JP2006325350A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2006325350A
JP2006325350A JP2005147474A JP2005147474A JP2006325350A JP 2006325350 A JP2006325350 A JP 2006325350A JP 2005147474 A JP2005147474 A JP 2005147474A JP 2005147474 A JP2005147474 A JP 2005147474A JP 2006325350 A JP2006325350 A JP 2006325350A
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
power supply
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005147474A
Other languages
English (en)
Inventor
Naohisa Okamoto
直久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005147474A priority Critical patent/JP2006325350A/ja
Publication of JP2006325350A publication Critical patent/JP2006325350A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 軽負荷から重負荷に至るまで、所望の電力を安定して負荷に供給することのできる無接触電源装置を提供する。
【解決手段】 送電コイル21と受電コイル22とからなるトランス2を介して接続された1次側回路11と2次側回路12とからなる無接触電源装置1であって、1次側回路11は少なくともレギュレータ回路6とインバータ回路5とを備え、さらに、上記レギュレータ回路6に、インバータ回路5に流れる電流を検出する電流検出手段7と、検出したインバータ回路5の電流値が予め定められた任意の電流値より小さい時はインバータ回路5への入力電圧を下げ、大きい時はインバータ回路5への入力電圧を上げる出力電圧制御回路8とを備えた電源装置とする。
【選択図】 図1

Description

本発明は、電源装置に関し、特に、高周波電磁誘導を用いることにより入力側と出力側とが電気的に絶縁された無接触電源装置に関する。
近年、携帯電話や髭剃機、または電動歯ブラシ等の電子機器には、これらに内蔵された2次電池を、高周波電磁誘導を用いることにより、充電器との間で接点を接触させることなく充電することができる無接触充電システムが採用されている。
上記用途に適用可能な無接触充電システムとしては、例えば特許文献1に示されるもの等が公知である。
これらは、例えば図4に示すとおり、交流電源を整流平滑回路で直流に変換し、発振回路で固定周波数、固定デューティで送電コイルを駆動するものである。
図4Aは、二次電池の充電回路として設計された従来例に係る無接触電源装置を示すブロック図、図4Bは同じく二次電池の充電回路として設計された他の従来例に係る無接触電源装置の2次側回路部分を示す図、図4Cは図4Bに示された2次側回路における共振回路部分およびその等価回路を示す図である。
図4Aにおいて、図の左側に表された1次側回路は充電器側に、図の右側に表された2次側回路は携帯電話等の電子機器に内蔵されている。送電コイルの電圧波形は、送電コイルのインダクタンスL2と共振用コンデンサCsの働きにより半波形電圧共振波形となる。
本発明の前提として、この図4Bに示される従来例についてより詳しく説明すると、受電コイルL1には、共振用コンデンサC1とFET等からなるスイッチング素子Q1とが接続され、2次側回路には直列共振回路が構成されている。
受電コイルL1と共振用コンデンサC1は、これらだけで直列共振回路を構成した場合の共振周波数が、送電コイルL2から送られてくる高周波電磁誘導電圧の周波数に略一致するように設定されている。
図4Cの等価回路に示されるとおり、スイッチング素子Q1は、可変抵抗素子として使用される。従って、この図4Bに示される回路では、2次側負荷が最小負荷の場合、スイッチング素子Q1がOFF(最大抵抗値)となり、2次側負荷が最大負荷の場合、スイッチング素子Q1がON(最小抵抗値)となるよう制御することにより、2次側の出力電圧を安定化している。
ここで、2次側の最大負荷を大きくすることは、送電コイルL2の1ターン当たりに印加される電圧を増加させ、送電能力を大きくすることによって実現できる。
しかしながら送電能力を大きくすると、図4Bの構成では、2次側負荷が最小負荷の時、スイッチング素子Q1をOFF(最大抵抗値)として出力を最小まで絞っても、受電コイルL1が受ける電磁誘導電圧が未だ大きいため、定電圧制御によって2次側出力を予め定めた任意の一定電圧に安定化できず、結果的に出力電圧が上記一定値よりも上昇してしまうといった問題があった。
このような電源回路において、2次側の最大(定格)出力電流が比較的小さい時は、図5に示すとおり、2次側出力電圧は最小出力電流から最大出力電流まで定電圧特性を得ることができるので、例えばこれを二次電池の定電圧充電回路として使用する場合であっても、特に問題が生じることはない。
なお、上記図5および後述する図6に示すグラフは、従来例に係る無接触電源装置の定電圧制御特性の一例を示すものである。図5および図6を参照すると、定電圧制御により、グラフの中程では一定電圧が維持されている一方、重負荷(出力電流が大)になると受電エネルギーが足らなくなり、出力電圧が右下がりになっている。
ここで、一般的に二次電池の充電は、端子電圧の低い初期状態から開始され、定電流制御→定電圧制御を経て、定電圧制御で2次側出力電流がゼロまたは任意の値以下になれば充電完了となる(定電流制御を省略する場合もあり得る)。
ところが、2次側の最大出力電流をより増加させるために、1次側インバータ回路の送電能力を大きくすると、今度は図6に示すとおり、充電終期その他の理由で2次側出力電流が最小出力電流のときに、2次側出力電圧を安定化するため共振回路に挿入した可変インピーダンス回路が最大インピーダンスになっても、2次側出力電圧が、予め設定された任意の値よりも上昇してしまうという問題があった。
特開2000−287375号公報
本発明は、上記課題を解決するものであり、軽負荷から重負荷に至るまで、所望の電力を安定して負荷に供給することのできる無接触電源装置を提供することを目的とする。
上記課題を解決すべく種々検討を重ねた結果、本発明者は、無接触電源装置の2次側出力電流の大きさを1次側インバータ回路に流れる電流で検出しつつ、定電圧制御により2次側出力を予め定めた任意の一定電圧に制御する本発明を完成した。
すなわち、2次側出力電流が予め定められた任意の値よりも小さい時は、1次側インバータ回路の入力電圧を下げることにより送電能力を下げ、2次側出力電圧が定電圧制御時の設定電圧から上昇することを防止する。
一方、2次側出力電流が予め定められた任意の値よりも大きい時は、1次側インバータ回路の入力電圧を上昇させることにより送電能力を上げ、それによって予め設定された2次側出力電圧を維持しつつ2次側出力電流を所望の最大(定格)電流となるまで出力できるように構成する。
上記課題を解決できる本発明の電源装置は、送電コイルと受電コイルとからなるトランスを介して接続された1次側回路と2次側回路とからなる電源装置であって、1次側回路は少なくともレギュレータ回路とインバータ回路とを備え、さらに、
前記レギュレータ回路に、インバータ回路に流れる電流を検出する電流検出手段と、検出したインバータ回路の電流値が予め定められた任意の電流値より小さい時はインバータ回路への入力電圧を下げ、大きい時はインバータ回路への入力電圧を上げる出力電圧制御回路とを備えたことを特徴とする電源装置である。
また、上記の電源装置において、2次側回路が、電磁誘導による電力を受け取る受電コイルと共振コンデンサとで構成される共振回路と整流平滑回路とを備えることを特徴とする電源装置である。
さらに、前記共振回路に接続され、2次側出力電圧を検出して得られた制御信号に応じてインピーダンスを変化させる可変インピーダンス回路によって、2次側出力電圧が制御され得ることを特徴とする電源装置である。
本発明によれば、例えば定電圧制御により2次側出力を予め定めた任意の一定電圧に制御する場合、必要とする2次側最大出力電流を出力できる一方で、2次側出力電流が最小出力電流の時であっても、2次側出力電圧が設定された電圧から外れて上昇することがない無接触電源装置を得ることができる。
すなわち、軽負荷から重負荷に至るまで、所望の電力を安定して負荷に供給できる無接触電源装置を得ることができる。
以下、添付図面に基づき本発明を詳細に説明する。
図1は、本発明の一実施形態を表したブロック図である。
本実施形態に係る電源装置1は、1次側回路11と2次側回路12とからなっている。1次側回路11と2次側回路12とは、送電コイル21と受電コイル22とからなるトランス2を介して接続されている。
1次側回路11は、送電コイル21のほか、入力端子4と、DC/DCコンバータ6と、インバータ回路5と、インバータ回路5を流れる電流を検出する電流検出回路7と、DC/DCコンバータ6の出力電圧を制御するDC/DCコンバータ出力電圧制御回路8を備えている。
DC/DCコンバータ6は、入力端子4とGND端子に接続されているほか、インバータ回路5とDC/DCコンバータ出力電圧制御回路8に接続されている。
ここで、DC/DCコンバータ6は、インバータ回路5への入力電圧を制御するレギュレータ回路に相当する。このDC/DCコンバータ6は、後述する電流検出回路7と、DC/DCコンバータ出力電圧制御回路8とを備えている。
インバータ回路5は、DC/DCコンバータ6に接続されているほか、送電コイル21および共振用コンデンサ19の両端、および電流検出回路7を介してGND端子に接続されている。
電流検出回路7は、インバータ回路5およびGND端子に接続されているほか、DC/DCコンバータ出力電圧制御回路8を介してDC/DCコンバータ6に接続されている。
2次側回路12は、主として受電コイル22のほか、出力端子10と、整流回路13と、平滑回路14とから構成されている。
また、2次側回路12の整流回路13の入力側には、受電コイル22と共振用コンデンサ17と可変インピーダンス回路15とが直列接続された共振回路18が形成されている。
本実施形態の2次側回路12にはさらに、2次側出力電圧を検出することによって得られた制御信号を可変インピーダンス回路15に供給する2次側出力電圧制御部16が備えられている。
受電コイル22の両端には、共振用コンデンサ17と可変インピーダンス回路15が、受電コイル22の一端側−共振用コンデンサ17の一端側−同他端側−可変インピーダンス回路15の一端側−同他端側−受電コイル22の他端側の順で接続されている。
さらに、受電コイル22の一端側は、整流回路13を介して出力端子10に接続されているほか、平滑回路14および2次側出力電圧制御部16の各一端側にも接続されている。
受電コイル22の他端側は、GND端子に接続されているほか、可変インピーダンス回路15、平滑回路14および2次側出力電圧制御部16の各他端側に接続されている。
2次側出力電圧制御部16は、一端側が出力端子10に、他端側がGND端子に接続されており、2次側出力電圧を検出することができるようになっているほか、さらに、2次側出力電圧を検出することによって得られた制御信号を可変インピーダンス回路15に供給するべく可変インピーダンス回路15に接続されている。
なお、本実施形態では、整流回路13はダイオード等の半導体整流素子から、可変インピーダンス回路15はFET等のスイッチング素子から構成されている。
以下、本実施形態に係る電源装置の動作の一例について説明する。なお、以下の説明は、定電圧制御により2次側出力を予め定めた任意の一定電圧に制御する場合の一例である。
まず、電源装置1は、1次側回路11のインバータ回路5を流れる電流を電流検出回路7で検出することによって2次側出力電流の大小を検出し、その検出結果をDC/DCコンバータ出力電圧制御回路8に送る。
DC/DCコンバータ出力電圧制御回路8は、2次側出力電流が比較的小さいか、または予め定めた任意の値よりも小さい時は、1次側インバータ回路の入力側に設けたDC/DCコンバータ6の出力電圧を下げる(=1次側インバータ回路の入力電圧を下げる)制御信号を、DC/DCコンバータ6に送る。
一方、2次側出力電流が比較的大きいか、または予め定めた任意の値よりも大きい時は、DC/DCコンバータ出力電圧制御回路8は、DC/DCコンバータ6の出力電圧を上昇させる制御信号を、DC/DCコンバータ6に送る。
DC/DCコンバータ回路6の出力電圧が低い時は、その後段に接続されているインバータ回路5から送電コイル21に印加する電圧も低くなるため、送電コイル21から発生する電磁力が小さくなる。この時、2次側受電コイル22に誘起される電圧も低くなり、2次側出力電流が最小電流の時でも、2次側出力電圧が安定化するため、共振回路18に挿入した可変インピーダンス回路15により、十分に2次側出力電圧を安定化できる。
一方、DC/DCコンバータ6の出力電圧が高い時は、インバータ回路5から送電コイル21に印加する電圧が高いため、送電コイル21から発生する電磁力も大きくなる。このときは、2次側受電コイル22に誘起される電圧も高くなるため、2次側において、2次側出力電圧を予め設定された任意の一定電圧値となるよう制御しながら、必要な大きさの2次側最大(定格)出力電流を出力することが可能になる。
次に、本発明の一実施例となり得る無接触電源装置を実際に構成し、その動作および特性を検証した。本実施例の無接触電源装置は、二次電池の充電回路としても使用可能なものである。
図2に、本発明の一実施例となり得る無接触電源装置の回路図を示す。図2中、破線で囲んだ箇所は、図1中の各ブロックに相当している。
[構成]
まず、1次側回路11の構成について説明する。
図2に示すとおり、本実施例では、DC/DCコンバータ6は降圧形のDC/DCコンバータとなっており、平滑用コンデンサC01と、スイッチング素子Q01と、これを制御するためのDC/DCコンバータ制御装置IC01と、還流ダイオードD01と、チョークコイルL01と、平滑用コンデンサC02と、直列接続されたDC/DCコンバータ出力電圧設定用抵抗R01および抵抗R02とからなっている。
この降圧形DC/DCコンバータ6は、1次側入力端子間に平滑用コンデンサC01を接続し、1次側プラス入力端子にスイッチング素子Q01のソースとDC/DCコンバータ制御装置IC01のVCC端子を接続し、スイッチング素子Q01のゲートをDC/DCコンバータ制御装置IC01のスイッチング素子ドライブ端子であるOUT端子に接続し、スイッチング素子Q01のドレインに還流ダイオードD01のカソードとチョークコイルL01とを接続して構成されている。また、1次側マイナス入力端子(GND)にDC/DCコンバータ制御装置IC01のGND端子と還流ダイオードD01のアノードを接続し、チョークコイルL01の出力側と1次側マイナス入力端子(GND)間に、平滑用コンデンサC02と、直列接続されたDC/DCコンバータ出力電圧設定用抵抗の抵抗R01および抵抗R02とを接続し、DC/DCコンバータ制御装置IC01のフィードバック端子であるFB端子を、抵抗R01と抵抗R02の接続点に接続して構成されている。
なお、本実施例では、DC/DCコンバータ制御装置IC01は市販の制御用IC、スイッチング素子Q01はPチャネルのFETとした。
本実施例では、図1に示すDC/DCコンバータ出力電圧制御回路8は、図2ではトランジスタQ02と、そのコレクタに接続された抵抗R03およびベースに接続された抵抗R04とからなっている。
本実施例の降圧型DC/DCコンバータ6の出力電圧制御回路8は、抵抗R01と抵抗R02の接続点に抵抗R03の一端側を接続し、抵抗R03の他端側をトランジスタQ02のコレクタに接続し、トランジスタQ02のエミッタを1次側マイナス入力端子(GND)に接続し、トランジスタQ02のベースに抵抗R04の一端側を接続することにより構成されている。
なお、本実施例では、トランジスタQ02はNPN形のトランジスタとした。
電流検出回路7は、電流検出用抵抗R07と、その一端側と上記DC/DCコンバータ制御装置IC01のREF端子間に直列接続された抵抗R05および抵抗R06と、これら各抵抗に下記のとおり接続されたオペアンプIC02とからなっている。
すなわち、この電流検出回路7は、上記抵抗R04の他端側をオペアンプIC02の出力端子であるOUT端子に接続し、DC/DCコンバータ制御装置IC01の基準電圧端子であるREF端子と1次側マイナス入力端子(GND)の間に抵抗R05および抵抗R06を直列接続し、これら抵抗R05と抵抗R06の接続点にオペアンプIC02のマイナス入力端子を接続して構成されている。また、1次側マイナス入力端子(GND)に電流検出用抵抗R07の一端側を接続し、他端側にオペアンプIC02のプラス入力端子とオペアンプIC02のGND端子を接続し、1次側プラス入力端子にオペアンプIC02のVCC端子を接続して構成されている。
1次側インバータ回路5は、並列接続された送電用コイルL02および共振用コンデンサC03に接続されたスイッチング素子Q03と、これを制御するためのインバータ制御装置IC03とからなっている。
この1次側インバータ回路5は、並列接続された送電用コイルL02および共振用コンデンサC03の他端側をスイッチング素子Q03のドレインに接続し、スイッチング素子Q03のドライブ端子である、インバータ制御装置IC03のOUT端子をスイッチング素子Q03のゲートに接続し、インバータ制御装置IC03のGND端子とスイッチング素子Q03のソースを電流検出用抵抗R07に接続し、1次側プラス入力端子にインバータ制御装置IC03のVCC端子を接続することにより構成されている。
なお、並列接続された送電用コイルL02および共振用コンデンサC03の一端側は、チョークコイルL01の出力側に接続されている。
また、本実施例では、インバータ制御装置IC03は市販の制御用IC、スイッチング素子Q03はNチャネルのFETとした。
本実施例の無接触電源回路1の1次側回路11の構成は以上のとおりである。
次に、2次側回路12の構成につき説明する。図1に基づき説明したとおり、2次側回路12は、受電コイル22と共振用コンデンサ17と可変インピーダンス回路15とが直列接続された共振回路18のほか、整流回路13と、平滑回路14と、2次側出力電圧制御部16とを備えている。
このうち、2次側の共振回路18と、可変インピーダンス回路15と、整流回路13と、平滑回路14は、図2に示すとおり、受電用コイルL11の一端側に共振用コンデンサC11の一端側と整流用ダイオードD11のアノードを接続し、共振用コンデンサC11の他端側をスイッチング素子Q11のドレインに接続し、受電用コイルL11の他端側とスイッチング素子Q11のソースを2次側出力GND端子に接続して構成されている。また、整流用ダイオードD11のカソードを2次側出力端子に接続し、2次側出力端子とスイッチング素子Q11のゲートの間にスイッチング素子ドライブ用抵抗R11を接続し、2次側出力端子間に平滑用コンデンサC12を接続して構成されている。
なお、本実施例では、スイッチング素子Q11はNチャネルのFETとした。
また、2次側出力電圧検出制御回路16は、本実施例では、第1および第2の制御用トランジスタQ12およびQ13と、シャントレギュレータIC11と、これら各素子に下記のとおり接続された抵抗R12〜R16とからなっている。
この2次側出力電圧検出制御回路16は、スイッチング素子Q11のゲート・ソース間に第1の制御用トランジスタQ12を接続し、第2の制御用トランジスタQ13のエミッタを2次側出力端子(プラス側)に接続し、第2の制御用トランジスタQ13のコレクタと第1の制御用トランジスタQ12のベース間に抵抗R12を接続し、第2の制御用トランジスタQ13のベース・エミッタ間に抵抗R13を接続して構成されている。また、第2の制御用トランジスタQ13のベースとシャントレギュレータIC11のカソード端子間に抵抗R14を接続し、シャントレギュレータIC11のアノード端子を2次側GND端子に接続し、2次側出力端子間に抵抗R15および抵抗R16を直列接続し、さらに、抵抗R15と抵抗R16の接続点とシャントレギュレータIC11のリファレンス端子を接続して構成されている。
なお、本実施例では、第1の制御用トランジスタQ12はNPN形のトランジスタとし、第2の制御用トランジスタQ13はPNP形のトランジスタとした。
シャントレギュレータIC11は、抵抗R15と抵抗R16の分圧電圧によって決まるリファレンス端子電圧が、シャントレギュレータIC11内蔵のVREF電圧と等しくなるように動作する。
[動作]
以下、上記構成からなる本実施例の無接触電源装置の概略動作について、2次側負荷電流を適宜変えながら、2次側出力電圧を一定に制御する定電圧制御を行う場合を例に挙げて説明する。
図2に示すとおり、1次側回路では、インバータ回路5のスイッチング素子Q03は、インバータ回路制御装置IC03によって固定発振周波数、固定デューティで駆動される。
さらに、本実施例のインバータ回路5は、送電用コイルL02のインダクタンスと共振用コンデンサC03によって、スイッチング素子Q03が電圧共振によるゼロ電圧スイッチング動作を行うよう構成されている。このとき、送電コイルの電圧波形は、送電コイルのインダクタンスL02と共振用コンデンサC03の働きにより半波形電圧共振波形となっている。
また、2次側回路について見ると、受電コイルL11と共振用コンデンサC11は、これらだけで直列共振回路を構成した場合の共振周波数が、送電コイルL02から送られて来る高周波電磁誘導電圧の周波数に略一致するように設定されている。ここで、スイッチング素子Q11は、可変抵抗素子としての役割を果している(図4C参照)。
まず最初に、2次側出力電流が最小電流の時における、降圧型DC/DCコンバータ6の出力電圧(=インバータ回路5の入力電圧)を設定する。本実施例の降圧型DC/DCコンバータの制御装置IC01は、この制御装置IC01のFB端子に入力される抵抗R01と抵抗R02の分圧電圧を随時読み込んでフィードバック制御を行うよう構成されており、従ってDC/DCコンバータ6の出力電圧の設定は、抵抗R01と抵抗R02の大きさを変え、抵抗R01と抵抗R02の分圧比を適宜調整することにより行われる。
このとき設定されるDC/DCコンバータ6の出力電圧は、2次側可変インピーダンス回路15(スイッチング素子Q11)によって2次側出力電圧を所定の設定値に制御し得る限度で、1次側送電用コイルL02に印加可能な最大電圧とされる。
次に、2次側出力電流を徐々に増加させると、最終的には受電エネルギーが不足して2次側出力電圧が予め設定された任意の一定電圧値よりも下がってしまう。それより前に、本実施例では、降圧型DC/DCコンバータ6の出力電圧を上昇させることにより1次側送電用コイルL02に印加される電圧を上昇させ、それによって、2次側出力電圧を一定に制御しつつ所望の2次側最大出力電流を出力できるよう構成している。
本実施例では、2次側出力電流が増加すると1次側のインバータ回路5に流れる電流も増加することを利用して、2次側出力電流の大小を、1次側のインバータ回路5に流れる電流で判断している。
すなわち、電流検出回路7は、1次側のインバータ回路5に流れる電流を抵抗R07で検出しており、その検出値をオペアンプIC02のプラス入力端子に入力している。一方、オペアンプIC02のマイナス入力端子には、DC/DCコンバータ6の制御装置IC01に内蔵されている基準電圧を抵抗R05と抵抗R06で分圧した電圧が入力されている。
従って、1次側のインバータ回路5に流れる電流が増加することによって、オペアンプIC02のプラス入力端子に印加される電圧が、オペアンプIC02のマイナス入力端子電圧に対して高くなると、オペアンプIC02のOUT端子はHレベルとなる。このとき、オペアンプIC02は、抵抗R04を通じてトランジスタQ02をドライブし、それによってトランジスタQ02はONとなる。
トランジスタQ02がONすると、降圧型DC/DCコンバータ6の出力電圧を設定している抵抗R02に、抵抗R03が並列接続されることになり、R02とR03からなる合成抵抗値はR02の抵抗値よりも小さいものとなる。これにより、R02とR03の合成抵抗両端で生じる電圧も小さくなり、その値をFB端子から読み込んだDC/DCコンバータ6の制御装置IC01は、FBの読み取り値を元の値に戻すべく、DC/DCコンバータ6の出力を増大させる制御を行う。
上記手順でDC/DCコンバータ6の出力を増大させ、降圧型DC/DCコンバータ6の出力電圧を上昇させることにより、2次側において、2次側出力電圧を予め設定された任意の一定電圧値となるよう制御しながら、必要とする最大出力電流を出力することが可能となる。
[特性]
図3に、本実施例に係る無接触電源装置の定電圧制御特性の一例を示す。図3からも明らかなとおり、本実施例によれば、2次側出力電流が最小出力電流の時でも、2次側出力電圧が設定された電圧から外れて上昇することがなく、その一方で、必要とする2次側最大出力電流を出力することができる。このことは、図5及び図6に示す従来例の結果と比べると、より明瞭に理解される。一例によれば、出力電流を0≦I<0.3[アンペア]としたときの定電圧制御特性(V=4.2[ボルト])において、従来例では軽負荷で出力電圧が上昇する問題があったが、本発明装置の適用により、上記負荷範囲で安定した定電圧制御を行うことが可能となった(図6および図3参照)。
このように、本発明によれば、軽負荷から重負荷に至るまで、所望の電力を安定して負荷に供給することができる無接触電源装置が得られる。
[変形例]
以上、本発明を一実施例に基づき詳細に説明したが、本発明は上記実施例に記載の構成に限定されず、種々の設計変更が可能である。
例えば、上記実施例ではDC/DCコンバータとして降圧形のものを使用したが、これに限定されず昇圧形または昇降圧形等種々の形式のものを用い得る。
インバータ回路についても、上記実施例ではフライバックタイプのものを用いたが、これに限られず、ハーフブリッジやフルブリッジ等のブリッジ形インバータ他、適当な形式のものを使用し得る。
また、上記実施例では、1次側に並列共振回路、2次側に直列共振回路が形成されているが、これに限られず、共振回路の設計は必要に応じ適宜変更され得る。
また、上記実施例では受電コイルL11と共振用コンデンサC11とからなる共振回路に可変インピーダンス回路となるスイッチング素子Q11を挿入する場合について説明したが、可変インピーダンス回路は、インピーダンスを変化させ得るものであれば素子は特に限定されず、コイルやコンデンサからなる複数の素子を組合わせて構成した可変インピーダンス回路を挿入することもできる。
なお、可変インピーダンス回路として、可変抵抗素子とみなし得るスイッチング素子Q11を用いた場合、共振回路に流れる電流は共振回路の共振特性を示すQの変化により変化する。一方、可変インピーダンス回路がインダクタンスやキャパシタンスを変化させ得るものである場合には、共振回路に流れる電流は共振回路の共振周波数(共振点)のずれによって変化する。また、この可変インピーダンス回路は、共振回路の共振特性を表わすQを変化させたり共振周波数(共振点)にずれを生じさせたりするものであれば、共振用コンデンサC11に直列に挿入する他、任意の位置に挿入することができる。
電流検出回路7及びDC/DCコンバータ出力制御回路8の具体的構成についても、本実施例にて示したものに限定されず、例えば一次側インバータ回路5に流れる電流が一定以上になればツェナーダイオード等がオンしてDC/DCコンバータ出力制御回路8が作動するような概略構成等としても構わない。
要するに、一次側インバータ回路5に流れる電流の大きさに応じてDC/DCコンバータ制御回路8の動作が制御されてDC/DCコンバータ6に適宜制御信号が送られるような構成であれば良い。
上記可変インピーダンス回路15に接続された2次側出力電圧制御回路16の具体的構成についても、本実施例にて示したものに限定されず、適宜公知の構成を適用し得ることは言うまでもない。
さらに、上記実施例では、主として定電圧制御を行う二次電池の充電回路を例に挙げて説明したが、適用対象はこれに限られず、適宜制御される種々の用途に適用することが可能である。制御手法も定電圧制御に特段限定されるものではない。
このように、本発明によれば、例えば2次側出力を絞る必要がある際には1次側インバータ入力電圧を下げ、逆に2次側出力を増大させる必要がある場合には1次側インバータ入力電圧を上げる制御を行うことにより、軽負荷から重負荷に至るまで、所望の電力を安定して負荷に供給することのできる無接触電源装置を得ることが可能となる。
本発明の一実施形態を表したブロック図である。 本発明の一実施例の回路図である。 本発明の一実施例における2次側出力特性を示す図である。 従来例を示すブロック図である。 従来例における2次側出力特性を示す図である。 従来例における2次側出力特性を示す図である。
符号の説明
1 電源装置
2 トランス
4 入力端子
5 インバータ回路
6 DC/DCコンバータ
7 電流検出回路
8 DC/DCコンバータ出力制御回路
10 出力端子
11 1次側回路
12 2次側回路
13 整流回路
14 平滑回路
15 可変インピーダンス回路
16 2次側出力電圧制御回路
17 共振用コンデンサ
18 共振回路
19 共振用コンデンサ
21 送電コイル
22 受電コイル

Claims (3)

  1. 送電コイルと受電コイルとからなるトランスを介して接続された1次側回路と2次側回路とからなる電源装置であって、1次側回路は少なくともレギュレータ回路とインバータ回路とを備え、さらに、
    前記レギュレータ回路に、
    インバータ回路に流れる電流を検出する電流検出手段と、
    検出したインバータ回路の電流値が予め定められた任意の電流値より小さい時はインバータ回路への入力電圧を下げ、大きい時はインバータ回路への入力電圧を上げる出力電圧制御回路とを備えたことを特徴とする電源装置。
  2. 2次側回路が、電磁誘導による電力を受け取る受電コイルと共振コンデンサとで構成される共振回路と整流平滑回路とを備えることを特徴とする請求項1に記載の電源装置。
  3. 前記共振回路に接続され、2次側出力電圧を検出して得られた制御信号に応じてインピーダンスを変化させる可変インピーダンス回路によって、2次側出力電圧が制御され得ることを特徴とする請求項2に記載の電源装置。
JP2005147474A 2005-05-20 2005-05-20 電源装置 Pending JP2006325350A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147474A JP2006325350A (ja) 2005-05-20 2005-05-20 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147474A JP2006325350A (ja) 2005-05-20 2005-05-20 電源装置

Publications (1)

Publication Number Publication Date
JP2006325350A true JP2006325350A (ja) 2006-11-30

Family

ID=37544593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147474A Pending JP2006325350A (ja) 2005-05-20 2005-05-20 電源装置

Country Status (1)

Country Link
JP (1) JP2006325350A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271716A (ja) * 2007-04-20 2008-11-06 Toshiba Denpa Products Kk 電源装置
JP2009207313A (ja) * 2008-02-28 2009-09-10 Murata Mach Ltd 非接触給電装置
JP2011045195A (ja) * 2009-08-21 2011-03-03 Saitama Univ 非接触給電装置及び非接触給電方法
JPWO2010137495A1 (ja) * 2009-05-26 2012-11-15 有限会社日本テクモ 非接触電力供給装置
JP2013183548A (ja) * 2012-03-02 2013-09-12 Toko Inc ワイヤレス電力伝送装置
US8912730B2 (en) 2012-01-10 2014-12-16 Panasonic Corporation Wireless power supply system for lighting and lighting apparatus
JP2016105690A (ja) * 2008-07-28 2016-06-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated 寄生共振タンクを備える電子デバイスに対するワイヤレス電力送信
JP2016111749A (ja) * 2014-12-03 2016-06-20 株式会社リコー 電源装置
JP7368303B2 (ja) 2020-04-09 2023-10-24 ニチコン株式会社 電源装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564439A (ja) * 1991-09-05 1993-03-12 Nec Corp 高電圧電源制御回路
JPH08103028A (ja) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd 非接触充電器
JPH1014124A (ja) * 1996-06-19 1998-01-16 Tdk Corp 非接触電力伝送装置
JPH11215849A (ja) * 1998-01-28 1999-08-06 Hitachi Ltd パルス幅変調電力変換装置
JP2000287375A (ja) * 1999-03-29 2000-10-13 Japan Storage Battery Co Ltd 二次電池の充電回路
JP2002078248A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd 非接触電力伝達装置
JP2003033011A (ja) * 2001-05-10 2003-01-31 Fiderikkusu:Kk スイッチング電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564439A (ja) * 1991-09-05 1993-03-12 Nec Corp 高電圧電源制御回路
JPH08103028A (ja) * 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd 非接触充電器
JPH1014124A (ja) * 1996-06-19 1998-01-16 Tdk Corp 非接触電力伝送装置
JPH11215849A (ja) * 1998-01-28 1999-08-06 Hitachi Ltd パルス幅変調電力変換装置
JP2000287375A (ja) * 1999-03-29 2000-10-13 Japan Storage Battery Co Ltd 二次電池の充電回路
JP2002078248A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd 非接触電力伝達装置
JP2003033011A (ja) * 2001-05-10 2003-01-31 Fiderikkusu:Kk スイッチング電源装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271716A (ja) * 2007-04-20 2008-11-06 Toshiba Denpa Products Kk 電源装置
JP2009207313A (ja) * 2008-02-28 2009-09-10 Murata Mach Ltd 非接触給電装置
JP2016105690A (ja) * 2008-07-28 2016-06-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated 寄生共振タンクを備える電子デバイスに対するワイヤレス電力送信
JPWO2010137495A1 (ja) * 2009-05-26 2012-11-15 有限会社日本テクモ 非接触電力供給装置
JP5646470B2 (ja) * 2009-05-26 2014-12-24 株式会社ヘッズ 非接触電力供給装置
JP2011045195A (ja) * 2009-08-21 2011-03-03 Saitama Univ 非接触給電装置及び非接触給電方法
US8912730B2 (en) 2012-01-10 2014-12-16 Panasonic Corporation Wireless power supply system for lighting and lighting apparatus
JP2013183548A (ja) * 2012-03-02 2013-09-12 Toko Inc ワイヤレス電力伝送装置
JP2016111749A (ja) * 2014-12-03 2016-06-20 株式会社リコー 電源装置
JP7368303B2 (ja) 2020-04-09 2023-10-24 ニチコン株式会社 電源装置

Similar Documents

Publication Publication Date Title
CN110226282B (zh) Llc谐振转换器
JP6002513B2 (ja) 非接触給電システム、端末装置および非接触給電方法
JP5253304B2 (ja) エネルギ伝達エレメントの入力にわたる電圧から導かれた電流に応答するための回路および方法
JP2006325350A (ja) 電源装置
US6980446B2 (en) Circuit for starting power source apparatus
US11664682B2 (en) Electronic unit that wirelessly receives power and increases current using a dummy load
US10833538B2 (en) Electronic unit and power feeding system
US10938244B2 (en) Bidirectional wireless power transmission system
JPWO2015033860A1 (ja) 送電装置、ワイヤレス電力伝送システム及び電力伝送判別方法
CN100413194C (zh) 一种控制dc-dc转换器的方法
JP3772350B2 (ja) 電源装置
JP6111625B2 (ja) ワイヤレス電力伝送装置
JP2006054961A (ja) 同期整流スイッチング電源回路
JP3821156B2 (ja) 電源装置
CN114844234A (zh) 一种充电控制方法、电子设备、无线充电系统
US20030227364A1 (en) Power transforming apparatus with multiple parallel-connected transformers
JP3518197B2 (ja) 無接触給電設備の2次側受電回路
WO2015019908A1 (ja) ワイヤレス電力伝送システム
JP6251342B2 (ja) 端末装置
WO2022091903A1 (ja) 半導体リレー装置
JP6559209B2 (ja) 端末装置
EP1249067A1 (en) Portable device with reduced power dissipation
JP2019176735A (ja) 端末装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330