JP2006337641A - Method for producing prism - Google Patents

Method for producing prism Download PDF

Info

Publication number
JP2006337641A
JP2006337641A JP2005161167A JP2005161167A JP2006337641A JP 2006337641 A JP2006337641 A JP 2006337641A JP 2005161167 A JP2005161167 A JP 2005161167A JP 2005161167 A JP2005161167 A JP 2005161167A JP 2006337641 A JP2006337641 A JP 2006337641A
Authority
JP
Japan
Prior art keywords
glass body
polishing
prism
polished
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161167A
Other languages
Japanese (ja)
Other versions
JP4637653B2 (en
JP2006337641A5 (en
Inventor
Yasutami Ryu
保民 龍
Kenji Ono
健治 小野
Hisashi Otsuka
寿 大塚
Takashi Sekiguchi
隆史 関口
Ryuichi Okazaki
隆一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Sano Corp
Original Assignee
Fujinon Sano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Sano Corp filed Critical Fujinon Sano Corp
Priority to JP2005161167A priority Critical patent/JP4637653B2/en
Priority to TW095116420A priority patent/TW200643475A/en
Priority to KR1020060048999A priority patent/KR100798439B1/en
Priority to CNB2006100923229A priority patent/CN100449335C/en
Publication of JP2006337641A publication Critical patent/JP2006337641A/en
Publication of JP2006337641A5 publication Critical patent/JP2006337641A5/ja
Application granted granted Critical
Publication of JP4637653B2 publication Critical patent/JP4637653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce prisms having high angular accuracy. <P>SOLUTION: Tabular large substrates 1 and small substrates 2 having the same width and thickness as the large substrate 1 but having a smaller depth than the large substrate 1 are prepared. A dielectric multilayer film 3 is formed on one surface of each substrate. The large substrates 1 and the small substrates 2 are alternately stacked in such a way that they are made stepwise with a dislocation corresponding to the thickness in a width direction and both ends of the large substrates 1 are exposed as reference planes B in a depth direction. The resulting stacked glass body 4 is cut in a direction parallel to the steps and the cut surfaces of cut multiple glass bodies 5 are polished. The multiple glass bodies 5 are then cut in a vertical direction to obtain strip glass bodies 6 and the cut surfaces of the strip glass bodies 6 are polished. At this time, by polishing the cut surfaces with the exposed reference planes B as standards, the polished surfaces can be made strictly 45° to the reference planes B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリズムの製造方法に関するものである。   The present invention relates to a method for manufacturing a prism.

光ピックアップ装置に代表される光学システムの構成部品として、例えば偏光ビームスプリッタがある。偏光ビームスプリッタは、光源から射出されたレーザー光を反射光と透過光とに分離する光学素子であって、反射光又は透過光の何れか一方の光は光ディスクに向かい、他方の光はレーザー光の強度検出のためのAPC(Auto Power Control)受光素子に向かう。偏光ビームスプリッタにおいて反射する反射光は、一般に90°の角度をもって反射されるため、偏光ビームスプリッタを構成する偏光分離膜は光軸に対して45°の角度をなすように配置される。従って、偏光ビームスプリッタとしては、キューブ形状のプリズムが使用され、偏光分離膜は光軸に対して45°の角度でプリズムに形成されている。   As a component of an optical system typified by an optical pickup device, for example, there is a polarization beam splitter. A polarization beam splitter is an optical element that separates laser light emitted from a light source into reflected light and transmitted light. Either reflected light or transmitted light is directed to an optical disk, and the other light is laser light. Toward the APC (Auto Power Control) light receiving element for intensity detection. Since the reflected light reflected by the polarizing beam splitter is generally reflected at an angle of 90 °, the polarization separation film constituting the polarizing beam splitter is arranged to make an angle of 45 ° with respect to the optical axis. Accordingly, a cube-shaped prism is used as the polarization beam splitter, and the polarization separation film is formed on the prism at an angle of 45 ° with respect to the optical axis.

偏光分離膜が所定角度で形成されている光学デバイス(プリズム)を製造する方法が例えば特許文献1に開示されている。特許文献1では、複数の同一の板ガラスを用意し、これら板ガラスを階段状に積層して積層体を得た後に、積層体を切断して分割積層体とし、分割積層体の積層・切断を繰り返し行って最終的なプリズムを得ている。このとき、プリズム内部に所定角度で偏光分離膜が形成されている光学デバイスを得るために、偏光分離膜の傾斜角に対応する角度を有する傾斜側壁に沿って、積層体を切断した分割積層体を階段状に整列させている。
特開2000−199810号公報
For example, Patent Document 1 discloses a method of manufacturing an optical device (prism) in which a polarization separation film is formed at a predetermined angle. In Patent Document 1, a plurality of identical plate glasses are prepared, and after laminating these plate glasses in a staircase shape to obtain a laminate, the laminate is cut into divided laminates, and lamination and cutting of the divided laminates are repeated. Go and get the final prism. At this time, in order to obtain an optical device in which the polarization separation film is formed at a predetermined angle inside the prism, the divided laminate is obtained by cutting the laminate along an inclined side wall having an angle corresponding to the inclination angle of the polarization separation film. Are arranged in a staircase pattern.
JP 2000-199810 A

ところで、最終的に製造されるプリズムに形成されている誘電体多層膜(特許文献1でいう偏光分離膜)は、光の入射面に対して、極めて高い角度精度で形成されていなくてはならない。従って、プリズムを製造するときには、極めて高い角度精度で誘電体多層膜を形成しなくてはならない。しかし、上記特許文献1の発明では、プリズムに要求される高い角度精度を満足することは困難である。   By the way, the dielectric multilayer film (polarization separation film referred to in Patent Document 1) formed on the finally manufactured prism must be formed with extremely high angular accuracy with respect to the light incident surface. . Therefore, when manufacturing a prism, a dielectric multilayer film must be formed with extremely high angular accuracy. However, in the invention of Patent Document 1, it is difficult to satisfy the high angular accuracy required for the prism.

すなわち、特許文献1の発明では、複数の板ガラス及び分割積層体を積層するときに、夫々の板ガラスの間には接着剤が塗布されて接着される。このとき、各層の接着剤で厚みの誤差が生じることがある。接着剤は複数に渡って積層されるため、各層の接着剤の厚み誤差が累積することになる。また、板ガラス及び分割積層体の積層・切断が繰り返し行われるため、上記累積誤差がさらに累積し、また切断時にも切断誤差が生じることになるため、最終的に製造されるプリズムには極めて大きな誤差を含有していることになる。さらに、板ガラス及び積層分割体は傾斜壁に沿って階段状に整列されているが、積層時又は切断時に切断誤差が生じることがあり、また傾斜側壁そのものに誤差が生じている可能性もある。   That is, in the invention of Patent Document 1, when a plurality of plate glasses and a divided laminate are laminated, an adhesive is applied and bonded between the respective plate glasses. At this time, a thickness error may occur in the adhesive of each layer. Since a plurality of adhesives are laminated, the thickness error of the adhesive in each layer is accumulated. In addition, since the stacking and cutting of the plate glass and the divided laminated body are repeatedly performed, the accumulated error further accumulates, and a cutting error also occurs at the time of cutting. It will contain. Further, the plate glass and the laminated divided body are arranged stepwise along the inclined wall, but a cutting error may occur during lamination or cutting, and an error may occur in the inclined side wall itself.

以上のような誤差が影響して、最終的に製造されるプリズム内部に形成される膜の傾斜角には極めて大きな誤差が生じる可能性がある。従って、高精度な角度精度を担保することはできないため、特許文献1の発明では、高い角度精度で誘電体多層膜をプリズムに形成することは極めて困難である。   Due to the influence of the errors as described above, a very large error may occur in the tilt angle of the film formed inside the finally manufactured prism. Accordingly, since it is impossible to ensure high accuracy of angular accuracy, it is extremely difficult to form the dielectric multilayer film on the prism with high angular accuracy in the invention of Patent Document 1.

そこで、本発明は、高い角度精度を有するプリズムを製造するプリズムの製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a prism manufacturing method for manufacturing a prism having high angular accuracy.

本発明のプリズムの製造方法は、所定角度で誘電体多層膜が形成されているプリズムを製造するプリズムの製造方法であって、平板状の基板である大型基板と、この大型基板と幅寸法及び厚みが同一であり、奥行き寸法が前記大型基板よりも短い小型基板との両面を研磨して、前記大型基板及び前記小型基板の両面の平面度及び平行度を出す平板両面研磨工程と、前記平板両面研磨工程において研磨された前記大型基板及び前記小型基板の両面の何れか2つの面に誘電体多層膜を成膜して成膜面と非成膜面とを形成する誘電体多層膜成膜工程と、前記大型基板と前記小型基板とを、前記成膜面と前記非成膜面とが接着されるように交互に接着する工程であって、幅方向においては所定間隔ずらして階段状となるように、且つ前記大型基板の奥行き方向の両端が基準面として露出するように積層して積層ガラス体を得る基板接着工程と、前記積層ガラス体を、前記階段状の傾斜と平行な方向に前記プリズムの一辺の長さ以上の間隔に切断して、複数の多連ガラス体を得る積層ガラス体切断工程と、前記多連ガラス体のうち、前記積層ガラス体切断工程で切断された2つの切断面を両面研磨して、2つの切断面の平面度及び平行度を出す多連ガラス体両面研磨工程と、前記多連ガラス体を、前記研磨面とは垂直方向に、前記プリズムの一辺の長さ以上の間隔で切断して複数の短冊ガラス体を得る多連ガラス体切断工程と、前記短冊ガラス体の両端に形成されている前記基準面を基準として、前記多連ガラス体切断工程で切断された切断面を研磨する第1の短冊ガラス体研磨工程と、前記第1の短冊ガラス体研磨工程で研磨された面を基準として、この面とは反対面を研磨する第2の短冊ガラス体研磨工程と、 前記短冊ガラス体研磨工程で研磨された前記短冊ガラス体を、前記多連ガラス体両面研磨工程で研磨された研磨面、若しくは前記短冊ガラス体研磨工程で研磨された研磨面とは垂直な方向に等間隔に切断して複数のプリズムを得る短冊ガラス体切断工程と、からなることを特徴とする。   The prism manufacturing method of the present invention is a prism manufacturing method for manufacturing a prism in which a dielectric multilayer film is formed at a predetermined angle, and includes a large substrate that is a flat substrate, a large substrate, a width dimension, and A flat plate double-side polishing step for polishing flat surfaces and parallelism of both sides of the large substrate and the small substrate by polishing both surfaces of the small substrate having the same thickness and a depth dimension shorter than the large substrate, and the flat plate Dielectric multilayer film formation in which a dielectric multilayer film is formed on any two surfaces of the large substrate and the small substrate polished in a double-side polishing step to form a film formation surface and a non-film formation surface And a step of alternately bonding the large substrate and the small substrate so that the film-forming surface and the non-film-forming surface are bonded to each other in a stepwise manner with a predetermined interval in the width direction. And the back of the large substrate A substrate adhering step of obtaining a laminated glass body by laminating so that both ends in the vertical direction are exposed as reference planes, and the laminated glass body having a length equal to or longer than one side of the prism in a direction parallel to the stepwise inclination A laminated glass body cutting step to obtain a plurality of multiple glass bodies by cutting at intervals, and the two cut surfaces cut in the laminated glass body cutting step among the multiple glass bodies are double-side polished. A multiple glass body double-side polishing step for obtaining flatness and parallelism of two cut surfaces, and cutting the multiple glass body in a direction perpendicular to the polishing surface at intervals equal to or longer than one side of the prism. A multiple glass body cutting step for obtaining a plurality of strip glass bodies, and a first step of polishing the cut surface cut in the multiple glass body cutting step with reference to the reference surfaces formed at both ends of the strip glass body. 1 strip glass body polishing step, A strip glass body polished in the strip glass body polishing step, a second strip glass body polishing step that polishes the surface opposite to the surface polished in the strip glass body polishing step of 1; Strip glass body cutting to obtain a plurality of prisms by cutting at equal intervals in a direction perpendicular to the polishing surface polished in the multiple glass body double-side polishing step or the polishing surface polished in the strip glass body polishing step And a process.

本発明のプリズムの製造方法によれば、大型基板と小型基板とを積層するときに、奥行き方向において大型基板の両端が小型基板よりも突出するように積層していることになる。大型基板と小型基板とは予め両面の表面研磨が行われており、平面度及び平行度が出されているため、かかる研磨された面が基準面として常に露出していることになる。そして、基準面を基準として研磨を行うことにより、高い角度精度を出すことができる。   According to the prism manufacturing method of the present invention, when a large substrate and a small substrate are stacked, the large substrate is stacked such that both ends of the large substrate protrude from the small substrate in the depth direction. Since the large substrate and the small substrate have been subjected to surface polishing on both sides in advance, and flatness and parallelism are obtained, the polished surface is always exposed as a reference surface. And high angle precision can be taken out by grinding | polishing on the basis of a reference plane.

ここで、大型基板と小型基板とは、両面の表面研磨が行われるが、その後に大型基板の両面に誘電体多層膜を成膜し、小型基板の両面には誘電体多層膜を成膜しない。この場合、露出している基準面(大型基板の突出している面)には常に誘電体多層膜が成膜されているため、誘電体多層膜が成膜されている面を基準として研磨を行うことができる。従って、誘電体多層膜が成膜されている面に対して極めて高精度な角度精度を有しているプリズムを製造することができる。   Here, surface polishing is performed on both sides of the large substrate and the small substrate, but after that, a dielectric multilayer film is formed on both surfaces of the large substrate, and a dielectric multilayer film is not formed on both surfaces of the small substrate. . In this case, since the dielectric multilayer film is always formed on the exposed reference surface (the surface from which the large substrate protrudes), polishing is performed with the surface on which the dielectric multilayer film is formed as a reference. be able to. Therefore, it is possible to manufacture a prism having extremely high angle accuracy with respect to the surface on which the dielectric multilayer film is formed.

また、表面研磨された大型基板と小型基板との両面のうち、大型基板の両面ではなく小型基板の両面に誘電体多層膜を成膜するものにも本発明を適用することができる。このとき、大型基板には誘電体多層膜が成膜されていないため、露出している基準面には常に誘電体多層膜が成膜されていない。従って、誘電体多層膜が成膜されていない面を基準面として研磨を行うことになるが、この場合、最終的に製造されるプリズムの誘電体多層膜が成膜される面は基準面と接着剤を介した対向面となる。このため、接着剤の厚みを高精度に管理する必要があるため、その分、上述した誘電体多層膜が成膜されている面を基準面とするものと比較して、若干角度精度が低下する場合もある。しかし、誘電体多層膜が成膜されている面を基準面としなくても、高精度な平面度及び平行度を有している基準面を基準として研磨することには変わりはないため、この場合でも、高い角度精度を有しているプリズムを製造することができる。   In addition, the present invention can be applied to a case where a dielectric multilayer film is formed on both surfaces of a small substrate, not both surfaces of the large substrate, of both surfaces of a large surface-polished substrate and a small substrate. At this time, since the dielectric multilayer film is not formed on the large substrate, the dielectric multilayer film is not always formed on the exposed reference surface. Therefore, polishing is performed using the surface on which the dielectric multilayer film is not formed as a reference surface. In this case, the surface on which the dielectric multilayer film of the finally manufactured prism is formed is referred to as the reference surface. It becomes an opposing surface through an adhesive. For this reason, since it is necessary to manage the thickness of the adhesive with high accuracy, the angle accuracy is slightly reduced as compared with the case where the surface on which the above-described dielectric multilayer film is formed is used as the reference surface. There is also a case. However, even if the surface on which the dielectric multilayer film is formed is not used as a reference surface, polishing with reference to a reference surface having high accuracy flatness and parallelism remains the same. Even in this case, a prism having high angular accuracy can be manufactured.

また、大型基板及び小型基板の一側表面に夫々誘電体多層膜を成膜するものにも本発明を適用することができる。このとき、露出している基準面のうち、1面には誘電体多層膜が成膜されているが、その反対面には誘電体層膜が成膜されていないことになる。従って、誘電体多層膜が成膜されている基準面を有する短冊ガラス体と成膜されていない基準面を有する短冊ガラス体とが夫々半分の割合で生成されることになる。しかし、誘電体多層膜が成膜されていない面は若干角度精度が低下することもあるが、両面研磨された表面を基準面として研磨を行うことには変わりはないため、高い角度精度を有しているプリズムを製造することができる。   The present invention can also be applied to a large substrate and a substrate in which a dielectric multilayer film is formed on one surface of a small substrate. At this time, a dielectric multilayer film is formed on one surface of the exposed reference surface, but a dielectric layer film is not formed on the opposite surface. Therefore, the strip glass body having the reference surface on which the dielectric multilayer film is formed and the strip glass body having the reference surface on which the dielectric multilayer film is not formed are generated at a ratio of half. However, the angle accuracy of the surface on which the dielectric multilayer film is not formed may be slightly reduced, but since there is no change in polishing using the double-side polished surface as a reference surface, it has high angle accuracy. Can be manufactured.

なお、この場合、角度精度に若干ではあるが、ばらつきが生じることがある。このため、大型基板及び小型基板の一側表面に夫々誘電体多層膜を成膜するが、小型基板の一側表面には全面にする。そして、大型基板の一側表面には小型基板と同一の領域(積層ガラス体を構成したときに、大型基板の領域のうち小型基板と接合される領域と同一の領域)に誘電体多層膜を成膜する。このため、常に誘電体多層膜が成膜されていない面が基準面となるため、上記のばらつきをなくすことができる。   In this case, the angular accuracy may be slightly varied. For this reason, a dielectric multilayer film is formed on the one side surface of the large substrate and the small substrate, respectively, but the entire surface is formed on the one side surface of the small substrate. A dielectric multilayer film is formed on one side surface of the large substrate in the same region as the small substrate (the same region as the region bonded to the small substrate among the large substrate regions when the laminated glass body is configured). Form a film. For this reason, since the surface on which the dielectric multilayer film is not always formed becomes the reference surface, the above-described variation can be eliminated.

本発明のプリズムの製造方法は、高い角度精度を有するプリズムを製造することができる。   The prism manufacturing method of the present invention can manufacture a prism having high angular accuracy.

以下、本発明の実施形態について図1のフローチャートに従って説明する。図2は、最終的に製造されるプリズム10である。本実施形態のプリズム10は、一辺の長さがPLのキューブタイプの光学素子であり、光軸に対して45°の角度で誘電体多層膜3が形成されている。ここで、本実施形態においては、プリズム10の各面の対角線の長さ(誘電体多層膜3が形成されている面の長辺)をプリズム10の対角線の長さPD(=PL×√2)と定義する。また、プリズム10の各面には反射防止機能を有する反射防止膜が成膜されているものとする。   Hereinafter, embodiments of the present invention will be described with reference to the flowchart of FIG. FIG. 2 shows the prism 10 finally manufactured. The prism 10 of the present embodiment is a cube-type optical element having a side length of PL, and the dielectric multilayer film 3 is formed at an angle of 45 ° with respect to the optical axis. Here, in the present embodiment, the length of the diagonal line of each surface of the prism 10 (the long side of the surface on which the dielectric multilayer film 3 is formed) is the length PD of the diagonal line of the prism 10 (= PL × √2). ). Further, it is assumed that an antireflection film having an antireflection function is formed on each surface of the prism 10.

最初に、図3に示されるように、異なる形状を有する2種類の平板状の基板(ガラス基板等の基板)を複数枚用意する。図3(a)には、長辺(幅)がLX1、短辺(奥行き)がLY1の長さを有し、厚みがLZ1である大型基板1が示されている。図3(b)には、幅がLX1、奥行きがLY2(LY2<LY1)の長さを有し、厚みがLZ1である小型基板2が示されている。なお、最終的に製造されるプリズム10は、大型基板1及び小型基板2の積層・切断を行って生成されるため、大型基板1の幅(LX1)、奥行き(LY1)、厚み(LZ1)及び小型基板2の幅(LX1)、奥行き(LY2)、厚み(LZ1)は全てプリズム10の一辺の長さPLの(1/√2)倍よりも長いものを使用する。   First, as shown in FIG. 3, a plurality of two types of flat substrates (substrates such as glass substrates) having different shapes are prepared. FIG. 3A shows a large substrate 1 having a long side (width) of LX1, a short side (depth) of LY1, and a thickness of LZ1. FIG. 3B illustrates a small substrate 2 having a length of LX1, a depth of LY2 (LY2 <LY1), and a thickness of LZ1. Since the prism 10 to be finally produced is generated by laminating and cutting the large substrate 1 and the small substrate 2, the width (LX1), depth (LY1), thickness (LZ1), and The width (LX1), depth (LY2), and thickness (LZ1) of the small substrate 2 are all longer than (1 / √2) times the length PL of one side of the prism 10.

最初の工程としては、用意された複数枚の大型基板1及び小型基板2の両面をラッピング等により表面研磨する(ステップS1)。この表面研磨により、大型基板1及び小型基板2の両面は高い平面度及び平行度を出すことができる。そして、大型基板1の両面に誘電体多層膜3を成膜する(ステップS2)。このとき、本実施形態において、図3(a)及び(b)に示されるように、大型基板1の誘電体多層膜3が成膜された両面を成膜面Cとして定義し、小型基板2の両面を非成膜面Nとして定義する。   As an initial process, both the surfaces of the prepared plural large substrates 1 and small substrates 2 are polished by lapping or the like (step S1). By this surface polishing, both the large substrate 1 and the small substrate 2 can have high flatness and parallelism. Then, the dielectric multilayer film 3 is formed on both surfaces of the large substrate 1 (step S2). At this time, in this embodiment, as shown in FIGS. 3A and 3B, both surfaces on which the dielectric multilayer film 3 of the large substrate 1 is formed are defined as film formation surfaces C, and the small substrate 2 is formed. Are defined as non-film-forming surfaces N.

次に、大型基板1と小型基板2とを複数枚交互に積層して積層ガラス体4を得る(ステップS3)。積層ガラス体4は、大型基板1と小型基板2とが接着材料により接着され、図4に示されるように、夫々の基板の成膜面Cと非成膜面Nとが接合されるように貼り合わせて積層される。図5(a)及び(b)は、図4の正面図及び側面図であるが、大型基板1と小型基板2とは、幅方向においては所定間隔ずらして全体が階段状となるように積層し、奥行き方向においては大型基板1の両端が小型基板2より突出するように積層する。なお、図4、図5(a)及び図5(b)には、大型基板1が3枚、小型基板2が2枚を積層した積層ガラス体4を示しているが、勿論、積層される基板の枚数は任意にすることができる。図5(a)に示されるように、大型基板1と小型基板2とは幅方向において、夫々の基板の厚みLZ1と同一の間隔ずらして積層される。従って、積層ガラス体4の上記階段状の傾斜角は45°の角度を形成することになる。そして、図4及び図5(b)からも明らかなように、大型基板1の両端は小型基板2よりも夫々等しく突出しているため(すなわち、図5(b)に示されるように、「1/2×(LY1−LY2)」の分だけ、両端に等しく突出している)、成膜面Cのうち突出部分が露出することになる。ここで、本実施形態において、成膜面Cのうち露出している部分を基準面B(図5(b)に示されるように、基準面Bは大型基板1の突出部分の両面に形成されている)として定義する。成膜面Cは高い平面度及び平行度が出されており、基準面Bは成膜面Cの一部であるため、基準面Bも高い平面度及び平行度が出されていることになる。後続の工程で明らかになるが、基準面Bを基準として研磨加工を行うことにより、誘電体多層膜3が極めて高い角度精度(45°)で形成されたプリズム10を得ることができる。これについては後述する。   Next, a plurality of large substrates 1 and small substrates 2 are alternately stacked to obtain a laminated glass body 4 (step S3). In the laminated glass body 4, the large substrate 1 and the small substrate 2 are bonded to each other with an adhesive material so that the film formation surface C and the non-film formation surface N of each substrate are bonded as shown in FIG. 4. Laminate together. FIGS. 5A and 5B are a front view and a side view of FIG. 4, but the large substrate 1 and the small substrate 2 are stacked so as to be stepped with a predetermined interval in the width direction. In the depth direction, the large substrate 1 is laminated so that both ends protrude from the small substrate 2. 4, 5A and 5B show a laminated glass body 4 in which three large substrates 1 and two small substrates 2 are laminated. Of course, they are laminated. The number of substrates can be arbitrary. As shown in FIG. 5A, the large substrate 1 and the small substrate 2 are stacked in the width direction with the same interval as the thickness LZ1 of each substrate. Therefore, the stepwise inclination angle of the laminated glass body 4 forms an angle of 45 °. As is clear from FIGS. 4 and 5B, both ends of the large substrate 1 protrude more equally than the small substrate 2 (that is, as shown in FIG. 5B, “1 / 2 × (LY1−LY2) ”protrudes equally at both ends), and the protruding portion of the film formation surface C is exposed. Here, in the present embodiment, the exposed portion of the film formation surface C is defined as the reference surface B (as shown in FIG. 5B), the reference surface B is formed on both surfaces of the protruding portion of the large substrate 1. Defined as). Since the film-forming surface C has high flatness and parallelism and the reference surface B is a part of the film-forming surface C, the reference surface B also has high flatness and parallelism. . As will be apparent from the subsequent steps, by performing polishing with reference plane B as a reference, prism 10 in which dielectric multilayer film 3 is formed with extremely high angular accuracy (45 °) can be obtained. This will be described later.

そして、積層ガラス体4を、図4の破線に沿って、上記階段状の傾斜と平行な方向に、若しくは端面を基準として45°の角度で、所定間隔にワイヤーソー等により切断を行う(ステップS4)。この切断により、図6(a)に示されるような多連ガラス体5を複数得ることができる。このときの積層ガラス体4の切断間隔は、図4に示されるように、プリズム10の対角線PDに研磨代αを加えたものである。これについては後述する。   Then, the laminated glass body 4 is cut with a wire saw or the like at predetermined intervals along a broken line in FIG. 4 in a direction parallel to the stepped inclination or at an angle of 45 ° with respect to the end face (step) S4). By this cutting, a plurality of multiple glass bodies 5 as shown in FIG. 6A can be obtained. The cutting interval of the laminated glass body 4 at this time is obtained by adding a polishing allowance α to the diagonal line PD of the prism 10, as shown in FIG. This will be described later.

ここで、後続の工程で明らかになるが、ステップS4において多連ガラス体5が生成された時点で、多連ガラス体5の切断面5A、5B(積層ガラス体4を切断したときの2つの切断面:図6(a)では上面、下面として示している)が高い平面度及び平行度を有しているとしたならば、切断面5A、5Bがプリズム10の一面及びその反対面を構成する。しかし、ステップS4で切断された後の、多連ガラス体5の切断面5A、5Bの平面度は保証されていない。そこで、多連ガラス体5の切断面5A、5Bを研磨して、図6(b)のように、研磨面5C、5Dを形成する(ステップS5)。かかる研磨により、研磨面5C及び5Dは高い平面度及び平行度を出すことができ、夫々プリズム10の一面及びその反対面を構成することができる。このとき、研磨後の多連ガラス体5の研磨面5Cと5Dとの間隔がプリズム10の一辺の長さPLとなるように多連ガラス体5の研磨が行われる。これにより、プリズム10の2つの面を厳格に構成することができる。   Here, as will become apparent in the subsequent process, when the multiple glass body 5 is generated in step S4, the cut surfaces 5A and 5B of the multiple glass body 5 (two when the laminated glass body 4 is cut) If the cut surfaces (shown as the upper and lower surfaces in FIG. 6A) have high flatness and parallelism, the cut surfaces 5A and 5B constitute one surface of the prism 10 and its opposite surface. To do. However, the flatness of the cut surfaces 5A and 5B of the multiple glass body 5 after being cut in step S4 is not guaranteed. Therefore, the cut surfaces 5A and 5B of the multiple glass body 5 are polished to form the polished surfaces 5C and 5D as shown in FIG. 6B (step S5). By this polishing, the polished surfaces 5C and 5D can have high flatness and parallelism, and can constitute one surface of the prism 10 and the opposite surface, respectively. At this time, the multiple glass body 5 is polished so that the distance between the polished surfaces 5C and 5D of the multiple glass body 5 after polishing becomes the length PL of one side of the prism 10. Thereby, the two surfaces of the prism 10 can be strictly configured.

ところで、多連ガラス体5はステップS5の研磨により、その厚み(研磨面5Cと5Dとの間隔)が薄くなる。そこで、ステップS4における積層ガラス体4の切断は、研磨による研磨代の分を見越して、予め余裕をもった切断間隔をもって行われる。具体的には、プリズム10の対角線の長さPDに研磨代αを加えた間隔をもって積層ガラス体4の切断が行なわれることにより、当該研磨代を研磨して、多連ガラス体5の平面度を出す。   By the way, the multiple glass body 5 is thinned (the distance between the polished surfaces 5C and 5D) by the polishing in step S5. Therefore, the cutting of the laminated glass body 4 in step S4 is performed with a cutting interval having a margin in advance in anticipation of the polishing allowance by polishing. Specifically, the laminated glass body 4 is cut at an interval obtained by adding the polishing allowance α to the length PD of the diagonal line of the prism 10, so that the polishing allowance is polished to obtain the flatness of the multiple glass bodies 5. Put out.

なお、ステップS4において、積層ガラス体4の切断がプリズム10の一辺の長さPLに研磨代を加えた間隔ではなく、プリズム10の対角線の長さPDに研磨代を加えた間隔をもって切断が行われた理由は、多連ガラス体5の端面のうち短辺の長さがプリズム10の対角線の長さPDに対応するためである。   In step S4, the cutting of the laminated glass body 4 is not performed at the interval obtained by adding the polishing allowance to the length PL of one side of the prism 10, but at the interval obtained by adding the polishing allowance to the diagonal length PD of the prism 10. The reason for this is that the length of the short side of the end face of the multiple glass body 5 corresponds to the diagonal length PD of the prism 10.

そして、図6(b)に示される研磨後の多連ガラス体5の端面5E、5Fは、積層ガラス体4の最上段及び最下段の大型基板1又は小型基板2の一部からなるものである。積層ガラス体4を構成する大型基板1及び小型基板2は、ステップS1において高精度な平面度及び平行度が出されているため、多連ガラス体5の端面5E、5Fを基準とすることができる。従って、端面5E、5Fを基準として、切断面5A、5Bを研磨することにより、研磨面5C、5Dと誘電体多層膜3が成膜されている成膜面Cとがなす角度を45°の高い角度精度で形成することができる。   The end surfaces 5E and 5F of the multiple glass body 5 after polishing shown in FIG. 6B are made up of a part of the uppermost substrate and the lowermost large substrate 1 or the small substrate 2 of the laminated glass body 4. is there. Since the large substrate 1 and the small substrate 2 constituting the laminated glass body 4 have high precision flatness and parallelism in step S1, the end surfaces 5E and 5F of the multiple glass body 5 may be used as a reference. it can. Therefore, by polishing the cut surfaces 5A and 5B with reference to the end surfaces 5E and 5F, the angle formed by the polishing surfaces 5C and 5D and the film formation surface C on which the dielectric multilayer film 3 is formed is 45 °. It can be formed with high angular accuracy.

次に、研磨された多連ガラス体5の研磨面5C、5Dに反射防止膜を成膜する(ステップS6)。上述したように、多連ガラス体5の研磨面5C、5Dは、プリズム10の一面を形成するものであるため、この時点で反射防止膜を成膜する。多連ガラス体5からは複数のプリズム10が生成されるため、予め反射防止膜を成膜すれば、一度に複数のプリズム10の反射防止膜を成膜したことになる。   Next, an antireflection film is formed on the polished surfaces 5C and 5D of the polished multiple glass body 5 (step S6). As described above, the polished surfaces 5C and 5D of the multiple glass body 5 form one surface of the prism 10, and an antireflection film is formed at this point. Since a plurality of prisms 10 are generated from the multiple glass body 5, if an antireflection film is formed in advance, the antireflection films of the plurality of prisms 10 are formed at a time.

そして、反射防止膜が成膜された多連ガラス体5を、図6(b)の破線に示されるように、研磨面5C、5Dとは垂直な方向に所定間隔をもって切断する(ステップS7)。この切断により、図7(a)に示される短冊ガラス体6が複数生成される。   Then, the multiple glass body 5 on which the antireflection film is formed is cut at a predetermined interval in a direction perpendicular to the polishing surfaces 5C and 5D, as indicated by a broken line in FIG. 6B (step S7). . By this cutting, a plurality of strip glass bodies 6 shown in FIG. 7A are generated.

ここで、多連ガラス体5の切断を行うときには、積層ガラス体4を切断したときと同様に、切断面6A、6B(多連ガラス体5を切断したときの2つの切断面:図7(a)では側面及びその反対面として示している)の平面度及び平行度は保証されていない。そして、切断面6A、6Bは、高い平面度及び平行度が保証されているとしたならば、プリズム10の一面及びその反対面を構成するものである。しかし、多連ガラス体5を切断したときに、平面度及び平行度は保証されていない。そこで、切断面6A、6Bを研磨して両面の平面度及び平行度を出すために、短冊ガラス体6は研磨代を考慮して生成されなくてはならない。従って、多連ガラス体5を切断するときには、プリズム10の一辺の長さPLに研磨代βを加えた間隔をもって切断を行う。ただし、ステップS7の多連ガラス体5の切断はプリズム10の面と平行な方向に行われるため、プリズム10の対角線の長さPDではなく、プリズム10の一辺の長さPLに加えて研磨代の分βの分を確保した間隔をもって切断が行われる。   Here, when the multiple glass body 5 is cut, similarly to when the laminated glass body 4 is cut, the cut surfaces 6A and 6B (two cut surfaces when the multiple glass body 5 is cut: FIG. 7 ( In a), the flatness and parallelism of the side surface and the opposite surface are not guaranteed. The cut surfaces 6A and 6B constitute one surface of the prism 10 and its opposite surface if high flatness and parallelism are guaranteed. However, when the multiple glass body 5 is cut, flatness and parallelism are not guaranteed. Therefore, in order to polish the cut surfaces 6A and 6B to obtain the flatness and parallelism of both surfaces, the strip glass body 6 must be generated in consideration of the polishing allowance. Accordingly, when the multiple glass body 5 is cut, the cutting is performed at intervals obtained by adding the polishing allowance β to the length PL of one side of the prism 10. However, since the multiple glass bodies 5 in step S7 are cut in a direction parallel to the surface of the prism 10, the polishing allowance is added in addition to the length PL of one side of the prism 10 instead of the diagonal length PD of the prism 10. Cutting is performed with an interval that secures the amount of β.

ところで、切断面6A、6Bの研磨を行い研磨後の両面の平面度及び平行度を出す必要があるが、このとき、研磨後の両面は成膜面Cに対して厳格に45°の角度をなすように研磨を行う必要がある。そこで、短冊ガラス体6の両端に露出している基準面Bを基準として研磨を行う。基準面Bは成膜面Cの一部であり、成膜面Cは高い平面度及び平行度が出されているため、基準面Bを基準として研磨を行えば、研磨後の面は成膜面Cと厳格に45°の角度を形成することができる。   By the way, it is necessary to polish the cut surfaces 6A and 6B to obtain the flatness and parallelism of both surfaces after polishing. At this time, the both surfaces after polishing have a strictly 45 ° angle with respect to the film formation surface C. It is necessary to polish as much as possible. Therefore, polishing is performed using the reference plane B exposed at both ends of the strip glass body 6 as a reference. Since the reference surface B is a part of the film formation surface C, and the film formation surface C has high flatness and parallelism, if polishing is performed with reference to the reference surface B, the surface after polishing is formed as a film. An angle of 45 ° with the plane C can be formed strictly.

最初に、図7(b)に示されるように、短冊ガラス体6の切断面6Aの研磨を行って研磨面6Cを得る(ステップS8:第1の短冊ガラス体研磨工程)。この研磨を行うときに使用される治具の一例を図8に示す。図8(a)に示されるように、治具7には両側に側壁部7Sが設けられており、夫々の側壁部7Sには短冊ガラス体6の両端を載置するための載置部7Pが複数形成されている。載置部7Pには切り欠き部が形成されており、当該切り欠き部に短冊ガラス体6の突出部P(短冊ガラス体6の両端のうち基準面Bが露出している部分)が保持される。載置部7Pの切り欠き部は垂直面7PAと斜面7PBとから構成され、斜面7PBと治具7の底面7Bとの角度は厳格に45°となるように構成されている。また、垂直面7PAと斜面7PBの角度も厳格に45°となるように構成されている。そして、載置部7Pの切り欠き部は直角二等辺三角形の形状をしており、垂直面7PAの高さはプリズム10の一辺の長さPLよりも小さい。また、治具7の載置部7Pの形状は、高精度に角度が保持されているものとし、治具7の両側に設けられている側壁部7Sの間の間隔は、小型基板2の奥行き寸法LY2とほぼ同一(実質的には、短冊ガラス体6を載置できるように、奥行き寸法LY2よりも若干長く構成されている)であるものとする。なお、図8(b)に示されるように、載置部7Pには、載置部7Pに載置される短冊ガラス体6の突出部Pのエッジを保護するために、逃げ溝7Nが形成されている。   First, as shown in FIG. 7B, the cut surface 6A of the strip glass body 6 is polished to obtain a polished surface 6C (step S8: first strip glass body polishing step). An example of a jig used when performing this polishing is shown in FIG. As shown in FIG. 8A, the jig 7 is provided with side wall portions 7S on both sides, and on each side wall portion 7S, placement portions 7P for placing both ends of the strip glass body 6 are placed. A plurality of are formed. A notch is formed in the mounting portion 7P, and a protrusion P of the strip glass body 6 (a portion where the reference plane B is exposed at both ends of the strip glass body 6) is held in the notch. The The cutout portion of the mounting portion 7P is composed of a vertical surface 7PA and a slope 7PB, and the angle between the slope 7PB and the bottom surface 7B of the jig 7 is strictly 45 °. The angle between the vertical surface 7PA and the inclined surface 7PB is also strictly 45 °. The cutout portion of the mounting portion 7P has a right isosceles triangular shape, and the height of the vertical surface 7PA is smaller than the length PL of one side of the prism 10. Further, the shape of the mounting portion 7P of the jig 7 is assumed to hold the angle with high accuracy, and the distance between the side wall portions 7S provided on both sides of the jig 7 is the depth of the small substrate 2. It is assumed that it is substantially the same as the dimension LY2 (substantially longer than the depth dimension LY2 so that the strip glass body 6 can be placed). As shown in FIG. 8B, the placing portion 7P is formed with a relief groove 7N to protect the edge of the protruding portion P of the strip glass body 6 placed on the placing portion 7P. Has been.

かかる載置部7Pに短冊ガラス体6の突出部Pを載置する。図8(b)は短冊ガラス体6の切断面6Aが上面となるように載置したものを示す断面図である。短冊ガラス体6の突出部Pのうち基準面Bが載置部7Pの斜面7PBと当接するように、研磨面5Dが垂直面7PAと当接するように載置される。載置部7Pの斜面7PBと治具7の底面7Bとがなす角度は高精度に45°の角度が保証されており、短冊ガラス体6の基準面Bと研磨面5Dとのなす角度も45°である。従って、短冊ガラス体6の突出部Pが載置部7Pに厳密に勘合されることになる。一方、短冊ガラス体6の切断面6Aと6Bとの間隔は、プリズム10の一辺の長さPLよりも若干長く形成されているため、切断面6Aが側壁部7Sの上面7Uよりも若干隆起した状態となる。そこで、隆起したプリズム10の切断面6Aを研磨していくが、かかる研磨はプリズム10の一辺の長さPLと等しくなるまで行われる。このとき、目安として基準面Bの稜線の位置まで研磨を行うことにより、プリズム10の一辺の長さPLと等しくなるまで研磨を行うことができる。これにより、図7(b)に示すように、短冊ガラス体6のうち大型基板1であった部分は断面が直角二等辺三角形(直角を挟む二辺がPLの長さ)の短冊形状のものを得ることができる。   The protruding portion P of the strip glass body 6 is placed on the placing portion 7P. FIG. 8B is a cross-sectional view showing the strip glass body 6 placed so that the cut surface 6A is the upper surface. The polishing surface 5D is placed so as to be in contact with the vertical surface 7PA so that the reference surface B of the protruding portion P of the strip glass body 6 is in contact with the inclined surface 7PB of the placement portion 7P. The angle formed by the inclined surface 7PB of the mounting portion 7P and the bottom surface 7B of the jig 7 is guaranteed to be 45 ° with high accuracy, and the angle formed by the reference surface B of the strip glass body 6 and the polishing surface 5D is also 45. °. Therefore, the protruding portion P of the strip glass body 6 is strictly fitted into the placing portion 7P. On the other hand, since the interval between the cut surfaces 6A and 6B of the strip glass body 6 is formed slightly longer than the length PL of one side of the prism 10, the cut surface 6A slightly protrudes from the upper surface 7U of the side wall portion 7S. It becomes a state. Therefore, the cut surface 6A of the raised prism 10 is polished, but this polishing is performed until it becomes equal to the length PL of one side of the prism 10. At this time, by polishing to the position of the ridgeline of the reference plane B as a guide, the polishing can be performed until it becomes equal to the length PL of one side of the prism 10. Accordingly, as shown in FIG. 7 (b), the portion of the strip glass body 6 that is the large substrate 1 has a rectangular shape with a cross section of a right isosceles triangle (two sides sandwiching the right angle are the length of PL). Can be obtained.

次に、切断面6Bの研磨が行われる(第2の短冊ガラス体研磨:ステップS9)。この時点で、短冊ガラス体6のうち、研磨面5C、5D及び6Cは成膜面Cに対して高い角度精度で仕上がっている。そこで、研磨面6Cを基準として残りの切断面6Bを研磨して、図7(c)に示されるように、研磨面6Dを形成する。なお、研磨面5C、5D及び6Cは全て成膜面Cに対して高い角度精度で仕上がっているため、研磨面6Cに限らず、任意の1つの面、任意の2つの面、又は全ての面を基準として研磨面6Dを形成してもよい。以上により、研磨面5C、5D、6C、6Dの全ての面がプリズム10の一面を形成するべく、高い角度精度で短冊ガラス体6を仕上げることができる。   Next, the cut surface 6B is polished (second strip glass body polishing: step S9). At this point, the polished surfaces 5C, 5D, and 6C of the strip glass body 6 are finished with high angular accuracy with respect to the film-forming surface C. Therefore, the remaining cut surface 6B is polished with the polished surface 6C as a reference to form a polished surface 6D as shown in FIG. 7C. The polishing surfaces 5C, 5D, and 6C are all finished with high angular accuracy with respect to the film formation surface C, and thus are not limited to the polishing surface 6C, but any one surface, any two surfaces, or all surfaces. The polishing surface 6D may be formed with reference to. As described above, the strip glass body 6 can be finished with high angular accuracy so that all of the polished surfaces 5C, 5D, 6C, and 6D form one surface of the prism 10.

なお、上述した治具7はあくまでも一例であり、本発明の要旨は成膜面Cの一部である基準面Bを基準として研磨を行うということにあるため、治具7は図8に示したものに限定されない。従って、基準面Bを基準として研磨することが可能であるものであれば、任意のものを適用することができる。そして、切断面6Bの研磨を行うときに、研磨面5C、5D及び6Cを基準として研磨を行うものについて説明したが、例えば、基準面Bを基準として研磨することができる治具を用意し、かかる治具により切断面6Bの研磨を行うことも可能である。   Note that the jig 7 described above is merely an example, and the gist of the present invention is that polishing is performed with reference to the reference surface B which is a part of the film formation surface C. Therefore, the jig 7 is shown in FIG. It is not limited to that. Accordingly, any material can be applied as long as it can be polished with the reference surface B as a reference. And, when performing the polishing of the cut surface 6B, what has been polished with reference to the polishing surfaces 5C, 5D and 6C, for example, prepared a jig capable of polishing with reference to the reference surface B, It is also possible to polish the cut surface 6B with such a jig.

そして、研磨面6C及び6Dには、未だ反射防止膜が成膜されていないため、反射防止膜を両面に成膜し(ステップS10)、図7(c)の破線で示されるように、研磨面5C、5D、6C、6Dとは垂直な方向に等間隔で切断を行う(ステップS11)。このときの切断間隔は、プリズム10の一辺の長さPLと等しくなるように切断を行う。これにより、図2に示されるような一辺の長さPLであり、45°の角度をもって誘電体多層膜3が形成されている、高い角度精度を有するプリズム10を得ることができる。   Then, since the antireflection film is not yet formed on the polished surfaces 6C and 6D, the antireflection film is formed on both surfaces (step S10), and the polishing is performed as shown by the broken line in FIG. 7C. Cutting is performed at equal intervals in a direction perpendicular to the surfaces 5C, 5D, 6C, and 6D (step S11). Cutting is performed so that the cutting interval at this time is equal to the length PL of one side of the prism 10. Thereby, it is possible to obtain the prism 10 having a high angular accuracy in which the dielectric multilayer film 3 is formed with an angle of 45 ° and having a side length PL as shown in FIG.

以上説明したように、本発明は、幅及び厚みが同一であり、且つ奥行き寸法が異なる2種類の基板である大型基板と小型基板とを用意し、夫々1面に誘電体多層膜を成膜して、大型基板と小型基板とを交互に複数枚積層する。このとき、奥行き方向において大型基板の両端が小型基板よりも突出するように積層することにより、誘電体多層膜を成膜した面の一部が基準面として常に露出していることになるため、この基準面を基準として研磨を行うことにより、高い角度精度を出すことができる。   As described above, according to the present invention, a large substrate and a small substrate, which are two types of substrates having the same width and thickness and different depth dimensions, are prepared, and a dielectric multilayer film is formed on one surface, respectively. Then, a plurality of large substrates and small substrates are alternately stacked. At this time, by laminating so that both ends of the large substrate protrude from the small substrate in the depth direction, a part of the surface on which the dielectric multilayer film is formed is always exposed as a reference surface. By performing polishing with reference to this reference surface, high angular accuracy can be obtained.

なお、上述した実施形態のプリズム10は、立方体の形状を有し、誘電体多層膜3が成膜されている面が45°であるものについて説明しているため、大型基板1と小型基板2とを接合するときには、幅方向において基板の厚みLZ1と同一の間隔ずらして積層している。すなわち、幅方向においてLZ1ずらすことにより、上記階段状の角度は45°を形成するが、幅方向においてLZ1ではない間隔ずらせば、上記階段状の角度は45°とは異なる角度で形成される。ステップS4において、上記階段状の傾斜と平行な方向に積層ガラス体4を切断するが、階段状の角度が45°とは異なる角度で形成されていれば、最終的に製造されるプリズム10に形成される誘電体多層膜3が形成されている面を45°とは異なる角度にすることができる。また、プリズム10の形状を立方体とは異なるものにすることもできる。なお、このときにおいても、45°とは異なる角度ではあるが、高い角度精度で誘電体多層膜3がプリズム10に形成されているものを製造することができる。   Since the prism 10 of the above-described embodiment has a cubic shape and the surface on which the dielectric multilayer film 3 is formed is 45 °, the large substrate 1 and the small substrate 2 are described. Are joined at the same interval as the substrate thickness LZ1 in the width direction. That is, by shifting LZ1 in the width direction, the stepwise angle forms 45 °. However, if the interval other than LZ1 is shifted in the width direction, the stepwise angle is formed at an angle different from 45 °. In step S4, the laminated glass body 4 is cut in a direction parallel to the stepped inclination. If the stepped angle is formed at an angle different from 45 °, the prism 10 to be finally manufactured is formed. The surface on which the formed dielectric multilayer film 3 is formed can be at an angle different from 45 °. Further, the shape of the prism 10 can be different from the cube. Even at this time, although the angle is different from 45 °, it is possible to manufacture the one in which the dielectric multilayer film 3 is formed on the prism 10 with high angular accuracy.

また、本発明では、光ピックアップ装置を例示して説明したが、これに限定されるものではなく、キューブタイプのプリズムに所定角度で誘電体多層膜が成膜されているものであれば、任意のものに適用することができる。例えば、色分解・色合成を行う液晶プロジェクタを構成する光学部品としてのダイクロイックプリズムにも適用することができる。ダイクロイックプリズムも、キューブ形状のプリズムが使用され、入射光の波長によって反射・透過を別にするダイクロイック膜が、光路に対して45°の角度で形成されている。従って、かかるダイクロイックプリズム等にも本発明を適用することができる。   In the present invention, the optical pickup device has been described as an example. However, the present invention is not limited to this, and any configuration may be used as long as a dielectric multilayer film is formed on a cube-type prism at a predetermined angle. Can be applied to For example, the present invention can also be applied to a dichroic prism as an optical component constituting a liquid crystal projector that performs color separation and color synthesis. As the dichroic prism, a cube-shaped prism is used, and a dichroic film that separates reflection and transmission according to the wavelength of incident light is formed at an angle of 45 ° with respect to the optical path. Therefore, the present invention can be applied to such a dichroic prism.

本発明の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of this invention. プリズムの斜視図である。It is a perspective view of a prism. 大型基板及び小型基板の斜視図であるIt is a perspective view of a large substrate and a small substrate. 積層ガラス体の斜視図であるIt is a perspective view of a laminated glass body 積層ガラス体の正面図及び側面図であるIt is the front view and side view of a laminated glass body 多連ガラス体の斜視図であるIt is a perspective view of a multiple glass body 短冊ガラス体の斜視図であるIt is a perspective view of a strip glass body 治具の斜視図及び拡大図であるIt is the perspective view and enlarged view of a jig | tool.

符号の説明Explanation of symbols

1 大型基板 2 小型基板
3 誘電体多層膜 4 積層ガラス体
5 多連ガラス体 6 短冊ガラス体
7 治具 B 基準面
C 成膜面 N 非成膜面

DESCRIPTION OF SYMBOLS 1 Large substrate 2 Small substrate 3 Dielectric multilayer film 4 Laminated glass body 5 Multiple glass body 6 Strip glass body 7 Jig B Reference plane C Deposition surface N Non-deposition surface

Claims (5)

所定角度で誘電体多層膜が形成されているプリズムを製造するプリズムの製造方法であって、
平板状の基板である大型基板と、この大型基板と幅寸法及び厚みが同一であり、奥行き寸法が前記大型基板よりも短い小型基板との両面を研磨して、前記大型基板及び前記小型基板の両面の平面度及び平行度を出す平板両面研磨工程と、
前記平板両面研磨工程において研磨された前記大型基板及び前記小型基板の両面の何れか2つの面に誘電体多層膜を成膜して成膜面と非成膜面とを形成する誘電体多層膜成膜工程と、
前記大型基板と前記小型基板とを、前記成膜面と前記非成膜面とが接着されるように交互に接着する工程であって、幅方向においては所定間隔ずらして階段状となるように、且つ前記大型基板の奥行き方向の両端が基準面として露出するように積層して積層ガラス体を得る基板接着工程と、
前記積層ガラス体を、前記階段状の傾斜と平行な方向に前記プリズムの一辺の長さ以上の間隔に切断して、複数の多連ガラス体を得る積層ガラス体切断工程と、
前記多連ガラス体のうち、前記積層ガラス体切断工程で切断された2つの切断面を両面研磨して、2つの切断面の平面度及び平行度を出す多連ガラス体両面研磨工程と、
前記多連ガラス体を、前記研磨面とは垂直方向に、前記プリズムの一辺の長さ以上の間隔で切断して複数の短冊ガラス体を得る多連ガラス体切断工程と、
前記短冊ガラス体の両端に形成されている前記基準面を基準として、前記多連ガラス体切断工程で切断された切断面を研磨する第1の短冊ガラス体研磨工程と、
前記第1の短冊ガラス体研磨工程で研磨された面を基準として、この面とは反対面を研磨する第2の短冊ガラス体研磨工程と、
前記短冊ガラス体研磨工程で研磨された前記短冊ガラス体を、前記多連ガラス体両面研磨工程で研磨された研磨面、若しくは前記短冊ガラス体研磨工程で研磨された研磨面とは垂直な方向に等間隔に切断して複数のプリズムを得る短冊ガラス体切断工程と、からなることを特徴とするプリズムの製造方法。
A prism manufacturing method for manufacturing a prism in which a dielectric multilayer film is formed at a predetermined angle,
Polishing both sides of the large substrate, which is a flat substrate, and a small substrate having the same width and thickness as the large substrate and having a depth dimension shorter than the large substrate, the large substrate and the small substrate A flat plate double-side polishing process that produces flatness and parallelism on both sides,
Dielectric multilayer film in which a dielectric multilayer film is formed on any two surfaces of the large substrate and the small substrate polished in the flat plate double-side polishing step to form a film formation surface and a non-film formation surface A film forming process;
A step of alternately bonding the large substrate and the small substrate so that the film-forming surface and the non-film-forming surface are bonded to each other so as to be stepped with a predetermined interval in the width direction And a substrate bonding step of obtaining a laminated glass body by laminating so that both ends in the depth direction of the large substrate are exposed as reference surfaces;
A laminated glass body cutting step of obtaining a plurality of multiple glass bodies by cutting the laminated glass body at intervals equal to or longer than the length of one side of the prism in a direction parallel to the stepwise inclination,
Among the multiple glass bodies, the two cut surfaces cut in the laminated glass body cutting step are double-side polished, and the multiple glass body double-side polishing step for obtaining the flatness and parallelism of the two cut surfaces;
A multiple glass body cutting step for obtaining a plurality of strip glass bodies by cutting the multiple glass bodies in a direction perpendicular to the polishing surface at intervals equal to or longer than one side of the prism;
A first strip glass body polishing step for polishing a cut surface cut in the multiple glass body cutting step with reference to the reference surfaces formed at both ends of the strip glass body;
Based on the surface polished in the first strip glass body polishing step, a second strip glass body polishing step for polishing the surface opposite to this surface;
The strip glass body polished in the strip glass body polishing step is in a direction perpendicular to the polishing surface polished in the multiple glass body double-side polishing step or the polishing surface polished in the strip glass body polishing step. A prism glass body cutting step for obtaining a plurality of prisms by cutting at equal intervals.
前記基板接着工程において、前記大型基板と前記小型基板とは、幅方向において基板の厚み分ずらして前記階段状を45°とすることを特徴とする請求項1記載のプリズムの製造方法。   2. The method of manufacturing a prism according to claim 1, wherein, in the substrate bonding step, the large substrate and the small substrate are shifted by a thickness of the substrate in the width direction so that the step shape is 45 degrees. 前記第1の短冊ガラス体研磨工程において、前記プリズムの一辺の長さと等しい高さを有する垂直面及びこの垂直面と45°の角度をなす斜面を有する治具に、前記短冊ガラス体の両端を支持させ、前記短冊ガラス体のうち前記多連ガラス体切断工程で切断された切断面を、前記垂直面の高さにまで研磨することを特徴とする請求項1記載のプリズムの製造方法。   In the first strip glass body polishing step, both ends of the strip glass body are attached to a jig having a vertical surface having a height equal to the length of one side of the prism and a slope having an angle of 45 ° with the vertical surface. The method for manufacturing a prism according to claim 1, wherein the prism glass body is supported and the cut surface cut in the multiple glass body cutting step is polished to the height of the vertical surface. 前記第2の短冊ガラス体研磨工程は、前記基準面を基準として、前記第1の短冊ガラス体研磨工程で研磨されていない面を研磨することを特徴とする請求項1記載のプリズムの製造方法。   2. The method for manufacturing a prism according to claim 1, wherein the second strip glass body polishing step polishes a surface that has not been polished in the first strip glass body polishing step on the basis of the reference surface. . 前記プリズムの製造方法は、前記多連ガラス体研磨工程の後に、前記多連ガラス体研磨工程で研磨された2つの研磨面に反射防止膜を成膜し、
前記第2の短冊ガラス体研磨工程の後に、前記第1及び第2の短冊ガラス体研磨工程で研磨された研磨面に前記反射防止膜を成膜することを特徴とする請求項1記載のプリズムの製造方法。

In the prism manufacturing method, after the multiple glass body polishing step, an antireflection film is formed on the two polished surfaces polished in the multiple glass body polishing step,
2. The prism according to claim 1, wherein after the second strip glass body polishing step, the antireflection film is formed on the polished surfaces polished in the first and second strip glass body polishing steps. Manufacturing method.

JP2005161167A 2005-06-01 2005-06-01 Manufacturing method of prism Expired - Fee Related JP4637653B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005161167A JP4637653B2 (en) 2005-06-01 2005-06-01 Manufacturing method of prism
TW095116420A TW200643475A (en) 2005-06-01 2006-05-09 Method for manufacturing prism
KR1020060048999A KR100798439B1 (en) 2005-06-01 2006-05-30 Method for manufacturing a prism
CNB2006100923229A CN100449335C (en) 2005-06-01 2006-06-01 Method for manufacture prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161167A JP4637653B2 (en) 2005-06-01 2005-06-01 Manufacturing method of prism

Publications (3)

Publication Number Publication Date
JP2006337641A true JP2006337641A (en) 2006-12-14
JP2006337641A5 JP2006337641A5 (en) 2008-05-22
JP4637653B2 JP4637653B2 (en) 2011-02-23

Family

ID=37483971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161167A Expired - Fee Related JP4637653B2 (en) 2005-06-01 2005-06-01 Manufacturing method of prism

Country Status (4)

Country Link
JP (1) JP4637653B2 (en)
KR (1) KR100798439B1 (en)
CN (1) CN100449335C (en)
TW (1) TW200643475A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195155A (en) * 2010-03-18 2011-10-06 Konica Minolta Opto Inc Optical element packing method, and packed optical element
WO2016003276A1 (en) 2014-06-30 2016-01-07 Anteryon Wafer Optics B.V. Method for manufacturing optical modules
US10151880B2 (en) 2014-09-25 2018-12-11 Anteryon Wafer Optics B.V. Optical light guide element and a method for manufacturing
CN112171926A (en) * 2020-09-30 2021-01-05 浙江嘉美光电科技有限公司 Method for processing right-angle trapezoidal micro prism
CN115384220A (en) * 2022-08-23 2022-11-25 四川江天科技有限公司 Crystal glass ornament and crystal glass processing technology
JP7489297B2 (en) 2020-11-24 2024-05-23 株式会社アスカネット Manufacturing method for optical imaging device and light reflecting element forming body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644789B (en) * 2009-08-26 2013-11-20 阿石托隆(福建)光学科技有限公司 Method for processing and assembling optical prism
CN110977673A (en) * 2019-12-05 2020-04-10 杭州美迪凯光电科技股份有限公司 Polishing and coating processing method for ultra-small prism
CN111704353B (en) * 2020-06-23 2022-04-05 惠州市祺光科技有限公司 Processing method of coated cubic prism
CN113511804B (en) * 2021-03-23 2023-05-12 常州第二电子仪器有限公司 Coarse processing method of 45-degree right-angle prism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184112A (en) * 1997-09-12 1999-03-26 Matsushita Electric Ind Co Ltd Color synthesis prism and its production as well as projection type display device
JP2000143264A (en) * 1998-10-30 2000-05-23 Toyo Commun Equip Co Ltd Production of optical device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199810A (en) 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
JP2000147222A (en) 1998-11-11 2000-05-26 Toyo Commun Equip Co Ltd Production of wollaston prism
KR100283762B1 (en) * 1999-01-20 2001-02-15 윤종용 Jig for making optical prism and method for making optical prism by using jig
JP2000241610A (en) 1999-02-23 2000-09-08 Asahi Techno Glass Corp Manufacture of optical prism
JP2001354441A (en) * 2000-06-12 2001-12-25 Nippon Sheet Glass Co Ltd Method for manufacturing optical glass element and optical glass element manufactured by this manufacturing method
JP2002179440A (en) * 2000-12-12 2002-06-26 Asahi Techno Glass Corp Tool for fabricating laminated optical member, method of producing laminated optical member and method of producing optical prism
KR100433624B1 (en) * 2001-09-27 2004-05-31 학교법인 포항공과대학교 Method for manufacturing mold of micro-prism array
EP1469324A1 (en) * 2003-04-16 2004-10-20 Université de Liège An illumination device formed by cutting and laminating coated plates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184112A (en) * 1997-09-12 1999-03-26 Matsushita Electric Ind Co Ltd Color synthesis prism and its production as well as projection type display device
JP2000143264A (en) * 1998-10-30 2000-05-23 Toyo Commun Equip Co Ltd Production of optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195155A (en) * 2010-03-18 2011-10-06 Konica Minolta Opto Inc Optical element packing method, and packed optical element
WO2016003276A1 (en) 2014-06-30 2016-01-07 Anteryon Wafer Optics B.V. Method for manufacturing optical modules
US10416419B2 (en) 2014-06-30 2019-09-17 Anteryon Wafer Optics B.V. Method for manufacturing optical modules
US10151880B2 (en) 2014-09-25 2018-12-11 Anteryon Wafer Optics B.V. Optical light guide element and a method for manufacturing
CN112171926A (en) * 2020-09-30 2021-01-05 浙江嘉美光电科技有限公司 Method for processing right-angle trapezoidal micro prism
JP7489297B2 (en) 2020-11-24 2024-05-23 株式会社アスカネット Manufacturing method for optical imaging device and light reflecting element forming body
CN115384220A (en) * 2022-08-23 2022-11-25 四川江天科技有限公司 Crystal glass ornament and crystal glass processing technology

Also Published As

Publication number Publication date
CN100449335C (en) 2009-01-07
CN1873448A (en) 2006-12-06
KR100798439B1 (en) 2008-01-28
TWI304137B (en) 2008-12-11
JP4637653B2 (en) 2011-02-23
TW200643475A (en) 2006-12-16
KR20060125561A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4637653B2 (en) Manufacturing method of prism
US11002893B2 (en) Transmission grating and laser device using the same, and method of producing transmission grating
JP2010170606A (en) Method of manufacturing prism assembly
JP2006234861A (en) Method of manufacturing optical glass, method of manufacturing polarization conversion element, and polarization conversion element
JP2007249129A (en) Wavelength separation element, method of manufacturing wavelength separation element and optical module
US20240151893A1 (en) Method of fabrication of compound light-guide optical elements
JP2008145482A (en) Manufacturing method of right-angled triangular prism
EP1672395B1 (en) Polarizing element and optical system including polarizing element
JP4655659B2 (en) Optical element manufacturing method
JP2007187851A (en) Method for manufacturing prism, prism, optical pickup and liquid crystal projector
JP5282265B2 (en) Optical element manufacturing method
JP4449168B2 (en) Optical device manufacturing method
JP2000199810A (en) Manufacture of optical device
JP2008145481A (en) Method for manufacturing compound prism
JP2005315916A (en) Manufacturing method for cross prism
JP6761215B2 (en) Optical elements, etalons, and diffraction gratings, and methods for manufacturing optical elements
JP2019211702A (en) Optical element and optical device
JP4577450B2 (en) Optical device and optical pickup
JPH0566303A (en) Manufacture of polarized light separating prism
JP5217608B2 (en) Optical element manufacturing method
JP2010122576A (en) Method for manufacturing optical element
JP2007249130A (en) Flat-plate-like optical member, manufacturing method of optical device, and optical device
CN107402415B (en) Composite optical wedge angle sheet and manufacturing method thereof
JP2005221703A (en) Manufacturing method of optical element
JP2008217922A (en) Optical element, optical pickup, complementary optical member, and manufacturing method of optical element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees