 2005-06-28 リニア空燃比センサの劣化診断装置 Expired - Fee Related JP4548247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187895A JP4548247B2 (ja) 2005-06-28 2005-06-28 リニア空燃比センサの劣化診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187895A JP4548247B2 (ja) 2005-06-28 2005-06-28 リニア空燃比センサの劣化診断装置

Publications (2)

Publication Number Publication Date
JP2007009709A true JP2007009709A (ja) 2007-01-18
JP4548247B2 JP4548247B2 (ja) 2010-09-22

Family

ID=37748555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187895A Expired - Fee Related JP4548247B2 (ja) 2005-06-28 2005-06-28 リニア空燃比センサの劣化診断装置

Country Status (1)

Country Link
JP (1) JP4548247B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190454A (ja) * 2007-02-06 2008-08-21 Toyota Motor Corp 空燃比センサの異常診断装置及び異常診断方法
JP2008267883A (ja) * 2007-04-17 2008-11-06 Toyota Motor Corp 空燃比センサの異常診断装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210040A (ja) * 1990-01-12 1991-09-13 Nissan Motor Co Ltd 空燃比制御装置の診断装置
JPH08177575A (ja) * 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
JPH10176578A (ja) * 1996-05-28 1998-06-30 Matsushita Electric Ind Co Ltd 空燃比制御装置
JP2002327634A (ja) * 2001-02-28 2002-11-15 Denso Corp 内燃機関の制御装置
JP2005121003A (ja) * 2003-09-24 2005-05-12 Denso Corp 空燃比センサの異常検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210040A (ja) * 1990-01-12 1991-09-13 Nissan Motor Co Ltd 空燃比制御装置の診断装置
JPH08177575A (ja) * 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
JPH10176578A (ja) * 1996-05-28 1998-06-30 Matsushita Electric Ind Co Ltd 空燃比制御装置
JP2002327634A (ja) * 2001-02-28 2002-11-15 Denso Corp 内燃機関の制御装置
JP2005121003A (ja) * 2003-09-24 2005-05-12 Denso Corp 空燃比センサの異常検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190454A (ja) * 2007-02-06 2008-08-21 Toyota Motor Corp 空燃比センサの異常診断装置及び異常診断方法
JP2008267883A (ja) * 2007-04-17 2008-11-06 Toyota Motor Corp 空燃比センサの異常診断装置

Also Published As

Publication number Publication date
JP4548247B2 (ja) 2010-09-22

Similar Documents

Publication Publication Date Title
US7412820B2 (en) Air-fuel ratio control system for internal combustion engine
US7677027B2 (en) Deterioration detecting apparatus for catalyst
EP2284378B1 (en) Engine control apparatus
JP4366701B2 (ja) 内燃機関の空燃比制御装置
JP2009133260A (ja) 内燃機関の異常診断装置
US20070220862A1 (en) Deterioration detecting apparatus for catalyst
JP5644291B2 (ja) 内燃機関の燃料噴射量制御装置
JP4561498B2 (ja) リニア空燃比センサの劣化診断装置
JP6955214B2 (ja) 内燃機関の制御装置
JP4548247B2 (ja) リニア空燃比センサの劣化診断装置
JP4692294B2 (ja) リニア空燃比センサの劣化診断装置
JP4618135B2 (ja) リニア空燃比センサの劣化診断装置
JP4618134B2 (ja) リニア空燃比センサの劣化診断装置
JP4548248B2 (ja) リニア空燃比センサの劣化診断装置
JP4604881B2 (ja) リニア空燃比センサの劣化診断装置
JP4548249B2 (ja) リニア空燃比センサの劣化診断装置
JP2007198306A (ja) リニア空燃比センサの劣化診断装置
JP4604882B2 (ja) リニア空燃比センサの劣化診断装置
JP2008014178A (ja) 内燃機関の気筒別空燃比制御装置
JP3888838B2 (ja) 内燃機関の空燃比制御装置
JP4862819B2 (ja) 内燃機関の排気系異常検出装置
JP2010209829A (ja) 内燃機関の空燃比制御装置
US8726637B2 (en) Air-fuel ratio control system for internal combustion engine
JP5342618B2 (ja) 内燃機関の空燃比制御装置
JP5194147B2 (ja) 内燃機関の診断装置および制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4548247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees