JP2006325335A - アクチュエータおよびその材料 - Google Patents

アクチュエータおよびその材料 Download PDF

Info

Publication number
JP2006325335A
JP2006325335A JP2005146337A JP2005146337A JP2006325335A JP 2006325335 A JP2006325335 A JP 2006325335A JP 2005146337 A JP2005146337 A JP 2005146337A JP 2005146337 A JP2005146337 A JP 2005146337A JP 2006325335 A JP2006325335 A JP 2006325335A
Authority
JP
Japan
Prior art keywords
actuator
film
fine particles
voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005146337A
Other languages
English (en)
Other versions
JP4732798B2 (ja
Inventor
Midori Katou
美登里 加藤
Masayoshi Ishibashi
雅義 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005146337A priority Critical patent/JP4732798B2/ja
Priority to US11/338,740 priority patent/US7692361B2/en
Publication of JP2006325335A publication Critical patent/JP2006325335A/ja
Application granted granted Critical
Publication of JP4732798B2 publication Critical patent/JP4732798B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0158Tip steering devices with magnetic or electrical means, e.g. by using piezo materials, electroactive polymers, magnetic materials or by heating of shape memory materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

【課題】軽く、超小型化が可能で、大気中などの気相中で安全に安定して使用できるアクチュエータ材料、およびこれを用いたアクチュエータを提供すること。
【解決手段】アクチュエータ用材料として、熱膨張係数の絶対値の大きな高分子材料に、導電性微粒子を混合した材料を使用する。
【選択図】図2

Description

本発明は、電気信号により繰り返し伸縮、屈曲等の変形を引き起こすことのできる軽量のアクチュエータモジュール、およびその材料に関する。
医療や介護の分野では、能動カテーテルや内視鏡、リハビリ補助具、パワードスーツ、人工臓器等の用途に、超小型化ができ、かつ軽量、フレキシブルで駆動電圧の低い安全なアクチュエータが望まれている。また、今後新たな需要が期待されるペーパーディスプレイや携帯型触覚伝達デバイスなどには、それらの性質に加え、小さなスペースで複雑な動きを実現できるアクチュエータが必要とされる。このように、従来のような大発生応力、高速応答、高精度制御のアクチュエータだけではなく、今後、超小型化が可能な、軽量で、フレキシブルで、身に付けていて安全(低駆動電圧)なアクチュエータも必要となる。
このような超小型化が可能なアクチュエータには、通常使用されている電磁モータのように部品の組み立てが必要となるアクチュエータより、材料自身が電気信号により繰り返し変形できるアクチュエータが適している。材料自身が繰り返し変形するアクチュエータで、現在良く知られているものに強誘電体のピエゾ効果を利用したピエゾアクチュエータや、形状記憶合金(SMA: Shape-memory alloy)の相転移を利用したSMAアクチュエータなどがある。しかし、それぞれ駆動電圧や、重さ、耐久性などに一長一短があった。
電気信号により変形する材料を用いたアクチュエータには、このような従来のアクチュエータとは別に、最近、電気信号により変形する有機材料を利用したアクチュエータが幾つか提案されている。これらのアクチュエータは有機材料を用いているため、いずれも軽量であるという特徴がある。具体的には、ポリアニリンやポリピロールをいった導電性高分子を材料とした導電性高分子アクチュエータ(特許文献1:特開平02−20586号公報)や、イオン導電性高分子を材料としたイオン導電性高分子アクチュエータ(特許文献2:特開平06−6991号公報)、導電性微粒子をイオン導電性高分子でバインドした導電性微粒子混合イオン高分子アクチュエータ(非特許文献1:石橋雅義、加藤美登里:伸縮型イオン導電性高分子アクチュエータ:2004年第53回高分子学会年次大会、IPA155)などに代表される高分子アクチュエータや、導電性高分子の熱による分子の脱着時の変形を利用したアクチュエータ(特許文献3:特許第3131180号公報)、形状記憶樹脂に導電性微粒子を混合した材料を用いたアクチュエータ(特許文献4:特開平02−242847号公報、特許文献5:特開平02−155955号公報)などが知られている。
特開平02−20586号公報 特開平06−6991号公報 特許第3131180号公報 特開平02−242847号公報 特開平02−155955号公報 石橋雅義、加藤美登里:伸縮型イオン導電性高分子アクチュエータ:2004年第53回高分子学会年次大会、IPA155
電気信号により変形する有機材料を利用したアクチュエータは軽量で、超小型化が容易であるが、動作環境や制御性に幾つかの問題があった。例えば高分子アクチュエータの多くは、基本的には電解質溶液中で同じ電解質溶液中に設置された対向電極に対し、電圧を印加することにより電解質溶液中でのみ伸縮動作する。そのため、応用先が体内や海中などに限定され、大気中などの気相中で動作させるためにはパッケージングなどの部品を加える必要があった。
一方、導電性高分子の分子脱着による変形を利用したアクチュエータは、気相中で動作することができるが、水等の分子の脱着で変形するため、湿度等、周囲の環境に動作が大きく左右され、応答も遅いといった問題があった。形状記憶樹脂に導電性を付与した材料については、この材料の変形が、基本的に不可逆であり、入力電気信号に従って何度でも変形を繰り返すものではないことから、アクチュエータとしての動作を得るためには、何らかの工夫をする必要があった。
本発明の目的は、空気などの気相中で安全に安定して使用できる、超小型化が可能で制御性がよい軽量のアクチュエータを提供することにある。
従来、熱膨張率が大きな高分子材料は絶縁体であるため、通電加熱による温度の調整は困難であり、また、電気伝導度が高い金属などの物質は熱膨張率が小さいため、実用的な温度範囲で大きな伸縮を得ることは困難であった。本発明では、上記目的を達成するために、熱膨張率が大きく、高電気伝導度の材料を使用したアクチュエータとした。本発明のアクチュエータは、アクチュエータ材料に通電することにより自己発熱させ、その温度変化に伴う大きな熱膨張、収縮による材料の変形を利用し、伸縮動作を行わせる。
本発明によれば、空気などの気相中で安全に安定して使用できる小型化が可能で制御性がよく、軽量、フレキシブルなアクチュエータを提供することができる。
本発明では、熱膨張率が大きいが絶縁体の高分子材料に導電性微粒子を混合した材料をアクチュエータに用いることにより、本来、絶縁体の高分子材料に導電性が付与され、通電による自己発熱とそれに伴う大きな変形が可能となった。この変形を可塑変形とならない範囲の温度と付負荷で行うことで、繰り返しの伸縮動作が可能となる。
本発明のアクチュエータで大きな変位を得るための条件を考察する。本発明のアクチュエータは、熱膨張による変形を利用する。一般に、長さLの物体の、熱膨張による変形量ΔLは、温度変化ΔTに比例し、その比例定数が線熱膨張係数αである。すなわち、式(1)に示すような関係がある。
Figure 2006325335
本発明のアクチュエータでは、通電により発生するジュール熱によりアクチュエータの温度が変化する。一般に、物質に一定電圧を印加したとき、その電気抵抗Rが電圧印加の間一定であるとすると、時間tの間に発生するジュール熱Eは、式(2)のように表せる。
Figure 2006325335
ここで、抵抗Rは、電気伝導度κを使って式(3)のように表される。
Figure 2006325335
ここで、Sはこの物質の断面積である。したがって、式(2)および式(3)から、電圧印加により発生するジュール熱Eは、式(4)に示すようになる。
Figure 2006325335
一方、ジュール熱Eと、これによる物質の上昇温度ΔTとの関係は、物質の比熱をc、比重をσ、輻射や熱伝導などによるエネルギー損失をE’とした場合、式(5)と書ける。
Figure 2006325335
したがって、式(5)と式(4)から、上昇温度ΔTは式(6)と書ける。
Figure 2006325335
式(6)と式(1)から、変形量ΔLは式(7)となる。
Figure 2006325335
したがって、変形量ΔLは、熱膨張係数αが大きく、電気伝導度κが大きく、比重σが小さい材料で大きくなることがわかる。
表1に、金属、セラミック、高分子材料および本発明の材料について、これらの物質定数の典型的な値を示す。また、表1には材料の機械的特性である引張り強度も示した。材料自身が変形するタイプのアクチュエータの場合、材料自身が破断する限界以上の力は出せない。すなわち、アクチュエータとして発生する最大の力は、材料の引張り強度に依存する。
Figure 2006325335
本発明の材料は、高分子材料を主体としているので、膨張係数が大きく、比重が軽い。また、導電性微粒子を混合しているため、電気伝導度がある程度高い。そのため、通電加熱による変形が大きく、実用的なアクチュエータとなる。また、電気伝導度が金属ほどは高くないので、超薄膜を用いなくても加熱に大電流を必要としないという利点もある。高分子材料に微粒子を混合する手法は、しばしば、高分子材料の機械的強度を上げる目的で行われる。そのため、本発明の材料の引張り強度も、高分子材料の引張り強度より大きくなる。
以下、本発明の実施例について図を用いて説明する。
(実施例1)
実施例1では、本発明のアクチュエータの基本的な動作の概念および、その作製方法について説明する。はじめに、本発明のアクチュエータを構成するアクチュエータ材料に電圧を印加したときのアクチュエータ材料の変形について述べる。
図1(A)は電圧を印加する前のアクチュエータ材料の状態、(B)は電圧を印加したときのアクチュエータ材料の状態を模式的に示す図である。2は熱膨張率の大きい高分子材料、3は導電性微粒子である。10は高分子材料に導電性微粒子3を分散させたアクチュエータ材料である。4は電源、5はスイッチであり、スイッチ5をオン、あるいは、オフして高分子材料10に電流を流し、あるいは、通電を止めることができる。スイッチ5をオンにしてアクチュエータ材料10に電源4の電圧を印加すると、ジュール熱によりアクチュエータ材料10の温度が上昇し、熱膨張率に応じたアクチュエータ材料10の等方的な変形が生じる(図1(B))。一方、スイッチ5をオフにすると、アクチュエータ材料10は通電を止められ、温度が低下し、アクチュエータ材料10は元の形状に戻る(図1(A))。この形状変化はもちろん大気中などの気相中で行うことができる。本発明のアクチュエータはこの現象を使用して伸縮動作を行っている。
具体的には、導電性微粒子3をサイズが約40ナノメートルの炭素微粒子、高分子材料2をパーフルオロスルホン酸コポリマーとして、これらを重量比で約1対5とした混合比で混合してアクチュエータ材料10を形成した。この場合、印加電圧を調整して通電時のアクチュエータ材料10の温度を最適化すると、最大で約2%の伸縮率が得られた。伸縮率とは電圧印加前のアクチュエータの全長をL、電圧印加時のアクチュエータの伸びをΔLとした場合にΔL/Lであらわされる量である。
高分子材料2に使用したパーフルオロスルホン酸コポリマーは、フッ素高分子系ポリマーであり、耐熱性に優れた高熱膨張率の材料である。この材料に炭素微粒子を混合、分散させることにより高熱膨張率かつ高電気伝導度のアクチュエータ材料10ができる。実施例1のアクチュエータ材料10の線熱膨張係数は100℃のとき0.0001/K、電気伝導度は1ジーメンス/センチメートル、ガラス転移温度は約230℃である。アクチュエータ材料10の電圧印加による伸縮率が約2%であったことから、アクチュエータ材料10の温度は電圧印加により約220℃に上昇していると見積もれる。
図1(A)、(B)を用いて説明したアクチュエータ材料の通電加熱による変形を、アクチュエータ材料に錘などの負荷をかけた状態で行うと、ある入力電圧および、ある負荷の大きさの範囲では負荷を可逆的に動かすことができ、アクチュエータとして使用することができる。
図2(A)、(B)は、図1で説明したようなアクチュエータ材料の通電加熱による変形を使用した本発明のアクチュエータの基本動作について説明する図である。(A)はアクチュエータ膜1に錘などの負荷をかけただけで電圧を印加する前の状態を示し、(B)は負荷をかけたアクチュエータ膜1へ電圧印加した状態を示す。アクチュエータ膜1はアクチュエータ材料10を一辺が長い膜状に成形し、膜の長手方向以外は電圧印加による変形が長手方向に比べ小さく無視できるようにしている。アクチュエータ膜1の長手方向の両端に、電圧を印加するための電極6、電極7を設け、それらに外部電源4とスイッチ5を直列につなぐ。さらに、アクチュエータ膜1の片端は壁などに固定し、もう一方の端にはアクチュエータ膜1が引っ張られる方向に負荷8をかける(図2(A))。このとき、負荷8の大きさはアクチュエータ膜1の引張強度を超えてはいけない。図1(B)と同じく、この状態でスイッチ5をオンにして、電源4による電圧をアクチュエータ膜1に印加すると、アクチュエータ膜1は通電加熱による温度上昇により熱膨張、すなわち伸長する(図2(B))。この状態でスイッチ5をオフにするとアクチュエータ膜1の温度が下がり再び収縮する(図2(A))。このとき、アクチュエータ膜1の収縮に伴い負荷8が上下動する。すなわち、アクチュエータ膜1の伸縮動作を負荷8が行う上下運動の仕事として取り出すことができる。アクチュエータ膜1の通電時の温度をガラス転移温度より低温に抑えると、このようなアクチュエータ膜1の通電加熱による伸縮動作、すなわち負荷の上下運動を可逆的に繰り返すことができる。
アクチュエータ膜1を、サイズが長さ1センチメートル、幅2ミリメートル、厚さ120マイクロメートルとし、負荷8として50グラムの錘をつけ、振幅22ボルト、周波数1ヘルツの矩形波電圧を印加した場合、1パルスあたりのアクチュエータ膜1の伸縮率は約2%となった。すなわち、50グラム重の負荷8を周波数1ヘルツで約200マイクロメートル上下に動かすことができた。この例では、このアクチュエータ膜1が発生する力は約2メガパスカルとなる。実施例1のアクチュエータ材料では最大で約3メガパスカルの力を発生することができる。
また、実施例1のアクチュエータ膜1は10ヘルツの矩形電圧を印加しても振動数に応じた伸縮動作として追従する。さらに、100、000回の伸縮動作(図2(A)、(B)の状態を繰り返す)をさせても、伸縮率の値は最初と変化はなく、安定して動作した。
アクチュエータ膜1に、振幅15ボルト、周波数1ヘルツの矩形波電圧を印加した時の、1パルスあたりのアクチュエータ膜1の伸縮率と膜に入力された電気エネルギーの関係を図3に示す。アクチュエータ膜1の伸縮率と膜に入力された電気エネルギーとの間には、比例関係が成り立つことがわかる。したがって、このアクチュエータ膜1の伸縮の大きさは、入力電気エネルギーを制御することで電気的に容易に制御できる。ここでは、電源として直流電源を用いたが、アクチュエータ膜1の伸縮率が入力された電気エネルギーに比例することから、交流電源を用いても、入力電気エネルギーの制御で、同様に制御できる。いずれの場合も、アクチュエータ膜に印加する電圧で制御するのがもっとも簡単であるが、もちろん、電流制御にしてもよい。
また、本発明の材料の電気抵抗は、高分子に混合された導電性微粒子の抵抗および微粒子間の抵抗であるため、アクチュエータ膜1が変形すると、微粒子間の抵抗に変化が生じ、結果としてアクチュエータ膜1の抵抗も変化する。これをモニターすることによって、アクチュエータ膜1の変形を推定することができる。そのため、この値を用いて印加電圧にフィードバックをかけることにより精確な変形の制御を行うことが可能となる。
アクチュエータ膜1に一定電圧を印加し続けると、膜の温度がこのアクチュエータ膜材料のガラス転移温度ないしは融点、分解点を越えない限り、膜の変形量は一定値に収束する。なぜなら、入力される電気エネルギーと、輻射、伝導、対流などで放出されるエネルギーが平衡状態になるからである。平衡状態に到達すれば、変形量を一定に保持しておくことが可能である。
アクチュエータ膜1に使用する高分子材料2に高分子吸湿性がある場合、室温に放置しておくと、周囲の湿気を含んで乾燥状態よりいくらか膨潤している。しかし、低い電流を膜に常に流しておくことで膜の温度を上げて水分を蒸発させ、周囲の湿度にかかわらず膜を乾燥状態にしておくことができる。このような方法を利用すると吸湿性の材料を用いても、周囲の湿度によらず、アクチュエータ膜の変形量を精確に制御できる。
先にも述べたが、アクチュエータ膜1に入力される電気エネルギーが大きく、膜の温度がこのアクチュエータ膜1の材料のガラス転移温度を越えると、膜の機械的特性が著しく下がる。すなわち、引張り強度が低下して非常に柔らかい状態となり、小さい負荷でも可塑変形をおこして元の形状に戻らなくなる。このような状態になると、アクチュエータとしては動作できない。熱膨張による変形量は温度差が大きいほど大きいため、本発明の最大変形量はアクチュエータ膜1のガラス転移温度に律速されることになる。アクチュエータ膜1は、高分子材料2と導電性微粒子3の複合材料であるから、膜のガラス転移温度は高分子材料2のガラス転移温度に依存する。そのため、ガラス転移温度が高い材料を高分子材料2として用いれば、それだけ動作可能な温度範囲が広がり、それに伴いアクチュエータ膜1の変形量も大きくとれる。
しかし、結晶性の高分子など高分子材料の種類によっては、ガラス転移温度が存在しない場合がある。その場合は、材料の融点、分解点を越える温度で動作することのないよう、入力エネルギーを制御する必要がある。この場合も、アクチュエータ膜1の材料の融点、分解点はこれを構成する高分子材料2の融点、分解点に依存するので、高分子材料2に融点あるいは分解点が高い材料を用いることで、動作可能な温度範囲が広がる、すなわち、アクチュエータの変形量も大きくとれる。
さらに、本発明のアクチュエータ膜1を大きく変形させるためには、耐熱性だけではなく膨張率が大きいことも必要である。つまり、アクチュエータ膜1に使用する高分子材料2には軟化温度が高く、高熱膨張率の高分子材料が適している。このような高分子材料には実施例1の高分子材料2で使用したパーフルオロスルホン酸コポリマー以外にも、アクリルニトリルーブタジエンースチレン共重合体、アクリル樹脂などのポリメタクリル酸エステル、ポリエチレンテレフタレート、ポリアミド、ポリオキシメチレン、ポリテトラフルオロエチレン、ポリスチレン、ポリカーボネイト、ポリシクロヘキシルエチレンなどのポリアルケン類、ポリアクリル酸、ポリメタクリル酸等があり、アクチュエータ膜の構成高分子材料としてそれらを使用することもできる。こうした高分子材料の線熱膨張係数は一般に0.00001/Kから0.0002/Kである。したがって、これらを構成材料としたアクチュエータ膜の線熱膨張係数も0.00001/K以上となる。逆に、あまり熱膨張係数が大きいと変形が大きく、材料に対する負担が大きくなるため、線熱膨張係数は0.001/K程度以下が適当である。
また、実施例1ではアクチュエータ膜1の導電性微粒子3に直径40ナノメートルの炭素微粒子を使用したが、そのほかにも、さらに大きなサイズの導電性の炭素微粒子やカーボンナノチューブ、金、銀、白金、銅、ニッケルなどの金属微粒子、あるいはそれらの混合物なども使用できる。これらの導電性微粒子の種類や、高分子材料との混合比を変えることで、アクチュエータ膜の電気伝導度を変えることができる。電気伝導度が低いと、駆動に高電圧が必要になる。逆に電気伝導度があまり高いと、大電流を流さなければならなくなり、一般的な電源を用いることができなくなる。電気伝導度の実用的な値としては、0.1ジーメンス/センチメートルから1000ジーメンス/センチメートルである。
一般に、高分子材料に微粒子を混合すると、その複合材料の機械的強度は増加する。混合する材料の種類と量に依存するが、2倍程度の強度増加が期待される。複合材料である本発明のアクチュエータ膜の引張り強度は、構成材料である高分子材料の2倍程度の引張り強度、すなわち最大で200メガパスカル程度である。一方、先に述べたように、アクチュエータの最大発生応力は、材料の引張り強度に依存する。したがって、あまり引張り強度の弱い材料はアクチュエータとしての仕事をなさない。そのため、実用的な値としては0.3メガパスカル以上の引張り強度が必要となる。
高分子材料と導電性微粒子の種類と混合比を変えることによって、上記に示したような線熱膨張係数、電気伝導度、引張り強度をもつアクチュエータ膜を作製することができる。このとき、種類と混合比に従って、アクチュエータの比重は変わってくる。実施例1で使用した炭素微粒子はかさ密度が大変小さいため、この微粒子を高分子に混合すると、混合材料の比重はもとの高分子の比重よりも小さくなる。しかし、微粒子の量が高分子に対しあまり多くなると、製膜できなくなる。このときの混合材料の比重が0.5程度であったことから、混合材料の比重は0.5以上であることが望ましい。また、本発明の目的は、軽量のアクチュエータを提供することであるから、比重が金属のように大きいものは、本目的にそぐわない。したがって、比重が5より小さいものが実用的である。
先に述べた高分子材料とこれら導電性微粒子材料を用い、その混合比を最適化することで容易に100℃以上の耐熱性をもち、線熱膨張係数が0.00001/Kから0.0001/Kでかつ電気伝導度が0.1ジーメンス/センチメートルから100ジーメンス/センチメートルでかつ比重0.5から5でかつ引張り強度が0.3から200メガパスカルのアクチュエータ膜を作製することができる。
例として、幾つかの高分子材料と導電性微粒子を組み合わせて作製したアクチュエータ膜の物性を表2に記す。
Figure 2006325335
また、図1、図2では通電により膨張するアクチュエータ材料を用いて説明したが、高分子材料2としてポリフェニレンベンゾビスオキサゾールのような、負の熱膨張係数を持つものを使用すれば、通電により収縮するアクチュエータを作製できる。
実施例1のアクチュエータ膜の作製方法について図4(A)−(D)を用いて説明する。図4(A)−(D)は実施例1のアクチュエータ膜の作製方法の工程を示す概念図である。
はじめに、高分子11を溶媒12に分散させた溶液(高分子分散溶液)に任意の割合で導電性微粒子13を混合し、攪拌して微粒子混合溶液14を作製する(図4(A))。実施例1では高分子分散溶液は、パーフルオロスルホン酸コポリマーを、水とアルコールの混合溶媒(混合比は1:1)に5%分散させた溶液、あるいはその溶液とジメチルホルムアミドとの混合溶液とした。導電性微粒子13には直径約40ナノメートルの炭素微粒子を使用した。
次に、作製した微粒子混合溶液14を基板15上に塗布し、70度で高温乾燥させ、高分子と導電性微粒子の混合膜16(厚さ120マイクロメートル)を作製する(図4(B))。実施例1では基板15にガラス基板を使用した。また、実施例1では、乾燥温度を70度としたが、乾燥温度領域は室温から180度まで可能である。塗布方法としてはキャスト法、スピンキャスト法、吹きつけ塗布法のいずれも使用できる。
次に、乾燥した高分子と導電性微粒子の混合膜16を基板15に付着した状態のまま純水17に漬ける。すると、高分子と導電性微粒子の混合膜16が膨潤し、基板15から剥離する(図4(C))。
最後に、剥離した高分子と導電性微粒子の混合膜16をすくい取り、任意の形状に整えるため、不要な部分を機械的に切断しアクチュエータ膜1が完成する(図4(D))。
図4(D)の整形処理では、機械的な切断で形状を整えたが、酸素ガス等を用いたドライエッチングで形状を整えることも可能である。また、アクチュエータ膜1の成型は基板15から剥離した後に行ったが、剥離前に行うことも可能である。さらに、図5に示すように基板21に必要とするアクチュエータ膜1の型に対応する窪み22を形成しておき、この窪み22に微粒子混合溶液14を流し込んだ後、乾燥、剥離しても、必要とする形状のアクチュエータを得ることができる。
また、図4では高分子11を溶媒12に分散させた高分子分散溶液を用いたが、これの代わりに溶融状態の高分子に導電性微粒子を混合混練して作製することも可能である。成形には通常の樹脂の加工に使用される熱圧縮や溶融押出法を用いることができる。
以上、実施例1によれば、大気中で電圧を印加することにより安定して伸縮動作をさせることが可能な任意の膜状のアクチュエータを容易に作製することができる。
(実施例2)
実施例2では、本発明のアクチュエータを用いたアクチュエータモジュール構造と、それを利用したアクチュエータマトリクスについて、図6から図8を用いて説明する。図6(A)、(B)は本発明のアクチュエータモジュール構造の概念を示す断面図であり、(A)は電圧を印加する前のアクチュエータモジュールの状態の断面図、(B)は電圧を印加したときのアクチュエータモジュールの状態の断面図である。アクチュエータモジュール60は、細長い箱状の容器65の開放面に伸縮性部材64が設けられ、容器65の底面には電極62、63が埋め込まれている。容器65の内部に中央で折り返されたアクチュエータ膜61が設けられ、折り返された部分は容器65上面の伸縮性部材64の下面に接合され、アクチュエータ膜61の両端は電極62、63に接合されている。ピン66が、伸縮性部材64の、アクチュエータ膜61が接合されている部分の裏面に、アクチュエータ膜61と重なり合うように接合されている。アクチュエータ膜61は伸縮性部材64により、常に張力がかかるように長さが調節されている。容器65には単数あるいは複数の放熱用の孔67が空けられている。さらに、この放熱用の孔の代わりに容器65の内側の側面にペルチエ素子をつけてアクチュエータ膜61を冷却する構造にしてもよい。
このアクチュエータモジュール60の電極62、63間に電圧を印加すると、伸縮性部材64により張力がかかっているアクチュエータ膜61が伸長し、ピン66を上に持ち上げることができる(図6(B))。さらに、印加電圧の値を下げるか、スイッチ5をオフとするとピン66は再び下に下がる。このようにして電圧信号によりピン66を上下に動かすことができる。
伸縮率の小さな伸縮型アクチュエータの動きを拡大するための方法の一つとして、V字構造の利用がある。V字構造とは、伸縮型アクチュエータの両端を固定し、アクチュエータ中央部にアクチュエータに対し垂直方向に負荷をかけた構造をさす。伸縮型アクチュエータを収縮した状態で一直線になるようにアクチュエータの両端を容器に固定する。そして、その状態でアクチュエータを伸長させると、中央部がたわむ。そのたわみを中央部に設けた負荷でアクチュエータと垂直方向の変位として取り出すと、伸縮率が小さい場合、アクチュエータの開放端のアクチュエータの延長方向の伸縮によって得られる変位よりはるかに大きな値が得られる。
図7(A)−(C)はV字構造の利用に係るアクチュエータモジュール構造の形態を示す概念図である。(A)はV字構造を用いたアクチュエータモジュールの外形を斜め上から見た斜視図、(B)はアクチュエータモジュールに電圧を印加しない状態のピンを下げた状態を表すアクチュエータモジュールの断面図、(C)はアクチュエータモジュールに電圧を印加することでアクチュエータ膜を伸長させ、ピンを上げた状態を表すアクチュエータモジュールの断面図である。
アクチュエータモジュール70は、底容器74と蓋76とを合わせた形とされ、蓋76の中央部の開口75からピン78が上下動する。底容器74の上面部にアクチュエータ膜71が設けられ、アクチュエータ膜71の両端部は、底容器74の側壁部に埋め込まれた電極72、73に接続される。アクチュエータ膜71の中央部にアクチュエータ膜71を上側に押す力を作用させるバネ77が底容器74の底面との間に設けられる。アクチュエータ膜71のバネ77が接している反対側にピン78が設けられる。また、図示はしていないが、底容器74、蓋76には単数あるいは複数の放熱用の孔が空けられている。さらに、この放熱用の孔の代わりに容器74の底面にペルチエ素子をつけてアクチュエータ膜71を冷却する構造にしてもよい。
電極72、73に電圧を印加する前、すなわちアクチュエータ膜が伸長する前は、ピン78の上面は、ふた76表面より下になるように長さが調整されている(図7(B))。電極72、73に電圧を印加すると、アクチュエータ膜71は伸長し、ピン78はバネ77により上に持ち上げられ、その上面は、ふた76表面より上に現れる。さらに電圧印加をやめるか、印加電圧の値を下げると、ピン78は再び下がる。このようにして電圧信号によりピン78を上下に動かすことができる。
この図7に示すアクチュエータモジュールで、アクチュエータ膜71を長さ1センチメートルのものを使用し2%の伸縮をさせた場合、ピン78を1ミリメートル上下に動かすことができる。
図7に示すアクチュエータモジュールは、大きな変位を取り出せるだけでなく、底容器74の壁面同士を接合することで容易にアクチュエータマトリクスができるという特徴もある。また、図7に示すアクチュエータモジュールで作製したアクチュエータマトリクスは、変位が大きいだけでなく、厚さを薄くできるといった利点も持つ。
図8は図7に示すアクチュエータモジュールを用いたアクチュエータマトリクスを上部から見た様子を示した概念図である。(A)はアクチュエータモジュールの容器74の長手方向の側面を平行に並べて、それぞれのアクチュエータモジュールのピン78が1直線状なるように構成した1次元アクチュエータマトリクスの例である。(B)はアクチュエータモジュールの容器74の長手方向の側面を平行に並べる際、少しずつ位置をずらして、それぞれのアクチュエータモジュールのピン78が2次元配置されるように構成した2次元アクチュエータマトリクスの例である。
(実施例3)
実施例3は、実施例2で示したアクチュエータモジュールの応用例として、携帯型触覚伝達デバイスの一つである点字表示デバイスおよびそれを用いた点字表示システムを提案するものであり、図9、図10を用いて説明する。
点字は高さ約0.4ミリメートルの突起をピッチ約2.2ミリメートルで配列して3×2の点マトリクスを構成した単位で表現される。実施例3の点字表示デバイスは、6個のピンマトリクスが3×2に配置され、電気信号で任意のピンが0.4ミリメートルのストロークで上下に動かせるデバイスとする。
本発明のアクチュエータモジュールを用いたもっとも単純な点字表示デバイスは、実施例2の図6で説明したアクチュエータモジュール60を使用し、3×2に並べたアクチュエータマトリクスである。図9(A)はアクチュエータモジュール60を3×2に並べた点字表示デバイス90を斜めからみた様子を示す概念図、(B)は点字表示デバイス90を用いた点字表示システム91の概念図である。
点字の仕様をみたすためアクチュエータモジュール60は以下のようにする。
(1)各ピンのピッチを約2.2ミリメートルとするため、アクチュエータモジュール60の上から見た断面を2.2ミリメートル×2.2ミリメートルにする。
(2)ピンを0.4ミリメートル上下させる必要があるため、アクチュエータ膜61の折り返す前の長さを約40ミリメートルとし、伸縮率が2%となるように電圧を印加する。
点字表示システム91は、上記点字表示デバイス90を複数備えた点字表示端末92と、中央処理ユニット(CPU)などの制御指令装置93と、この制御指令装置に接続された駆動信号生成装置94とを備えている。駆動信号生成装置94は、制御指令装置93の指令によって制御され、必要なアクチュエータモジュールに電圧を印加する。このような状態で、点字表示端末92の上面をなぞることで、点字表示された文章を読みとることができる。本発明を用いた点字表示デバイス90は小型で軽量なため、点字表示端末も、小さく、軽いものが実現できる。なお、図9では、通気口の表示を省略した。
図10(A)は実施例2の図7で説明したアクチュエータモジュール70を3×2に並べた点字表示デバイス100を上部から見た様子を示す概念図、(B)は点字表示デバイス100を用いた点字表示システム101の概念図である。点字の仕様を満たすため、アクチュエータモジュールは以下のようにする。
(1)各ピンのピッチを約2.2ミリメートルとするため、アクチュエータモジュールの上から見た幅を0.98ミリメートルにする。
(2)ピンを0.4ミリメートル上下させる必要があるため、アクチュエータ膜71の長さを約4ミリメートルとする。
このようなアクチュエータモジュールを、アクチュエータモジュールの長手方向に交互に1.96ミリメートルずらしながら6個並べることで、任意のアクチュエータモジュールへの電圧印加で点字を表示する、点字表示デバイスとなる。
点字表示システム101は、上記点字表示デバイス100を複数備えた点字表示端末102を備えたこと以外は、点字表示システム91と同じである。アクチュエータモジュール70を用いた点字表示デバイス100は、アクチュエータモジュール60を用いた点字表示デバイス90に比し、薄型で、軽量であるため、点字表示端末102も、薄く、軽いものが実現できる。
(実施例4)
実施例4は、実施例1で説明したアクチュエータ膜の伸縮動作を屈曲動作となるようにしたアクチュエータモジュールについて、図11(A)、(B)を用いて説明する。
図11(A)はアクチュエータモジュール110に電圧を印加する前の状態を斜め上から見た概略図、(B)はアクチュエータモジュール110に電圧を印加したときの状態を斜め上から見た概略図である。アクチュエータモジュール110は、コの字型に成形したアクチュエータ膜111を、同じ形状に成形した絶縁体膜112とずれないように接着し、アクチュエータ膜111の両端に電極113、114を取り付け固定した構造となっている。電極113と114の間に電圧を印加すると、アクチュエータ膜111に電流が流れジュール熱により発熱し、膜が膨張または収縮する。このとき、絶縁体膜112に、アクチュエータ膜111より熱膨張率の小さい材料を使用すると、張り合わせた膜の表面と裏面の膨張率の違いから、張り合わせた膜が反る。
実施例4では、アクチュエータ膜111として、実施例1で述べられている、パーフルオロスルルホン酸コポリマーと炭素微粒子の混合材料からなる厚さ30マイクロメートルの膜を、外形を1センチ四方のコの字型に成形して使用した。絶縁体膜112には、膜厚25マイクロメートルのポリイミドフィルムを使用し、エポキシ接着剤を用いてアクチュエータ膜111と張り合わせた。このアクチュエータモジュール110の電極113と114の間に、15ボルトの電圧を印加すると、膜先端は下方へおよそ3ミリメートル反った。この時の膜先端の変位は、同じサイズの膜を用い同じ電圧を印加した時の、実施例1で説明したアクチュエータ膜で得られる伸縮方向の変位よりはるかに大きい。このように、屈曲型アクチュエータモジュールでは、変位を大きくとることができる。
(実施例5)
実施例5は、実施例4で説明した屈曲型アクチュエータモジュール110を紙などの軽量物を搬送する搬送素子および、光ファイバの光路を切り替える光スイッチ素子に応用する例を提案するものであり、図12から図14を用いて説明する。さらに、実施例2で述べたV字構造アクチュエータモジュールを用いた光スイッチ素子についても図15を用いて説明する。
図12(A)は、実施例4で説明した屈曲型アクチュエータモジュール110を複数個利用した搬送素子120を真上から見た状態と、搬送素子120を動作させるための制御回路を含めた搬送システムの概略図、(B)は搬送素子120を斜め上から見た斜視図である。搬送システムは搬送素子120、信号切替え装置121および電力制御装置122から構成される。搬送素子120は、基板123、屈曲型アクチュエータモジュール110、金属電極124、配線パターン125、電圧入力端子126a、126b、126c、126dで構成され、基板123上に、同じ大きさにそろえた、実施例4で説明した屈曲型アクチュエータモジュール110が4×4のマトリクス状に配置されている。屈曲型アクチュエータモジュール110は列ごとにコの字が同じ方向になり、かつ隣り合う列同士は列に対してコの字の方向が反転するよう配置されている。屈曲型アクチュエータモジュール110のアクチュエータ膜面の両端は基板123上に描かれた金属電極124と電気的に接続されている。また、屈曲型アクチュエータモジュール110の金属電極124と接続される端部で基板123の上面に固着されるとともに、絶縁体膜112の面が基板123の上面側になるように設けられる。屈曲型アクチュエータモジュール110は、金属電極124と配線パターン125により、列ごとに、電気的に並列に接続される。屈曲型アクチュエータモジュール110の一方の端子は列ごとに、電圧入力端子126a、126b、126c、126dに接続され、他方の端子は共通のグラウンド端子129に接続される。電圧入力端子126a、126b、126c、126dはそれぞれスイッチ127a、127b、127c、127dからなる信号切替え装置121を通し電力制御装置122につながっている。
図12に示した配置では、アクチュエータモジュール110が屈曲する際、先端が図11(B)とは逆に、上方(基板123の上面から離れる方向)に変位する。すなわち、図中のz方向とx方向に変位するため、x方向に物質を搬送する。この物質の搬送方法について図13(A)−(E)を用いて説明する。図13(A)−(E)を通して引かれている一点差線は被搬送物130が最初に位置しているときの搬送方向の端面を示す。
図13(A)は基板123上に配置されたアクチュエータ列128a、128b、128c、128dのいずれにも通電していない状態を示している。これら複数のアクチュエータ列の上に被搬送物130が乗っている。図13(B)はスイッチ127bおよび127dがオンになされてアクチュエータ列128bとアクチュエータ列128dに通電した状態を示す。通電されたアクチュエータ列128bおよび128dは上方に屈曲し、物体130はアクチュエータ列128bおよびアクチュエータ列128dによって持ち上げられる。このとき、アクチュエータ先端の変位方向は、z方向とx方向であるので、被搬送物130は持ち上げられ(z方向の変位)とx方向にXだけ移動する。図13(C)は、図13(B)の状態から、スイッチ127aおよび127cがオンになされて、アクチュエータ列128aおよびアクチュエータ列128cにも通電し、アクチュエータ列128bおよびアクチュエータ列128dと同様に上方に屈曲させた状態を示す。このとき、物体130はアクチュエータ列128a、128b、128c、128dの全てで持ち上げられている。図13(D)に示すように、その後、アクチュエータ列128bおよびアクチュエータ列128dの通電を遮断し、被搬送物130をアクチュエータ列128aおよびアクチュエータ列128cによって支える。すなわち、最初にアクチュエータ列128bおよびアクチュエータ列128dで持ち上げた被搬送物130をアクチュエータ列128aおよびアクチュエータ列128cによって支える。図12(E)に示すように、その後、アクチュエータ列128aおよびアクチュエータ列128cへの通電を遮断する。図12(E)は遮断直後の状態を示す。この状態ではアクチュエータ列128aおよびアクチュエータ列128cの屈曲は小さくなり、アクチュエータ先端は−z方向とx方向へ変位する。この先端の変位にしたがって、被搬送物130は基板123の上面に下がるとともに、x方向へ移動する。この結果、被搬送物130の端面は、図13(A)の当初位置からXだけx方向へ移動する。実施例5の搬送システムを使用すれば、図13(A)−(E)に示す過程で被搬送物130をx方向へと搬送させることができ、これを繰り返せば、搬送距離も大きいものとできる。本発明の屈曲型アクチュエータモジュールは軽量で小型化が可能なため、占有面積が小さく軽量な搬送素子を容易に作製することができる。
図13で説明した搬送素子は、紙のような軽量物の搬送に有用であり、したがって、ATMの紙幣の移送、プリンタの紙の移送等にも応用できる。この場合、水平移送だけではないので、例えば、図13で示した搬送素子二つを、搬送経路の両側に対向するように配置して、紙を押さえながら移送するものとすれば、垂直の移送もできる。その際、一方が(A)から(B)の状態になるとき、他方が(D)から(E)の状態になるように、印加電圧のタイミングをずらす必要がある。これは、十分大きな曲率を持たせることができれば、曲面での移送にも対応できることを意味する。
図14は実施例4に示した屈曲型アクチュエータモジュールの他の応用形態である、光ファイバの光路を切り替える、光スイッチ素子を示す概念図である。(A)は屈曲型アクチュエータモジュール110に電圧を印加していない状態の光スイッチ素子の様子を断面図で示し、(B)は、屈曲型アクチュエータモジュール110に電圧を印加して、アクチュエータを屈曲させ、光路を切り替えた状態の光スイッチ素子の様子を断面図で示した図である。
実施例5に示す光スイッチ素子140は、1系統の光入力用光ファイバ141と出力用の2系統の光出力用光ファイバ142a、142bおよび、アクチュエータモジュールに電圧を供給するための電極対143が埋め込まれた容器144と、容器144内部に収容された入力光集光用レンズ145、コリメート用レンズ146a、146b、および、微小ミラー147が接合された実施例4で説明した屈曲型アクチュエータモジュール110から構成される。光スイッチ素子140の電極対143には、アクチュエータモジュールに電圧を供給するための電力制御装置148が接続されている。屈曲型アクチュエータモジュール110は、その両端の電極部分で、容器144に固定されるとともに、電極対143に電気的に接続される。屈曲型アクチュエータモジュール110の、電極とは反対側の端部には微小ミラー147が固定され、アクチュエータの屈曲に伴って、その位置と角度を変える。容器144内部には、光入力用の光ファイバ141と入射される光を集光するレンズ145、入射された光をコリメートして光出力用の光ファイバ142aへ導入するためのレンズ146aおよび光出力用の光ファイバ142aが一直線状になるように配置されている。さらに、屈曲型アクチュエータモジュール110の先端部分に固定されたミラー147で反射された光を光ファイバ142bへ導入するためのレンズ146bと光出力用の光ファイバ142bが直線状に配置されている。
屈曲型アクチュエータモジュール110に電圧を印加する前は、図14(A)に示すように、アクチュエータが直線状になっており、光ファイバ141から入射した光信号は、レンズ145、146aを経て、光ファイバ142aへ導入される。すなわち光ファイバ142aから光信号が出力される。図14(B)に示すように、電力制御装置148から屈曲型アクチュエータモジュール110に電圧を印加すると、屈曲型アクチュエータモジュール110が屈曲して、レンズ145、146aの間の光路にミラー147が挿入され、光ファイバ141から入射された光は、ミラー147で反射されて、レンズ146bを経て、光ファイバ142bへ導入される。すなわち光ファイバ142bから光信号が出力される。光を効率よく光ファイバ142bへ導入するために、ミラー147の角度は正確である必要があるので、容器144の内部の壁面に固定された支持片の適当な位置に小さい電磁石を固定し、ミラーに微小な軟磁性体(鉄、ケイ素鋼など)を固定しておくことによって、ミラーが所望の位置付近まで移動してきた後、ミラーに固定した微小な軟磁性体が電磁石に吸着されて正確な位置に固定する仕組みを備えてもよい。ミラーの位置を戻すときには、屈曲型アクチュエータモジュール110へ印加していた電圧を遮断すると同時に、電磁石のスイッチもオフにして、吸着していた状態から開放すればよい。また、ストッパーなどをつけ、屈曲型アクチュエータモジュール110がある角度以上に屈曲しないような仕組みを備えることもできる。
このようにして、実施例5の光スイッチ素子140を使用すれば、光ファイバ141から入射された光を、光ファイバ142aから光ファイバ142bへと切り替えることができる。本発明の屈曲型アクチュエータモジュールは小型化が可能なため、小型で集積化が可能で、低電圧で駆動する光スイッチを容易に作製することができる。
図15は実施例2に示したV字構造のアクチュエータモジュールの他の応用形態である、光ファイバの光路を切り替える、光スイッチ素子150を示す概念図である。(A)は、V字型アクチュエータモジュール151に電圧を印加していない状態の光スイッチ素子の様子を示す断面図、(B)は、V字型アクチュエータモジュールに電圧を印加して、アクチュエータをたわませ、光路を切り替えた状態の光スイッチ素子の様子を示す断面図である。この光スイッチ150素子はミラー147をつけたアクチュエータモジュール部分以外は図14で述べた光スイッチ140と同じである。光スイッチ150のアクチュエータモジュール151は両端が電極対143に固定され、その中央部には45度に傾けたミラーが取り付けられている。アクチュエータモジュール151に電圧を印加しない状態では光ファイバ141から入力された光信号は、ミラー147により反射され光ファイバ142bに出力される(図15(A))。アクチュエータモジュール151に電圧を印加すると、アクチュエータモジュール151が伸長する。しかしアクチュエータモジュール151の両端は固定されているため、全長の変化分の伸びは垂直方向のたわみとして現れる。すなわち、アクチュエータモジュール151はたわむが、重力により、その中央部につけられたミラー147は、下に移動する。ミラー147が下に移動すると光ファイバ141から入力された光信号は、まっすぐ光ファイバ142aへと出力される。このようにして、実施例5の光スイッチ素子150を使用すれば、光ファイバ141から入射された光を、光ファイバ142bから光ファイバ142aへと切り替えることができる。
(実施例6)
実施例6は、実施例4で説明した屈曲型アクチュエータモジュールおよび実施例1で説明したアクチュエータ膜を利用した医療用チューブについて、図16、図17を用いて説明する。
図16(A)は、医療用チューブであるカテーテル等の可撓管160の縦断面構造の概略図、(B)は、図16(A)のX−X’位置で矢印方向に見た断面構造の概略図、(C)は、可撓管160中の湾曲部161を湾曲させた様子を示す断面構造の概略図、(D)はこの可撓管160を用いた医療用カテーテルシステムの概念図である。
図16(A)に示すように、可撓管160は、軸方向に中央に配置された中空のチューブ162と、チューブ162の周面に設けられた四つのアクチュエータユニット163、これらを覆うカバー164で構成される。可撓管160の先端は外部操作により任意の方向に曲げることのできる湾曲部161となっている。
チューブ162の中空部は観察または処置等に使用される。また、チューブ162は、シリコンゴムやポリウレタンのような、柔軟で弾力性のある材質からできており、外からの力で自由に曲げることができる。カバー164は、チューブ162、および四つのアクチュエータユニット163を覆い、かつ、先端部に開口165が設けられている。
各アクチュエータユニット163は、実施例4に記載の屈曲型アクチュエータモジュール110を直線状にチューブ162の軸方向に複数個つなげたものからなる。屈曲型アクチュエータモジュール110は、それぞれ電極166のある端部と、電極166と反対側の端部の両端部をチューブ162の外周面に固定されている。この際、コの字型に成形され、絶縁体膜112と接合されたアクチュエータ膜111は、図16(A)に示すように、電圧を印加されない状態でややたわんだ状態になるように固定する。さらに、電圧が印加されたときに、このたわみが大きくなるように屈曲型アクチュエータモジュール110の面を選んで固定する。屈曲型アクチュエータモジュール110は、チューブ162の外面に設けられた電極166に接合され、これに接合された柔軟なリード線167を介して、屈曲型アクチュエータモジュールに電圧を印加するための電力制御装置168につながっている。
図16(B)に示すように、アクチュエータユニット163は湾曲部161部分のチューブ162の外周に沿って163a−163dの四つが設けられている。電極166は、図11に示すように、コの字型のアクチュエータ膜の両端部に設けられるので、ここでは、163a,163a,163b,---のように表示した。リード線167は、図16(B)では、図が煩雑になるので、省略した。
実施例6の可撓管160の湾曲部161を曲げるには、湾曲部161部分に取り付けられたアクチュエータユニット163を伸縮させる。すなわち、アクチュエータユニット163aを収縮し、アクチュエータユニット163aの対面に配置されたアクチュエータユニット163cを伸長させると、湾曲部161はアクチュエータユニット163aが内側になるように湾曲する。湾曲部161は、チューブ162の外周に沿ってアクチュエータユニット163を3箇所以上付けることにより、全方向自由に湾曲することができる。図16では4箇所のアクチュエータユニットを備えた場合を示したが、この例では、アクチュエータユニット163a、163bとに同時に同じ電圧をかけると、図16(B)の右45度の角度に撓ませることができる。
このような湾曲を可能にするためにはアクチュエータユニットの変位が大きい必要がある。そのため、実施例6の可撓管160では、アクチュエータユニット163に変位が大きな屈曲型アクチュエータモジュール110を直線状に複数並べたものを使用する。屈曲型アクチュエータモジュール110は、電圧を印加したときに屈曲し、電圧を印加しないと直線状になる。この屈曲に伴う屈曲型アクチュエータモジュール両端の距離の変化は、実施例1で説明したアクチュエータ膜に同じ電圧を印加して伸縮させたときの、アクチュエータ膜両端の距離の変化と比べはるかに大きい。これを利用してアクチュエータユニット163とすることで、アクチュエータユニット163の変位を大きくする。
図16(A)のように可撓管160を直線状とするときは、屈曲型アクチュエータモジュール110がわずかに屈曲している状態となるよう、屈曲型アクチュエータモジュール110を固定する位置を調整する。あるいは、四つのアクチュエータユニットを平面状になるように固定して、それぞれに同じ電圧を印加して、屈曲型アクチュエータモジュール110がわずかに屈曲している状態を実現しても良い。このことにより、各アクチュエータユニット163の長さは同じになり、各屈曲型アクチュエータモジュール110も、チューブ162より張力を受けずに、可撓管160を直線状態に保つことができる。
図16(C)に示すように、可撓管160中のアクチュエータユニット163aに、電力制御装置168から大きな電圧を印加してアクチュエータユニット163aを大きく収縮させ、アクチュエータユニット163cには電圧を印加しないで湾曲部161を湾曲させると上側に向かって屈曲する。可撓管160の屈曲方向と屈曲する角度は、電力制御装置168に対して電圧を印加するアクチュエータユニットと電圧の大きさを指定する信号を与えて制御することができる。
図16(D)はこの可撓管160を用いた医療用カテーテルシステムの概念図である。システムは、可撓管160、電力制御装置168、湾曲操作装置部169からなる。可撓管160は電力制御装置168と電気的に接続されている。電力制御装置168は湾曲操作装置部169に接続されており、可撓管160の屈曲方向と屈曲する角度を指定する湾曲操作装置部169の操作にしたがって、可撓管160中のアクチュエータユニットに電圧を印加し、可撓管160の先端の湾曲部161を湾曲させる。このようにして、この可撓管を、手元で操作し、自由に湾曲させて能動カテーテルとして用いることができる。
次に、本発明のアクチュエータを利用した医療用チューブの別な形態を、図17を用いて説明する。図17(A)は、医療用チューブであるカテーテル等の可撓管170の縦断面構造の概略図、(B)は図17A中に示したX−X’位置で矢印方向に見た断面構造の概略図である。可撓管170は、図16で説明した可撓管160と同様に、軸方向に中央に配置された観察または処置等に使用される中空のチューブ172と、チューブ172の周面に沿って配置された四つのアクチュエータユニット173a−173d、それらを覆うカバー174で構成され、可撓管170の先端には開口175が設けられ、可撓管170の先端部は外部操作により任意の方向に曲げることのできる湾曲部171となっている。
チューブ172は、シリコンゴムやポリウレタンのような、柔軟で弾力性のある材質からなるベースチューブ176と、その先端に接続された湾曲チューブ177からなる。湾曲チューブ177はベースチューブ176より更に柔らかい材質からなり、外部からの力で容易に自由に曲げることができる。
可撓管170と可撓管160の違いは、主にアクチュエータユニットにある。可撓管160は屈曲型アクチュエータモジュールを利用してアクチュエータユニット163の変位を大きくしたが、可撓管170では、屈曲型アクチュエータモジュールの代わりに、実施例1で説明したアクチュエータ膜を利用したアクチュエータユニット173を用いる。しかし、実施例1で説明したアクチュエータ膜は伸縮率が小さい、すなわち、膜の全長に対する膜の変位の割合が小さい。そのため、アクチュエータユニット173を可撓管170の軸方向にそって配置し、全長を長くすることで変位量を大きくしている。
アクチュエータユニット173a−173dは、チューブ172の外側に取り付けられたガイド178a−178dによって束縛されている。これにより、アクチュエータユニット173は、チューブ172の軸方向には可動であるが、半径方向には動きが制限されている。ガイド178a−178dの間隔は、湾曲チューブ177の位置では、ベースチューブ176の位置より短間隔になっている。さらに、アクチュエータユニット173の両端はチューブ172の両端に固定されている。各アクチュエータユニット173の両端は柔軟なリード線167を介して、電力制御装置168から電圧を印加することができる。実施例1で説明したように、電圧を印加されたアクチュエータユニット173は収縮する。したがって、湾曲チューブ177は収縮したアクチュエータユニット173が内側になるように屈曲する。アクチュエータユニット173は湾曲チューブ177の周面に沿って複数個(図17では4個)設けられているため、可撓管170の屈曲させたい方向に応じて電圧を印加するアクチュエータユニット173を決めて、電圧を印加すると、可撓管170の湾曲部171は、可撓管160の場合と同様に、全方向自由に湾曲することができる。したがって、図16(D)で説明したように、電気信号により可撓管170の湾曲部171は自由に湾曲させることができる。
この図17では、アクチュエータ膜1の両端に電極をつけたが、アクチュエータ膜の抵抗が高い場合、電源の電圧が高くなければ十分な動作が期待できない。したがって、アクチュエータ膜の途中に複数電極を取り付け、並列的に動作させるようにすれば、電源電圧が低く抑えられる。
本発明のアクチュエータモジュールは軽量で小型化が可能なため、これを利用して小型、軽量の医療用チューブを容易に作製することができる。
(A)は電圧を印加する前のアクチュエータ材料の状態、(B)は電圧を印加したときのアクチュエータ材料の状態を模式的に示す図である。 (A)、(B)は、図1で説明したようなアクチュエータ材料の通電加熱による変形を使用した本発明のアクチュエータの基本動作について説明する図である。 アクチュエータ膜1の伸縮率と膜に入力された電気エネルギーの関係を示す図である。 (A)−(D)は実施例1のアクチュエータ膜の作製方法の工程を示す概念図である。 アクチュエータ膜を成形する基板の例を示す図である。 (A)、(B)は実施例2のアクチュエータモジュール構造の概念を示す断面図であり、(A)は電圧を印加する前のアクチュエータモジュールの状態の断面図、(B)は電圧を印加したときのアクチュエータモジュールの状態の断面図である。 (A)−(C)はV字構造の利用に係るアクチュエータモジュール構造の形態を示す概念図であり、(A)はV字構造を用いたアクチュエータモジュールの外形を斜め上から見た斜視図、(B)はアクチュエータモジュールに電圧を印加しない状態のピンを下げた状態を表すアクチュエータモジュールの断面図、(C)はアクチュエータモジュールに電圧を印加することでアクチュエータ膜を伸長させ、ピンを上げた状態を表すアクチュエータモジュールの断面図である。 図7に示すアクチュエータモジュールを用いたアクチュエータマトリクスを上部から見た様子を示した概念図である。 実施例2の図6で説明したアクチュエータモジュールを使用した点字表示デバイス90を斜めからみた様子を示す概念図、(B)は点字表示デバイス90を用いた点字表示システムの概念図である。 (A)は実施例2の図7で説明したアクチュエータモジュール70を使用した点字表示デバイス100を上部から見た様子を示す概念図、(B)は点字表示デバイス100を用いた点字表示システム101の概念図である。 (A)、(B)は実施例1で説明したアクチュエータ膜の伸縮動作を屈曲動作となるようにしたアクチュエータモジュールを説明する図であり、(A)はアクチュエータモジュール110に電圧を印加する前の状態を斜め上から見た概略図、(B)はアクチュエータモジュール110に電圧を印加したときの状態を斜め上から見た概略図である。 (A)は、実施例4で説明した屈曲型アクチュエータモジュール110を複数個利用した搬送素子120を真上から見た状態と、搬送素子120を動作させるための制御回路を含めた搬送システムの概略図、(B)は搬送素子120を斜め上から見た斜視図である。 (A)は搬送素子のアクチュエータ列のいずれにも通電していない状態を示す図、(B)はアクチュエータ列128bとアクチュエータ列128dに通電した状態を示す図、(C)は、図13(B)の状態から、アクチュエータ列128aおよびアクチュエータ列128cにも通電した状態を示す図、(D)は、その後、アクチュエータ列128bおよびアクチュエータ列128dの通電を遮断した状態を示す図、(E)は全てのアクチュエータ列の通電を遮断直後の状態を示す図である。 (A)、(B)は、実施例4に示した屈曲型アクチュエータモジュールの他の応用形態を示す図である。 (A)(B)は、実施例2に示したV字構造のアクチュエータモジュールの他の応用形態である、光ファイバの光路を切り替える、光スイッチ素子150を示す概念図である。 (A)は、医療用チューブであるカテーテル等の可撓管160の縦断面構造の概略図、(B)は、図16(A)のX−X’位置で矢印方向に見た断面構造の概略図、(C)は、可撓管160中の湾曲部161を湾曲させた様子を示す断面構造の概略図、(D)はこの可撓管160を用いた医療用カテーテルシステムの概念図である。 (A)は、医療用チューブであるカテーテル等の可撓管170の縦断面構造の概略図、(B)は図17A中に示したX−X’位置で矢印方向に見た断面構造の概略図である。
符号の説明
1…アクチュエータ膜、2…高分子材料、3…導電性微粒子、4…電源、5…スイッチ、6…電極、7…電極、8…負荷、10…アクチュエータ材料、11…高分子、12…溶媒、13…導電性微粒子、14…高分子と導電性微粒子の混合溶液、15…基板、16…高分子と導電性微粒子の混合膜、17…純水、21…基板、22…型、60…アクチュエータモジュール、61…アクチュエータ膜、62…電極、63…電極、64…伸縮性部材、65…容器、66…ピン、70…アクチュエータモジュール、71…アクチュエータ膜、72…電極、73…電極、74…容器、75…孔、76…ふた、77…バネ、78…ピン、90…点字表示デバイス、91…点字表示システム、92…点字表示端末、93…制御指令装置、94…駆動信号生成装置、100…点字表示デバイス、101…点字表示システム、102…点字表示端末、110…屈曲型アクチュエータモジュール、111…アクチュエータ膜、112…絶縁体膜、113…電極、114…電極、120…搬送素子、121…信号切替え装置、122…電力制御装置、123…基板、124…金属電極、125…配線パターン、126a〜d…電圧入力端子、127a〜d…スイッチ、129…グラウンド端子、130…搬送物、140…光スイッチ素子、141…光入力用光ファイバ、142a…光出力用光ファイバ、142b…光出力用光ファイバ、143…電極対、144…容器、145…入力光集光用レンズ、146a…コリメート用レンズ、146b…コリメート用レンズ、147…ミラー、148…電力制御装置、150…光スイッチ、151…アクチュエータモジュール、160…可撓管、161…湾曲部、162…チューブ、163…アクチュエータユニット、164…カバー、165…孔部、166…電極、167…リード線、168…電力制御装置、169…湾曲部操作装置部、170…可撓管、171…湾曲部、172…チューブ、173…アクチュエータユニット、174…カバー、175…孔部、176…ベースチューブ、177…湾曲チューブ、178…ガイド。

Claims (20)

  1. 導電性微粒子と高分子材料の混合物よりなり、通電により膨張あるいは収縮する材料からなる成形物と、
    前記成形物の、前記膨張あるいは収縮する部位の両側に通電用に少なくとも二つの電極を有することを特徴とするアクチュエータ。
  2. 前記成形物が、該成形物に形成された電極間に流れる電流によるジュール熱による発熱に伴う熱膨張、あるいは熱収縮により変形する請求項1記載のアクチュエータ。
  3. 前記アクチュエータの変形量を、前記電極間に印加する電圧を調整することにより制御する請求項1記載のアクチュエータ。
  4. 前記アクチュエータが、アクチュエータの受ける負荷を利用して、アクチュエータの機能を果たすものである請求項1記載のアクチュエータ。
  5. 前記材料の線熱膨張係数が100℃から200℃の温度範囲で0.00001から0.001/K、電気伝導度が100℃から200℃の温度範囲で0.1から1000S/cm、比重が100℃から200℃の温度範囲で0.5から5である請求項1記載のアクチュエータ。
  6. 前記材料の、引張り強度が100℃から200℃の温度範囲で0.3メガパスカルから200メガパスカルである請求項1記載のアクチュエータ。
  7. 前記材料の、線熱膨張係数が100℃から200℃の温度範囲で0.00005から0.0002/Kである請求項1記載のアクチュエータ。
  8. 前記材料の、電気伝導度が100℃から200℃の温度範囲で0.1から100S/cmである請求項1記載のアクチュエータ。
  9. 前記材料の、比重が100℃から200℃の温度範囲で0.5から5である請求項1記載のアクチュエータ。
  10. 前記材料の、引張り強度が100℃から200℃の温度範囲で1メガパスカルから100メガパスカルである請求項1記載のアクチュエータ。
  11. 前記成形物に通電する際に、前記成形物の温度が前記材料のガラス転移温度以下に維持できる電流に制限される請求項1記載のアクチュエータ。
  12. 前記導電性微粒子が、炭素微粒子、白金微粒子、金微粒子、銀微粒子、ニッケル微粒子、銅微粒子、カーボンナノチューブ、あるいはそれらの混合物である微小な導電体である請求項1記載のアクチュエータ。
  13. 前記高分子が、パーフルオロスルホン酸コポリマー、アクリルニトリルーブタジエンースチレン共重合体、アクリル樹脂などのポリメタクリル酸エステル、ポリエチレンテレフタレート、ポリアミド、ポリオキシメチレン、ポリテトラフルオロエチレン、ポリスチレン、ポリカーボネイト、ポリシクロヘキシルエチレンなどのポリアルケン類、ポリアクリル酸、ポリメタクリル酸である、請求項1に記載のアクチュエータ。
  14. 導電性微粒子と高分子材料の混合物よりなり、通電により膨張あるいは収縮する材料からなるアクチュエータ膜と、
    前記アクチュエータ膜の、前記膨張あるいは収縮する部位の両側に通電用に少なくとも二つの電極と、
    を有し、
    前記アクチュエータ膜と二つの電極とが所定の容器に収納されたことを特徴としたアクチュエータモジュール。
  15. 前記アクチュエータ膜の二つの前記電極が前記容器の対向する内面に固定され、
    前記アクチュエータ膜の中央部に負荷が結合されて、前記アクチュエータ膜に常に張力がかかった状態にした請求項14記載のアクチュエータモジュール。
  16. 基板と、
    導電性微粒子と高分子材料の混合物よりなり、通電により膨張あるいは収縮する材料からなるアクチュエータ膜に、該アクチュエータ膜より熱膨張率の小さい材料からなる膜を接合した多層膜と、
    前記アクチュエータ膜の、前記膨張あるいは収縮する部位に通電用に少なくとも二つの電極と、
    を有し、
    前記多層膜の一端が前記基板に固定されたことを特徴とするアクチュエータモジュール。
  17. 前記多層膜が所定の形状に成形されるとともに、複数の多層膜が並列に配置され、且つ並列に配置された多層膜の同一の端部が前記基板上に固定された多層膜列と、
    前記多層膜列と同じ構成の多層膜列を、前記多層膜列と逆向きに配列した多層膜の同一の端部が前記基板上に固定された多層膜列と、
    を並列に配置した請求項16記載のアクチュエータモジュール。
  18. 前記対とされた多層膜列を並列に複数配列して、同一の端部が前記基板上に固定されたそれぞれの多層膜列のアクチュエータ膜に交互に電圧を印加する請求項17記載のアクチュエータモジュール。
  19. 先端部が可撓性に富んだ中空のチューブと、
    該チューブの外面の周囲で、且つ、チューブの軸方向に固定された三つの導電性微粒子と高分子材料の混合物よりなり、通電により膨張あるいは収縮する材料からなるアクチュエータ膜と、
    前記アクチュエータ膜の、前記膨張あるいは収縮する部位の両側に通電用に少なくとも二つの電極と、該電極に接続されるとともに前記チューブの外面に沿わせて設けられたリード線と、
    前記中空のチューブ、アクチュエータ膜、電極およびリード線をカバーする外筒と、
    よりなることを特徴とするアクチュエータモジュール。
  20. 前記中空のチューブの先端部が、チューブの中央部よりも、より可撓性に富むものである請求項19記載のアクチュエータモジュール。
JP2005146337A 2005-05-19 2005-05-19 アクチュエーターおよびアクチュエーターモジュール Expired - Fee Related JP4732798B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005146337A JP4732798B2 (ja) 2005-05-19 2005-05-19 アクチュエーターおよびアクチュエーターモジュール
US11/338,740 US7692361B2 (en) 2005-05-19 2006-01-25 Actuator and material for the actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146337A JP4732798B2 (ja) 2005-05-19 2005-05-19 アクチュエーターおよびアクチュエーターモジュール

Publications (2)

Publication Number Publication Date
JP2006325335A true JP2006325335A (ja) 2006-11-30
JP4732798B2 JP4732798B2 (ja) 2011-07-27

Family

ID=37447712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146337A Expired - Fee Related JP4732798B2 (ja) 2005-05-19 2005-05-19 アクチュエーターおよびアクチュエーターモジュール

Country Status (2)

Country Link
US (1) US7692361B2 (ja)
JP (1) JP4732798B2 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151818A (ja) * 2006-12-14 2008-07-03 Hitachi Ltd 表示装置
JP2009213230A (ja) * 2008-03-03 2009-09-17 Yaskawa Electric Corp アクチュエータ
WO2009154159A1 (ja) * 2008-06-19 2009-12-23 アルプス電気株式会社 アクチュエータアレイ及びこれを用いた入力装置
JP2010029001A (ja) * 2008-07-22 2010-02-04 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041792A (ja) * 2008-08-04 2010-02-18 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041862A (ja) * 2008-08-06 2010-02-18 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041876A (ja) * 2008-08-07 2010-02-18 Eamex Co 高分子アクチュエータ素子およびその駆動方法
JP2010193534A (ja) * 2009-02-13 2010-09-02 Univ Of Yamanashi 積層型高分子アクチュエータ及びその製造方法
JP2011091994A (ja) * 2009-10-22 2011-05-06 Qinghua Univ 電歪複合構造体及びアクチュエータ
JP5167515B2 (ja) * 2007-03-20 2013-03-21 国立大学法人山梨大学 高分子フィルム又は繊維の変形方法及び高分子アクチュエータ
JPWO2011114435A1 (ja) * 2010-03-16 2013-06-27 アルプス電気株式会社 高分子アクチュエータ素子を用いた駆動装置
JP2013256590A (ja) * 2012-06-12 2013-12-26 Seiko Epson Corp 変形材料およびアクチュエーター
JP2013258832A (ja) * 2012-06-12 2013-12-26 Seiko Epson Corp アクチュエーター
KR20140080272A (ko) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 플렉서블 디스플레이 모듈, 그 제조방법 및 이를 구동 제어하는 방법
JP2014153711A (ja) * 2013-02-13 2014-08-25 Samsung Display Co Ltd フレキシブルディスプレイ装置
JP2015073447A (ja) * 2013-10-07 2015-04-20 Towa株式会社 培養装置入り細胞培養プレート
JP5826361B1 (ja) * 2014-07-23 2015-12-02 ツィンファ ユニバーシティ 電熱アクチュエータ
JP2016025839A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱アクチュエータの製造方法
JP2016025838A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱アクチュエータ
JP2016025836A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱複合構造体及び電熱アクチュエータ
JP2018107835A (ja) * 2018-04-05 2018-07-05 株式会社ニコン 撮像ユニットおよび撮像装置
JP2020501480A (ja) * 2016-12-08 2020-01-16 リンテック・オブ・アメリカ・インコーポレイテッド 人工筋肉アクチュエータの改良
RU2762347C2 (ru) * 2017-01-23 2021-12-20 Конинклейке Филипс Н.В. Исполнительное устройство на основе электроактивного материала
WO2022209542A1 (ja) * 2021-04-02 2022-10-06 Eneos株式会社 アクチュエータ素子

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148572A1 (ja) * 2006-06-20 2007-12-27 Panasonic Corporation 高分子アクチュエータ
US8246303B2 (en) * 2008-07-29 2012-08-21 The United States Of America As Represented By The Secretary Of The Navy Active twist hollow beam system
US8721282B2 (en) 2008-07-29 2014-05-13 The United States Of America, As Represented By The Secretary Of The Navy Active twist hollow beam system
CN101814577B (zh) * 2009-02-24 2013-06-05 清华大学 电致伸缩材料及其制备方法以及电热式致动器
JP4777488B2 (ja) * 2009-09-24 2011-09-21 パナソニック株式会社 平板積層型導電性高分子アクチュエータ
US9747813B2 (en) * 2009-11-12 2017-08-29 Apple Inc. Braille mirroring
JP5824791B2 (ja) 2010-08-16 2015-12-02 ソニー株式会社 駆動装置、レンズモジュールおよび撮像装置
WO2012071426A2 (en) * 2010-11-22 2012-05-31 Presidents And Fellows Of Harvard College Bacterial Spore Based Energy System
US20130314587A1 (en) * 2011-02-07 2013-11-28 DigitalOptics Corporation MEMS Multi-State Electrostatic Actuator and Digital Camera Therewith
US9885346B2 (en) 2016-01-05 2018-02-06 Think Surgical, Inc. Matrix controlled shape memory actuator array
BR122022007762B1 (pt) 2016-02-05 2023-03-14 Board Of Regents Of The University Of Texas System Método para a preparação de uma camada de polímero eletrólito com um formato tubular
EP3449122B1 (en) * 2016-04-29 2020-06-03 Lintec of America, Inc. Bi-stable actuator devices
US10697050B2 (en) * 2017-06-30 2020-06-30 Gibson Elliot Shape memory actuator structures and control thereof
US11060512B2 (en) * 2018-09-17 2021-07-13 The Board Of Trustees Of The University Of Illinois Elongate fiber artificial muscles and method of fabrication
US11411166B2 (en) * 2019-05-17 2022-08-09 International Business Machines Corporation Conductive particle interconnect switch
US11946460B1 (en) 2022-12-23 2024-04-02 Raytheon Company Thermal-mechanical linear actuator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241670A (ja) * 1988-07-29 1990-02-09 Shimada Phys & Chem Ind Co Ltd 駆動装置
JPH0617747A (ja) * 1992-07-01 1994-01-25 Kanagawa Kagaku Gijutsu Akad 熱変形素子の熱変形に伴う衝撃力を利用した微小移動装置
JPH0666248A (ja) * 1992-08-20 1994-03-08 Ricoh Co Ltd 移動機構
JPH06257557A (ja) * 1993-03-04 1994-09-13 Nippondenso Co Ltd 熱膨脹型アクチュエータ
JPH07194155A (ja) * 1993-12-28 1995-07-28 Matsushita Electric Works Ltd 駆動装置
JPH10321346A (ja) * 1997-05-23 1998-12-04 Mitake Denshi Kogyo Kk 自己温度調節面状発熱体
JPH10339261A (ja) * 1997-06-10 1998-12-22 Ricoh Co Ltd 駆動方法及び装置
JP2001138298A (ja) * 1999-09-13 2001-05-22 Jds Uniphase Inc Mems熱式アクチュエータ、mems熱式アクチュエータシステムおよびmems熱式アクチュエータの製造方法
JP2002210951A (ja) * 2000-11-30 2002-07-31 Eastman Kodak Co サーマルアクチュエータ
JP2003152234A (ja) * 2001-11-15 2003-05-23 Sony Corp アクチュエータ及びその製造方法
JP2003332027A (ja) * 2002-05-08 2003-11-21 Kinmirai Technos:Kk 発熱体
JP2004350495A (ja) * 2003-04-25 2004-12-09 Eamex Co 湾曲駆動装置及びマイクロデバイス
JP2005039996A (ja) * 2003-07-03 2005-02-10 Eamex Co アクチュエータ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220586A (ja) 1988-07-08 1990-01-24 Komatsu Ltd メカノケミカル材料
JPH02155955A (ja) 1988-12-09 1990-06-15 Fujikura Rubber Ltd 形状記憶樹脂およびその使用方法
JPH02242847A (ja) 1989-03-15 1990-09-27 Toray Ind Inc 自己発熱性を有する形状記憶性樹脂
JP2768869B2 (ja) 1992-06-03 1998-06-25 工業技術院長 アクチュエータ素子
AUPO794797A0 (en) * 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd A device (MEMS07)
JP3131180B2 (ja) 1997-11-27 2001-01-31 利夫 功刀 ピロール系高分子フィルムまたは繊維の高感度電気変形方法
TW487742B (en) * 1999-05-10 2002-05-21 Matsushita Electric Ind Co Ltd Electrode for PTC thermistor, manufacture thereof, and PTC thermistor
WO2001063738A2 (en) * 2000-02-23 2001-08-30 Sri International Electroactive polymer thermal electric generators
US8172998B2 (en) * 2003-08-21 2012-05-08 Virginia Tech Intellectual Properties, Inc. Ionic solvents used in ionic polymer transducers, sensors and actuators
JP2005176412A (ja) * 2003-12-08 2005-06-30 Hitachi Ltd アクチュエータ膜材料、アクチュエータ膜およびこれを用いたアクチュエータ
JP4696662B2 (ja) * 2005-04-26 2011-06-08 株式会社日立製作所 アクチュエータモジュール
JP4732876B2 (ja) * 2005-11-30 2011-07-27 株式会社日立製作所 アクチュエータ、アクチュエータモジュールおよびアクチュエータモジュール製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241670A (ja) * 1988-07-29 1990-02-09 Shimada Phys & Chem Ind Co Ltd 駆動装置
JPH0617747A (ja) * 1992-07-01 1994-01-25 Kanagawa Kagaku Gijutsu Akad 熱変形素子の熱変形に伴う衝撃力を利用した微小移動装置
JPH0666248A (ja) * 1992-08-20 1994-03-08 Ricoh Co Ltd 移動機構
JPH06257557A (ja) * 1993-03-04 1994-09-13 Nippondenso Co Ltd 熱膨脹型アクチュエータ
JPH07194155A (ja) * 1993-12-28 1995-07-28 Matsushita Electric Works Ltd 駆動装置
JPH10321346A (ja) * 1997-05-23 1998-12-04 Mitake Denshi Kogyo Kk 自己温度調節面状発熱体
JPH10339261A (ja) * 1997-06-10 1998-12-22 Ricoh Co Ltd 駆動方法及び装置
JP2001138298A (ja) * 1999-09-13 2001-05-22 Jds Uniphase Inc Mems熱式アクチュエータ、mems熱式アクチュエータシステムおよびmems熱式アクチュエータの製造方法
JP2002210951A (ja) * 2000-11-30 2002-07-31 Eastman Kodak Co サーマルアクチュエータ
JP2003152234A (ja) * 2001-11-15 2003-05-23 Sony Corp アクチュエータ及びその製造方法
JP2003332027A (ja) * 2002-05-08 2003-11-21 Kinmirai Technos:Kk 発熱体
JP2004350495A (ja) * 2003-04-25 2004-12-09 Eamex Co 湾曲駆動装置及びマイクロデバイス
JP2005039996A (ja) * 2003-07-03 2005-02-10 Eamex Co アクチュエータ

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151818A (ja) * 2006-12-14 2008-07-03 Hitachi Ltd 表示装置
JP5167515B2 (ja) * 2007-03-20 2013-03-21 国立大学法人山梨大学 高分子フィルム又は繊維の変形方法及び高分子アクチュエータ
JP2009213230A (ja) * 2008-03-03 2009-09-17 Yaskawa Electric Corp アクチュエータ
WO2009154159A1 (ja) * 2008-06-19 2009-12-23 アルプス電気株式会社 アクチュエータアレイ及びこれを用いた入力装置
JP5127924B2 (ja) * 2008-06-19 2013-01-23 アルプス電気株式会社 アクチュエータアレイを用いた入力装置
JP2010029001A (ja) * 2008-07-22 2010-02-04 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041792A (ja) * 2008-08-04 2010-02-18 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041862A (ja) * 2008-08-06 2010-02-18 Alps Electric Co Ltd 高分子アクチュエータ
JP2010041876A (ja) * 2008-08-07 2010-02-18 Eamex Co 高分子アクチュエータ素子およびその駆動方法
JP2010193534A (ja) * 2009-02-13 2010-09-02 Univ Of Yamanashi 積層型高分子アクチュエータ及びその製造方法
JP2011091994A (ja) * 2009-10-22 2011-05-06 Qinghua Univ 電歪複合構造体及びアクチュエータ
US8536767B2 (en) 2009-10-22 2013-09-17 Tsinghua University Electrostrictive composite and electrostrictive element using the same
JPWO2011114435A1 (ja) * 2010-03-16 2013-06-27 アルプス電気株式会社 高分子アクチュエータ素子を用いた駆動装置
JP5466757B2 (ja) * 2010-03-16 2014-04-09 アルプス電気株式会社 高分子アクチュエータ素子を用いた駆動装置
JP2013256590A (ja) * 2012-06-12 2013-12-26 Seiko Epson Corp 変形材料およびアクチュエーター
JP2013258832A (ja) * 2012-06-12 2013-12-26 Seiko Epson Corp アクチュエーター
KR20140080272A (ko) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 플렉서블 디스플레이 모듈, 그 제조방법 및 이를 구동 제어하는 방법
KR101950847B1 (ko) * 2012-12-20 2019-02-21 엘지디스플레이 주식회사 플렉서블 디스플레이 모듈, 그 제조방법 및 이를 구동 제어하는 방법
JP2014153711A (ja) * 2013-02-13 2014-08-25 Samsung Display Co Ltd フレキシブルディスプレイ装置
JP2015073447A (ja) * 2013-10-07 2015-04-20 Towa株式会社 培養装置入り細胞培養プレート
JP5826361B1 (ja) * 2014-07-23 2015-12-02 ツィンファ ユニバーシティ 電熱アクチュエータ
JP2016025839A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱アクチュエータの製造方法
JP2016025838A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱アクチュエータ
JP2016025836A (ja) * 2014-07-23 2016-02-08 ツィンファ ユニバーシティ 電熱複合構造体及び電熱アクチュエータ
JP2020501480A (ja) * 2016-12-08 2020-01-16 リンテック・オブ・アメリカ・インコーポレイテッド 人工筋肉アクチュエータの改良
US10935009B2 (en) 2016-12-08 2021-03-02 Lintec Of America, Inc. Artificial muscle actuators
US11028835B2 (en) 2016-12-08 2021-06-08 Lintec Of America, Inc. Artificial muscle actuators
US11085426B2 (en) 2016-12-08 2021-08-10 Lintec Of America, Inc. Artificial muscle actuators
US11466671B2 (en) 2016-12-08 2022-10-11 Lintec Of America, Inc. Artificial muscle actuators
US11703037B2 (en) 2016-12-08 2023-07-18 Lintec Of America, Inc. Artificial muscle actuators
RU2762347C2 (ru) * 2017-01-23 2021-12-20 Конинклейке Филипс Н.В. Исполнительное устройство на основе электроактивного материала
US11322675B2 (en) 2017-01-23 2022-05-03 Koninklijke Philips N.V. Actuator device based on an electroactive material
JP2018107835A (ja) * 2018-04-05 2018-07-05 株式会社ニコン 撮像ユニットおよび撮像装置
WO2022209542A1 (ja) * 2021-04-02 2022-10-06 Eneos株式会社 アクチュエータ素子

Also Published As

Publication number Publication date
US7692361B2 (en) 2010-04-06
JP4732798B2 (ja) 2011-07-27
US20060261709A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
JP4732798B2 (ja) アクチュエーターおよびアクチュエーターモジュール
JP4732876B2 (ja) アクチュエータ、アクチュエータモジュールおよびアクチュエータモジュール製造方法
Zhou et al. Polymer MEMS actuators for underwater micromanipulation
US8585109B2 (en) Gripper with carbon nanotube film structure
Wu et al. Fast thermal actuators for soft robotics
Carpi et al. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?
JP5960226B2 (ja) 電熱アクチュエータ
Paik et al. Stretchable circuits and sensors for robotic origami
JP5826361B1 (ja) 電熱アクチュエータ
US10935008B2 (en) Multidirectional artificial muscles from nylon
JP5960225B2 (ja) 電熱複合構造体及び電熱アクチュエータ
Yoshida et al. Multipoint bending and shape retention of a pneumatic bending actuator by a variable stiffness endoskeleton
Cao et al. High-performance low-voltage soft electrothermal actuator with directly printed micro-heater
Sachyani Keneth et al. Pre-programmed tri-layer electro-thermal actuators composed of shape memory polymer and carbon nanotubes
JP5960227B2 (ja) 電熱アクチュエータの製造方法
KR102034002B1 (ko) 디스플레이 장치 및 그 제조 방법
Kim et al. Nanotextured soft electrothermo-pneumatic actuator for constructing lightweight, integrated, and untethered soft robotics
Liu et al. Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications
KR102019209B1 (ko) 소프트 액추에이터
Chen et al. Additive design and manufacturing of a quadruped robot actuated by electrothermal effect of shape memory polymer
Cao et al. Fabrication and self-sensing control of soft electrothermal actuator
Sugiura et al. Characterization of the variable stiffness actuator fabricated of SMA/SMP and MWCNT/IL: PDMS strain-sensitive heater electrode
US20190198748A1 (en) Self-sensing bending actuator
Kamamichi et al. Fabrication of bucky gel actuator/sensor devices based on printing method
Sadasivuni et al. Multi functional and Smart graphene filled polymers as piezoelectrics and actuators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees