JP2010170606A - Method of manufacturing prism assembly - Google Patents

Method of manufacturing prism assembly Download PDF

Info

Publication number
JP2010170606A
JP2010170606A JP2009011268A JP2009011268A JP2010170606A JP 2010170606 A JP2010170606 A JP 2010170606A JP 2009011268 A JP2009011268 A JP 2009011268A JP 2009011268 A JP2009011268 A JP 2009011268A JP 2010170606 A JP2010170606 A JP 2010170606A
Authority
JP
Japan
Prior art keywords
substrate
prism
prism assembly
cut
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009011268A
Other languages
Japanese (ja)
Inventor
Yasutami Ryu
保民 龍
Junichi Sakurai
淳一 桜井
Takuya Okada
岡田  卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2009011268A priority Critical patent/JP2010170606A/en
Publication of JP2010170606A publication Critical patent/JP2010170606A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture a compact prism assembly of high accuracy when there is an optical thin film preventing the irradiation of a photosetting adhesive with light. <P>SOLUTION: A plurality of units 51a formed by superposing thin plates 41a and 41b to each other so that an optical thin film is interposed in a superposed surface on one transparent thick plate 42 are superposed and a photosetting adhesive is cured by irradiation with light to form a substrate joining body 51. The substrate joining body 51 is cut at a fixed pitch in a direction crossing each superposed surface of the substrate joining body at a fixed angle to form joining substrates in each of which a cut surface of the thick plate 42 and cut surfaces of the thin plates 41a and 41b by the cutting are exposed in a layer shape. The joining substrate is cut vertically with respect to the surface thereof along the cut surface of the thick plate 42 through the center of a part formed of the thick plate 42 to form a plurality of prismatic substrates. The prismatic substrate is cut vertically with respect to the longitudinal direction thereof at a fixed pitch to form each prism assembly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のプリズムを複数接合したプリズムアセンブリの製造方法に関し、さらに詳しくは、プリズムの接合面が2以上あるプリズムアセンブリの製造方法に関する。   The present invention relates to a method for manufacturing a prism assembly in which a plurality of prisms are joined together, and more particularly to a method for producing a prism assembly having two or more prism joining surfaces.

近年、CDやDVD,ブルーレイディスク(BD)等の複数種類の光ディスクに対応した光学ドライブが普及している。複数種類の光ディスクに対応した光学ドライブでは、部品点数の削減による低コスト化や、小型化,薄型化のめに、光ピックアップの多くの部分を各光ディスクに対して共通化することが求められる。こうした光ピックアップに用いられる部材として、プリズムアセンブリが知られている。プリズムアセンブリは、偏光分離膜や反射膜等の光学薄膜を介して複数のプリズムを接合したものであり、光ディスクへのレーザー光の入射光路や、光ディスクに反射されて戻るレーザー光の光路を各光ディスクについて共通化する部材として使用される。   In recent years, optical drives compatible with a plurality of types of optical discs such as CDs, DVDs, and Blu-ray discs (BD) have become widespread. In an optical drive that supports a plurality of types of optical discs, it is required to share many parts of the optical pickup with each optical disc in order to reduce costs by reducing the number of parts, and to reduce the size and thickness. A prism assembly is known as a member used for such an optical pickup. The prism assembly is formed by joining a plurality of prisms through an optical thin film such as a polarization separation film or a reflection film. The optical path of the laser light incident on the optical disk or the optical path of the laser light reflected back to the optical disk is set for each optical disk. Used as a common member.

プリズムアセンブリは、例えば、接合するプリズムを各々成形し、各プリズムに必要な光学薄膜を成膜して、これらを接合することによって製造される。しかしながら、この方法では、プリズムアセンブリを構成する各プリズムを成形する段階で研磨加工の工数が多く、さらに、プリズム材料の研磨治具への貼り付けや剥離といったように煩雑な工程を数多く必要とする。また、各プリズムをそれぞれに成形してから接合してプリズムアセンブリを製造する場合には、各プリズムの小型化や各プリズムの接合精度には限度があり、良好な光学的性能のプリズムアセンブリを安定して生産することは難しい。   The prism assembly is manufactured, for example, by molding each prism to be joined, forming an optical thin film necessary for each prism, and joining them. However, this method requires many man-hours for polishing at the stage of forming each prism constituting the prism assembly, and further requires many complicated steps such as attaching and peeling the prism material to the polishing jig. . In addition, when manufacturing prism assemblies by molding each prism and then bonding each prism, there is a limit to the miniaturization of each prism and the accuracy with which each prism can be bonded, which stabilizes the prism assembly with good optical performance. It is difficult to produce.

こうしたことから、プリズムアセンブリを構成する各プリズムを予め成形しておくのではなく、表面に光学薄膜が成膜された複数のガラス基板を重ね合わせて接合しておき、これを斜めに切り出すことで、高精度に接合された小型のプリズムアセンブリを容易に製造する方法が知られている(特許文献1)。   For this reason, rather than pre-molding each prism constituting the prism assembly, a plurality of glass substrates with optical thin films formed on the surface are stacked and bonded, and then cut diagonally. A method of easily manufacturing a small prism assembly bonded with high accuracy is known (Patent Document 1).

ところで、安価で、素早く強力な接着強度が得られることから、プリズムの接合や上述のようなガラス基板の接合には、紫外線を照射することにより硬化する光硬化型接着剤が主として用いられている。一方で、近年普及の著しいBDは、波長が紫外線近い405nm近傍の青色光を用いる光ディスクであるため、BDに対応するプリズムアセンブリには、この波長帯の光を反射する反射膜や偏光分離膜が用いられる。   By the way, since inexpensive and quick and strong adhesive strength can be obtained, a photo-curing adhesive that is cured by irradiating ultraviolet rays is mainly used for joining the prism and the glass substrate as described above. . On the other hand, the BD that has been remarkably popular in recent years is an optical disk that uses blue light having a wavelength of about 405 nm, which is close to ultraviolet rays. Therefore, the prism assembly corresponding to the BD has a reflection film or a polarization separation film that reflects light in this wavelength band. Used.

このため、紫外線で硬化する光硬化型接着剤を用いて、特許文献1に記載の製造方法でBDに対応するプリズムアセンブリを製造しようとすると、重ね合わせるガラス基板上に、紫外線の照射を妨げる反射膜や偏光分離膜等が設けられているために、これらの光学薄膜以降では紫外線の照射量が不十分となり、十分な接着強度が得られなかったり、十分な接着強度を得るためには長時間の紫外線の照射が必要となってしまう。   For this reason, when it is going to manufacture the prism assembly corresponding to BD with the manufacturing method of patent document 1 using the photocurable adhesive hardened | cured with an ultraviolet-ray, the reflection which prevents irradiation of an ultraviolet-ray on the glass substrate to pile up Since a film, a polarization separation film, etc. are provided, the amount of UV irradiation is insufficient after these optical thin films, and sufficient adhesive strength cannot be obtained, or a long time is required to obtain sufficient adhesive strength. Of ultraviolet rays will be required.

このように、光硬化型接着剤への紫外線の照射を妨げる光学薄膜がある場合に、光硬化型接着剤への紫外線の照射を妨げない単位でガラス基板を重ね合わせて接合しておき、これを光硬化型でない可剥離性の接着剤で仮接合することによって、特許文献1に記載の製造方法と同様にしてプリズムアセンブリを製造する方法が提案されている(特許文献2)。
特許2639312号 特開2005−164982号公報
In this way, when there is an optical thin film that prevents the ultraviolet irradiation of the photocurable adhesive, the glass substrate is overlaid and bonded in units that do not prevent the ultraviolet irradiation of the photocurable adhesive. A method of manufacturing a prism assembly in the same manner as the manufacturing method described in Patent Document 1 has been proposed (Patent Document 2).
Japanese Patent No. 2639312 JP 2005-164982 A

しかしながら、高精度で強力な接着の必要な面を、光硬化型接着剤により各々接合しておく方法では、光硬化型接着剤の塗布とこれを硬化させる紫外線の照射とを、高精度で強力な接着の必要な面の数だけ繰り返し行う必要があるため、プリズムアセンブリの製造工程が煩雑かつ非効率的になってしまうという問題がある。   However, in the method of joining the surfaces that require high precision and strong bonding with the photo-curing adhesive, the application of the photo-curing adhesive and the irradiation of the ultraviolet rays that cure it are powerful with high precision. Therefore, there is a problem that the manufacturing process of the prism assembly becomes complicated and inefficient.

また、光硬化型接着剤で強固に接合した複数枚のガラス基板を一つのユニットとし、これを可剥離性の接着剤で仮接合すると、2種類の接着剤を使用することになるため、安定した品質のプリズムアセンブリを製造するためには各接着剤の特性の調節や管理が煩雑である。また、複数の接着剤を利用すると、コスト面で不利になる。   In addition, if a plurality of glass substrates firmly bonded with a photo-curing adhesive is used as one unit and this is temporarily bonded with a peelable adhesive, two types of adhesive are used, which is stable. In order to manufacture a prism assembly of the quality described above, adjustment and management of the properties of each adhesive are complicated. In addition, using a plurality of adhesives is disadvantageous in terms of cost.

さらに、製造したプリズムアセンブリを良好な光学性能を確保するためには、仮接合されていた面を切断して除去したり、研磨したりする必要がある。このため、仮接合を用いることにより、切断や研磨の工程が増加し、プリズムアセンブリの製造工程が煩雑かつ非効率的になるとともに、切断や研磨による切除しなければならない部分が多く、材料が無駄になり、プリズムアセンブリが高コスト化してしまうという問題がある。   Furthermore, in order to secure good optical performance of the manufactured prism assembly, it is necessary to cut and remove the temporarily bonded surfaces or to polish them. For this reason, the use of temporary bonding increases the number of cutting and polishing processes, making the prism assembly manufacturing process cumbersome and inefficient, and there are many parts that must be cut off by cutting and polishing, resulting in wasted material. Therefore, there is a problem that the cost of the prism assembly is increased.

本発明は上述の問題点に鑑みてなされたものであり、光硬化型接着剤の照射を妨げる光学薄膜がある場合においても、高精度で小型のプリズムアセンブリを効率良く製造することができるプリズムアセンブリの製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and a prism assembly capable of efficiently manufacturing a small and highly accurate prism assembly even when there is an optical thin film that prevents irradiation of a photocurable adhesive. It aims at providing the manufacturing method of.

本発明のプリズムアセンブリ製造方法は、重ね合わせ面に光学薄膜が介在するように、1枚の厚い透明な第1基板上に1枚以上の薄い透明な第2基板を重ね合わせた積層体ユニットを複数ユニット分重ね合わせ、各々の重ね合わせ面に予め塗布された光硬化型接着剤を光照射により硬化させて基板接合体を作製する第1工程と、前記基板接合体の各々の重ね合わせ面と一定角度で交差する方向に一定ピッチで切断し、この切断による表裏面に前記第1基板の切断面と前記第2基板の切断面とが層状に露呈した接合基板を作製する第2工程と、前記第1基板からなる部分の中央を通るように、前記第1基板の切断面に沿って、表面に対して垂直に前記接合基板を切断し、複数の角柱状基板を作製する第3工程と、前記角柱状基板を長手方向に対して垂直に一定ピッチで切断し、前記第1基板を切断して得られた第1プリズム要素を両端に有し、これらの間に前記第2基板を切断して得られた第2プリズム要素を1以上有するプリズムアセンブリを得る第4工程と、を備えることを特徴とする。   According to the prism assembly manufacturing method of the present invention, a laminated unit in which one or more thin transparent second substrates are superimposed on one thick transparent first substrate so that an optical thin film is interposed on the overlapping surface. A first step of superposing a plurality of units, and curing a photo-curing adhesive previously applied to each superposed surface by light irradiation to produce a substrate assembly, and each superposing surface of the substrate assembly; A second step of producing a bonded substrate in which the cut surface of the first substrate and the cut surface of the second substrate are exposed in layers on the front and back surfaces by the cutting in a direction intersecting at a constant angle; A third step of producing a plurality of prismatic substrates by cutting the bonding substrate perpendicularly to the surface along the cut surface of the first substrate so as to pass through the center of the portion made of the first substrate; The prismatic substrate in the longitudinal direction The first prism element obtained by cutting the first substrate vertically at a constant pitch and having the first prism element obtained at the both ends, and the second prism element obtained by cutting the second substrate between them is provided. And a fourth step of obtaining one or more prism assemblies.

また、前記第2工程で前記基板接合体を切断する前記一定角度に応じて、前記第1工程では前記第1基板と前記第2基板の位置を階段状にずらしながら重ね合わせて前記基板接合体を作製することを特徴とする。   Further, in accordance with the certain angle at which the substrate bonded body is cut in the second step, the substrate bonded body is overlapped while shifting the positions of the first substrate and the second substrate stepwise in the first step. It is characterized by producing.

また、前記第1工程で、前記光硬化型接着剤を硬化させるときに、前記重ね合わせ面に平行な方向から光を照射することを特徴とする。   Further, in the first step, when the photocurable adhesive is cured, light is irradiated from a direction parallel to the overlapping surface.

また、前記基板接合体は、最上段及び最下段に、前記第2基板よりも厚い第3基板が配置されることを特徴とする。   Further, the substrate assembly is characterized in that a third substrate thicker than the second substrate is disposed at the uppermost and lowermost stages.

また、前記光硬化型接着剤は、紫外線により硬化する紫外線硬化型の接着剤であることを特徴とする。   The photo-curing adhesive is an ultraviolet-curing adhesive that is cured by ultraviolet rays.

また、前記基板接合体は前記第2基板の両側にそれぞれ2以上の前記第1基板を配置して作製され、前記プリズムアセンブリは、前記第2プリズム要素を2以上有するように作製されることを特徴とする。   The substrate assembly is manufactured by disposing two or more first substrates on both sides of the second substrate, and the prism assembly is manufactured to have two or more second prism elements. Features.

本発明によれば、光硬化型接着剤の照射を妨げる光学薄膜がある場合においても、高精度で小型のプリズムアセンブリを効率良く製造することができる。   According to the present invention, even when there is an optical thin film that hinders irradiation of the photocurable adhesive, a highly accurate and small prism assembly can be efficiently manufactured.

図1に示すように、光ピックアップ11は、光ディスク12からデータを読み出すための光学系であり、CD,DVD,BDの3種の波長帯の異なる光ディスク12に対して共通に用いられる。光ピックアップ11は、青色レーザーダイオード(以下、青色LDという)16、赤色レーザーダイオード(以下、赤色LDという)17、ダイクロイックプリズム18、プリズムアセンブリ20、青色用光電子集積回路(以下、青色用OEICという)22、赤色用光電子集積回路(以下、赤色用OEICという)23等から構成される。   As shown in FIG. 1, an optical pickup 11 is an optical system for reading data from an optical disk 12, and is used in common for optical disks 12 having three different wavelength bands, CD, DVD, and BD. The optical pickup 11 includes a blue laser diode (hereinafter referred to as blue LD) 16, a red laser diode (hereinafter referred to as red LD) 17, a dichroic prism 18, a prism assembly 20, and a blue optoelectronic integrated circuit (hereinafter referred to as blue OEIC). 22, a red optoelectronic integrated circuit (hereinafter referred to as red OEIC) 23, and the like.

青色LD16は、波長405nmの青色レーザー光を発するレーザーダイオードであり、光ディスク12がBDの場合に発光される。青色LD16から発せられた青色レーザー光は、青色LD16の前方に設けられた回折格子(図示しない)に入射され、データ読み取り用の主ビームと、トラッキング用及びフォーカシング用の2つの副ビームに分岐される。そして、回折格子を経た青色レーザー光は、1/2波長板(図示しない)によって偏光方向が所定方向に整えられた直線偏光となって、ダイクロイックプリズム18に入射する。   The blue LD 16 is a laser diode that emits blue laser light having a wavelength of 405 nm, and is emitted when the optical disk 12 is a BD. The blue laser light emitted from the blue LD 16 is incident on a diffraction grating (not shown) provided in front of the blue LD 16 and branched into a main beam for data reading and two sub beams for tracking and focusing. The Then, the blue laser light that has passed through the diffraction grating becomes linearly polarized light whose polarization direction is adjusted to a predetermined direction by a half-wave plate (not shown) and enters the dichroic prism 18.

赤色LD17は、波長650nm近傍の赤色レーザー光と、波長780nm近傍の赤外レーザー光を発することができる2波長レーザーダイオードであり、光ディスク12がCDまたはDVDであるときに波長を選択して発光される。赤色LD17は、光ディスク12がCDである場合には波長780nm近傍の赤外レーザー光を発し、光ディスク12がDVDであるときには、波長650nm近傍の赤色レーザー光を発する。   The red LD 17 is a two-wavelength laser diode capable of emitting a red laser beam having a wavelength of about 650 nm and an infrared laser beam having a wavelength of about 780 nm. When the optical disk 12 is a CD or a DVD, the wavelength is selected and emitted. The The red LD 17 emits an infrared laser beam having a wavelength of about 780 nm when the optical disc 12 is a CD, and emits a red laser beam having a wavelength of about 650 nm when the optical disc 12 is a DVD.

赤色LD17から発せられたレーザー光は、赤色LD17の前方に設けられた回折格子(図示しない)に入射され、データ読み取り用の主ビームと、トラッキング用及びフォーカシング用の2つの副ビームに分岐される。そして、回折格子を経た赤色(赤外)レーザー光は、1/2波長板(図示しない)によって偏光方向が所定方向に整えられた直線偏光となって、ダイクロイックプリズム18に入射する。   Laser light emitted from the red LD 17 is incident on a diffraction grating (not shown) provided in front of the red LD 17 and branched into a main beam for data reading and two sub beams for tracking and focusing. . Then, the red (infrared) laser light that has passed through the diffraction grating becomes linearly polarized light whose polarization direction is adjusted to a predetermined direction by a half-wave plate (not shown), and enters the dichroic prism 18.

ダイクロイックプリズム18には、青色の光を透過し、赤色及び赤外の光を反射する色分離面が、青色LD16及び赤色LD17の光軸に対して45度の向きに設けられている。このため、青色LD16から入射する青色レーザー光は、色分離面を透過してプリズムアセンブリ20に入射し、赤色LD17から入射する赤色レーザー光及び赤外レーザー光は色分離面に反射されてプリズムアセンブリ20に入射される。   The dichroic prism 18 is provided with a color separation surface that transmits blue light and reflects red and infrared light at an angle of 45 degrees with respect to the optical axes of the blue LD 16 and the red LD 17. For this reason, the blue laser light incident from the blue LD 16 passes through the color separation surface and enters the prism assembly 20, and the red laser light and infrared laser light incident from the red LD 17 are reflected by the color separation surface, and the prism assembly. 20 is incident.

プリズムアセンブリ20は、複数のプリズムが各種光学薄膜を介して複数接合された部材であり、CD用の赤外レーザー光,DVD用の赤色レーザー光,BD用の青色レーザー光の光路を統一化する。プリズムアセンブリ20は4個のプリズムからなり、各プリズムの境界に、偏光分離膜31、青色反射膜32、赤色反射膜33がそれぞれ設けられている。また、図1では図示の便宜上、LD16の光軸方向から見たこれらの光学薄膜31,32,33間には間隔があるが、光学薄膜31,32,33はLD16の光軸方向から見たときに重ならず、また、間隔無く配置される。   The prism assembly 20 is a member in which a plurality of prisms are joined through various optical thin films, and unifies the optical paths of the infrared laser beam for CD, the red laser beam for DVD, and the blue laser beam for BD. . The prism assembly 20 includes four prisms, and a polarization separation film 31, a blue reflection film 32, and a red reflection film 33 are provided at the boundaries between the prisms. Further, in FIG. 1, for convenience of illustration, there is a space between the optical thin films 31, 32, 33 viewed from the optical axis direction of the LD 16, but the optical thin films 31, 32, 33 are viewed from the optical axis direction of the LD 16. Sometimes they do not overlap and they are placed without any gaps.

偏光分離膜31は所定方向の偏光成分を透過し、この方向に垂直な方向の偏光成分を反射する。偏光分離膜31には、光ディスク12がBDである場合に、青色LD16から青色レーザー光が入射し、光ディスク12がCDまたはDVDである場合に、赤色LD17から赤色レーザー光,赤外レーザー光のうち対応する波長のレーザー光が入射する。   The polarization separation film 31 transmits a polarization component in a predetermined direction and reflects a polarization component in a direction perpendicular to this direction. When the optical disk 12 is a BD, blue laser light is incident on the polarization separation film 31 from the blue LD 16, and when the optical disk 12 is a CD or a DVD, the red laser light and the infrared laser light are emitted from the red LD 17. The corresponding laser beam is incident.

各LD16,17から偏光分離膜31に入射する各色のレーザー光は、前述のように各LD16,17の前方に設けられた1/2波長板によって偏光分離膜31を透過する方向に偏光方向が整えられた直線偏光となっているので、偏光分離膜31を透過する。こうして偏光分離膜31を透過した各色のレーザー光は、直線偏光を円偏光に変換する1/4波長板、レーザー光を平行光線に変換するコリメータレンズ、光軸を光ディスク12の方向に折り曲げる立ち上げミラー、対物レンズ(何れも図示しない)を経て、光ディスク12に入射される。   As described above, the laser light of each color incident on the polarization separation film 31 from the LDs 16 and 17 has a polarization direction in a direction in which the laser light is transmitted through the polarization separation film 31 by the half-wave plate provided in front of the LDs 16 and 17. Since the linearly polarized light is arranged, it passes through the polarization separation film 31. Thus, the laser light of each color transmitted through the polarization separation film 31 is a quarter wavelength plate that converts linearly polarized light into circularly polarized light, a collimator lens that converts the laser light into parallel light, and an optical axis that is bent in the direction of the optical disk 12. The light enters the optical disk 12 through a mirror and an objective lens (both not shown).

一方、偏光分離膜31には、光ディスク12によって反射されたレーザー光が入射する。こうして光ディスク12に反射されて戻るレーザー光は、光ディスク12への入射時と同じ向きに回転し、進行方向が逆向きの円偏光となっているので、前述の1/4波長板を透過することで、偏光方向が光ディスク12への入射時から90度回転した方向になる。このため、光ディスク12に反射されて戻るレーザー光は、偏光分離膜31に入射すると、青色反射膜32の方向へ反射される。   On the other hand, the laser beam reflected by the optical disk 12 is incident on the polarization separation film 31. The laser light reflected and returned from the optical disk 12 thus rotates in the same direction as that incident on the optical disk 12 and is circularly polarized light whose traveling direction is reverse, so that it passes through the quarter-wave plate described above. Thus, the polarization direction is rotated by 90 degrees from the time of incidence on the optical disk 12. For this reason, the laser light reflected and returned from the optical disk 12 is reflected in the direction of the blue reflecting film 32 when entering the polarization separation film 31.

青色反射膜32は、青色の光を反射し、赤色及び赤外の光を透過する。このため、光ディスク12がBDの場合に、光ディスク12に反射された青色レーザー光は、偏光分離膜31,青色反射膜32の順に反射されてプリズムアセンブリ20を出射し、青色用OEIC22に入射する。一方、光ディスク12がDVD及びCDの場合には、光ディスク12に反射された赤色(赤外)レーザー光は、偏光分離膜31に反射された後、青色反射膜32を透過して、赤色反射膜33に入射する。   The blue reflective film 32 reflects blue light and transmits red and infrared light. For this reason, when the optical disc 12 is a BD, the blue laser light reflected by the optical disc 12 is reflected in the order of the polarization separation film 31 and the blue reflection film 32, exits the prism assembly 20, and enters the blue OEIC 22. On the other hand, when the optical disk 12 is a DVD or a CD, the red (infrared) laser light reflected by the optical disk 12 is reflected by the polarization separation film 31 and then passes through the blue reflection film 32 to be red reflection film. 33 is incident.

赤色反射膜33は、DVD用の赤色レーザー光とCD用の赤外レーザー光を反射する。このため、光ディスク12がDVDまたはCDの場合に、光ディスク12に反射された赤色(赤外)レーザー光が、赤色反射膜33で反射される。そして、光ディスク12からの赤色(赤外)レーザー光は、ミラー34に反射され、赤色用OEIC23に入射する。   The red reflecting film 33 reflects the red laser beam for DVD and the infrared laser beam for CD. For this reason, when the optical disk 12 is a DVD or a CD, the red (infrared) laser light reflected by the optical disk 12 is reflected by the red reflecting film 33. Then, the red (infrared) laser light from the optical disk 12 is reflected by the mirror 34 and enters the red OEIC 23.

青色用OEIC22は、光電変換素子と光電変換により取得される電気信号を処理する電気回路とが一体に形成された集積回路であり、青色LD16や対物レンズに接続されている。青色用OEIC22には、プリズムアセンブリ20の青色反射膜32から、光ディスク12からの青色レーザー光が入射される。このとき、青色用OEIC22は、青色レーザー光のうち、主ビームを光電変換することにより、光ディスク12に記録されたデータを電気信号に変換して取得する。同時に、青色用OEIC22は、青色レーザー光のうち、2種の副ビームをそれぞれ光電変換し、各副ビームのスポット形状やスポットの向き、ビーム強度等のデータを取得する。青色用OEIC22は、こうした副ビームから得られたデータに基づいて、対物レンズの位置を制御することによりフォーカシング制御やトラッキング制御を行う。また、青色用OEIC22は、青色LD16の出力を調節する。   The blue OEIC 22 is an integrated circuit in which a photoelectric conversion element and an electric circuit for processing an electric signal acquired by photoelectric conversion are integrally formed, and is connected to a blue LD 16 and an objective lens. Blue laser light from the optical disk 12 is incident on the blue OEIC 22 from the blue reflecting film 32 of the prism assembly 20. At this time, the blue OEIC 22 converts the data recorded on the optical disk 12 into an electrical signal by photoelectrically converting the main beam of the blue laser light, and acquires the electrical signal. At the same time, the blue OEIC 22 photoelectrically converts two types of sub-beams in the blue laser light, and acquires data such as the spot shape, spot direction, and beam intensity of each sub-beam. The blue OEIC 22 performs focusing control and tracking control by controlling the position of the objective lens based on the data obtained from such a sub beam. The blue OEIC 22 adjusts the output of the blue LD 16.

赤色用OEIC23は、青色用OEIC22と同様に、光電変換素子と光電変換により取得される電気信号を処理する電気回路とが一体に形成された集積回路であり、赤色LD17や対物レンズに接続されている。赤色OEIC23には、プリズムアセンブリ20の赤色反射膜33からミラー34を経て、赤色(または赤外)レーザー光が入射される。このとき、赤色OEIC23は、前述の青色用OEIC22と同様にして、入射したレーザー光の主ビームからDVD(またはCD)に記録されたデータを電気信号として取得する。さらに、同様にして、赤色OEIC23は、副ビームから得られるデータに基づいてフォーカシング制御やトラッキング制御を行うとともに、赤色LD17の出力を調節する。   Similar to the blue OEIC 22, the red OEIC 23 is an integrated circuit in which a photoelectric conversion element and an electric circuit for processing an electric signal acquired by photoelectric conversion are integrally formed. The red OEIC 23 is connected to the red LD 17 and the objective lens. Yes. Red (or infrared) laser light is incident on the red OEIC 23 from the red reflecting film 33 of the prism assembly 20 through the mirror 34. At this time, the red OEIC 23 acquires the data recorded on the DVD (or CD) from the main beam of the incident laser light as an electric signal in the same manner as the blue OEIC 22 described above. Further, similarly, the red OEIC 23 performs focusing control and tracking control based on data obtained from the sub beam, and adjusts the output of the red LD 17.

プリズムアセンブリ20は、上述のように光ピックアップ11に用いられる部材であり、図2(A)に示すように、全体としては直方体形状であり、図2(B)に示すように、透明な材料からなる4個のプリズム36,37,38,39から構成される。   The prism assembly 20 is a member used for the optical pickup 11 as described above, and has a rectangular parallelepiped shape as a whole as shown in FIG. 2 (A), and a transparent material as shown in FIG. 2 (B). It consists of four prisms 36, 37, 38, and 39.

プリズム36は、青色LD16及び赤色LD17の光軸に平行な面が台形状となった台形プリズムであり、斜面36aでプリズム37と接合される。また、プリズム37は、青色LD16及び赤色LD17の光軸に平行な面が平行四辺形状となった平行四辺形プリズムであり、一方の側面37aはプリズム36に接合され、これに平行な他方の側面37bはプリズム38と接合される。プリズム36と接合される側面37aには偏光分離膜31が成膜される。   The prism 36 is a trapezoidal prism whose surface parallel to the optical axis of the blue LD 16 and the red LD 17 has a trapezoidal shape, and is joined to the prism 37 by an inclined surface 36a. The prism 37 is a parallelogram prism having a parallelogram shape whose plane parallel to the optical axes of the blue LD 16 and the red LD 17 is formed, and one side surface 37a is joined to the prism 36 and the other side surface parallel to the prism 36. 37 b is joined to the prism 38. A polarization separation film 31 is formed on the side surface 37 a bonded to the prism 36.

プリズム38は、プリズム37と同様の平行四辺形プリズムであり、一方の側面38aはプリズム37に接合され、これに平行な他方の側面38bはプリズム39と接合される。側面38aには青色反射膜32が成膜され、側面38bには赤色反射膜33が成膜される。また、プリズム39は、プリズム36と同様の台形プリズムであり、斜面39aでプリズム38と接合される。   The prism 38 is a parallelogram prism similar to the prism 37, and one side surface 38 a is bonded to the prism 37, and the other side surface 38 b parallel to this is bonded to the prism 39. A blue reflective film 32 is formed on the side surface 38a, and a red reflective film 33 is formed on the side surface 38b. The prism 39 is a trapezoidal prism similar to the prism 36, and is joined to the prism 38 at an inclined surface 39a.

また、これらのプリズム36,37,38,39の各面の接合には、紫外線を照射することにより硬化する光硬化型接着剤が用いられ、各プリズム36,37,38,39は相互に十分な強度で接合される。   Further, a photo-curing adhesive that is cured by irradiating ultraviolet rays is used for joining the surfaces of the prisms 36, 37, 38, and 39, and the prisms 36, 37, 38, and 39 are sufficiently connected to each other. Bonded with sufficient strength.

以下、上述のように構成されるプリズムアセンブリ20の製造方法を説明する。プリズムアセンブリ20は、図3〜6に示すように、複数まとめて製造される。プリズムアセンブリ20の製造には、図3(A)〜(C)に示すように、所定の厚さのガラス基板41(第2基板,以下、薄板という)と、厚さが基板41の2倍以上ある基板42(第1基板,以下、厚板という)の2種類の基板が用いられる。薄板41及び厚板42は、いずれも透明な材料からなり、平板状に形成されている。また、薄板41及び厚板42の表面は、いずれも研磨加工が施されている。なお、厚板42の厚さは、第3工程(後述)における切断代を考慮して定められるが、以下では、切断代が十分に小さいものとし、厚板42の厚さは薄板41の2倍の厚さであるものとする。   Hereinafter, a method for manufacturing the prism assembly 20 configured as described above will be described. As shown in FIGS. 3 to 6, a plurality of prism assemblies 20 are manufactured together. In manufacturing the prism assembly 20, as shown in FIGS. 3A to 3C, a glass substrate 41 (second substrate, hereinafter referred to as a thin plate) having a predetermined thickness and a thickness twice that of the substrate 41 are used. Two types of substrates, the above-described substrate 42 (first substrate, hereinafter referred to as a thick plate), are used. Each of the thin plate 41 and the thick plate 42 is made of a transparent material and is formed in a flat plate shape. The surfaces of the thin plate 41 and the thick plate 42 are both polished. The thickness of the thick plate 42 is determined in consideration of the cutting allowance in the third step (described later). In the following, it is assumed that the cutting allowance is sufficiently small, and the thickness of the thick plate 42 is 2 of the thin plate 41. It is assumed that it is twice as thick.

プリズムアセンブリ20を製造するときには、これらの2種の基板41,42のうち、薄板41から薄板41a,41bを作製する。薄板41a,41bは、表面に成膜される光学薄膜がそれぞれ異なる。まず、図3(A)に示すように、薄板41の一方の表面に偏光分離膜31を成膜することにより、薄板41aを作製する。同時に、図3(B)に示すように、薄板41の一方の表面に青色反射膜32を成膜するとともに、他方の表面に赤色反射膜33を成膜し、薄板41bを作製する。   When manufacturing the prism assembly 20, the thin plates 41 a and 41 b are produced from the thin plate 41 of these two types of substrates 41 and 42. The thin plates 41a and 41b have different optical thin films formed on the surfaces. First, as shown in FIG. 3A, the thin plate 41a is formed by forming the polarization separation film 31 on one surface of the thin plate 41. At the same time, as shown in FIG. 3B, the blue reflection film 32 is formed on one surface of the thin plate 41, and the red reflection film 33 is formed on the other surface, thereby producing the thin plate 41b.

こうして表面に各種光学薄膜が成膜された薄板41a,41bと、厚板42は、図4に示すように、下段側から厚板42,薄板41b,薄板41aの順に周期的に、かつ、階段状に一定の方向に位置をずらしながら重ね合わせて接合され、基板接合体51が作製される(第1工程)。基板接合体51は、1枚の厚板42上に薄板41b,薄板41aが重ね合わせられた構造をひとつのユニット51a(積層体ユニット)とすれば、基板接合体51は、このユニット51aが複数重ね合わせられた構造となる。このとき、各基板41a,41b,42の間に偏光分離膜31,青色反射膜32,赤色反射膜33のいずれか一つが配置されるように、各基板41a,41b,42を重ね合わせる。このため、基板接合体51の各基板41a,41b,42の各々の重ね合わせ面には、偏光分離膜31,青色反射膜32,赤色反射膜33のうちいずれかの光学薄膜が介在している。また、基板接合体51の各基板41a,41b,42の間には、これらの各基板41a,41b,42をそれぞれ接合する接着剤が予め塗布される。ここで用いる接着剤は、紫外線を照射することで硬化する光硬化型接着剤である。また、各基板41a,41b,42の階段状の位置ズレ量は、基板接合体51を切断して接合基板53を作製するときに、基板接合体51を切断する角度に応じて定められる。ここでは、基板接合体51の階段状の側面の傾斜は、概ね45度になっている。   As shown in FIG. 4, the thin plates 41a and 41b on which various optical thin films are formed on the surface, and the thick plate 42 are periodically and stepped in the order of the thick plate 42, the thin plate 41b, and the thin plate 41a from the lower side. Then, the substrate bonded body 51 is manufactured by superimposing the substrates while shifting the positions in a certain direction (first step). Assuming that the unit assembly 51a (laminate unit) has a structure in which the thin plate 41b and the thin plate 41a are superposed on one thick plate 42, the substrate assembly 51 includes a plurality of units 51a. Overlapped structure. At this time, the substrates 41a, 41b, and 42 are overlapped so that any one of the polarization separation film 31, the blue reflection film 32, and the red reflection film 33 is disposed between the substrates 41a, 41b, and 42. Therefore, any one of the optical thin films among the polarization separation film 31, the blue reflection film 32, and the red reflection film 33 is interposed on the overlapping surface of each of the substrates 41a, 41b, and 42 of the substrate bonded body 51. . Further, an adhesive that bonds the substrates 41a, 41b, and 42 is applied between the substrates 41a, 41b, and 42 of the substrate bonded body 51 in advance. The adhesive used here is a photo-curing adhesive that cures when irradiated with ultraviolet rays. Further, the step-like positional deviation amount of each of the substrates 41a, 41b, and 42 is determined according to the angle at which the substrate bonded body 51 is cut when the bonded substrate 53 is cut to produce the bonded substrate 53. Here, the inclination of the stepped side surface of the substrate bonded body 51 is approximately 45 degrees.

そして、各基板41a,41b,42が接着剤を介して重ね合わせられた状態の基板接合体51に、紫外線を照射して各基板41a,41b,42間の接着剤を硬化させ、接合させる。このとき、基板接合体51に対して、各基板41a,41b,42の表面に対して垂直な方向からだけ紫外線を照射すると、基板接合体51には紫外線の十分な透過を妨げる偏光分離膜31や青色反射膜32が含まれているので、基板接合体51の内部に紫外線が到達し難い。このため、基板接合体51に照射する紫外線は、基板接合体51の周囲全体から照射することが好ましい。特に、各基板41a,41b,42の重ね合わせ面に平行な方向から基板接合体51に入射する成分52を含むように、少なくとも基板接合体51の側方から紫外線を照射することが好ましい。   Then, the substrate bonded body 51 in a state where the substrates 41a, 41b, and 42 are overlapped via an adhesive is irradiated with ultraviolet rays to cure and bond the adhesive between the substrates 41a, 41b, and 42. At this time, if the substrate bonded body 51 is irradiated with ultraviolet rays only from a direction perpendicular to the surfaces of the substrates 41a, 41b, and 42, the polarization separation film 31 that prevents the substrate bonded body 51 from sufficiently transmitting ultraviolet rays. And the blue reflective film 32 are included, it is difficult for ultraviolet rays to reach the inside of the substrate assembly 51. For this reason, it is preferable that the ultraviolet rays irradiated to the substrate bonded body 51 are irradiated from the entire periphery of the substrate bonded body 51. In particular, it is preferable to irradiate ultraviolet rays at least from the side of the substrate assembly 51 so as to include a component 52 that enters the substrate assembly 51 from a direction parallel to the overlapping surface of the substrates 41a, 41b, and 42.

こうして基板接合体51に紫外線を照射すると、偏光分離膜31がある薄板41aと厚板42との接合面には、上段側に位置する厚板42の内部を通った紫外線が主に照射される。この接合面では、下段側から薄板41aのガラス基板41,偏光分離膜31,接着剤,厚板42の順に重ね合わせられている。このため、薄板41aと厚板42の接合面には、薄板41aの上段側に位置する厚板42の側面から進入した紫外線により、ムラ無く十分な強度で接合される。   When the substrate bonded body 51 is irradiated with ultraviolet rays in this way, the ultraviolet rays that have passed through the thick plate 42 located on the upper side are mainly irradiated to the bonding surface between the thin plate 41a and the thick plate 42 where the polarization separation film 31 is provided. . On this bonding surface, the glass substrate 41 of the thin plate 41a, the polarization separation film 31, the adhesive, and the thick plate 42 are superposed in this order from the lower side. For this reason, the joining surface of the thin plate 41a and the thick plate 42 is joined with sufficient strength without unevenness by the ultraviolet light that has entered from the side surface of the thick plate 42 located on the upper side of the thin plate 41a.

また、青色反射膜32がある薄板41bと薄板41aとの接合面は、偏光分離膜31により減光された紫外線と、これらの薄板41a,41bよりも下段側に位置する厚板42の内部を通り、薄板41bを透過した紫外線が照射される。これにより、薄板41aと薄板41bの接合面は、ムラ無く十分な強度で接合される。   Further, the bonding surface between the thin plate 41b and the thin plate 41a having the blue reflective film 32 is formed by the ultraviolet light attenuated by the polarization separation film 31 and the inside of the thick plate 42 positioned on the lower side of the thin plates 41a and 41b. As a result, the ultraviolet rays transmitted through the thin plate 41b are irradiated. Thereby, the joining surface of the thin plate 41a and the thin plate 41b is joined with sufficient strength without unevenness.

また、赤色反射膜33がある薄板41bと厚板42との接合面には、薄板41bの下段側に位置する厚板42の内部を通った紫外線が主に照射される。この接合面では、上段側から、薄板41bのガラス基板41,赤色反射膜33,接着剤,厚板42の順に重ね合わせられている。このため、薄板41bと厚板42の接合面には、下段側に位置する厚板42の側面から侵入した紫外線が主として照射される。これにより、薄板41aと厚板42の接合面は、ムラ無く、十分な強度で接合される。   Further, the ultraviolet rays that pass through the inside of the thick plate 42 located on the lower side of the thin plate 41 b are mainly irradiated to the joint surface between the thin plate 41 b and the thick plate 42 having the red reflecting film 33. In this joining surface, the glass substrate 41 of the thin plate 41b, the red reflecting film 33, the adhesive, and the thick plate 42 are superposed in this order from the upper side. For this reason, the ultraviolet ray which invaded from the side surface of the thick plate 42 located on the lower side is mainly irradiated to the joint surface between the thin plate 41b and the thick plate 42. Thereby, the joining surface of the thin plate 41a and the thick plate 42 is joined with sufficient strength without unevenness.

こうして基板接合体51の各基板41a,41b,42を接合した後には、図5に破線で示すように、階段状に接合された各基板41a,41b,42の傾斜に沿って、各基板41a,41b,42の重ね合わせ面に対して一定角度(ここでは45度)で交差する方向に、一定のピッチで層状に切断され、平板状の接合基板53が複数枚作成される(第2工程)。   After the substrates 41a, 41b and 42 of the substrate bonded body 51 are bonded in this way, as shown by broken lines in FIG. 5, the substrates 41a, 41b and 42 are aligned along the slopes of the substrates 41a, 41b and 42 which are bonded stepwise. , 41b, 42 are cut into layers at a constant pitch in a direction intersecting at a constant angle (here, 45 degrees) with the overlapping surfaces of the flat plate-like bonding substrates 53 (second step). ).

接合基板53は、基板積層体51における各基板41a,41b,42の積層順序に応じて、厚板42からなる層厚の部分54aと薄板41からなる層薄の部分54bとが、偏光分離膜31,青色反射膜32,赤色反射膜33を介して周期的に接合された基板となっている。このため、接合基板53の表裏面には、薄板41a,41bの切断面と厚板42の切断面とが層状に露呈されている。また、接合基板53内の各光学薄膜31,32,33は、切断面である接合基板53の表面に対して、切断の傾斜角度(45度)だけ傾斜している。   The bonding substrate 53 includes a polarization separation film in which a layer-thickness portion 54 a made of the thick plate 42 and a thin-layer portion 54 b made of the thin plate 41 correspond to the stacking order of the substrates 41 a, 41 b, 42 in the substrate laminate 51. 31, a substrate periodically bonded via a blue reflecting film 32 and a red reflecting film 33. For this reason, the cut surfaces of the thin plates 41 a and 41 b and the cut surface of the thick plate 42 are exposed in layers on the front and back surfaces of the bonding substrate 53. The optical thin films 31, 32, and 33 in the bonding substrate 53 are inclined by a cutting inclination angle (45 degrees) with respect to the surface of the bonding substrate 53, which is a cut surface.

そして、接合基板53は、図6に破線で示すように、厚板42からなる層厚の部分54aで、厚板42の切断面に沿って、表面に対して垂直に切断され、複数の角柱状基板56が作製される(第3工程)。このとき、接合基板53は、各光学薄膜の断面が周期的に現れる側面を見たときに、厚板42からなる層厚の部分54aの中央を通るように切断される。   Then, as shown by a broken line in FIG. 6, the bonding substrate 53 is cut perpendicularly to the surface along the cut surface of the thick plate 42 at a layer-thickness portion 54 a made of the thick plate 42, and has a plurality of corners. A columnar substrate 56 is produced (third step). At this time, the bonding substrate 53 is cut so as to pass through the center of the layer-thickness portion 54a made of the thick plate 42 when the side surface in which the cross section of each optical thin film appears periodically is seen.

こうして作製された角柱状基板56は、接合基板53における層厚の部分54aと層薄の部分54bのとの接合順序に応じて、側面の形状が台形状になっている台形部材56a,側面の形状が平行四辺形になっている平行四辺形部材56b,平行四辺形部材56c,台形部材56dの4つの部材が接合され、全体として直方体状の基板となっている。また、角柱状基板56には、偏光分離膜31,青色反射膜32,赤色反射膜33の3種の光学薄膜が各々一つずつ含まれている。台形部材56aと平行四辺形部材56bとの接合面に偏光分離膜31となっている。また、平行四辺形部材56bと平行四辺形部材56cとの接合面が青色反射膜32であり、平行四辺形部材56cと台形部材56dとの接合面が赤色反射膜33となっている。   The prismatic substrate 56 manufactured in this way has a trapezoidal member 56a having a trapezoidal side surface according to the bonding order of the layer-thickness portion 54a and the layer-thin portion 54b in the bonding substrate 53. Four members, a parallelogram member 56b, a parallelogram member 56c, and a trapezoid member 56d, which are parallelograms, are joined to form a rectangular parallelepiped substrate as a whole. Further, the prismatic substrate 56 includes one each of three types of optical thin films, ie, a polarization separation film 31, a blue reflection film 32, and a red reflection film 33. The polarization separation film 31 is formed on the joint surface between the trapezoidal member 56a and the parallelogram member 56b. Further, the joint surface between the parallelogram member 56 b and the parallelogram member 56 c is the blue reflective film 32, and the joint surface between the parallelogram member 56 c and the trapezoid member 56 d is the red reflective film 33.

そして、図7に示すように、角柱状基板56を長手方向と垂直に、一定のピッチで切断することにより、プリズムアセンブリ20が作製される(第4工程)。こうして角柱状基板56を切断すると、厚板42を切断して得られた台形プリズム36,39(第1プリズム要素)が両端にあり、これらの間に薄板41a,41bを切断して得られた平行四辺形プリズム37,38(第2プリズム要素)があるプリズムアセンブリ20が作製される。   Then, as shown in FIG. 7, the prism assembly 20 is manufactured by cutting the prismatic substrate 56 at a constant pitch perpendicular to the longitudinal direction (fourth step). When the prismatic substrate 56 is cut in this way, trapezoidal prisms 36 and 39 (first prism elements) obtained by cutting the thick plate 42 are at both ends, and the thin plates 41a and 41b are cut between them. The prism assembly 20 having the parallelogram prisms 37 and 38 (second prism elements) is manufactured.

上述のプリズムアセンブリ20の製造方法によれば、個々にプリズムを成形することなく、複数個のプリズムアセンブリ20をまとめて作製することができるので、寸法の累積的な公差を極めて小さく抑え、プリズムアセンブリ20を精度良く効率的に製造することができる。また、プリズムアセンブリ20を構成する各プリズム36,37,38,39を個々に成形するのが困難な小型のプリズムアセンブリ20を容易に製造することができる。   According to the manufacturing method of the prism assembly 20 described above, since a plurality of prism assemblies 20 can be manufactured together without individually forming the prisms, the cumulative tolerance of dimensions can be kept extremely small, and the prism assembly can be reduced. 20 can be manufactured accurately and efficiently. Further, it is possible to easily manufacture a small prism assembly 20 in which it is difficult to individually mold the prisms 36, 37, 38, and 39 constituting the prism assembly 20.

特に、上述のプリズムアセンブリ20の製造方法では、同じ厚さの基板(例えば薄板41a,41b)だけを重ね合わせて基板接合体51を作製するのではなく、所定厚さの薄板41a,41bに、これよりも厚い厚板42を組み合わせて用いるので、基板接合体51を構成する各基板41a,41b,42を光硬化型接着剤で接合するときに、厚板42の側面から基板接合体51の内部へ紫外線が進入し易くなっている。これにより、プリズムアセンブリ20に紫外線の照射を妨げる光学薄膜がある場合にも、光硬化型接着剤によって各基板41a,41b,42の接合面を、一度に確実に接合することができる。また、基板41a,41b,42を順に接合したり、仮接合する工程を必要としないので、精度の良いプリズムアセンブリ20を安価かつ容易に製造することができる。   In particular, in the manufacturing method of the prism assembly 20 described above, the substrate assembly 51 is not formed by superimposing only the substrates having the same thickness (for example, the thin plates 41a and 41b), but the thin plates 41a and 41b having a predetermined thickness are formed. Since the thicker plate 42 thicker than this is used in combination, when the substrates 41a, 41b, 42 constituting the substrate bonded body 51 are bonded with a photo-curing adhesive, the substrate bonded body 51 is exposed from the side surface of the thick plate 42. Ultraviolet rays are easy to enter inside. Thereby, even when the prism assembly 20 has an optical thin film that prevents the irradiation of ultraviolet rays, the bonding surfaces of the substrates 41a, 41b, and 42 can be reliably bonded at once by the photo-curing adhesive. Moreover, since the process of joining the board | substrate 41a, 41b, 42 in order or temporarily joining is not required, the accurate prism assembly 20 can be manufactured cheaply and easily.

さらに、上述のプリズムアセンブリ20の製造方法によれば、基板接合体51から、接合基板53,角柱状基板56,プリズムアセンブリ20の順に切り分けて行くだけで、プリズムアセンブリ20のサイズは最終的な製品のサイズになる。このため、上述のプリズムアセンブリ20の製造方法には最終的なプリズムアセンブリ20のサイズを整えるための不要な切断工程や研磨工程がなく、ここで生じていた材料の無駄を軽減し、安価にプリズムアセンブリ20を製造することができる。   Furthermore, according to the manufacturing method of the prism assembly 20 described above, the size of the prism assembly 20 is the final product only by separating the substrate assembly 51, the bonded substrate 53, the prismatic substrate 56, and the prism assembly 20 in this order. It becomes the size. For this reason, the manufacturing method of the prism assembly 20 described above does not have an unnecessary cutting process or polishing process for adjusting the size of the final prism assembly 20, reducing the waste of materials generated here and reducing the cost of the prism. The assembly 20 can be manufactured.

また、上述のプリズムアセンブリ20の製造方法では、基板接合体51を作製するときに、各基板41a,41b,42を階段状に重ね合わせて接合するので、基板接合体51を切断して接合基板53を作製するときに各基板41a,41b,42の端から切除する部分が低減される。   Further, in the manufacturing method of the prism assembly 20 described above, when the substrate bonded body 51 is manufactured, the substrates 41a, 41b, and 42 are joined in a step-like manner so that the substrate bonded body 51 is cut and bonded to the bonded substrate. The portion cut out from the end of each of the substrates 41a, 41b, 42 when manufacturing 53 is reduced.

なお、上述の実施形態では、プリズムアセンブリ20に偏光分離膜31,青色反射膜32,赤色反射膜33の3つの光学薄膜が含まれている例を説明したが、これに限らず、上述の実施形態で説明したプリズムアセンブリの製造方法は2以上の光学薄膜を含むプリズムアセンブリの製造に好適に適用することができ、1つの光学薄膜を含むプリズムの製造に適用しても良い。上述の実施形態で説明したプリズムアセンブリの製造方法は、3以上の光学薄膜を含み、光硬化型接着剤への光の照射が特に妨げられ易いプリズムアセンブリを製造する場合に、特に効果的である。この場合、上述の実施形態のように、厚板42の両側に2以上の薄板41a,41bを配置して基板接合体51を作製し、角柱状基板56を作製するときに厚板42からなる部分で切断することで3以上の光学薄膜が角柱状基板56に含まれるようにする。   In the above-described embodiment, the example in which the prism assembly 20 includes the three optical thin films of the polarization separation film 31, the blue reflection film 32, and the red reflection film 33 has been described. The method for manufacturing a prism assembly described in the embodiment can be preferably applied to manufacture of a prism assembly including two or more optical thin films, and may be applied to manufacture of a prism including one optical thin film. The method for manufacturing a prism assembly described in the above-described embodiment is particularly effective when manufacturing a prism assembly that includes three or more optical thin films and that is particularly susceptible to light irradiation on the photocurable adhesive. . In this case, as in the above-described embodiment, two or more thin plates 41a and 41b are arranged on both sides of the thick plate 42 to produce the substrate assembly 51, and the prismatic substrate 56 is made of the thick plate 42. By cutting at a portion, three or more optical thin films are included in the prismatic substrate 56.

なお、上述の実施形態では、基板接合体51を作製するときに、厚板42,薄板41a,薄板41bの順に周期的に重ね合わせるが、基板接合体51を作製するときには、単に周期的に基板41a,41b,42を重ね合わせるだけでなく、図8(A)に示すように、基板接合体51の最上段及び最下段に、表面に光学薄膜が成膜されていないガラス基板61(第3基板)を配置し、最上段からガラス基板61,薄板41a,薄板41b,厚板42・・・の順に、最下段からガラス基板61,薄板41b,薄板41a,厚板42・・・の順にとなるように、各基板41a,41b,42及びガラス基板61を配置することが好ましい。このように、最上段及び最下段にガラス基板61を配置することで、図8(B)に示すように、接合基板53の最も端から角柱状基板56からを作製するときに、切除する部分62の量を低減しつつ、接合基板53の中央部分から作製されるものと同じ構成,形状の角柱状基板56を作製することができる。   In the above-described embodiment, when the substrate bonded body 51 is manufactured, the thick plate 42, the thin plate 41a, and the thin plate 41b are periodically overlapped in this order. In addition to superimposing 41a, 41b and 42, as shown in FIG. 8A, a glass substrate 61 (third film) on which no optical thin film is formed on the uppermost and lowermost layers of the substrate bonded body 51 is provided. Substrate), the glass substrate 61, the thin plate 41a, the thin plate 41b, the thick plate 42,... From the uppermost step, and the glass substrate 61, the thin plate 41b, the thin plate 41a, the thick plate 42,. It is preferable to arrange each substrate 41a, 41b, 42 and the glass substrate 61 so as to be. In this way, by arranging the glass substrates 61 at the uppermost and lowermost stages, as shown in FIG. 8B, the portion to be cut out when producing the prismatic substrate 56 from the extreme end of the bonding substrate 53, as shown in FIG. While reducing the amount of 62, the prismatic substrate 56 having the same configuration and shape as that manufactured from the central portion of the bonding substrate 53 can be manufactured.

こうして基板接合体51の最上段及び最下段に配置するガラス基板61の厚さは、切除する部分62ができるだけ小さくなる厚さであることが好ましく、図8(B)に示すように、切除する部分62の側面が三角形状となり、切除する部分62が最小となる厚さであることが好ましい。例えば、LD16の光軸方向から見たときに各光学薄膜31,32,33が重ならず、かつ、隙間無く設けられ、各プリズム36〜39を最小に構成したプリズムアセンブリを製造する場合には、ガラス基板61の厚さを薄板41の厚さの1.5倍以上2倍以下とすることが好ましい。ガラス基板16の厚さを薄板41の厚さの1.5倍とする場合には、切除する部分62が最小となり、最も材料の無駄を抑えることができる。また、ガラス基板61の厚さを薄板41の2倍とする場合(ガラス基板61として厚板42を用いる場合)には、プリズムアセンブリ20の製造に薄板41と厚板42の2種類だけを扱えば良いので、より容易にプリズムアセンブリ20を製造することができる。   Thus, the thickness of the glass substrate 61 disposed at the uppermost and lowermost stages of the substrate bonded body 51 is preferably such that the portion 62 to be cut is as small as possible, and cut away as shown in FIG. It is preferable that the side surface of the portion 62 has a triangular shape, and the thickness is such that the portion 62 to be cut is minimized. For example, when manufacturing a prism assembly in which the optical thin films 31, 32, 33 are not overlapped with each other when viewed from the optical axis direction of the LD 16 and have no gap, and each prism 36 to 39 is configured to be minimum. The thickness of the glass substrate 61 is preferably 1.5 to 2 times the thickness of the thin plate 41. When the thickness of the glass substrate 16 is 1.5 times the thickness of the thin plate 41, the portion 62 to be cut is minimized, and the waste of material can be minimized. Further, when the thickness of the glass substrate 61 is twice that of the thin plate 41 (when the thick plate 42 is used as the glass substrate 61), only two types of the thin plate 41 and the thick plate 42 can be handled in the manufacture of the prism assembly 20. Therefore, the prism assembly 20 can be manufactured more easily.

なお、上述の実施形態では、薄板41aの一方の面に偏光分離膜31を設け、薄板41bの各表面に青色反射膜32,赤色反射膜33を設ける例を説明したが、基板接合体51を作製するときに予め各光学薄膜を設けておく位置はこれに限らない。例えば、上述の実施形態で薄板41aの表面に成膜した偏光分離膜31は、厚板42の一方の面に成膜しておいても良い。   In the above-described embodiment, an example in which the polarization separation film 31 is provided on one surface of the thin plate 41a and the blue reflection film 32 and the red reflection film 33 are provided on each surface of the thin plate 41b has been described. The position where each optical thin film is provided in advance when manufacturing is not limited thereto. For example, the polarization separation film 31 formed on the surface of the thin plate 41 a in the above-described embodiment may be formed on one surface of the thick plate 42.

また、上述の実施形態では、光学薄膜として、偏光分離膜31,青色反射膜32,赤色反射膜33を設ける例を説明したが、これに限らず、プリズムアセンブリ20の光学的性質を良好にするために、これらの光学薄膜に加えて、反射防止膜等、他の光学薄膜を併せて設けることが好ましい。例えば、上述の実施形態では、薄板41aの一方の面に偏光分離膜31を成膜し、他方の表面には光学薄膜を設けない例を説明したが、偏光分離膜31が設けられていない方の表面には、赤色レーザー光や赤外レーザー光の反射を防止する反射防止膜を設けておくことが好ましい。   In the above-described embodiment, the example in which the polarization separation film 31, the blue reflection film 32, and the red reflection film 33 are provided as the optical thin film has been described. However, the optical properties of the prism assembly 20 are not limited to this. Therefore, in addition to these optical thin films, it is preferable to provide other optical thin films such as an antireflection film. For example, in the above-described embodiment, the example in which the polarization separation film 31 is formed on one surface of the thin plate 41a and the optical thin film is not provided on the other surface has been described. However, the polarization separation film 31 is not provided. It is preferable to provide an antireflection film for preventing reflection of red laser light or infrared laser light on the surface.

また、上述の実施形態では、レーザー光が入射(出射)するプリズムアセンブリ20の入射面(及び出射面)には光学薄膜が設けられていない例を説明したが、プリズムアセンブリ20の入射面及び出射面には反射防止膜を設けることが好ましい。このように、プリズムアセンブリ20の入射面及び出射面に反射防止膜を設ける場合には、接合基板53を作製して、これらに対応する表面が形成された後であれば、任意のタイミングで反射防止膜を設けることができる。例えば、接合基板53を作製した時点で、接合基板53の表裏両面に反射防止膜を設ける。そして、以降は上述の実施形態と同様に接合基板53を切断して、表裏に反射防止膜が設けられた角柱状基板56を作製し、これを切断して入射面及び出射面に反射防止膜が設けられたプリズムアセンブリ20を作製する。また、例えば、角柱状基板56を作製したときに、角柱状基板56の表裏両面に反射防止膜を設け、これを上述の実施形態と同様に切断してプリズムアセンブリ20を作製しても良い。さらに、上述の実施形態と同様にプリズムアセンブリ20を作製してから、個々のプリズムアセンブリ20の入射面及び出射面に反射防止膜を設けるようにしても良い。これらの反射防止膜を設けるタイミングのなかでも、均質な反射防止膜を効率良く容易に設けることができるので、接合基板53を作製した時点で接合基板53の表裏両面に反射防止膜を設けることが特に好ましい。   In the above-described embodiment, an example in which the optical thin film is not provided on the incident surface (and the emission surface) of the prism assembly 20 on which laser light is incident (emitted) has been described. It is preferable to provide an antireflection film on the surface. As described above, when the antireflection films are provided on the entrance surface and the exit surface of the prism assembly 20, the reflection is performed at an arbitrary timing as long as the bonded substrate 53 is formed and the surfaces corresponding to these are formed. A prevention film can be provided. For example, when the bonding substrate 53 is manufactured, antireflection films are provided on both the front and back surfaces of the bonding substrate 53. Thereafter, the bonding substrate 53 is cut in the same manner as in the above-described embodiment to produce a prismatic substrate 56 provided with an antireflection film on the front and back sides, and this is cut to form an antireflection film on the entrance surface and the exit surface. The prism assembly 20 provided with is manufactured. Further, for example, when the prismatic substrate 56 is manufactured, the prism assembly 20 may be manufactured by providing antireflection films on both the front and back surfaces of the prismatic substrate 56 and cutting the same in the same manner as in the above embodiment. Further, after the prism assembly 20 is manufactured in the same manner as in the above-described embodiment, an antireflection film may be provided on the entrance surface and the exit surface of each prism assembly 20. Even during the timing of providing these antireflection films, a homogeneous antireflection film can be provided efficiently and easily. Therefore, it is necessary to provide antireflection films on both the front and back surfaces of the bonding substrate 53 when the bonding substrate 53 is manufactured. Particularly preferred.

なお、上述の実施形態では、基板41a,41b,42を複数重ね合わせて基板接合体51を作成する例を説明したが、これに限らず、基板41a,41b,42を重ね合わせる数は、一度に製造するプリズムアセンブリ20の量に応じて任意に定めて良い。例えば、基板積層体51の縦方向に、2つのプリズムアセンブリ20を作製する場合には、基板接合体51の下段側から、薄板41b,薄板41a,厚板42,薄板41b,薄板41aの順に5枚の基板を用いるようにしても良い。但し、上述の実施形態で説明したプリズムアセンブリ20の製造方法は、プリズムアセンブリ20に2以上の光学薄膜が含まれているときに特に効果的である。このため、上述の実施形態のように、基板接合体51を作製するときには、基板接合体51に各基板41a,41b,42が合計で少なくとも3以上含まれていることが好ましい。   In the above-described embodiment, an example in which a plurality of substrates 41a, 41b, and 42 are overlapped to create the substrate bonded body 51 has been described. However, the present invention is not limited to this, and the number of overlapping substrates 41a, 41b, and 42 is once. Depending on the amount of the prism assembly 20 to be manufactured, it may be arbitrarily determined. For example, when two prism assemblies 20 are produced in the longitudinal direction of the substrate laminate 51, the thin plate 41b, the thin plate 41a, the thick plate 42, the thin plate 41b, and the thin plate 41a are sequentially arranged from the lower stage side of the substrate bonded body 51. A single substrate may be used. However, the method for manufacturing the prism assembly 20 described in the above embodiment is particularly effective when the prism assembly 20 includes two or more optical thin films. For this reason, like the above-mentioned embodiment, when producing the substrate bonded body 51, it is preferable that the substrate bonded body 51 includes at least three or more substrates 41a, 41b, and 42 in total.

なお、上述の実施形態では、光ピックアップ11に用いられるプリズムアセンブリ20を例に説明したが、プリズムアセンブリ20の用途はこれに限らない。このため、プリズムアセンブリ20に設ける光学薄膜の種類も、プリズムアセンブリ20の用途に応じて、上述の実施形態の偏光分離膜31,青色反射膜32,赤色反射膜33に限らず、任意の光学的性質の薄膜を設けることができる。   In the above-described embodiment, the prism assembly 20 used in the optical pickup 11 has been described as an example. However, the use of the prism assembly 20 is not limited thereto. For this reason, the type of optical thin film provided in the prism assembly 20 is not limited to the polarization separation film 31, the blue reflection film 32, and the red reflection film 33 of the above-described embodiment, depending on the use of the prism assembly 20. A thin film of the nature can be provided.

なお、上述の実施形態では、各基板41a,41b,42を接合して基板接合体51を作製するときに、紫外線により硬化する光硬化型接着剤を用いる例を説明したが、これに限らず、紫外線以外の波長帯の光により硬化する光硬化型接着剤を用いても良い。   In the above-described embodiment, an example in which a photo-curing adhesive that is cured by ultraviolet rays is used when the substrates 41a, 41b, and 42 are bonded to produce the substrate bonded body 51 is described. Alternatively, a photo-curing adhesive that is cured by light having a wavelength band other than ultraviolet light may be used.

プリズムアセンブリを用いる光ピックアップの構成を概略的に示す説明図である。It is explanatory drawing which shows schematically the structure of the optical pick-up using a prism assembly. プリズムアセンブリの構成を示す斜視図である。It is a perspective view which shows the structure of a prism assembly. プリズムアセンブリの製造に用いる基板を示す説明図である。It is explanatory drawing which shows the board | substrate used for manufacture of a prism assembly. 基板接合体を作製する工程を示す説明図である。It is explanatory drawing which shows the process of producing a board | substrate joined body. 基板接合体から接合基板を作製する工程を示す説明図である。It is explanatory drawing which shows the process of producing a bonded substrate from a board | substrate bonded body. 接合基板から角柱状基板を作製する工程を示す説明図である。It is explanatory drawing which shows the process of producing a prismatic board | substrate from a joining board | substrate. 角柱状基板からプリズムアセンブリを作製する工程を示す説明図である。It is explanatory drawing which shows the process of producing a prism assembly from a prismatic substrate. 基板接合体を作製するときに、基板接合体の最上段及び最下段の好ましい様態を示す説明図である。It is explanatory drawing which shows the preferable aspect of the uppermost stage and lowermost stage of a board | substrate bonded body when producing a board | substrate bonded body.

11 光ピックアップ
12 光ディスク
16 青色LD
17 赤色LD
20 プリズムアセンブリ
22 青色用OEIC
23 赤色用OEIC
31 偏光分離膜
32 青色反射膜
33 赤色反射膜
36,37,38,39 プリズム
41,41a,41b 薄板(第2基板)
42 厚板(第1基板)
51 基板接合体
53 接合基板
56 角柱状基板
11 Optical pickup 12 Optical disc 16 Blue LD
17 Red LD
20 Prism assembly 22 Blue OEIC
23 OEIC for red
31 Polarization separation film 32 Blue reflection film 33 Red reflection film 36, 37, 38, 39 Prism 41, 41a, 41b Thin plate (second substrate)
42 Thick plate (first substrate)
51 substrate bonded body 53 bonded substrate 56 prismatic substrate

Claims (6)

重ね合わせ面に光学薄膜が介在するように、1枚の厚い透明な第1基板上に1枚以上の薄い透明な第2基板を重ね合わせた積層体ユニットを複数ユニット分重ね合わせ、各々の重ね合わせ面に予め塗布された光硬化型接着剤を光照射により硬化させて基板接合体を作製する第1工程と、
前記基板接合体の各々の重ね合わせ面と一定角度で交差する方向に一定ピッチで切断し、この切断による表裏面に前記第1基板の切断面と前記第2基板の切断面とが層状に露呈した接合基板を作製する第2工程と、
前記第1基板からなる部分の中央を通るように、前記第1基板の切断面に沿って、表面に対して垂直に前記接合基板を切断し、複数の角柱状基板を作製する第3工程と、
前記角柱状基板を長手方向に対して垂直に一定ピッチで切断し、前記第1基板を切断して得られた第1プリズム要素を両端に有し、これらの間に前記第2基板を切断して得られた第2プリズム要素を1以上有するプリズムアセンブリを得る第4工程と、
を備えることを特徴とするプリズムアセンブリの製造方法。
A plurality of stacked unit units in which one or more thin transparent second substrates are superimposed on one thick transparent first substrate so that the optical thin film is interposed on the overlapping surface are overlapped, and each layer is overlapped. A first step of producing a substrate assembly by curing a photocurable adhesive previously applied to the mating surfaces by light irradiation;
Cutting is performed at a constant pitch in a direction intersecting each overlapping surface of the substrate assembly at a constant angle, and the cut surface of the first substrate and the cut surface of the second substrate are exposed in layers on the front and back surfaces by this cutting. A second step of manufacturing the bonded substrate,
A third step of producing a plurality of prismatic substrates by cutting the bonding substrate perpendicularly to the surface along the cut surface of the first substrate so as to pass through the center of the portion made of the first substrate; ,
The prismatic substrate is cut at a constant pitch perpendicular to the longitudinal direction, and the first prism element obtained by cutting the first substrate is provided at both ends, and the second substrate is cut between them. A fourth step of obtaining a prism assembly having one or more second prism elements obtained
A method of manufacturing a prism assembly comprising:
前記第2工程で前記基板接合体を切断する前記一定角度に応じて、前記第1工程では前記第1基板と前記第2基板の位置を階段状にずらしながら重ね合わせて前記基板接合体を作製することを特徴とする請求項1記載のプリズムアセンブリの製造方法。   According to the fixed angle at which the substrate bonded body is cut in the second step, the substrate bonded body is manufactured by superimposing the first substrate and the second substrate while shifting the positions of the first substrate and the second substrate in the first step. The method of manufacturing a prism assembly according to claim 1. 前記第1工程で、前記光硬化型接着剤を硬化させるときに、前記重ね合わせ面に平行な方向から光を照射することを特徴とする請求項1または2記載のプリズムアセンブリの製造方法。   3. The method of manufacturing a prism assembly according to claim 1, wherein when the photocurable adhesive is cured in the first step, light is irradiated from a direction parallel to the overlapping surface. 前記基板接合体は、最上段及び最下段に、前記第2基板よりも厚い第3基板が配置されることを特徴とする請求項1ないし3いずれかに記載のプリズムアセンブリの製造方法。   4. The method of manufacturing a prism assembly according to claim 1, wherein a third substrate thicker than the second substrate is disposed in the uppermost layer and the lowermost layer of the substrate bonded body. 5. 前記光硬化型接着剤は、紫外線により硬化する紫外線硬化型の接着剤であることを特徴とする請求項1ないし4いずれかに記載のプリズムアセンブリの製造方法。   5. The method of manufacturing a prism assembly according to claim 1, wherein the photocurable adhesive is an ultraviolet curable adhesive that is cured by ultraviolet rays. 6. 前記基板接合体は前記第2基板の両側にそれぞれ2以上の前記第1基板を配置して作製され、前記プリズムアセンブリは、前記第2プリズム要素を2以上有するように作製されることを特徴とする請求項1ないし5いずれかに記載のプリズムアセンブリの製造方法。   The substrate assembly is manufactured by arranging two or more first substrates on both sides of the second substrate, and the prism assembly is manufactured by having two or more second prism elements. A method of manufacturing a prism assembly according to any one of claims 1 to 5.
JP2009011268A 2009-01-21 2009-01-21 Method of manufacturing prism assembly Abandoned JP2010170606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011268A JP2010170606A (en) 2009-01-21 2009-01-21 Method of manufacturing prism assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011268A JP2010170606A (en) 2009-01-21 2009-01-21 Method of manufacturing prism assembly

Publications (1)

Publication Number Publication Date
JP2010170606A true JP2010170606A (en) 2010-08-05

Family

ID=42702629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011268A Abandoned JP2010170606A (en) 2009-01-21 2009-01-21 Method of manufacturing prism assembly

Country Status (1)

Country Link
JP (1) JP2010170606A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204673A (en) * 2011-03-25 2012-10-22 Tokyo Univ Of Agriculture & Technology Series connection solar cell and solar cell system
WO2013084953A1 (en) * 2011-12-05 2013-06-13 電気化学工業株式会社 Method for manufacturing light-transmitting hard-substrate laminate
JP2014534457A (en) * 2011-09-28 2014-12-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for reducing speckle in laser processing equipment
JP2015172782A (en) * 2012-11-08 2015-10-01 株式会社アスカネット Manufacturing method for optical control panels
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
JP2018503121A (en) * 2014-12-25 2018-02-01 ラマス リミテッド Method of creating substrate transmission type optical device
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US10520731B2 (en) 2014-11-11 2019-12-31 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US10598937B2 (en) 2005-11-08 2020-03-24 Lumus Ltd. Polarizing optical system
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
US10809528B2 (en) 2014-04-23 2020-10-20 Lumus Ltd. Compact head-mounted display system
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
WO2022054047A1 (en) * 2020-09-10 2022-03-17 Oorym Optics Ltd. Method for manufacturing substrate-guided elements for compact head-mounted display system
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
US11526003B2 (en) 2018-05-23 2022-12-13 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090520A (en) * 1996-07-25 1998-04-10 Seiko Epson Corp Optical element and its production as well as projection type display device
JP2001074938A (en) * 1999-07-05 2001-03-23 Seiko Epson Corp Production of polarized light conversion element and projector
JP2002179440A (en) * 2000-12-12 2002-06-26 Asahi Techno Glass Corp Tool for fabricating laminated optical member, method of producing laminated optical member and method of producing optical prism
JP2003167125A (en) * 2001-11-30 2003-06-13 Asahi Techno Glass Corp Polarization conversion element and method for manufacturing the same
JP2005164982A (en) * 2003-12-03 2005-06-23 Konica Minolta Opto Inc Manufacturing method for compound prism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090520A (en) * 1996-07-25 1998-04-10 Seiko Epson Corp Optical element and its production as well as projection type display device
JP2001074938A (en) * 1999-07-05 2001-03-23 Seiko Epson Corp Production of polarized light conversion element and projector
JP2002179440A (en) * 2000-12-12 2002-06-26 Asahi Techno Glass Corp Tool for fabricating laminated optical member, method of producing laminated optical member and method of producing optical prism
JP2003167125A (en) * 2001-11-30 2003-06-13 Asahi Techno Glass Corp Polarization conversion element and method for manufacturing the same
JP2005164982A (en) * 2003-12-03 2005-06-23 Konica Minolta Opto Inc Manufacturing method for compound prism

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962784B2 (en) 2005-02-10 2021-03-30 Lumus Ltd. Substrate-guide optical device
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
US10598937B2 (en) 2005-11-08 2020-03-24 Lumus Ltd. Polarizing optical system
JP2012204673A (en) * 2011-03-25 2012-10-22 Tokyo Univ Of Agriculture & Technology Series connection solar cell and solar cell system
JP2014534457A (en) * 2011-09-28 2014-12-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for reducing speckle in laser processing equipment
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
WO2013084953A1 (en) * 2011-12-05 2013-06-13 電気化学工業株式会社 Method for manufacturing light-transmitting hard-substrate laminate
JPWO2013084953A1 (en) * 2011-12-05 2015-04-27 電気化学工業株式会社 Method for manufacturing translucent hard substrate laminate
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
JP2015172782A (en) * 2012-11-08 2015-10-01 株式会社アスカネット Manufacturing method for optical control panels
US10908426B2 (en) 2014-04-23 2021-02-02 Lumus Ltd. Compact head-mounted display system
US10809528B2 (en) 2014-04-23 2020-10-20 Lumus Ltd. Compact head-mounted display system
US10520731B2 (en) 2014-11-11 2019-12-31 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
JP2018503121A (en) * 2014-12-25 2018-02-01 ラマス リミテッド Method of creating substrate transmission type optical device
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US11378791B2 (en) 2016-11-08 2022-07-05 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US11526003B2 (en) 2018-05-23 2022-12-13 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
WO2022054047A1 (en) * 2020-09-10 2022-03-17 Oorym Optics Ltd. Method for manufacturing substrate-guided elements for compact head-mounted display system

Similar Documents

Publication Publication Date Title
JP2010170606A (en) Method of manufacturing prism assembly
JP4258515B2 (en) Diffraction element, diffraction element manufacturing method, optical pickup device, and optical disc apparatus
JP2010243641A (en) Cemented optical element and cementing method
JP5073690B2 (en) Manufacturing method of prism assembly
JP2008145482A (en) Manufacturing method of right-angled triangular prism
JP2007207350A (en) Method for manufacturing optical pickup device
JP2010020855A (en) Reflection type diffraction grating for a plurality of wavelengths and optical pickup device including the same
JP4449168B2 (en) Optical device manufacturing method
JP2001176110A (en) Optical pickup device
JP4577450B2 (en) Optical device and optical pickup
US7361250B2 (en) Prism, method of producing a prism, and optical head apparatus using a prism
JP3970819B2 (en) Manufacturing method of optical head device and optical head device
JPH0980211A (en) Integrated optical element and its manufacture
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP2008004135A (en) Leakage prism and optical pickup
JP2008145481A (en) Method for manufacturing compound prism
US8325580B2 (en) Optical pickup device
JP2005141840A (en) Optical pickup device
JP4321363B2 (en) Optical pickup device and method for manufacturing flat optical element
JP2009043367A (en) Optical head device
JP2005128260A (en) Broadband wavelength plate having brazed diffraction grating, optical pickup using same and manufacturing method of the brazed diffraction grating
JP2007293951A (en) Diffraction element, objective lens unit, optical pickup, and optical disk drive
US8085645B2 (en) Optical pickup device and optical disk apparatus
JP2007052153A (en) Diffraction element, optical pickup and optical disk device
JP2005141016A (en) Junction-type optical element and optical pickup device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100619

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Effective date: 20120927

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20121121