JP2006307286A - 金属粉の製造方法及び金属粉の製造装置 - Google Patents

金属粉の製造方法及び金属粉の製造装置 Download PDF

Info

Publication number
JP2006307286A
JP2006307286A JP2005131450A JP2005131450A JP2006307286A JP 2006307286 A JP2006307286 A JP 2006307286A JP 2005131450 A JP2005131450 A JP 2005131450A JP 2005131450 A JP2005131450 A JP 2005131450A JP 2006307286 A JP2006307286 A JP 2006307286A
Authority
JP
Japan
Prior art keywords
gas
reaction
reducing gas
temperature
metal halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005131450A
Other languages
English (en)
Inventor
Akira Kikutake
亮 菊竹
Kazunori Onabe
和憲 尾鍋
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005131450A priority Critical patent/JP2006307286A/ja
Publication of JP2006307286A publication Critical patent/JP2006307286A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】 還元ガス導入管及び原料投入管への金属粉の付着を防止することができ、長時間連続して金属粉を製造することができる金属粉の製造方法及び金属粉の製造装置を提供する。
【解決手段】 気化部2において金属ハロゲン化物11を加熱して気化させた金属ハロゲン化物ガスと還元ガスとを夫々反応部3に供給し、反応部3においてこれらのガスを反応させて金属ハロゲン化物11を還元する際に、金属ハロゲン化ガスと還元ガスとの反応温度がT℃である場合は、反応部3に供給する還元ガスの温度を(T+100)℃以下とする。
【選択図】 図1

Description

本発明は、金属ハロゲン化物のガスを還元して金属粉を得る金属粉の製造方法及びその際使用する金属粉の製造装置に関し、特に、積層セラミックコンデンサの内部電極材料、電子機器部品の導電ペーストフィラー、HDD(Hard Disk Drive:ハードディスクドライブ)等の磁気記録媒体用の磁性粉、及び各種の触媒担体用材料等に好適な金属粉の製造方法及び製造装置に関する。
セラミックスからなる誘電体層と金属からなる内部電極層とを多層化した積層セラミックスコンデンサ(以下、MLCC(Multilayer Ceramic Capacitor)という)は、種々の電子回路基板に設けられており、その内部電極層には、金属粉を焼結したものが使用されている。
このMLCCの静電容量は、積層数が多いほど大きくなる。一方、MLCCは、電子部品としての性質上、小型であることが求められる。これらの相反する事項に応えるためには、各層を薄層化することが必要であり、現在、内部電極の層の厚さは1μm以下になってきている。このため、内部電極用のNi粉末の平均粒径は、1μm以下であることが要求されており、近時、小径化の傾向にますます拍車がかかっている。
一般に、MLCCの製造方法においては、誘電体粉末をスラリー化し、それをフィルム状に塗布することにより作製したセラミックグリーンシートの上に、内部電極層となるペースト状の金属粉を印刷し、それらを積み重ねて圧着した後、焼結する。従って、各層の厚さを薄く且つ均一にするためには、ペースト状金属粉に使用される金属粉は、粒径が小さく且つ粒度分布が狭く粒径が均一であることが求められる。
また、焼結工程を経るため、ペースト状金属粉に使用される金属粉に界面エネルギーが高い粒界が多く存在すると、その界面エネルギーが駆動力となって、誘電体が焼結しないような低い温度でも金属粉の焼結が開始されてしまう。このように、誘電体と金属粉とで焼結開始温度の差が大きいと、デラミネーションと呼ばれる積層構造の破壊が生じる。従って、ペースト状金属粉に使用される金属粉は、結晶性が高いことが望ましい。
従来、このような要求特性を満足する金属粉を製造する方法としては、昇華性がある金属ハロゲン化物のガスを使用した気相水素還元法がある(例えば、特許文献1及び2参照。)。その際使用される金属ハロゲン化物ガスとしては、一般に塩化物ガスが使用されており、例えば、気相水素還元法によりNi粉を製造する場合は、反応容器中で塩化ニッケル(NiCl)ガス等のニッケルハロゲン化物のガスと水素ガスとを化学反応させる方法が知られている。
図2は特許文献1に記載の金属粉製造装置を示す断面図である。図2に示すように、特許文献1に記載の金属粉製造装置101においては、反応器103の気化部106内に設置された気化るつぼ111内に、原料供給器102から原料投入管109を介してNiCl原料が供給される。この原料は、気化部106内で外部加熱部108のコイル113により加熱されて気化し、金属塩化物ガスとなる。この金属粉製造装置101では、2重管構造のキャリアガス導入管110と還元ガス導入管112とが反応器103の上部に挿入されており、キャリアガス導入管110と還元ガス導入管112との間から反応器103内にキャリアガスが供給され、るつぼ111内の原料から気化した塩化物の気化ガスがこのキャリアガスにキャリアされて反応器103の下部の反応部107に供給される。還元ガス導入管112からは、反応管103の反応部107に還元ガスが供給され、加熱部108のコイル114により加熱されつつ、気化ガスは反応部107で還元ガスと反応して還元される。これにより、金属塩化物ガスが還元されて金属粉が得られ、この金属粉は冷却部104で冷却された後、粉末捕集器105の捕集部119内に捕集される。
実用新案登録第2510932号公報 特許第3197454号公報
しかしながら、前述の従来の技術には以下に示す問題点がある。図2に示す従来の製造装置によって金属粉を製造した場合、還元ガス導入管112及び原料投入管109の先端部に金属粉が付着するという問題点がある。これらの管に付着する金属粉の量は、還元ガスと原料である塩化物ガスとの反応量が増加するに従い増加するため、金属粉を多量に製造すると、還元ガス導入管112及び原料投入管109の先端部の形状が経時的に変化してしまう。更に、場合によっては、管先端の開口部が付着した金属粉により閉塞してしまう虞もある。このため、従来の金属粉製造装置では長時間連続運転することは困難である。
本発明はかかる問題点に鑑みてなされたものであって、還元ガス導入管及び原料投入管への金属粉の付着を防止することができ、長時間連続して金属粉を製造することができる金属粉の製造方法及び金属粉の製造装置を提供することを目的とする。
本願第1発明に係る金属粉の製造方法は、金属ハロゲン化物を気化させた金属ハロゲン化物ガスと還元ガスとを反応部に供給し、前記反応部において前記金属ハロゲン化物ガスと前記還元ガスとを反応させて前記金属ハロゲン化物を還元する工程と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記反応部に供給される還元ガスの温度を(T+100)℃以下とすることを特徴とする。
本願第2発明に係る金属粉の製造方法は、気化部において金属ハロゲン化物を加熱して気化させて金属ハロゲン化物ガスを得る工程と、前記金属ハロゲン化物ガスと還元ガスとを反応部に供給し、前記反応部において前記金属ハロゲン化物ガスと還元ガスとを反応させて前記金属ハロゲン化物を還元する工程と、還元反応後のガスを冷却する工程と、冷却後のガスから固化した金属粉を回収する工程と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記反応部に供給される還元ガスの温度を(T+100)℃以下とすることを特徴とする。
本願第1発明及び本願第2発明においては、金属ハロゲン化物ガスと前記還元ガスとの反応温度がT℃である場合、反応部に供給される還元ガスの温度を(T+100)℃以下にしているため、ガス導入口及びその近傍で金属ハロゲン化物ガスと還元ガスとが反応することを抑制することができる。その結果、還元ガス導入管及び原料投入管への金属粉の付着を防止することができ、長時間連続して金属粉を製造することができる。
これらの金属粉の製造方法においては、前記還元ガスの温度を、(T−100)℃以上とすることができる。これにより、高い反応効率を得ることができる。また、前記金属ハロゲン化物として、例えば、金属塩化物を使用してもよい。更に、これらの金属粉の製造方法は、Ni、Cu、Co、Fe、Ag、W、Mo、Nb及びTaからなる群から選択された金属又はこれらの合金からなる金属粉を製造することができる。
本願第3発明に係る金属粉の製造装置は、金属ハロゲン化物を加熱して気化させる気化部と、前記金属ハロゲン化物のガスと還元ガスとを反応させて前記金属ハロゲン化物を還元する反応部と、前記反応部に前記還元ガスを供給する還元ガス供給部と、還元反応後のガスを冷却する冷却部と、冷却後のガスから金属粉を回収する回収装置と、を有し、前記還元ガス供給部は、前記還元ガスを加熱する加熱装置と、加熱された還元ガスの温度を保持する温度保持装置と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記加熱装置により(T+100)℃以下に加熱され、前記温度保持装置によりその温度が保持された還元ガスが、前記反応部に供給されることを特徴とする。
本発明においては、還元ガス供給部に、還元ガスを加熱する加熱装置と、加熱された還元ガスの温度を保持する温度保持装置とを設け、金属ハロゲン化物ガスと還元ガスとの反応温度がT℃である場合に、反応部に供給される還元ガスの温度を(T+100)℃以下にしているため、ガス導入口及びその近傍で金属ハロゲン化物ガスと還元ガスとの反応が生じることを抑制し、還元ガス導入管及び原料投入管への金属粉の付着を防止することができる。このため、長時間連続して金属粉を製造することができる。
この金属粉製造装置における前記反応部に供給される還元ガスの温度は、(T−100)℃以上とすることができる。これにより、金属ハロゲン化物ガスと還元ガスとの反応効率を向上させることができる。
本発明によれば、金属ハロゲン化物ガスと還元ガスとの反応温度がT℃である場合に、反応部に供給する還元ガスの温度を(T+100)℃以下にしているため、ガス導入口及びその近傍で金属ハロゲン化物ガスと還元ガスとが反応することを抑制することができ、還元ガス導入管及び原料投入管への金属粉の付着を防止し、長時間連続して金属粉を製造することができる。
以下、本発明の実施の形態に係る金属粉の製造方法について添付の図面を参照して具体的に説明する。本実施形態の金属粉の製造方法は、金属ハロゲン化物ガスと還元ガスとを反応させることにより金属ハロゲン化物を還元して、純金属粉又は合金粉を製造する方法であり、金属ハロゲン化物を気化させる気化部、気化部において発生した金属ハロゲン化物ガスと還元ガスとを反応させる反応部、反応ガス及び生成した金属粉を冷却する冷却部、並びに金属粉を回収する回収部がこの順に設けられた金属粉製造装置を使用する。
図1は本実施形態の金属粉製造方法で使用する装置を模式的に示す断面図である。図1に示すように、本実施形態の金属粉製造方法で使用される金属粉製造装置1においては、反応管10内の上部に、NiCl等の金属ハロゲン化物11が収納部12内に収納されて設置されている。この収納部12はその上端部に蓋14が設けられており、その内部の金属ハロゲン化物11を封入するようになっている。また、収納部12はその上部に開口部13が設けられており、内部のガスが排出されるようになっている。更に、蓋14にはアルゴン(Ar)ガス等のキャリアガスを収納部12内に導入するためのパイプ15が挿入されている。
この収納部12の略下半部を覆うように収納部12の外面に対して気密的にハウジング16が設けられており、このハウジング16の下面には、3重同心円筒構造の仕切17乃至19がその軸方向を鉛直にして設けられている。ハウジング16と収納部12との間の空間は、中心の仕切17内に連通しており、従って、収納部12から開口13を介してハウジング16内に排出されたガスは、仕切17内を通って反応管内に供給される。また、中心の仕切17と、その外側の仕切18との間の空間には、パイプ20が連通しており、このパイプ20を介してArガス等のシース用ガスが仕切17と仕切18との間の空間に供給される。
更に、仕切18と最外側の仕切19との間の空間には、パイプ21が連通しており、このパイプ21を介して、水素(H)等の還元ガスが仕切18と仕切19との間の空間に供給される。従って、仕切17の内部から、キャリアガスにキャリアされた金属ハロゲン化物ガスが反応管10内に供給され、仕切17と仕切18との間の空間からシース用ガスが反応管10内に供給され、仕切18と仕切19との間の空間から還元ガスが反応管10内に供給される。
また、反応管10よりも手前のパイプ21の外側には、加熱コイル29が配置されている。更に、パイプ21は、その外側に加熱コイル29が配置されている部分から仕切19との連結部までの外面が断熱材30により被覆されている。更にまた、反応管10の上部周面には、Arガス等の加圧用ガスの導入口22が設けられている。これらの収納部12に整合する反応管10の外側及び仕切17乃至19のガス吐出孔近傍に整合する反応管10の外側には、夫々加熱コイル23及び24が設置されている。また、加熱コイル24の下方には、冷却水を循環させて反応管を冷却する冷却装置25が設置されている。
そして、加熱コイル23が設置された反応管内の領域が金属ハロゲン化物12が気化する気化部2、加熱コイル24が設置された反応管内の領域が金属ハロゲン化物ガスと還元ガスとが反応する反応部3、冷却装置25が設置された領域が冷却部4である。また、反応管10の下端には、生成した金属粉を回収する回収部5として、粉体回収容器26が設置されている。この容器26内には、例えば、粉体回収用のバッグ状フィルタ27が設けられており、このバッグ状フィルタ27内に粉末が回収された残りのガスは、排出口28から外部に排出される。
この金属粉製造装置1においては、反応管10は気化部2及び反応部3の一部では直管状(直管部10a)であるが、反応部3の加熱領域の後部から冷却部3の出口に向けて管径が絞られ、反応管10内を通流するガスの通流断面積が反応部の加熱領域の後部から冷却部の出口に向けて小さくなっている(テーパー部10b)。そして、反応管10の下端部の回収装置26との連結部は、径が小さい直管部10dとなっている。この反応管10のガス通流断面積が小さくなっているテーパー部10bは、反応管10の軸心を通る断面において、反応管内面が直管部の内面に対して例えば5°傾くものである。
また、前述の説明から明らかなように、気化部3から反応部の一部まで続く直管部10aと、通流断面積が小さくなるテーパー部10bとの境界10cは、反応部の加熱用コイル24が配置された反応部の加熱領域内にある。更に、この境界10cから下方の反応管内面のテーパー部10bは、管断面において管内面が軸心に対して傾斜してガス通流断面積が次第に小さくなっていればよく、反応管の外面は必ずしも傾斜している必要はない。
次に、上述の如く構成された金属粉製造装置1の動作について説明する。先ず、蓋14を開けて原料の金属ハロゲン化物11を収納部12内に収納し、蓋12を収納部12に設置した後、加圧用ガスを導入口22から反応管10内に導入し、キャリアガス、シース用ガス及び還元ガスを夫々反応管10内に導入する。このとき、還元ガスは、加熱コイル29により、反応温度(T℃)よりも100℃高い温度((T+100)℃)以下の温度に加熱された後、断熱材30によってその温度が保持された状態で反応管10に導入される。
その後、加熱コイル23及び24に通電して、反応管20内の金属ハロゲン化物11の加熱を開始する。この加熱コイル23による気化部2における金属ハロゲン化物11の加熱は、金属塩化物11がNiCl及びCuClの場合は、例えば、1000℃である。金属ハロゲン化物11から気化した気化ガスは、キャリアガスにキャリアされて仕切17から反応管10内の反応部3に導入される。そして、反応管10の内部の反応部3において、加熱コイル24により加熱された状態で、金属ハロゲン化物のガスが還元ガスにより還元されて、金属粉が生成する。この金属粉はキャリアガスにキャリアされて冷却部4に至り、冷却部4にて冷却装置25により冷却される。その後、金属粉は、バッグ状のフィルタ27に塞き止められ、フィルタ27内に回収される。一方、ガスは排出口28から排出される。
そして、本実施形態の金属粉の製造方法においては、上述の金属粉製造装置1を使用し、金属ハロゲン化物と還元ガスとの反応温度がT℃であるとき、反応部3に供給される還元ガスの温度を(T+100)℃以下にして金属粉を製造する。従来の金属粉の製造方法では、一般に、反応部3に供給されるまでの間に、還元ガスの温度が反応部3と同等の温度、即ち、反応温度(T℃)よりも400℃以上高い温度まで上昇していたが、本発明者等は、鋭意実験検討を行った結果、反応部3に供給される還元ガスの温度を(T+100)℃以下にすることにより、還元ガス導入管及び原料投入管の先端部で還元反応が生じることが抑制され、管への金属粉の付着を防止できることを見出した。なお、反応温度(T℃)よりも高い温度でも管への付着が生じないのは、還元ガス導入管及び原料投入管への金属粉の付着に、反応温度以外に反応時間も関与しているためと考えられる。
また、反応部3に供給される還元ガスの温度が(T−100)℃よりも低くなると、金属ハロゲン化物ガスと還元ガスとの反応効率が低下することがある。このため、反応部3に供給される還元ガスの温度は(T−100)℃以上とすることが望ましい。これにより、金属ハロゲン化物ガスと還元ガスとの反応効率を向上させることができる。
本実施形態の金属粉の製造方法においては、断熱材30により還元ガスの温度上昇を防止し、還元ガスの温度を反応温度(T℃)よりも100℃高い温度((T+100)℃)以下に制限しているため、還元ガス導入管及び原料投入管の先端、即ち、仕切17乃至19のガス吐出孔での金属ハロゲン化物ガスと還元ガスとの反応を抑制することができる。その結果、還元ガス導入管及び原料投入管への金属粉の付着を防止することができ、長時間連続して金属粉を製造することができる。
なお、金属ハロゲン化物の還元反応における反応温度T℃は、その反応の標準生成ギブズエネルギΔGを求めることにより、大まかな見当をつけることができる。その方法を金属塩化物(MCl)を水素(H)により還元する場合を例に説明する。先ず、任意の温度T℃における下記化学式1に示す反応系の標準生成ギブズエネルギΔG を求める。
Figure 2006307286
同様に、温度T℃における下記化学式2に示す反応系の標準生成ギブズエネルギΔG を求める。
Figure 2006307286
そして、上記化学式2に示す反応系の標準生成ギブズエネルギΔG と、上記化学式1に示す反応系の標準生成ギブズエネルギΔG との差(ΔG −ΔG )を求めることにより、MClをHにより還元する反応、即ち、温度T℃における下記化学式3に示す反応系の標準生成ギブズエネルギΔG求めることができる。
Figure 2006307286
そして、上述の方法で求めた標準生成ギブズエネルギΔGが負であった場合は、温度T℃では還元反応が進行する。言い換えれば、標準生成ギブズエネルギΔGが正になるような温度下では還元反応は進行しない。また、この方法で金属塩化物を水素還元する場合の反応温度を見積もると、例えば、NiClが550℃、CuClが400℃、AgClが300℃となる。
また、本実施形態の金属粉の製造方法においては図1に示す金属粉製造装置1を使用しているが、本発明はこれに限定されるものではなく、金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃であるとき、反応部に供給される還元ガスの温度が(T+100)℃以下であれば、種々の金属粉製造装置を使用することができる。
更に、本実施形態の金属粉製造方法は、例えば、Ni、Cu、Co、Fe、Ag、W、Mo、Nb及びTaからなる群から選択された金属又はこれらの合金からなる金属粉の製造に適用することができる。
以下、本発明の実施例の効果について本発明の範囲から外れる比較例と比較して説明する。本発明の実施例として、図1に示す装置を使用して、還元ガスの温度を反応温度よりも100℃高い温度以下の範囲で変化させ、下記表1に示す条件でNi粉、Cu粉及びAg粉を製造した。なお、還元ガスにはHガスを使用し、キャリアガス、シース用ガス及び加圧用ガスにはArガスを使用した。
Figure 2006307286
また、比較例として、還元ガスの温度を反応温度より100℃高い温度よりも高くして、それ以外は前述の実施例と同じ条件で、Ni粉、Cu粉及びAg粉を製造した。そして、実施例及び比較例の方法で金属粉を製造した後、ガス導入管に付着した金属粉の量を測定し、金属粉100gあたりの管への付着率を算出した。また、反応に寄与した金属ハロゲン化物量から求めた理論上の金属粉生成量、及び実際に回収した金属粉の量から、実施例及び比較例の製造方法での反応効率を算出した。以上の結果を下記表2にまとめて示す。なお、下記表2に示す金属粉付着率の評価においては、付着率が0%以上1%未満の場合を○、1%以上の場合を×とした。また、反応効率の評価においては、50%以上の場合を○、50%未満の場合を△とした。
Figure 2006307286
上記表2に示すように、還元ガスの温度を(T+100)℃よりも高くした比較例1乃至4においては、金属粉の付着率が2%以上であったのに対して、還元ガス(H)の温度を(T+100)℃以下にした実施例1乃至14は、いずれも金属粉の付着率が低く1%未満であった。特に、還元ガスの温度を反応温度よりも低くした実施例1乃至4、実施例7及び8、並びに実施例11及び12では管への金属粉の付着が全くなく、また、Cu粉については、還元ガスの温度を反応温度と同じにした実施例9においても金属粉の付着は見られなかった。更に、還元ガスの温度を反応温度(T℃)よりも100℃程度低い温度((T−100)℃)以上にした実施例4乃至6、実施例8乃至10及び実施例12乃至14では、50%以上の高い反応効率が得られた。
本発明の実施形態の金属粉製造方法で使用する装置を模式的に示す断面図である。 特許文献1に記載の金属粉製造装置を示す断面図である。
符号の説明
1、101;金属粉製造装置
2、106;気化部
3、107;反応部
4;冷却部
5;回収部
10;反応管
10a、10d;直管部
10b;テーパ部
10c;境界
11;金属ハロゲン化物
12;収納部
13;開口部
14;蓋
15、20、21;パイプ
16;ハウジング
17〜19;仕切
22;ガス導入口
23、24、29、113、114;コイル
25;冷却装置
26;回収装置
27;バッグ状フィルタ
28;排出口
30;断熱材
102;原料供給器
103;反応器
104;冷却器
105;粉末補集器
108;外部加熱部
109;原料投入管
110;キャリアガス導入管
111;るつぼ
112;還元ガス導入管
115;補集部

Claims (7)

  1. 金属ハロゲン化物を気化させた金属ハロゲン化物ガスと還元ガスとを反応部に供給し、前記反応部において前記金属ハロゲン化物ガスと前記還元ガスとを反応させて前記金属ハロゲン化物を還元する工程と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記反応部に供給される還元ガスの温度を(T+100)℃以下とすることを特徴とする金属粉の製造方法。
  2. 気化部において金属ハロゲン化物を加熱して気化させて金属ハロゲン化物ガスを得る工程と、前記金属ハロゲン化物ガスと還元ガスとを反応部に供給し、前記反応部において前記金属ハロゲン化物ガスと還元ガスとを反応させて前記金属ハロゲン化物を還元する工程と、還元反応後のガスを冷却する工程と、冷却後のガスから固化した金属粉を回収する工程と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記反応部に供給される還元ガスの温度を(T+100)℃以下とすることを特徴とする金属粉の製造方法。
  3. 前記還元ガスの温度を、(T−100)℃以上とすることを特徴とする請求項1又は2に記載の金属粉の製造方法。
  4. 前記金属ハロゲン化物は、金属塩化物であることを特徴とする請求項1乃至3のいずれか1項に記載の金属粉の製造方法。
  5. Ni、Cu、Co、Fe、Ag、W、Mo、Nb及びTaからなる群から選択された金属又はこれらの合金からなる金属粉を製造することを特徴とする請求項1乃至4のいずれか1項に記載の金属粉の製造方法。
  6. 金属ハロゲン化物を加熱して気化させる気化部と、前記金属ハロゲン化物のガスと還元ガスとを反応させて前記金属ハロゲン化物を還元する反応部と、前記反応部に前記還元ガスを供給する還元ガス供給部と、還元反応後のガスを冷却する冷却部と、冷却後のガスから金属粉を回収する回収装置と、を有し、前記還元ガス供給部は、前記還元ガスを加熱する加熱装置と、加熱された還元ガスの温度を保持する温度保持装置と、を有し、前記金属ハロゲン化物ガスと前記還元ガスとの反応温度をT℃としたとき、前記加熱装置により(T+100)℃以下に加熱され、前記温度保持装置によりその温度が保持された還元ガスが、前記反応部に供給されることを特徴とする金属粉の製造装置。
  7. 前記反応部に供給される還元ガスの温度が(T−100)℃以上であることを特徴とする請求項6に記載の金属粉の製造装置。
JP2005131450A 2005-04-28 2005-04-28 金属粉の製造方法及び金属粉の製造装置 Pending JP2006307286A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131450A JP2006307286A (ja) 2005-04-28 2005-04-28 金属粉の製造方法及び金属粉の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131450A JP2006307286A (ja) 2005-04-28 2005-04-28 金属粉の製造方法及び金属粉の製造装置

Publications (1)

Publication Number Publication Date
JP2006307286A true JP2006307286A (ja) 2006-11-09

Family

ID=37474500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131450A Pending JP2006307286A (ja) 2005-04-28 2005-04-28 金属粉の製造方法及び金属粉の製造装置

Country Status (1)

Country Link
JP (1) JP2006307286A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189411A1 (ja) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 金属塩化物生成装置、および金属粉体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189411A1 (ja) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 金属塩化物生成装置、および金属粉体の製造方法
JP6591129B1 (ja) * 2018-03-30 2019-10-16 東邦チタニウム株式会社 金属塩化物生成装置、および金属粉体の製造方法
TWI698399B (zh) * 2018-03-30 2020-07-11 日商東邦鈦股份有限公司 金屬氯化物生成裝置及金屬粉體之製造方法
KR20200131875A (ko) * 2018-03-30 2020-11-24 도호 티타늄 가부시키가이샤 금속 염화물 생성 장치 및 금속 분체의 제조 방법
KR102445498B1 (ko) 2018-03-30 2022-09-21 도호 티타늄 가부시키가이샤 금속 염화물 생성 장치 및 금속 분체의 제조 방법

Similar Documents

Publication Publication Date Title
US7658995B2 (en) Nickel powder comprising sulfur and carbon, and production method therefor
JP5936091B2 (ja) 炭素被覆金属粉末、炭素被覆金属粉末を含有する導電性ペースト及びそれを用いた積層電子部品、並びに炭素被覆金属粉末の製造方法
CN103128302B (zh) 金属粉末制造用等离子装置
US6563695B1 (en) Powdered tantalum, niobium, production process thereof, and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium
TWI548752B (zh) 用於氫氣儲存之鎳合金及自其之能量產生
WO2013084650A1 (ja) 金属粉末製造用プラズマ装置
KR20090026512A (ko) 아크 플라즈마 장치를 이용한 니켈 나노분말의 제조방법 및장치
KR101689491B1 (ko) 니켈 분말, 도전 페이스트 및 적층 세라믹 전자 부품
TWI599659B (zh) 鎳合金粉末及其製造方法
JP2005281712A (ja) 金属粉末、その製造方法及び製造装置
US20230415232A1 (en) Method for producing nickel nanopowder and nickel nanopowder produced using same
WO2020168582A1 (zh) 直接还原金属化合物制备金属或合金粉末的装置和方法
JP2006307286A (ja) 金属粉の製造方法及び金属粉の製造装置
US3248612A (en) Capacitor electrode and method
WO2003099491A1 (fr) Procede et dispositif servant a la production d'une poudre metallique
JP6591129B1 (ja) 金属塩化物生成装置、および金属粉体の製造方法
JP3929985B2 (ja) 金属粉製造装置
JP2005240076A (ja) 酸化物含有ニッケル粉末の製造方法
KR102642963B1 (ko) 기상합성법을 이용한 금속 나노분말의 제조방법
JP2009013456A (ja) ニッケル合金粉末の製造方法
JP2006083461A (ja) 金属粉の製造装置及び金属粉の製造方法
JP4075214B2 (ja) 積層セラミックコンデンサー電極用ニッケル粉末の製造方法および製造装置
KR102392507B1 (ko) 니켈 미세분말 제조장치 및 방법 및 금속 미세분말 제조장치 및 방법
JP2007063607A (ja) 金属粉の製造方法及び装置
JP2006188726A (ja) 金属粉の製造装置及び金属粉の製造方法