JP2006293334A - 反射防止フィルム、偏光板、及び画像表示装置 - Google Patents
反射防止フィルム、偏光板、及び画像表示装置 Download PDFInfo
- Publication number
- JP2006293334A JP2006293334A JP2006068075A JP2006068075A JP2006293334A JP 2006293334 A JP2006293334 A JP 2006293334A JP 2006068075 A JP2006068075 A JP 2006068075A JP 2006068075 A JP2006068075 A JP 2006068075A JP 2006293334 A JP2006293334 A JP 2006293334A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- group
- antireflection
- compound
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polarising Elements (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
【課題】高速塗布においても面状故障が少なく、さらに安定して低反射率であり、耐殺傷性に優れた反射防止フィルムを提供する。更には優れた反射防止フィルムを備えた偏光板、画像表示装置を提供する。
【解決手段】支持体2上に乾燥時の膜厚が3〜20μmであり、かつ表面配向性の化合物を含有する1層のハードコート層4があり、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層5が塗布されており、該反射防止層が中空シリカ微粒子6を含有する反射防止フィルム。
【選択図】図1
【解決手段】支持体2上に乾燥時の膜厚が3〜20μmであり、かつ表面配向性の化合物を含有する1層のハードコート層4があり、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層5が塗布されており、該反射防止層が中空シリカ微粒子6を含有する反射防止フィルム。
【選択図】図1
Description
本発明は、反射防止フィルム、反射防止フィルムを用いた偏光板、および光学機能フィルム、反射防止フィルムを備えた画像表示装置に関する。
陰極管表示装置(CRT)、プラズマディスプレイ(PDP)エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、透明支持体上に透明なハードコート層と呼ばれる層を設けたフィルムをディスプレイ画像面に貼り付けることがほとんどである。昨今は、ディスプレイ画像の背景の映り込みを防止し、視認性を向上するために防眩性を有したフィルムや、反射防止能を有したフィルムが用いられている。
防眩性のフィルムは、外光を乱反射させるためにフィルム表面(ハードコート層表面の場合が多い)に意図的に凹凸が形成されたものであり、また反射防止能のあるフィルムは、反射によるコントラスト低下や像の映り込みを防止するために、ハードコート層の表面にそれより低屈折率な薄膜を設け、光学干渉の原理を用いて反射率を低減したものである。防眩性と反射防止能の両方の機能を備えた透明フィルムも上市されている。
そういった反射防止フィルムや防眩性の反射防止フィルムは、ディスプレイの最表面に配置されるため、商品価値上、そのフィルムの面状の均一性と、耐擦傷性が要求される。
耐擦傷性は、一般的にハードコート層の膜厚が大きい方が有利なため、ハードコート層の塗布量を多くすればよい。ところが、塗布液量が多いためにハードコート層の表面に、乾燥過程のムラが発生するという問題があった。
そういった反射防止フィルムや防眩性の反射防止フィルムは、ディスプレイの最表面に配置されるため、商品価値上、そのフィルムの面状の均一性と、耐擦傷性が要求される。
耐擦傷性は、一般的にハードコート層の膜厚が大きい方が有利なため、ハードコート層の塗布量を多くすればよい。ところが、塗布液量が多いためにハードコート層の表面に、乾燥過程のムラが発生するという問題があった。
特許文献1、及び2には、フルオロ脂肪族基を含有する共重合体をハードコート層に添加すると、乾燥過程の面状故障を防止する技術が開示されている。
一方、反射防止フィルムの反射防止層には低屈折率を達成するためにフッ素系の素材が使用されるが、そのものでは膜強度が足らないため、反射防止層にコロイダルシリカを併用して耐擦傷性を付与することがすでに知られており、例えば特許文献3が挙げられる。また、粒子内部に空洞を有する中空シリカ粒子について、特許文献4に開示されている。
特開2004−163610号公報
特開2004−331812号公報
特開2002−131507号公報
特開2001−233611号公報
一方、反射防止フィルムの反射防止層には低屈折率を達成するためにフッ素系の素材が使用されるが、そのものでは膜強度が足らないため、反射防止層にコロイダルシリカを併用して耐擦傷性を付与することがすでに知られており、例えば特許文献3が挙げられる。また、粒子内部に空洞を有する中空シリカ粒子について、特許文献4に開示されている。
面状故障を防止し、耐擦傷性に優れた反射防止フィルムを得るために、フルオロ脂肪族基を含有する共重合体などの表面配向性の化合物を添加したハードコート層上にコロイダルシリカを含む反射防止層塗布液を薄層塗布すると、意外なことに耐擦傷性が悪化し、さらに反射率が上昇してしまうという2次的な問題があることがわかった。
本発明の目的は、高速塗布においても面状故障が少なく、さらに安定して低反射率であり、耐殺傷性に優れた反射防止フィルムを提供することにある。
本発明のさらなる他の目的は、前述の優れた反射防止フィルムを備えた偏光板、あるいは該偏光板を備えた画像表示装置を提供することにある。
本発明の目的は、高速塗布においても面状故障が少なく、さらに安定して低反射率であり、耐殺傷性に優れた反射防止フィルムを提供することにある。
本発明のさらなる他の目的は、前述の優れた反射防止フィルムを備えた偏光板、あるいは該偏光板を備えた画像表示装置を提供することにある。
フルオロ脂肪族基を含有する共重合体などの表面配向性の化合物を添加し、表面配向性
の化合物が配向したハードコート層上に、コロイダルシリカを含む反射防止層塗布液を薄層塗布すると、表面配向性の化合物に影響され、コロイダルシリカがミクロな凝集を起こすことがわかった。面内にコロイダルシリカの凝集物が不均一分布すると、反射防止層の厚みが一定せず、また、屈折率が均一でないために、反射率が上昇してしまうことがわかった。
また、反射防止層内にコロイダルシリカの凝集物が不均一分布すると、反射防止層の膜強度が均一でないため、耐擦傷性が悪化することもわかった。
さらにコロイダルシリカ粒子のミクロな凝集による反射防止層の凹凸は、フィルムの反射色を変化させ、ムラ状に見えるため、好ましくない印象を与える。
そこで本発明者は、鋭意検討の結果、通常のコロイダルシリカに替えて、粒子の表面及び/又は内部に空孔を有する中空シリカを用いたところ凝集を防止できることがわかった。
また、表面配向性の化合物は、反射防止層を塗布する前は、ハードコート層表面に配向しているが、反射防止層の塗布液膜の乾燥過程で反射防止層の溶媒に溶け出し、表面配向性の化合物が反射防止層に含有される場合には、非常に好ましいレベルで中空シリカ粒子の凝集を防ぐことができた。
の化合物が配向したハードコート層上に、コロイダルシリカを含む反射防止層塗布液を薄層塗布すると、表面配向性の化合物に影響され、コロイダルシリカがミクロな凝集を起こすことがわかった。面内にコロイダルシリカの凝集物が不均一分布すると、反射防止層の厚みが一定せず、また、屈折率が均一でないために、反射率が上昇してしまうことがわかった。
また、反射防止層内にコロイダルシリカの凝集物が不均一分布すると、反射防止層の膜強度が均一でないため、耐擦傷性が悪化することもわかった。
さらにコロイダルシリカ粒子のミクロな凝集による反射防止層の凹凸は、フィルムの反射色を変化させ、ムラ状に見えるため、好ましくない印象を与える。
そこで本発明者は、鋭意検討の結果、通常のコロイダルシリカに替えて、粒子の表面及び/又は内部に空孔を有する中空シリカを用いたところ凝集を防止できることがわかった。
また、表面配向性の化合物は、反射防止層を塗布する前は、ハードコート層表面に配向しているが、反射防止層の塗布液膜の乾燥過程で反射防止層の溶媒に溶け出し、表面配向性の化合物が反射防止層に含有される場合には、非常に好ましいレベルで中空シリカ粒子の凝集を防ぐことができた。
以上により、本発明に至った。
すなわち、本発明は以下のとおりである。
1.支持体上に乾燥時の膜厚が3〜20μmであり、かつ表面配向性の化合物を含有する少なくとも1層のハードコート層があり、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層が塗布されており、該反射防止層が中空シリカ微粒子を含有することを特徴とする反射防止フィルム。
すなわち、本発明は以下のとおりである。
1.支持体上に乾燥時の膜厚が3〜20μmであり、かつ表面配向性の化合物を含有する少なくとも1層のハードコート層があり、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層が塗布されており、該反射防止層が中空シリカ微粒子を含有することを特徴とする反射防止フィルム。
2.支持体上に乾燥時の膜厚が3〜20μmである少なくとも1層のハードコート層を有し、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層を有し、該反射防止層が中空シリカ微粒子を含有し、さらに表面配向性の化合物が該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含有されることを特徴とする反射防止フィルム。
3.前記表面配向性の化合物が、フッ素原子を有する化合物であることを特徴とする前記1又は2に記載の反射防止フィルム。
4.前記表面配向性の化合物が、フルオロ脂肪族基を有する化合物であることを特徴とする前記3に記載の反射防止フィルム。
5.前記表面配向性の化合物が、炭素数7以下のフルオロ脂肪族基を有する化合物であることを特徴とする前記4に記載の反射防止フィルム。
4.前記表面配向性の化合物が、フルオロ脂肪族基を有する化合物であることを特徴とする前記3に記載の反射防止フィルム。
5.前記表面配向性の化合物が、炭素数7以下のフルオロ脂肪族基を有する化合物であることを特徴とする前記4に記載の反射防止フィルム。
6.前記ハードコート層が中心線平均粗さ(Ra)値0.1〜0.3μmである凹凸な表面を有することを特徴とする前記1〜5に記載の防眩性の反射防止フィルム。
7.前記支持体と前記ハードコート層の間に帯電防止層が塗設されていることを特徴とする前記1〜6に記載の反射防止フィルム。
7.前記支持体と前記ハードコート層の間に帯電防止層が塗設されていることを特徴とする前記1〜6に記載の反射防止フィルム。
8.前記1〜7のいずれかに記載の反射防止フィルムが、偏光板における偏光子2枚の保護フィルムのうち一方に用いられていることを特徴とする偏光板。
9.前記1〜7のいずれかに記載の反射防止フィルム、及び前記8に記載の偏光板のうち少なくとも一つが、ディスプレイの最表面に用いられていることを特徴とする画像表示装置。
9.前記1〜7のいずれかに記載の反射防止フィルム、及び前記8に記載の偏光板のうち少なくとも一つが、ディスプレイの最表面に用いられていることを特徴とする画像表示装置。
本発明の反射防止フィルムは、反射防止層のシリカ粒子の凝集がないため、十分な反射
防止性を有しながら耐傷性に優れ、フィルムの反射色も均一である。
また、塗布速度を上げても面状が良好であり、前述の性能が悪化することがないため、フィルム製造の生産性が向上する。
更に、本発明の反射防止フィルムを備えた画像表示装置、並びに本発明の反射防止フィルムを用いた偏光板を備えた画像表示装置は、外光の映り込みや背景の映りこみが少なく、極めて視認性が高い。
防止性を有しながら耐傷性に優れ、フィルムの反射色も均一である。
また、塗布速度を上げても面状が良好であり、前述の性能が悪化することがないため、フィルム製造の生産性が向上する。
更に、本発明の反射防止フィルムを備えた画像表示装置、並びに本発明の反射防止フィルムを用いた偏光板を備えた画像表示装置は、外光の映り込みや背景の映りこみが少なく、極めて視認性が高い。
本発明の実施の一形態として、反射防止フィルムの基本的な構成について図面を参照しながら説明する。なお、本明細書において、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。
図1(a)に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、三種類の機能層(帯電防止層3、ハードコート層4、反射防止層5)、の順序の層構成を有する。帯電防止層3は、必須態様ではないが、帯電防止能を付与する目的で好ましい態様である。ハードコート層4には、マット粒子6があってもよく、その場合は防眩性を付与する。(以下では防眩性を付与したハードコート層を防眩性ハードコート層ともいう)防眩性ハードコート層4において、マット粒子6以外の部分については素材の屈折率は1.50〜2.00の範囲にあることが好ましく、反射防止層5の屈折率は1.30〜1.44の範囲にあることが好ましい。(以下、反射防止層を単に低屈折率層ともいう)
図1(a)に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、三種類の機能層(帯電防止層3、ハードコート層4、反射防止層5)、の順序の層構成を有する。帯電防止層3は、必須態様ではないが、帯電防止能を付与する目的で好ましい態様である。ハードコート層4には、マット粒子6があってもよく、その場合は防眩性を付与する。(以下では防眩性を付与したハードコート層を防眩性ハードコート層ともいう)防眩性ハードコート層4において、マット粒子6以外の部分については素材の屈折率は1.50〜2.00の範囲にあることが好ましく、反射防止層5の屈折率は1.30〜1.44の範囲にあることが好ましい。(以下、反射防止層を単に低屈折率層ともいう)
さらに、反射防止層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(m/4)×0.7<n1d1<(m/4)×1.3
式中、mは正の奇数であり、n1は反射防止層の屈折率であり、そして、d1は反射防止層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。なお、上記数式(I)を満たすとは、上記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
数式(I)
(m/4)×0.7<n1d1<(m/4)×1.3
式中、mは正の奇数であり、n1は反射防止層の屈折率であり、そして、d1は反射防止層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。なお、上記数式(I)を満たすとは、上記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
図1(b)に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、各々の機能層(ハードコート層3、中屈折率層7、高屈折率層8)、反射防止層(最外層)5の順序の層構成を有する。透明支持体2、中屈折率層7、高屈折率層8および低屈折率層5は、以下の関係を満足する屈折率を有する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>反射防止層の屈折率
図1(b)のような層構成では、特開昭59−50401号公報に記載されているように、中屈折率層が下記数式(II)、高屈折率層が下記数式(III)、反射防止層が下記数式(IV)をそれぞれ満足することがより優れた反射防止性能を有する反射防止フィルムを作製できる点で好ましい。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>反射防止層の屈折率
図1(b)のような層構成では、特開昭59−50401号公報に記載されているように、中屈折率層が下記数式(II)、高屈折率層が下記数式(III)、反射防止層が下記数式(IV)をそれぞれ満足することがより優れた反射防止性能を有する反射防止フィルムを作製できる点で好ましい。
数式(II)
(hλ/4)×0.7<n1d1<(hλ/4)×1.3
数式(II)中、hは正の整数(一般に1、2または3)であり、n1は中屈折率層の
屈折率であり、そして、d1は中屈折率層の層厚(nm)である。λは可視光線の波長(
nm)であり、380〜680nmの範囲の値である。
数式(III)
(iλ/4)×0.7<n2d2<(iλ/4)×1.3
数式(III)中、iは正の整数(一般に1、2または3)であり、n2は高屈折率層
の屈折率であり、そして、d2は高屈折率層の層厚(nm)である。λは可視光線の波長
(nm)であり、380〜680nmの範囲の値である。
(hλ/4)×0.7<n1d1<(hλ/4)×1.3
数式(II)中、hは正の整数(一般に1、2または3)であり、n1は中屈折率層の
屈折率であり、そして、d1は中屈折率層の層厚(nm)である。λは可視光線の波長(
nm)であり、380〜680nmの範囲の値である。
数式(III)
(iλ/4)×0.7<n2d2<(iλ/4)×1.3
数式(III)中、iは正の整数(一般に1、2または3)であり、n2は高屈折率層
の屈折率であり、そして、d2は高屈折率層の層厚(nm)である。λは可視光線の波長
(nm)であり、380〜680nmの範囲の値である。
数式(IV)
(jλ/4)×0.7<n3d3<(jλ/4)×1.3
数式(IV)中、jは正の奇数(一般に1)であり、n3は反射防止層の屈折率であり
、そして、d3は反射防止層の層厚(nm)である。λは可視光線の波長(nm)であり
、380〜680nmの範囲の値である。
(jλ/4)×0.7<n3d3<(jλ/4)×1.3
数式(IV)中、jは正の奇数(一般に1)であり、n3は反射防止層の屈折率であり
、そして、d3は反射防止層の層厚(nm)である。λは可視光線の波長(nm)であり
、380〜680nmの範囲の値である。
図1(b)のような層構成では、中屈折率層が下記数式(V)、高屈折率層が下記数式(VI)、反射防止層が下記数式(VII)をそれぞれ満足することが、特に好ましい。ここで、λは500nm、hは1、iは2、jは1である。
数式(V)
(hλ/4)×0.80<n1d1<(hλ/4)×1.00
数式(VI)
(iλ/4)×0.75<n2d2<(iλ/4)×0.95
数式(VII)
(jλ/4)×0.95<n3d3<(jλ/4)×1.05
数式(V)
(hλ/4)×0.80<n1d1<(hλ/4)×1.00
数式(VI)
(iλ/4)×0.75<n2d2<(iλ/4)×0.95
数式(VII)
(jλ/4)×0.95<n3d3<(jλ/4)×1.05
なお、ここで記載した高屈折率、中屈折率、低屈折率とは層相互の相対的な屈折率の高低をいう。また、図1(b)では、高屈折率層を光干渉層として用いており、極めて優れた反射防止性能を有する反射防止フィルムを作製できる。
本発明において、請求項1と請求項2でいうところの表面配向性の化合物とは、同じ定義のものであり、ハードコート層に添加したとき、ハードコート層表面に配向する性質のある化合物を指す。
表面配向性の化合物の膜内分布は、ハードコート層の表面、又はその断面、反射防止層の表面、又はその断面について、TOF−SIMS又はμ−ESCAの測定により、知ることができる。断面については、必要に応じてミクロトームを用いて表面に対して低角度の斜め切削した断面であってもよい。
表面配向性の化合物の膜内分布は、ハードコート層の表面、又はその断面、反射防止層の表面、又はその断面について、TOF−SIMS又はμ−ESCAの測定により、知ることができる。断面については、必要に応じてミクロトームを用いて表面に対して低角度の斜め切削した断面であってもよい。
測定の具体的方法については、特開2004−219261号に記載された薄膜の解析方法を使用することができる。
本発明は上記の測定を行い、表面配向性の化合物が該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含有することを確認することができる。
本発明は上記の測定を行い、表面配向性の化合物が該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含有することを確認することができる。
表面配向性の化合物としては、具体的には、フッ素原子を有する化合物、又はシリコーン系の化合物が好ましい。特にフッ素原子を有する化合物が表面配向性に優れ、面状改良効果が著しいため好ましい。
さらに、表面配向性の化合物は、オリゴマーもしくはポリマーであることが好ましく、その質量平均分子量(以下、単に分子量ともいう)は、3000以上10万以下であることが好ましく、5000以上5万以下であることがより好ましく、1万以上3万以下であることが最も好ましい。
ここで、分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量である。
分子量は300以上の成分のピーク面積から算出した。
ここで、分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量である。
分子量は300以上の成分のピーク面積から算出した。
本発明の表面配向性の化合物として好ましいフッ素原子を有する化合物の中で、フルオロ脂肪族基を有する化合物が好ましく、さらには、シリカ粒子の凝集を防止するためには、炭素数7以下のフルオロ脂肪族基を有する化合物であることがより好ましく、炭素数6以下のフルオロ脂肪族基を有する化合物であることが最も好ましい。
また、本発明でいうフルオロ脂肪族基は、パーフルオロアルキル基またはCF2H−基
を有するフルオロアルキル基であることが好ましい。
また、本発明でいうフルオロ脂肪族基は、パーフルオロアルキル基またはCF2H−基
を有するフルオロアルキル基であることが好ましい。
本発明の反射防止フィルムにおいて、フルオロ脂肪族基を有する化合物は、共重合体であることが好ましく、さらにフルオロ脂肪族基含有モノマーの重合単位を10質量%以上100質量%以下含むことが好ましい。(以下、フルオロ脂肪族基を有する共重合体を「フッ素系ポリマー」と略記することもある)
フルオロ脂肪族基がパーフルオロアルキル基である場合は、フルオロ脂肪族基含有モノマーの重合単位を10質量%以上70質量%以下含むことがより好ましく、20質量%以上50質量%以下含むことが最も好ましい。
フルオロ脂肪族基がCF2H−基を有するフルオロアルキル基である場合は、フルオロ
脂肪族基含有モノマーの重合単位を40質量%以上100質量%以下含むことがより好ましく、50質量%以上100質量%以下含むことが最も好ましい。
フルオロ脂肪族基がパーフルオロアルキル基である場合は、フルオロ脂肪族基含有モノマーの重合単位を10質量%以上70質量%以下含むことがより好ましく、20質量%以上50質量%以下含むことが最も好ましい。
フルオロ脂肪族基がCF2H−基を有するフルオロアルキル基である場合は、フルオロ
脂肪族基含有モノマーの重合単位を40質量%以上100質量%以下含むことがより好ましく、50質量%以上100質量%以下含むことが最も好ましい。
本発明の一つにおいて、表面配向性の化合物は該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含有される。
表面配向性の化合物は、ハードコート層に添加されたものであっても、反射防止層の塗布液溶媒に溶け出す等により、該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含まれることになることが最も好ましい。
具体的には、表面配向性の化合物はハードコート層の塗布液に添加して用いても良く、また、反射防止層の溶媒に表面配向性の化合物と親和性の高い溶媒を用いる等により、ハードコート層に含ませた表面配向性の化合物をハードコート層と反射防止層との界面や反射防止層に拡散させても良い。
表面配向性の化合物は、ハードコート層に添加されたものであっても、反射防止層の塗布液溶媒に溶け出す等により、該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含まれることになることが最も好ましい。
具体的には、表面配向性の化合物はハードコート層の塗布液に添加して用いても良く、また、反射防止層の溶媒に表面配向性の化合物と親和性の高い溶媒を用いる等により、ハードコート層に含ませた表面配向性の化合物をハードコート層と反射防止層との界面や反射防止層に拡散させても良い。
更に、本発明で用いられる表面配向性の化合物の好ましい添加量は、添加による効果の発現、乾燥、および面状故障の発生の抑制などの観点から、塗布液の質量に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。
フルオロ脂肪族基を有する共重合体としては、下記(i)のモノマーに相当する繰り返し単位(重合単位)および下記(ii)のモノマーに相当する繰り返し単位(重合単位)を含むアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。このような単量体としては、PolymerHandbook2nd ed.,J.Brandrup,Wiley lnterscience(1975)Chapter 2,Page 1〜483記載のものを用いることが出来る。
例えばアクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等をあげることができる。
例えばアクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等をあげることができる。
(i)下記一般式1で表されるフルオロ脂肪族基含有モノマー
一般式1
上記一般式1において、R1は水素原子、ハロゲン原子またはメチル基を表し、水素原
子、メチル基が好ましい。Xは酸素原子、イオウ原子または−N(R12)−を表し、酸素原子または−N(R12)−がより好ましく、酸素原子が更に好ましい。R12は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。Rfは−CF3または−CF2Hを表す。
一般式1中のmは1〜6の整数を表し、1〜3がより好ましく、1であることが更に好ましい。
一般式1中のnは1〜11」の整数を表し、1〜9がより好ましく、1〜6が更に好ましい。Rfは−CF2Hが好ましい。
またフッ素系ポリマー中に一般式1で表されるフルオロ脂肪族基含有モノマーから誘導される重合単位が2種類以上構成成分として含まれていても良い。
子、メチル基が好ましい。Xは酸素原子、イオウ原子または−N(R12)−を表し、酸素原子または−N(R12)−がより好ましく、酸素原子が更に好ましい。R12は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。Rfは−CF3または−CF2Hを表す。
一般式1中のmは1〜6の整数を表し、1〜3がより好ましく、1であることが更に好ましい。
一般式1中のnは1〜11」の整数を表し、1〜9がより好ましく、1〜6が更に好ましい。Rfは−CF2Hが好ましい。
またフッ素系ポリマー中に一般式1で表されるフルオロ脂肪族基含有モノマーから誘導される重合単位が2種類以上構成成分として含まれていても良い。
(ii)上記(i)と共重合可能な下記一般式2で示されるモノマー
一般式2
上記一般式2において、R13は水素原子、ハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Yは酸素原子、イオウ原子または−N(R15)−を表し、酸素原子または−N(R15)−がより好ましく、酸素原子が更に好ましい。R15は水素原子または炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。
R14は、置換基を有しても良い炭素数1〜60の直鎖、分岐、あるいは環状のアルキル基、または置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。該アルキル基はポリ(アルキレンオキシ)基を含んでも良い。炭素数1〜12の直鎖、分岐あるいは環状のアルキル基、炭素数5〜40のポリ(アルキレンオキシ)基を
含むアルキル基または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基および炭素数炭素数5〜30のポリ(アルキレンオキシ)基を含むアルキル基が極めて好ましい。以下にポリ(アルキレンオキシ)基について説明する。
R14は、置換基を有しても良い炭素数1〜60の直鎖、分岐、あるいは環状のアルキル基、または置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。該アルキル基はポリ(アルキレンオキシ)基を含んでも良い。炭素数1〜12の直鎖、分岐あるいは環状のアルキル基、炭素数5〜40のポリ(アルキレンオキシ)基を
含むアルキル基または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基および炭素数炭素数5〜30のポリ(アルキレンオキシ)基を含むアルキル基が極めて好ましい。以下にポリ(アルキレンオキシ)基について説明する。
ポリ(アルキレンオキシ)基は(OR)xで表すことができ、Rは2〜4個の炭素原子を有するアルキレン基、例えば−CH2CH2−、−CH2CH2CH2−、−CH(CH3)CH2−、または−CH(CH3)CH(CH3)−であることが好ましい。xは2〜30
を表し、2〜20が好ましく、4〜15がさらに好ましい。
を表し、2〜20が好ましく、4〜15がさらに好ましい。
前記のポリ(オキシアルキレン)基中のオキシアルキレン単位はポリ(オキシプロピレン)におけるように同一であってもよく、また互いに異なる2種以上のオキシアルキレンが不規則に分布されたものであっても良く、直鎖または分岐状のオキシプロピレンまたはオキシエチレン単位であったり、または直鎖または分岐状のオキシプロピレン単位のブロック及びオキシエチレン単位のブロックのように存在するものであっても良い。
このポリ(オキシアルキレン)鎖は1つまたはそれ以上の連鎖結合(例えば−CONH−Ph−NHCO−、−S−など:Phはフェニレン基を表す)で連結されたものも含むことができる。連鎖の結合が3つまたはそれ以上の原子価を有する場合には、これは分岐鎖のオキシアルキレン単位を得るための手段を供する。またこの共重合体を本発明に用いる場合には、ポリ(オキシアルキレン)基の分子量は250〜3000が適当である。
ポリ(オキシアルキレン)アクリレート及びメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名“プルロニック”[Pluronic](旭電化工業(株)製)、アデカポリエーテル(旭電化工業(株)製)“カルボワックス[Carbowax(グリコ・プロダクス)]、”トリトン“[Toriton(ローム・アンド・ハース(Rohm and Haas製))およびP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。別に、公知の方法で製造したポリ(オキシアルキレン)ジアクリレート等を用いることもできる。
ポリ(オキシアルキレン)アクリレート及びメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名“プルロニック”[Pluronic](旭電化工業(株)製)、アデカポリエーテル(旭電化工業(株)製)“カルボワックス[Carbowax(グリコ・プロダクス)]、”トリトン“[Toriton(ローム・アンド・ハース(Rohm and Haas製))およびP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。別に、公知の方法で製造したポリ(オキシアルキレン)ジアクリレート等を用いることもできる。
本発明で用いられるフッ素系ポリマーの製造に用いられる上記一般式1で示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの単量体全量に基づいて、10質量%以上であり、好ましくは50質量%以上であり、より好ましくは70〜100質量%であり、さらに好ましくは80〜100質量%の範囲である。
以下、本発明によるフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。
なお、式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。
なお、式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。
本発明の反射防止フィルムにおいて機能層(防眩性ハードコート層、光拡散層、高屈折率層、ハードコート層等)および低屈折率層を形成するための塗布液に用いる溶媒について以下に説明する。
塗布溶媒は、例えば、沸点が100℃以下の溶媒としては、ヘキサン(沸点68.7℃、以下「℃」を省略する)、ヘプタン(98.4)、シクロヘキサン(80.7)、ベンゼン(80.1)などの炭化水素類、ジクロロメタン(39.8)、クロロホルム(61.2)、四塩化炭素(76.8)、1,2−ジクロロエタン(83.5)、トリクロロエチレン(87.2)などのハロゲン化炭化水素類、ジエチルエーテル(34.6)、ジイソプロピルエーテル(68.5)、ジプロピルエーテル(90.5)、テトラヒドロフラン(66)などのエーテル類、ギ酸エチル(54.2)、酢酸メチル(57.8)、酢酸エチル(77.1)、酢酸イソプロピル(89)などのエステル類、アセトン(56.1)、2−タノン(=メチルエチルケトン、79.6)などのケトン類、メタノール(64.5)、エタノール(78.3)、2−プロパノール(82.4)、1−プロパノール(97.2)などのアルコール類、アセトニトリル(81.6)、プロピオニトリル(97.4)などのシアノ化合物類、二硫化炭素(46.2)、などがある。
沸点が100℃を越える溶媒としては、例えば、オクタン(125.7)、トルエン(110.6)、キシレン(138)、テトラクロロエチレン(121.2)、クロロベンゼン(131.7)、ジオキサン(101.3)、ジブチルエーテル(142.4)、酢酸イソブチル(118)、シクロヘキサノン(155.7)、2−メチル−4−ペンタノン(=MIBK、115.9)、1−タノール(117.7)、N,N−メチルホルムアミド(153)、 N,N−メチルアセトアミド(166)、ジメチルスルホキシド(189)、などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。
これらのうちケトン類、芳香族炭化水素類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。
ケトン系溶剤を用いる場合、単独および混合のいずれでもよく、混合のときはケトン系溶媒の含有量が塗布組成物に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
ケトン系溶剤を用いる場合、単独および混合のいずれでもよく、混合のときはケトン系溶媒の含有量が塗布組成物に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
本発明の反射防止フィルムにおいて、機能層および低屈折率層成分を前述の組成の溶媒で希釈することにより、それらの層用塗布液が調製される。塗布液濃度は、塗布液の粘度、層素材の比重などを考慮して適宜調節されることが好ましいが、0.1〜80質量%が好ましく、より好ましくは1〜60質量%である。
また各々の機能層の溶媒は同一組成であってもよいし、異なっていてもよい。
また各々の機能層の溶媒は同一組成であってもよいし、異なっていてもよい。
以下に、本発明の各層について説明する。
[ハードコート層]
本発明のハードコート層について以下に説明する。
ハードコート層は、ハードコート性を付与するためのバインダーを通常用い、必用に応じて、防眩性を付与するためのマット粒子、および高屈折率化、架橋収縮防止、高強度化のための無機フィラー、から形成される。
本発明において、ハードコート層の乾燥時の膜厚は3〜20μmであるが、さらに3〜10μmが好ましく、4〜10μmが最も好ましい。ハードコート層と支持体の間に帯電防止層を設ける場合には、ハードコート層の膜厚は4〜10μが好ましく。帯電防止層を設けない場合は、5〜20μが好ましく、8〜20μが最も好ましい。
本発明のハードコート層について以下に説明する。
ハードコート層は、ハードコート性を付与するためのバインダーを通常用い、必用に応じて、防眩性を付与するためのマット粒子、および高屈折率化、架橋収縮防止、高強度化のための無機フィラー、から形成される。
本発明において、ハードコート層の乾燥時の膜厚は3〜20μmであるが、さらに3〜10μmが好ましく、4〜10μmが最も好ましい。ハードコート層と支持体の間に帯電防止層を設ける場合には、ハードコート層の膜厚は4〜10μが好ましく。帯電防止層を設けない場合は、5〜20μが好ましく、8〜20μが最も好ましい。
バインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマー(バインダー前駆体)の重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子
、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマー(バインダー前駆体)の重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子
、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4−ビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止フィルムを形成することができる。
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−アルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類が挙げられる。
アセトフェノン類の例には、2,2−エトキシアセトフェノン、p−メチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。
アセトフェノン類の例には、2,2−エトキシアセトフェノン、p−メチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。
ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−クロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
活性エステル類の例には1、2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。具体的には特開2000−80068記載の実施例記載化合物1〜21が特
に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号明細書の段落番号[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。
に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号明細書の段落番号[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。
活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan”42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号、M.P.Hutt,“Journal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS−トリアジンやオキサチアゾール化合物が知られており、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−スチリルフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(3−Br−4−ジ(エチル酢酸エステル)アミノ)フェニル−4,6−ビス(トリクロルメチル)−s−トリアジン、2−トリハロメチル−5−(p−メトキシフェニル)−1,3,4−オキサジアゾールが含まれる。具体的には特開昭58−15503のp14〜p30、特開昭55−77742のp6〜p10、特公昭60−27673のp287記載のNo.1〜No.8、特開昭60−239736のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,819、907、1870(CGI−403/Irg184=7/3混合開始剤、500,369,1173,2959,4265,4263など)、OXE01)等、日本化薬(株)製のKAYACURE(DETX−S,BP−100,BDMK,CTX,BMS,2−EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等及びそれらの組み合わせが好ましい例として挙げられる。
光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒ
ドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾービスーイソブチロニトリル、2−アゾービスープロピオニトリル、2−アゾ−ビスーシクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒ
ドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾービスーイソブチロニトリル、2−アゾービスープロピオニトリル、2−アゾ−ビスーシクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止フィルムを形成することができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止フィルムを形成することができる。
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。また、ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。
ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。また、ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。
ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
硬化膜の硬化収縮低減のためには、以下で述べるエポキシ系化合物を用いることが好ましい。これらのエポキシ基を有するモノマー類としては、1分子中にエポキシ基を2基以上有するモノマーが好ましく、これらの例としては特開2004−264563号、同2004−264564号、同2005−37737号、同2005−37738号、同2005−140862号、同2005−140862号、同2005−140863号、同2002−322430号等に記載されているエポキシ系モノマー類が挙げられる。
エポキシ基を有するモノマー類は層を構成する全バインダーに対して20〜100質量%含有することが硬化収縮低減のために好ましく、35〜100質量%含有することがより好ましく、50〜100質量%含有することがさらに好ましい。
エポキシ基を有するモノマー類は層を構成する全バインダーに対して20〜100質量%含有することが硬化収縮低減のために好ましく、35〜100質量%含有することがより好ましく、50〜100質量%含有することがさらに好ましい。
エポキシ系モノマー、化合物類を重合させるための、光の作用によってカチオンを発生させる光酸発生剤としては、トリアリールスルホニウム塩やジアリールヨードニウム塩などのイオン性の化合物やスルホン酸のニトロベンジルエステルなどの非イオン性の化合物等が挙げられ、有機エレクトロニクス材料研究会編、「イメージング用有機材料」ぶんしん出版社刊(1997)などに記載されている化合物等種々の公知の光酸発生剤が使用できる。この中で特に好ましくはスルホニウム塩もしくはヨードニウム塩であり、対イオンとしてはPF6 −、SbF6 −、AsF6 −、B(C6F5)4 −などが好ましい。
これら重合開始剤は、多官能モノマー類100質量部に対して、重合開始剤総量で0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
(高分子化合物)
本発明に係る光学機能層は、高分子化合物を含有してもよい。高分子化合物は塗布組成
物に添加する時点で既に重合体を形成しており、主として樹脂粒子の分散安定性(凝集性)に関わる塗布組成物の粘度調整や、乾燥過程での固化物の極性を制御して樹脂粒子の凝集挙動を変えたり、乾燥過程での乾燥ムラを減じたりする目的で含有される。
本発明に係る光学機能層は、高分子化合物を含有してもよい。高分子化合物は塗布組成
物に添加する時点で既に重合体を形成しており、主として樹脂粒子の分散安定性(凝集性)に関わる塗布組成物の粘度調整や、乾燥過程での固化物の極性を制御して樹脂粒子の凝集挙動を変えたり、乾燥過程での乾燥ムラを減じたりする目的で含有される。
高分子化合物は、例えばセルロースエステル類(例えば、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースナイトレート等)、ウレタンアクリレート類、ポリエステルアクリレート類、(メタ)アクリル酸エステル類(例えば、メタクリル酸メチル/(メタ)アクリル酸メチル共重合体、メタクリル酸メチル/(メタ)アクリル酸エチル共重合体、メタクリル酸メチル/(メタ)アクリル酸ブチル共重合体、メタクリル酸メチル/スチレン共重合体、メタクリル酸メチル/(メタ)アクリル酸共重合体、ポリメタクリル酸メチル等)、ポリスチレン等の樹脂が好ましく用いられる。
高分子化合物は、塗布組成物の粘度増加効果の発現及び含有層の膜強度維持観点から、高分子化合物を含有する層に含む全バインダーに対して、好ましくは3質量%〜40質量%、より好ましくは5質量%〜30質量%、さらに好ましくは8質量%〜25質量%の範囲で含有することが好ましい。含有率がこれより低いと塗布組成物の粘度増加効果が少なく、逆に多すぎると含有層の膜強度が劣る。
また、高分子化合物の分子量は質量平均で0.3万〜40万が好ましく、0.5万〜30万がより好ましく、0.5万〜20万がさらに好ましい。分子量がこの範囲であると、塗布組成物の粘度増加効果が十分発現し、溶解時間が短時間であり、しかも不溶解物も少ない。
また、高分子化合物の分子量は質量平均で0.3万〜40万が好ましく、0.5万〜30万がより好ましく、0.5万〜20万がさらに好ましい。分子量がこの範囲であると、塗布組成物の粘度増加効果が十分発現し、溶解時間が短時間であり、しかも不溶解物も少ない。
本発明において、外光の映りこみを防止するために防眩性を付与する場合は、ハードコート層は、中心線平均粗さ(Ra)値が0.1〜0.3μmである凹凸面を有することが好ましく、さらに0.15〜0.3μmであることがより好ましい。
ディスプレイ画像の鮮鋭性を優先するために防眩性を付与しない場合は、ハードコート層は、中心線平均粗さ(Ra)値が0.1μm未満であることが好ましく、さらに0.08μm以下であることがより好ましく、0.06μm以下であることが最も好ましい。
中心線平均粗さ値は、市販の表面粗さ計で測定することができる。
ディスプレイ画像の鮮鋭性を優先するために防眩性を付与しない場合は、ハードコート層は、中心線平均粗さ(Ra)値が0.1μm未満であることが好ましく、さらに0.08μm以下であることがより好ましく、0.06μm以下であることが最も好ましい。
中心線平均粗さ値は、市販の表面粗さ計で測定することができる。
防眩性ハードコート層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が1〜10μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子が含有される。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の
粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、真球あるいは不定形のいずれも使用できる。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の
粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、真球あるいは不定形のいずれも使用できる。
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、ギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与するマット粒子より小さな粒子径で、バインダーの屈折率と異なるマット粒子を併用することにより大きく改善することができる。
さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましく、各粒
子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
上記マット粒子は、形成された防眩性ハードコート層中のマット粒子量が好ましくは10〜2000mg/m2、より好ましくは100〜1400mg/m2となるように防眩性ハードコート層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
防眩性ハードコート層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた防眩性ハードコート層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
防眩性ハードコート層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITOとSiO2等が挙げられる。
TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、防眩性ハードコート層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた防眩性ハードコート層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
防眩性ハードコート層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITOとSiO2等が挙げられる。
TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、防眩性ハードコート層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
本発明の防眩性ハードコート層のバインダーおよび無機フィラーの混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
樹脂粒子とバインダーである透光性樹脂との間の屈折率差はフィルムの白濁が生じないこと、または品種によっては光拡散効果を得る観点から、0〜0.1が好ましく、0〜0.08であることが特に好ましい。
樹脂粒子は、異なる2種以上の樹脂粒子を併用して用いてもよい。2種類以上の樹脂粒子を用いる場合には、複数種類の粒子の混合による屈折率制御を効果的に発揮するために、最も屈折率の高い樹脂粒子と最も屈折率の低い樹脂粒子との間の屈折率の差が0.01〜0.10以下であることが好ましく、0.02以上、0.07以下であることが特に好ましい。
樹脂粒子は、異なる2種以上の樹脂粒子を併用して用いてもよい。2種類以上の樹脂粒子を用いる場合には、複数種類の粒子の混合による屈折率制御を効果的に発揮するために、最も屈折率の高い樹脂粒子と最も屈折率の低い樹脂粒子との間の屈折率の差が0.01〜0.10以下であることが好ましく、0.02以上、0.07以下であることが特に好ましい。
本発明において用いることのできる層構成の好ましい態様として、支持体/帯電防止層/ハードコート層/低屈折率層の層構成を挙げることができる。反射防止フイルム表面の抵抗を下げるには、ハードコート層に以下に述べる通電材料を添加することが好ましい。
導電性微粒子としては、カーボン系、金属系、金属酸化物系、導電被覆系微粒子等が挙げられる。
カーボン系微粒子としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等のカーボン粉末、PAN系炭素繊維、ピッチ系炭素繊維等のカーボン繊維、膨張化黒鉛粉砕品のカーボンフレーク等が挙げられる。
金属系微粒子としては、アルミニウム、銅、金、銀、ニッケル、クロム、鉄、モリブデン、チタン、タングステン、タンタル等の金属、及び、それらの金属を含有する合金の粉末や、金属フレーク、鉄、銅、ステンレス、銀メッキ銅、黄銅等の金属繊維等が挙げられる。
導電被覆系微粒子としては、例えば、酸化チタン(球状、針状)、チタン酸カリウム、ホウ酸アルミニウム、硫酸バリウム、マイカ、シリカ等の各種微粒子表面を、酸化錫、ATO、ITO等の導電材で被覆した導電性微粒子;金及び/又はニッケルなどの金属や金属酸化物で表面処理されたポリスチレン、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリウレタン樹脂、メラミン樹脂、ホルムアルデヒド樹脂等の樹脂ビーズなどが好ましい。これらは非導電材の外表面に金属又は金属酸化物の導電性部分を形成してなる粒子であり、粒子内部に対して表面の方が導電性が高いという特徴を有している。表面処理に用いるものとしては金属及び金属酸化物であり、金属であることが好ましい。またその中でも導電性が高く、安定な金属である金、銀又はニッケルが好ましく、金であることが最も好ましい。
カーボン系微粒子としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等のカーボン粉末、PAN系炭素繊維、ピッチ系炭素繊維等のカーボン繊維、膨張化黒鉛粉砕品のカーボンフレーク等が挙げられる。
金属系微粒子としては、アルミニウム、銅、金、銀、ニッケル、クロム、鉄、モリブデン、チタン、タングステン、タンタル等の金属、及び、それらの金属を含有する合金の粉末や、金属フレーク、鉄、銅、ステンレス、銀メッキ銅、黄銅等の金属繊維等が挙げられる。
導電被覆系微粒子としては、例えば、酸化チタン(球状、針状)、チタン酸カリウム、ホウ酸アルミニウム、硫酸バリウム、マイカ、シリカ等の各種微粒子表面を、酸化錫、ATO、ITO等の導電材で被覆した導電性微粒子;金及び/又はニッケルなどの金属や金属酸化物で表面処理されたポリスチレン、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリウレタン樹脂、メラミン樹脂、ホルムアルデヒド樹脂等の樹脂ビーズなどが好ましい。これらは非導電材の外表面に金属又は金属酸化物の導電性部分を形成してなる粒子であり、粒子内部に対して表面の方が導電性が高いという特徴を有している。表面処理に用いるものとしては金属及び金属酸化物であり、金属であることが好ましい。またその中でも導電性が高く、安定な金属である金、銀又はニッケルが好ましく、金であることが最も好ましい。
[高屈折率層]
本発明の反射防止フィルムでは、より良い反射防止能を付与するために、高屈折率層を好ましく用いることができる。
本発明の反射防止フィルムでは、より良い反射防止能を付与するために、高屈折率層を好ましく用いることができる。
<二酸化チタンを主成分とする無機微粒子>
本発明の高屈折率層には、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子を含有する。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明の高屈折率層の屈折率は屈折率1.55〜2.40であり、いわゆる高屈折率層あるいは中屈折率層といわれている層であるが、以下の本明細書では、この層を高屈折率層と総称して呼ぶことがある。
本発明における二酸化チタンを主成分とする無機微粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
二酸化チタンを主成分とする無機微粒子の一次粒子の質量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
本発明の高屈折率層には、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子を含有する。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明の高屈折率層の屈折率は屈折率1.55〜2.40であり、いわゆる高屈折率層あるいは中屈折率層といわれている層であるが、以下の本明細書では、この層を高屈折率層と総称して呼ぶことがある。
本発明における二酸化チタンを主成分とする無機微粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
二酸化チタンを主成分とする無機微粒子の一次粒子の質量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
無機微粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。無機微粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
二酸化チタンを主成分とする無機微粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
二酸化チタンを主成分とする無機微粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
二酸化チタンを主成分とする無機微粒子に、Co、Al及びZrから選ばれる少なくとも1つの元素を含有することで、二酸化チタンが有する光触媒活性を抑えることができ、本発明の高屈折率層の耐候性を改良することができる。
特に、好ましい元素はCoである。また、2種類以上を併用することも好ましい。
Tiに対するCo、Al又はZrの含有量は、それぞれTiに対して0.05〜30質量%であることが好ましく、より好ましくは0.1〜10質量%、さらに好ましくは0.2〜7質量%、特に好ましくは0.3〜5質量%、最も好ましくは0.5〜3質量%である。
特に、好ましい元素はCoである。また、2種類以上を併用することも好ましい。
Tiに対するCo、Al又はZrの含有量は、それぞれTiに対して0.05〜30質量%であることが好ましく、より好ましくは0.1〜10質量%、さらに好ましくは0.2〜7質量%、特に好ましくは0.3〜5質量%、最も好ましくは0.5〜3質量%である。
Co、Al及びZrは、二酸化チタンを主成分とする無機微粒子の内部と表面の少なくともいずれかに存在させることができるが、二酸化チタンを主成分とする無機微粒子の内部に存在させることが好ましく、内部と表面の両方に存在することが最も好ましい。
Co、Al、Zrを二酸化チタンを主成分とする無機微粒子の内部に存在させる(例えば、ドープする)には、種々の手法がある。例えば、イオン注入法(Vol.18,No.5,pp.262−268,1998;青木 康)や、特開平11−263620号公報、特表平11−512336号公報、ヨーロッパ特許出願公開第0335773号明細書、特開平5−330825号公報に記載の手法があげられる。
Co、Al、Zrを二酸化チタンを主成分とする無機微粒子の内部に存在させる(例えば、ドープする)には、種々の手法がある。例えば、イオン注入法(Vol.18,No.5,pp.262−268,1998;青木 康)や、特開平11−263620号公報、特表平11−512336号公報、ヨーロッパ特許出願公開第0335773号明細書、特開平5−330825号公報に記載の手法があげられる。
二酸化チタンを主成分とする無機微粒子の粒子形成過程において、Co、Al、Zrを導入する手法(例えば、特表平11−512336号公報、ヨーロッパ特許出願公開第0335773号明細書、特開平5−330825号公報に記載)が特に好ましい。
Co、Al、Zrは、酸化物として存在することも好ましい。二酸化チタンを主成分とする無機微粒子には、目的により、さらに他の元素を含むこともできる。他の元素は、不純物として含んでいてもよい。他の元素の例には、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Mg、Si、PおよびSが含まれる。
Co、Al、Zrは、酸化物として存在することも好ましい。二酸化チタンを主成分とする無機微粒子には、目的により、さらに他の元素を含むこともできる。他の元素は、不純物として含んでいてもよい。他の元素の例には、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Mg、Si、PおよびSが含まれる。
本発明に用いる二酸化チタンを主成分とする無機微粒子は表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、コバルトを含有する無機化合物(CoO2,Co2O3,Co3O4など)、アルミニ
ウムを含有する無機化合物(Al2O3,Al(OH)3など)、ジルコニウムを含有する
無機化合物(ZrO2,Zr(OH)4など)、ケイ素を含有する無機化合物(SiO2な
ど)、鉄を含有する無機化合物(Fe2O3など)などが含まれる。
コバルトを含有する無機化合物、アルミニウムを含有する無機化合物、ジルコニウムを含有する無機化合物が特に好ましく、コバルトを含有する無機化合物、Al(OH)3、
Zr(OH)4が最も好ましい。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。特に後記一般式5で表されるシランカップリング剤(オルガノシラン化合物)、その部分加水分解物、およびその縮合物の少なくとも一種で表面処理されていることが好ましい。一般式5で表されるシランカップリング剤は、後に詳しく説明する。
ウムを含有する無機化合物(Al2O3,Al(OH)3など)、ジルコニウムを含有する
無機化合物(ZrO2,Zr(OH)4など)、ケイ素を含有する無機化合物(SiO2な
ど)、鉄を含有する無機化合物(Fe2O3など)などが含まれる。
コバルトを含有する無機化合物、アルミニウムを含有する無機化合物、ジルコニウムを含有する無機化合物が特に好ましく、コバルトを含有する無機化合物、Al(OH)3、
Zr(OH)4が最も好ましい。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。特に後記一般式5で表されるシランカップリング剤(オルガノシラン化合物)、その部分加水分解物、およびその縮合物の少なくとも一種で表面処理されていることが好ましい。一般式5で表されるシランカップリング剤は、後に詳しく説明する。
チタネートカップリング剤としては、例えば、テトラメトキシチタン、テトラエトキシチタン、のどのテトライソプロポキシチタンなどの金属アルコキシド、プレンアクト(KR−TTS、KR−46B、KR−55、KR−41Bなど;味の素(株)製)などが挙げられる。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、その他アニオン性基を有する有機化合物などが好ましく、特に好ましいのは、カルボキシル基、スルホン酸基、又は、リン酸基を有する有機化合物である。
ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸などが好ましく用いることができる。
表面処理に用いる有機化合物は、さらに、架橋又は重合性官能基を有することが好ましい。架橋、又は、重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリル基、アリル基、スチリル基、ビニルオキシ
基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する基である。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、その他アニオン性基を有する有機化合物などが好ましく、特に好ましいのは、カルボキシル基、スルホン酸基、又は、リン酸基を有する有機化合物である。
ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸などが好ましく用いることができる。
表面処理に用いる有機化合物は、さらに、架橋又は重合性官能基を有することが好ましい。架橋、又は、重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリル基、アリル基、スチリル基、ビニルオキシ
基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する基である。
<分散剤>
本発明の高屈折率層に用いる二酸化チタンを主成分とする無機微粒子の分散には、分散剤を用いることができる。
本発明の二酸化チタンを主成分とする無機微粒子の分散には、アニオン性基を有する分散剤を用いることが特に好ましい。
アニオン性基としては、カルボキシル基、スルホン酸基(及びスルホ基)、リン酸基(及びホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基及びその塩が好ましく、カルボキシル基及びリン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1個以上含有されていればよい。
無機微粒子の分散性をさらに改良する目的でアニオン性基は複数個が含有されていてもよい。平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
本発明の高屈折率層に用いる二酸化チタンを主成分とする無機微粒子の分散には、分散剤を用いることができる。
本発明の二酸化チタンを主成分とする無機微粒子の分散には、アニオン性基を有する分散剤を用いることが特に好ましい。
アニオン性基としては、カルボキシル基、スルホン酸基(及びスルホ基)、リン酸基(及びホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基及びその塩が好ましく、カルボキシル基及びリン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1個以上含有されていればよい。
無機微粒子の分散性をさらに改良する目的でアニオン性基は複数個が含有されていてもよい。平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
本発明の高屈折率層に用いる二酸化チタンを主成分とする無機微粒子の分散に用いる好ましい分散剤は、アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤である。
アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。分散剤のより好ましい質量平均分子量(Mw)は2,000〜1,000,000であり、さらに好ましくは5,000〜200,000、特に好ましくは10,000〜100,000である。
本発明の高屈折率層に用いる二酸化チタンを主成分とする無機微粒子の分散に用いる好ましい分散剤は、アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤である。
アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。分散剤のより好ましい質量平均分子量(Mw)は2,000〜1,000,000であり、さらに好ましくは5,000〜200,000、特に好ましくは10,000〜100,000である。
以下に本発明に好ましく用いられる分散剤の具体例を示すが、本発明用の分散剤はこれらに限定されるものではない。なお特に記載の無い場合はランダム共重合体を表す。
分散剤の無機微粒子に対する使用量は、1〜50質量%の範囲であることが好ましく、5〜30質量%の範囲であることがより好ましく、5〜20質量%であることが最も好ましい。また、分散剤は2種類以上を併用してもよい。
[帯電防止層]
帯電防止層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。帯電防止層の表面抵抗は、105〜1012Ω/sqであることが好ましく、105〜109Ω/sqであることがさらに好ましく、105〜108Ω/sqであることが最も好ましい。帯電防止層の表面抵抗は、四探針法により測定することができる。
帯電防止層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。帯電防止層の表面抵抗は、105〜1012Ω/sqであることが好ましく、105〜109Ω/sqであることがさらに好ましく、105〜108Ω/sqであることが最も好ましい。帯電防止層の表面抵抗は、四探針法により測定することができる。
帯電防止層は、実質的に透明であることが好ましい。具体的には、帯電防止層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
帯電防止層は、電気導電性を付与するために公知の導電性ポリマー、公知の導電性無機
微粒子を含有することが好ましい。
微粒子を含有することが好ましい。
導電性無機微粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。酸化錫および酸化インジウムが特に好ましい。導電性無機微粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
帯電防止層に用いる導電性無機微粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される帯電防止層中の導電性無機微粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。導電性無機微粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
導電性無機微粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
二種類以上の導電性無機微粒子を帯電防止層内で併用してもよい。
帯電防止層中の導電性無機微粒子の割合は、20〜90質量%であることが好ましく、25〜85質量%であることが好ましく、30〜80質量%であることがさらに好ましい。
[反射防止層]
本発明の反射防止層について以下に説明する。
本発明の反射防止フィルムにおいて、反射防止層の屈折率は、1.20〜1.49が好ましく、より好ましくは1.30〜1.44の範囲にある。
本発明において、反射防止層の乾燥時の膜厚は、0.5μm以下であるが、低反射率を達成するために、好ましくは0.010μm以上0.5μm以下、最も好ましくは0.050μm以上0.2μm以下である。
本発明の反射防止層について以下に説明する。
本発明の反射防止フィルムにおいて、反射防止層の屈折率は、1.20〜1.49が好ましく、より好ましくは1.30〜1.44の範囲にある。
本発明において、反射防止層の乾燥時の膜厚は、0.5μm以下であるが、低反射率を達成するために、好ましくは0.010μm以上0.5μm以下、最も好ましくは0.050μm以上0.2μm以下である。
好ましい反射防止層の態様としては、(1)架橋性若しくは重合性の官能基を有する含フッ素ポリマーと中空シリカを含有する構成、(2)2個以上のエチレン性不飽和基を有するモノマーと中空シリカを含有する構成、である。
本発明の反射防止層には、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。フッ素ポリマーとしては動摩擦係数0.03〜0.15、水に対する接触角90〜120°の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。前述したように本発明の反射防止層には膜強度向上のための無機フィラーを用いることもできる。
本発明の反射防止層には、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。フッ素ポリマーとしては動摩擦係数0.03〜0.15、水に対する接触角90〜120°の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。前述したように本発明の反射防止層には膜強度向上のための無機フィラーを用いることもできる。
(1)架橋性若しくは重合性の官能基を有する含フッ素ポリマー
反射防止層に好ましく用いられる含フッ素ポリマーとしては、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
反射防止層に好ましく用いられる含フッ素ポリマーとしては、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。
上記のポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。
反射防止層に用いられる特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類のランダム共重合体である。特に単独で架橋反応可能な基((メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基
等の開環重合性基等)を有していることが好ましい。これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
等の開環重合性基等)を有していることが好ましい。これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
反射防止層に用いられる共重合体の好ましい形態として、下記一般式3のものが挙げられる。
一般式3
一般式3中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*‐(CH2)2−O−**, *−(CH2)2−NH−**, *−(CH2)4−O−**, *−(CH2)6−O−**, *−(CH2)2−O−(CH2 )2−O−**, *−CONH−(CH2)3−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH2)3−O−**(*はポリマー主
鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表す。
一般式3中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
好ましい例としては、*‐(CH2)2−O−**, *−(CH2)2−NH−**, *−(CH2)4−O−**, *−(CH2)6−O−**, *−(CH2)2−O−(CH2 )2−O−**, *−CONH−(CH2)3−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH2)3−O−**(*はポリマー主
鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表す。
一般式3中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
一般式3中、Aは任意のビニルモノマーから導かれる繰返し単位を表し、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。
好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。
反射防止層に用いられる共重合体の特に好ましい形態として一般式4が挙げられる。
一般式4
一般式4において、X、x、yは一般式1と同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表し、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を単位を表し、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
z1およびz2はそれぞれの繰返し単位のmol%を表し、0≦z1≦65、0≦z2≦65を満たす値を表す。それぞれ0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。
nは2≦n≦10の整数を表し、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を単位を表し、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
z1およびz2はそれぞれの繰返し単位のmol%を表し、0≦z1≦65、0≦z2≦65を満たす値を表す。それぞれ0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。
一般式3または4で表される共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。
以下に本発明で有用な共重合体の好ましい例を示すが本発明はこれらに限定されるものではない。
上記含フッ素共重合体には、溶解性、分散性、塗布性、防汚性、帯電防止性などの観点から、適宜共重合可能な成分を含むことができる。特に防汚性・滑り性付与のためには、シリコーンを導入することが好ましく、主鎖にも側鎖にも導入することができる。
主鎖へのポリシロキサン部分構造導入方法は、例えば特開平6−93100号公報に記載のアゾ基含有ポリシロキサンアミド(市販のものではVPS-0501、1001(商品名;ワコー純薬工業(株)社製))等のポリマー型開始剤を用いる方法が挙げられる。また、側鎖に導入する方法は、例えばJ.Appl.Polym.Sci.2000,78,1955、特開昭56−28219号公報等に記載のごとく、反応性基を片末端に有するポリシロキサン(例えばサイラプレーンシリーズ(チッソ株式会社製)など)を高分子反応によって導入する方法、ポリシロキサン含有シリコンマクロマーを重合させる方法によって合成することができ、どちらの方法も好ましく用いることができる。
主鎖へのポリシロキサン部分構造導入方法は、例えば特開平6−93100号公報に記載のアゾ基含有ポリシロキサンアミド(市販のものではVPS-0501、1001(商品名;ワコー純薬工業(株)社製))等のポリマー型開始剤を用いる方法が挙げられる。また、側鎖に導入する方法は、例えばJ.Appl.Polym.Sci.2000,78,1955、特開昭56−28219号公報等に記載のごとく、反応性基を片末端に有するポリシロキサン(例えばサイラプレーンシリーズ(チッソ株式会社製)など)を高分子反応によって導入する方法、ポリシロキサン含有シリコンマクロマーを重合させる方法によって合成することができ、どちらの方法も好ましく用いることができる。
ポリマー自身が単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。例えばポリマー本体に水酸基を含有する
場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。これら化合物の硬化には、有機酸又はその塩を用いるのが好ましい。
場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。これら化合物の硬化には、有機酸又はその塩を用いるのが好ましい。
これら含フッ素ポリマーの具体例は、特開2003−222702号公報、特開2003−183322号公報等に記載されている。
反射防止層に用いられる上記共重合体の合成は、種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合によって水酸基含有重合体等の前駆体を合成した後、前記高分子反応によって(メタ)アクリロイル基を導入することにより行なうことができる。重合反応は回分式、半連続式、連続式等の公知の操作で行なうことができる。
重合の開始方法はラジカル開始剤を用いる方法、光または放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二「高分子合成方法」改定版(日刊工業新聞社刊、1971)や大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊、124〜154頁に記載されている。
上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。
重合温度は生成するポリマーの分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。
反応圧力は、適宜選定可能であるが、通常は、1〜100kg/cm2、特に、1〜3
0kg/cm2程度が望ましい。反応時間は、5〜30時間程度である。
0kg/cm2程度が望ましい。反応時間は、5〜30時間程度である。
得られたポリマーの再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
反射防止層の含フッ素ポリマーは、該層の塗布組成物の固形分量に対して20〜95質量%添加する。
(2)2個以上のエチレン性不飽和基を有するモノマー
更に別の好ましい態様は、1分子中に2個以上のエチレン性不飽和基を有するモノマーをバインダーとして、中空シリカを含有する構成である。2個以上のエチレン性不飽和基を有するモノマーの例としては、上記ハードコート層の頁で述べたモノマーを挙げることができる。本発明の反射防止層を該エチレン性不飽和基を有するモノマーと中空シリカを使用した構成とすると、耐擦傷性に優れ、特に高湿度下に保存した後の擦傷性に優れる。
更に別の好ましい態様は、1分子中に2個以上のエチレン性不飽和基を有するモノマーをバインダーとして、中空シリカを含有する構成である。2個以上のエチレン性不飽和基を有するモノマーの例としては、上記ハードコート層の頁で述べたモノマーを挙げることができる。本発明の反射防止層を該エチレン性不飽和基を有するモノマーと中空シリカを使用した構成とすると、耐擦傷性に優れ、特に高湿度下に保存した後の擦傷性に優れる。
次に本発明において、反射防止層に含有する中空シリカ粒子について、以下に記載する
。本発明においては、粒子の表面及び/又は内部に空孔を有し、空隙率が5%以上の粒子を中空シリカと称する。耐擦傷性の観点からは、粒子の内部に空孔を有し表面には有さない形の閉じた空孔を有する粒子が好ましい。
中空のシリカ微粒子は屈折率は1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最もに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(VIII)で表される空隙率xは
(数式VIII)
x=(4πa3/3)/(4πb3/3)×100
。本発明においては、粒子の表面及び/又は内部に空孔を有し、空隙率が5%以上の粒子を中空シリカと称する。耐擦傷性の観点からは、粒子の内部に空孔を有し表面には有さない形の閉じた空孔を有する粒子が好ましい。
中空のシリカ微粒子は屈折率は1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最もに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(VIII)で表される空隙率xは
(数式VIII)
x=(4πa3/3)/(4πb3/3)×100
好ましくは10〜60%、更に好ましくは20〜60%、最も好ましくは30〜60%である。中空のシリカ粒子をより低比重に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点から空隙率は、60%以上は好ましくない。同じ意味で屈折率としては、1.15未満の低屈折率の粒子は好ましくない。
中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616に記載の方法で算出することができる。
中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616に記載の方法で算出することができる。
中空シリカの塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、低屈折率化の効果や耐擦傷性の改良効果が減り、多すぎると、反射防止層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
中空シリカの平均粒径は、反射防止層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、反射防止層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
中空シリカの平均粒径は、反射防止層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、反射防止層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
シリカ微粒子の粒径が小さすぎると、空腔部の割合が減り屈折率の低下が見込めず、大きすぎると反射防止層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ま
しくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることが出来る。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ま
しくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることが出来る。
本発明においては、中空シリカと併用して空孔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。
また、平均粒径が反射防止層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することもできる。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、1nm以上20nm以下が好ましく、5n
m以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
また、平均粒径が反射防止層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することもできる。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、1nm以上20nm以下が好ましく、5n
m以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
中空シリカ粒子、及び併用することのできるシリカ微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、アクリロイル基またはメタクリロイル基を有するシランカップリング剤による処理が特に有効である。
上記カップリング剤は、反射防止層の無機フィラーの表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
中空シリカ粒子、及び併用することのできるシリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。本発明に好ましく用いることのできる表面処理剤および触媒の具体的化合物は、例えば、WO 2004/017105号に記載のオルガノシラン化合物および触媒を挙げることができる。特に好ましい化合物としては、3―(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−グリシト゛キシプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリメチルメトキシシランなどが挙げられる。反射防止層の面状からはトリメチルメトキシシランが好ましい。塗膜の耐擦傷性の点からは3―(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
中空シリカ粒子、及び併用することのできるシリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。本発明に好ましく用いることのできる表面処理剤および触媒の具体的化合物は、例えば、WO 2004/017105号に記載のオルガノシラン化合物および触媒を挙げることができる。特に好ましい化合物としては、3―(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−グリシト゛キシプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリメチルメトキシシランなどが挙げられる。反射防止層の面状からはトリメチルメトキシシランが好ましい。塗膜の耐擦傷性の点からは3―(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
本発明の反射防止層には、ハードコート層の頁で述べた重合開始剤を用いることができる。使用量は反射防止層の固形分当たり0.1〜5.0質量%が好ましく、更に好ましくは0.3〜3.0質量%である。また、ハード−コート層と異なり、特に反射防止層に使用する場合には、重合開始剤の分子量が大きいほうが耐擦傷性に優れ、重合開始剤の分子量は好ましくは250以上1000以下、更に好ましくは300以上800以下である。
本発明の反射防止フィルムを構成する機能層のうちの少なくとも1層は、その層を形成する塗布液中に、オルガノシラン化合物、その加水分解物およびその部分縮合物の少なくとも一種の成分、いわゆるゾル成分(以降このように称する場合もある)を含有することが耐擦傷性の点で好ましい。特に反射防止層は反射防止能と耐擦傷性を両立させるためにゾル成分を含有することが好ましく、ハードコート層もゾル成分を含有することが好ましい。このゾル成分は、塗布液を塗布後、乾燥、加熱工程で縮合して硬化物を形成し上記層のバインダーとなる。また、該硬化物が重合性不飽和結合を有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
オルガノシラン化合物は、下記一般式5で表されるものが好ましい。
一般式5:(R10)m−Si(X)4-m
上記一般式5において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
一般式5:(R10)m−Si(X)4-m
上記一般式5において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子
(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C2H5COO等が挙げられる)で表される基が
挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C2H5COO等が挙げられる)で表される基が
挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
R10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
R10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
R10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
R10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましく、中でも、下記一般式6で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
一般式6
上記一般式6において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニ
ル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは*−COO−**、*−CONH−**または*−O−**を表し、単結合、*−COO−**および*−CONH−**が好ましく、単結合および*−COO−**が更に好ましく、*−COO−**が特に好ましい。*は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
ル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは*−COO−**、*−CONH−**または*−O−**を表し、単結合、*−COO−**および*−CONH−**が好ましく、単結合および*−COO−**が更に好ましく、*−COO−**が特に好ましい。*は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。
nは0または1を表す。Xが複数存在するとき、複数のXはそれぞれ同じであっても異なっていても良い。nとして好ましくは0である。
R10は一般式5と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式5と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
R10は一般式5と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式5と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
一般式5、一般式6の化合物は2種類以上を併用しても良い。以下に一般式5、一般式6で表される化合物の具体例を示すが、限定されるものではない。
これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。
本発明のオルガノシランの加水分解物および/またはその部分縮合物は塗布品性能の安定化のためには揮発性を抑えることが好ましく、具体的には、105℃における1時間当たりの揮発量が5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。
本発明のオルガノシランの加水分解物および/またはその部分縮合物における前記ビニル重合性基を含有するオルガノシランの含有量は、30質量%〜100質量%が好ましく
、50質量%〜100質量%がより好ましく、70質量%〜100質量%が特に好ましい。前記ビニル重合性基を含有するオロガノシラン含有量が30質量%より少ないと、固形分が生じたり、液が濁ったり、ポトライフが悪化したり、分子量の制御が困難(分子量の増大)であったり、重合性基の含有量が少ないため重合処理を行った場合の性能(例えば反射防止膜の耐傷性)の向上が得られにくいために好ましくない。
、50質量%〜100質量%がより好ましく、70質量%〜100質量%が特に好ましい。前記ビニル重合性基を含有するオロガノシラン含有量が30質量%より少ないと、固形分が生じたり、液が濁ったり、ポトライフが悪化したり、分子量の制御が困難(分子量の増大)であったり、重合性基の含有量が少ないため重合処理を行った場合の性能(例えば反射防止膜の耐傷性)の向上が得られにくいために好ましくない。
本発明で用いるオルガノシラン化合物の加水分解物および/または部分縮合物について詳細を説明する。
オルガノシランの加水分解反応、それに引き続く縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、TiまたはAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
オルガノシランの加水分解反応、それに引き続く縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、TiまたはAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。
該反応における固形分の濃度は特に限定されるものではないが通常1%〜90%の範囲であり、好ましくは20%〜70%の範囲である。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。
該反応における固形分の濃度は特に限定されるものではないが通常1%〜90%の範囲であり、好ましくは20%〜70%の範囲である。
オルガノシランの加水分解性基1モルに対して0.05〜2モル、好ましくは0.1〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。
オルガノシランの加水分解物および/またはその部分縮合物において、ビニル重合性基
を含有するオルガノシランを含有するオルガノシランの加水分解物および/またはその部分縮合物の重量平均分子量は、分子量が300未満の成分を除いた場合に、450〜20,000が好ましく、500〜10,000がより好ましく、550〜5,000が更に好ましく、600〜3,000が特に好ましい。
オルガノシランの加水分解物および/またはその部分縮合物における分子量300以上の成分のうち、分子量が20,000より大きい成分は20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。
また、オルガノシランの加水分解物および/またはその部分縮合物における分子量300以上の成分のうち、分子量1,000〜20,000の成分は20質量%以上であることが好ましい。20質量%未満であると、そのようなオルガノシランの加水分解物および/またはその部分縮合物を含有する硬化性組成物を硬化させて得られる硬化皮膜は、透明性や基板との密着性が劣る場合がある。
を含有するオルガノシランを含有するオルガノシランの加水分解物および/またはその部分縮合物の重量平均分子量は、分子量が300未満の成分を除いた場合に、450〜20,000が好ましく、500〜10,000がより好ましく、550〜5,000が更に好ましく、600〜3,000が特に好ましい。
オルガノシランの加水分解物および/またはその部分縮合物における分子量300以上の成分のうち、分子量が20,000より大きい成分は20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。
また、オルガノシランの加水分解物および/またはその部分縮合物における分子量300以上の成分のうち、分子量1,000〜20,000の成分は20質量%以上であることが好ましい。20質量%未満であると、そのようなオルガノシランの加水分解物および/またはその部分縮合物を含有する硬化性組成物を硬化させて得られる硬化皮膜は、透明性や基板との密着性が劣る場合がある。
ここで、重量平均分子量及び分子量は、TSKgel GMHxL G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量であり、含有量は、分子量が300以上の成分のピーク面積を100%とした場合の、前記分子量範囲のピーク面積である。
分散度(重量平均分子量/数平均分子量)は、3.0〜1.1が好ましく、2.5〜1.1がより好ましく、2.0〜1.1が更に好ましく、1.5〜1.1が特に好ましい。
分散度(重量平均分子量/数平均分子量)は、3.0〜1.1が好ましく、2.5〜1.1がより好ましく、2.0〜1.1が更に好ましく、1.5〜1.1が特に好ましい。
オルガノシランの加水分解物および/または部分縮合物の29Si−NMR分析により一般式5のXが−OSiの形で縮合している状態を確認できる。
この時、Siの三つの結合が−OSiの形で縮合している場合(T3)、Siの二つの結合が−OSiの形で縮合している場合(T2)、Siの一つの結合が−OSiの形で縮合している場合(T1)、Siが全く縮合していない場合を(T0)とした場合に縮合率αは、
数式(IX):α=(T3×3+T2×2+T1×1)/3/(T3+T2+T1+T0)で表され、縮合率は0.20〜0.95が好ましく、0.3〜0.93がより好ましく、0.4〜0.9が特に好ましい。
0.1より小さいと加水分解や縮合が十分でなく、モノマー成分が増えるため硬化が十分でなく、0.95より大きいと加水分解や縮合が進みすぎ、加水分解可能な基が消費されてしまうため、バインダーポリマー、樹脂基板、無機微粒子などの相互作用が低下してしまい、これらを用いても効果が得られにくくなる。
この時、Siの三つの結合が−OSiの形で縮合している場合(T3)、Siの二つの結合が−OSiの形で縮合している場合(T2)、Siの一つの結合が−OSiの形で縮合している場合(T1)、Siが全く縮合していない場合を(T0)とした場合に縮合率αは、
数式(IX):α=(T3×3+T2×2+T1×1)/3/(T3+T2+T1+T0)で表され、縮合率は0.20〜0.95が好ましく、0.3〜0.93がより好ましく、0.4〜0.9が特に好ましい。
0.1より小さいと加水分解や縮合が十分でなく、モノマー成分が増えるため硬化が十分でなく、0.95より大きいと加水分解や縮合が進みすぎ、加水分解可能な基が消費されてしまうため、バインダーポリマー、樹脂基板、無機微粒子などの相互作用が低下してしまい、これらを用いても効果が得られにくくなる。
本発明においては、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R4COCH2COR5 (式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示
す)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
す)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
金属キレート化合物は、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールとR4COCH2COR5(式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)
で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR3)p1(R4COCHCOR5)p2、Ti(OR3)q1(R4COCHCOR5)q2、およびAl(OR3)r1(R4COCHCOR5)r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は
、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR3)p1(R4COCHCOR5)p2、Ti(OR3)q1(R4COCHCOR5)q2、およびAl(OR3)r1(R4COCHCOR5)r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は
、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。0.01質量%未満では、オルガノシラン化合物の縮合反応が遅く、塗膜の耐久性が悪化するおそれがあり、一方50質量%を超えると、オルガノシラン化合物の加水分解物および/または部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が悪化するおそれがあり好ましくない。
本発明に用いられるハードコート層乃至反射防止層の塗布液には、上記ゾル成分および金属キレート化合物を含む組成物に加えて、β−ジケトン化合物および/またはβ−ケトエステル化合物が添加されることが好ましい。以下にさらに説明する。
本発明で使用されるのは、一般式R4COCH2COR5で表されるβ−ジケトン化合物
および/またはβ−ケトエステル化合物であり、本発明に用いられる組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物および/またはβ−ケトエステル化合物を構
成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。
および/またはβ−ケトエステル化合物であり、本発明に用いられる組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物および/またはβ−ケトエステル化合物を構
成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。
このβ−ジケトン化合物および/またはβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物および/またはβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物および/またはβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。
上記オルガノシラン化合物の加水分解物および/または部分縮合物の含有量は、比較的薄膜である表面層の場合は少なく、厚膜である下層の場合は多いことが好ましい。反射防止層のような表面層の場合は含有層(添加層)の全固形分の0.1〜50質量%が好ましく、0.5〜20質量%がより好ましく、1〜10質量%が最も好ましい。
反射防止層以外の層への添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液をハードコート層もしくは反射防止層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
反射防止層以外の層への添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液をハードコート層もしくは反射防止層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
反射防止層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用量は、効果の発現、屈折率、膜の形状・面状等を考慮すると、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。
本発明において、無機フィラーの凝集、沈降を抑制する目的で、各層を形成するための塗布液に分散安定化剤を併用することも好ましい。分散安定化剤としては、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、ポリアミド、リン酸エステル、ポリエーテル、界面活性剤および、シランカップリング剤、チタンカップリング剤等を使用することができる。特に前述のシランカップリング剤が硬化後の皮膜が強いため好ましい。
本発明の反射防止層形成組成物は、通常、液の形態をとり前記共重合体を好ましい構成成分とし、必要に応じて各種添加剤およびラジカル重合開始剤を適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
前記したとおり、反射防止層の皮膜硬度の観点からは硬化剤等の添加剤を添加することは必ずしも有利ではないが、高屈折率層との界面密着性等の観点から、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤、あるいはシリカ等の無機微粒子を少量添加することもできる。これらを添加する場合には反射防止層皮膜の全固形分に対して0〜30質量%の範囲であることが好ましく、0〜20質量%の範囲であることがより好ましく、0〜10質量%の範囲であることが特に好ましい。
防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には反射防止層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。
ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、DMS−U22、RMS−033、RMS−083、UMS−182(以上商品名)などが挙げられるがこれらに限定されるものではない。
ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、DMS−U22、RMS−033、RMS−083、UMS−182(以上商品名)などが挙げられるがこれらに限定されるものではない。
[透明支持体]
本発明の反射防止フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士写真フイルム社製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロースが好ましい。
本発明の反射防止フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士写真フイルム社製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロースが好ましい。
上記の透明支持体の膜厚は特に限定されるものではないが、膜厚は1〜300μmがよく、好ましくは30〜150μm、特に好ましくは40〜120μm、最も好ましくは40〜100μmである。
透明支持体の光透過率は、80%以上であることが好ましく、86%以上であることがさらに好ましい。
透明支持体のヘイズは低い方が好ましい。2.0%以下であることが好ましく、1.0%以下であることがさらに好ましい。
透明支持体の屈折率は、1.40〜1.70であることが好ましい。
透明支持体の光透過率は、80%以上であることが好ましく、86%以上であることがさらに好ましい。
透明支持体のヘイズは低い方が好ましい。2.0%以下であることが好ましく、1.0%以下であることがさらに好ましい。
透明支持体の屈折率は、1.40〜1.70であることが好ましい。
透明支持体には、赤外線吸収剤あるいは紫外線吸収剤を添加してもよい。赤外線吸収剤の添加量は、透明支持体の0.01〜20質量%であることが好ましく、0.05〜10質量%であることがさらに好ましい。
また、透明支持体には、滑り剤として、不活性無機化合物の粒子を透明支持体に添加してもよい。無機化合物の例には、SiO2、TiO2、BaSO4、CaCO3、タルクおよびカオリンが含まれる。
また、透明支持体には、滑り剤として、不活性無機化合物の粒子を透明支持体に添加してもよい。無機化合物の例には、SiO2、TiO2、BaSO4、CaCO3、タルクおよびカオリンが含まれる。
透明支持体に、表面処理を実施してもよい。表面処理の例には、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が含まれる。グロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理とコロナ放電処理が特に好ましい。
トリアセチルセルロースは、単層または複数の層からなる。単層のトリアセチルセルロースは、特開平7−11055号公報等で開示されているドラム流延、あるいはバンド流延等により作成され、後者の複数の層からなるトリアセチルセルロースは、公開特許公報の特開昭61−94725号公報、特公昭62−43846号公報等で開示されている、いわゆる共流延法により作成される。すなわち、原料フレークをハロゲン化炭化水素類(ジクロロメタン等、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えた溶液(ドープと称する)を、水平式のエンドレスの金属ベルトまたは回転するドラムからなる支持体の上に、ドープ供給手段(ダイと称する)により流延する際、単層ならば単一のドープを単層流延し、複数の層ならば高濃度のセルロースエステルドープの両側に低濃度ドープを共流延し、支持体上である程度乾燥して剛性が付与されたフィルムを支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶剤を除去することからなる方法である。
上記のような、トリアセチルセルロースを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし地球環境や作業環境の観点から、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。
ジクロロメタン等を実質的に含まない溶剤を用いてトリアセチルセルロースのドープを調製する場合には、後述するような特殊な溶解法が必須となる。
ジクロロメタン等を実質的に含まない溶剤を用いてトリアセチルセルロースのドープを調製する場合には、後述するような特殊な溶解法が必須となる。
第一の溶解法は、冷却溶解法と称され、以下に説明する。まず室温近辺の温度(−10〜40℃)で溶剤中にトリアセチルセルロースを撹拌しながら徐々に添加する。次に、混合物は−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。このように冷却すると、トリアセチルセルロースと溶剤の混合物は固化する。さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、溶剤中にトリアセチルセルロースが流動する溶液となる。昇温は、室温中に放置するだけでもよいし、温浴中で加温してもよい。
第二の方法は、高温溶解法と称され、以下に説明する。まず室温近辺の温度(−10〜40℃)で溶剤中にトリアセチルセルロースを撹拌しながら徐々に添加される。本発明のトリアセチルセルロース溶液は、各種溶剤を含有する混合溶剤中にトリアセチルセルロースを添加し予め膨潤させることが好ましい。本法において、トリアセチルセルロースの溶解濃度は30質量%以下が好ましいが、フィルム製膜時の乾燥効率の点から、なるべく高濃度であることが好ましい。次に有機溶剤混合液は、0.2MPa〜30MPaの加圧下
で70〜240℃に加熱される(好ましくは80〜220℃、更に好ましく100〜200℃、最も好ましくは100〜190℃)。次にこれらの加熱溶液はそのままでは塗布できないため、使用された溶剤の最も低い沸点以下に冷却する必要がある。その場合、−10〜50℃に冷却して常圧に戻すことが一般的である。冷却はトリアセチルセルロース溶液が内蔵されている高圧高温容器やラインを、室温に放置するだけでもよく、更に好ましくは冷却水などの冷媒を用いて該装置を冷却してもよい。ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアセテートフィルムおよびその製造法については発明協会公開技報(公技番号2001−1745、2001年3月15日発行、以下公開技報2001−1745号と略す)に記載されている。
で70〜240℃に加熱される(好ましくは80〜220℃、更に好ましく100〜200℃、最も好ましくは100〜190℃)。次にこれらの加熱溶液はそのままでは塗布できないため、使用された溶剤の最も低い沸点以下に冷却する必要がある。その場合、−10〜50℃に冷却して常圧に戻すことが一般的である。冷却はトリアセチルセルロース溶液が内蔵されている高圧高温容器やラインを、室温に放置するだけでもよく、更に好ましくは冷却水などの冷媒を用いて該装置を冷却してもよい。ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアセテートフィルムおよびその製造法については発明協会公開技報(公技番号2001−1745、2001年3月15日発行、以下公開技報2001−1745号と略す)に記載されている。
本発明の反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。該透明支持体がトリアセチルセルロースの場合は偏光板の偏光層を保護する保護フィルムとしてトリアセチルセルロースが用いられるため、本発明の反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。
本発明の反射防止フィルムは、片面に粘着層を設ける等してディスプレイの最表面に配置したり、そのまま偏光板用保護フィルムとして使用される場合には、十分に接着させるためには透明支持体上に含フッ素ポリマーを主体とする最外層を形成した後、鹸化処理を実施することが好ましい。鹸化処理は、公知の手法、例えば、アルカリ液の中に該フィルムを適切な時間浸漬して実施される。アルカリ液に浸漬した後は、該フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、最外層を有する側とは反対側の透明支持体の表面が親水化される。
親水化された表面は、ポリビニルアルコールを主成分とする偏向膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏向膜と接着させる際に偏向膜と反射防止フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。
鹸化処理することにより、最外層を有する側とは反対側の透明支持体の表面が親水化される。
親水化された表面は、ポリビニルアルコールを主成分とする偏向膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏向膜と接着させる際に偏向膜と反射防止フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。
アルカリ鹸化処理の具体的手段としては、以下の(1)及び(2)の2つの手段から選択することができる。汎用のトリアセチルセルロースフィルムと同一の工程で処理できる点で(1)が優れているが、反射防止膜面まで鹸化処理されるため、表面がアルカリ加水分解されて膜が劣化する点、鹸化処理液が残ると汚れになる点が問題になり得る。その場合には、特別な工程となるが、(2)が優れる。
(1)透明支持体上に反射防止層を形成後に、アルカリ液中に少なくとも1回浸漬することで、該フィルムの裏面を鹸化処理する。
(2)透明支持体上に反射防止層を形成する前または後に、アルカリ液を該反射防止フィルムの反射防止フィルムを形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを鹸化処理する。
(1)透明支持体上に反射防止層を形成後に、アルカリ液中に少なくとも1回浸漬することで、該フィルムの裏面を鹸化処理する。
(2)透明支持体上に反射防止層を形成する前または後に、アルカリ液を該反射防止フィルムの反射防止フィルムを形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを鹸化処理する。
本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
まず、各層を形成するための成分を含有した塗布液が調製される。次に、ハードコート層を形成するための塗布液を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書参照)により透明支持体上に塗布し、加熱
・乾燥するが、マイクログラビアコート法が特に好ましい。その後、光照射あるいは加熱して、防眩性ハードコート層を形成するためのモノマーを重合して硬化する。これによりハードコート層が形成される。
ここで、必要であればハードコート層を複数層とし、防眩性ハードコート層塗布の前に同様な方法で平滑なハードコート層塗布および硬化を行うことができる。
次に、同様にして反射防止層を形成するための塗布液をハードコート層上に塗布し、光照射あるいは加熱し反射防止層が形成される。このようにして、本発明の反射防止フィルムが得られる。
まず、各層を形成するための成分を含有した塗布液が調製される。次に、ハードコート層を形成するための塗布液を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書参照)により透明支持体上に塗布し、加熱
・乾燥するが、マイクログラビアコート法が特に好ましい。その後、光照射あるいは加熱して、防眩性ハードコート層を形成するためのモノマーを重合して硬化する。これによりハードコート層が形成される。
ここで、必要であればハードコート層を複数層とし、防眩性ハードコート層塗布の前に同様な方法で平滑なハードコート層塗布および硬化を行うことができる。
次に、同様にして反射防止層を形成するための塗布液をハードコート層上に塗布し、光照射あるいは加熱し反射防止層が形成される。このようにして、本発明の反射防止フィルムが得られる。
本発明で用いられるマイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。ロール形態の透明支持体を連続的に巻き出し、該巻き出された支持体の一方の側に、少なくともハードコート層乃至含フッ素ポリマーを含む反射防止層の内の少なくとも一層をマイクログラビアコート法によって塗工することができる。
マイクログラビアコート法による塗工条件としては、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、100〜300本/インチがより好ましく、グラビアパターンの深度は1〜600μmが好ましく、5〜200μmがより好ましく、グラビアロールの回転数は3〜800rpmであることが好ましく、5〜200rpmであることがより好ましく、支持体の搬送速度は0.5〜100m/分であることが好ましく、1〜50m/分がより好ましい。
このようにして形成された本発明の反射防止フィルムは、ヘイズ値が3〜70%、好ましくは4〜60%の範囲にあり、そして450nmから650nmの平均反射率が3.0%以下、好ましくは2.5%以下である。
本発明の反射防止フィルムが上記範囲のヘイズ値及び平均反射率であることにより、透過画像の劣化を伴なわずに良好な防眩性および反射防止性が得られる。
このようにして形成された本発明の反射防止フィルムは、ヘイズ値が3〜70%、好ましくは4〜60%の範囲にあり、そして450nmから650nmの平均反射率が3.0%以下、好ましくは2.5%以下である。
本発明の反射防止フィルムが上記範囲のヘイズ値及び平均反射率であることにより、透過画像の劣化を伴なわずに良好な防眩性および反射防止性が得られる。
偏光板は、偏光膜を両面から挟む2枚の保護フィルムで主に構成される。本発明の反射防止フィルムは、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐傷性、防汚性等も優れた偏光板とすることができる。
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落00
20〜0030に詳しい記載がある。
偏光子の2枚の保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることも好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号公報に記載されている光学補償フィルムが好ましい。
20〜0030に詳しい記載がある。
偏光子の2枚の保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることも好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号公報に記載されている光学補償フィルムが好ましい。
本発明の反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に適用することができる。本発明の反射防止フィルムは透明支持体を有しているので、透明支持体側を画像表示装置の画像表示面に接着して用いられる。
本発明の反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(OpticallyCompensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
ECBモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。
特にTNモードやIPSモードの液晶表示装置に対しては、特開2001−100043該公報等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光膜の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(ハードコート層用塗布液A―1〜A−8の調製)
PETA 50.0g
イルガキュア184 2.0g
SX−350(30%) 1.7g
架橋アクリル−スチレン粒子(30%) 13.3g
表面配向性の化合物 0.5g
KBM−5103 10.0g
トルエン 38.5g
上記混合液を孔径30μmのポリプロピレン製フィルターでろ過してハードコート層の塗布液を調製した。
PETA 50.0g
イルガキュア184 2.0g
SX−350(30%) 1.7g
架橋アクリル−スチレン粒子(30%) 13.3g
表面配向性の化合物 0.5g
KBM−5103 10.0g
トルエン 38.5g
上記混合液を孔径30μmのポリプロピレン製フィルターでろ過してハードコート層の塗布液を調製した。
表面配向性の化合物は表1に記載した。防眩性ハードコート層の塗布液A−1〜A−8を調製した。なお、塗布液A−1は表面配向性の化合物を添加せず、同量のトルエンを添加した。
(反射防止層用塗布液Bの調製)
JTA−113(6%) 13.0g
MEK−ST−L(30%) 1.30g
ゾル液a 0.6g
MEK 5.0g
シクロヘキサノン 0.6g
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液を調製した。
JTA−113(6%) 13.0g
MEK−ST−L(30%) 1.30g
ゾル液a 0.6g
MEK 5.0g
シクロヘキサノン 0.6g
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液を調製した。
(反射防止層用塗布液Cの調製)
JTA−113(6%) 13.0g
中空シリカ(18.2%) 2.14g
ゾル液a 0.6g
MEK 4.2g
シクロヘキサノン 0.6g
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液を調製した。
JTA−113(6%) 13.0g
中空シリカ(18.2%) 2.14g
ゾル液a 0.6g
MEK 4.2g
シクロヘキサノン 0.6g
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液を調製した。
それぞれ使用した化合物を以下に示す。
PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(日本化薬(株)製)
イルガキュア184:重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製)
SX−350:平均粒径3.5μm架橋ポリスチレン粒子(屈折率1.60、綜研化学(株)製、30%トルエン分散液。ポリトロン分散機にて10000rpmで20分分散後使用)。
架橋アクリル−スチレン粒子:平均粒径3.5μm(屈折率1.55、綜研化学(株)製、30%トルエン分散液)。
KBM−5103:シランカップリング剤(信越化学工業(株)製)。
JTA−113:熱架橋性含フッ素含シリコーンポリマー(屈折率1.44、固形分濃度6%、JSR(株)製)。
MEK−ST−L:シリカゾル(表面修飾率対シリカ30wt%、平均粒径45nm、固形分濃度30%、日産化学(株)製)。
中空シリカ:KBM−5103表面修飾中空シリカゾル
(表面修飾率対シリカ30wt%、CS−60 IPA(触媒化成工業(製))屈折率1.31、平均粒径60nm、シェル厚み10nm、固形分濃度18.2%)。
PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(日本化薬(株)製)
イルガキュア184:重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製)
SX−350:平均粒径3.5μm架橋ポリスチレン粒子(屈折率1.60、綜研化学(株)製、30%トルエン分散液。ポリトロン分散機にて10000rpmで20分分散後使用)。
架橋アクリル−スチレン粒子:平均粒径3.5μm(屈折率1.55、綜研化学(株)製、30%トルエン分散液)。
KBM−5103:シランカップリング剤(信越化学工業(株)製)。
JTA−113:熱架橋性含フッ素含シリコーンポリマー(屈折率1.44、固形分濃度6%、JSR(株)製)。
MEK−ST−L:シリカゾル(表面修飾率対シリカ30wt%、平均粒径45nm、固形分濃度30%、日産化学(株)製)。
中空シリカ:KBM−5103表面修飾中空シリカゾル
(表面修飾率対シリカ30wt%、CS−60 IPA(触媒化成工業(製))屈折率1.31、平均粒径60nm、シェル厚み10nm、固形分濃度18.2%)。
[実施例1]
(1)帯電防止層の塗設
80μmの厚さのトリアセチルセルロースフイルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、日本ペルノックス(株)製のペルトロンC−4456−S7((固形分45%)ATO分散ハードコート剤、商品名)を塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して、厚み1μmの帯電防止層を形成した。
80μmの厚さのトリアセチルセルロースフイルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、日本ペルノックス(株)製のペルトロンC−4456−S7((固形分45%)ATO分散ハードコート剤、商品名)を塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して、厚み1μmの帯電防止層を形成した。
(2)ハードコート層の塗設
上記の帯電防止層を塗設したトリアセチルセルロースフイルムを再び巻き出し、その帯電防止層上に、上記のハードコート層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの層を形成し、巻き取った。表面粗さRaは0.16μm、表面抵抗LogSRは11.9であった。
上記の帯電防止層を塗設したトリアセチルセルロースフイルムを再び巻き出し、その帯電防止層上に、上記のハードコート層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの層を形成し、巻き取った。表面粗さRaは0.16μm、表面抵抗LogSRは11.9であった。
(3)反射防止層の塗設
前記ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出し、そのハードコート層の上に、前記反射防止層用塗布液B又はCを線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量90
0mJ/cm2の紫外線を照射し、厚さ100nmの反射防止層を形成し、巻き取った。
前記ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出し、そのハードコート層の上に、前記反射防止層用塗布液B又はCを線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量90
0mJ/cm2の紫外線を照射し、厚さ100nmの反射防止層を形成し、巻き取った。
さらに線数、深度を変更して同じ塗布液量となるように、反射防止層の塗布速度が異なったサンプルを作製した。塗布速度については、表1に記載した。
(反射防止フィルムの鹸化処理)
反射防止フィルムについて、以下の処理を行った。
1.5mol/lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを上記
の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
反射防止フィルムについて、以下の処理を行った。
1.5mol/lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを上記
の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
(反射防止フィルムの評価)
得られたこれらの反射防止フィルム試料について、以下の項目の評価を行った。結果を表2に示した。
得られたこれらの反射防止フィルム試料について、以下の項目の評価を行った。結果を表2に示した。
(1)平均反射率
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの積分球平均反射率を用いた。
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの積分球平均反射率を用いた。
(2)スチールウール耐擦傷性評価
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
評価環境条件:25℃、60%RH
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)に スチールウール(日本スチールウール(株)製、ゲレードNo.0000)を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:500g/cm2、
先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
◎:非常に注意深く見ても、全く傷が見えない。
○:非常に注意深く見ると僅かに弱い傷が見える。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
評価環境条件:25℃、60%RH
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)に スチールウール(日本スチールウール(株)製、ゲレードNo.0000)を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:500g/cm2、
先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
◎:非常に注意深く見ても、全く傷が見えない。
○:非常に注意深く見ると僅かに弱い傷が見える。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
(3)面状均一性
反射防止層塗布面側を上にして、裏面側から上記蛍光灯を照射して、反射目視面検にて塗布ムラ、乾燥ムラ等の面状ムラの発生頻度について、10m2だけ検査し、その値を1
0で割って1m2当たりの面状ムラの数を算出し面状均一性を評価した。
×:10個/m2を越える
×△:10〜1個/m2
△: 5〜1個/m2
○△: 1〜0.5個/m2
○:0.5個未満/m2
反射防止層塗布面側を上にして、裏面側から上記蛍光灯を照射して、反射目視面検にて塗布ムラ、乾燥ムラ等の面状ムラの発生頻度について、10m2だけ検査し、その値を1
0で割って1m2当たりの面状ムラの数を算出し面状均一性を評価した。
×:10個/m2を越える
×△:10〜1個/m2
△: 5〜1個/m2
○△: 1〜0.5個/m2
○:0.5個未満/m2
比較例である試料1に対して、試料2はハードコート層に表面配向性の化合物を添加した結果、面状均一性は改良されるが、耐擦傷性は低下し、平均反射率も上昇した。
試料2の反射防止層表面を走査型電子顕微鏡にて観察すると、シリカ粒子に凝集構造が観察された。
試料3、4は試料2の塗布速度を上げたものであるが、走査型電子顕微鏡にて観察すると、試料2よりもさらに著しくシリカ粒子が凝集しており、それと対応するように反射率の上昇、耐擦傷性の低下が見られた。試料2、3、4の面状均一性が△であるのは、このシリカ凝集構造のムラが検知されたものである。
一方、本発明の試料5〜7は、試料2〜4と同じ表面配向性の化合物を使用したハードコート層を有しているが、反射防止層に中空シリカを使用することで反射率、耐擦傷性、面状のいずれも良好な結果であった。
このとき、試料5〜7の反射防止層表面には、シリカ凝集はほとんど見られなかった。
一方、試料9、10については、反射率のわずかな上昇、耐擦傷性の目減りが見られた。これは、表面配向性の化合物として、炭素数が8以上のフルオロ脂肪族基を有する化合物を使用したからであり、炭素数7以下のフルオロ脂肪族基を有する化合物が好ましいことがわかる。
試料2の反射防止層表面を走査型電子顕微鏡にて観察すると、シリカ粒子に凝集構造が観察された。
試料3、4は試料2の塗布速度を上げたものであるが、走査型電子顕微鏡にて観察すると、試料2よりもさらに著しくシリカ粒子が凝集しており、それと対応するように反射率の上昇、耐擦傷性の低下が見られた。試料2、3、4の面状均一性が△であるのは、このシリカ凝集構造のムラが検知されたものである。
一方、本発明の試料5〜7は、試料2〜4と同じ表面配向性の化合物を使用したハードコート層を有しているが、反射防止層に中空シリカを使用することで反射率、耐擦傷性、面状のいずれも良好な結果であった。
このとき、試料5〜7の反射防止層表面には、シリカ凝集はほとんど見られなかった。
一方、試料9、10については、反射率のわずかな上昇、耐擦傷性の目減りが見られた。これは、表面配向性の化合物として、炭素数が8以上のフルオロ脂肪族基を有する化合物を使用したからであり、炭素数7以下のフルオロ脂肪族基を有する化合物が好ましいことがわかる。
[実施例2]
本発明の試料5〜13の反射防止層表面をTOF−SIMS法で分析したところ、各表面配向性の化合物の化学構造に由来したフラグメントイオンを検知することができた。これは、各ハードコート層に添加した表面配向性の化合物が、反射防止層に拡散したことを意味する。すなわち、試料5〜13はいずれも、表面配向性の化合物を反射防止層に含有していることになる。
本発明の試料5〜13の反射防止層表面をTOF−SIMS法で分析したところ、各表面配向性の化合物の化学構造に由来したフラグメントイオンを検知することができた。これは、各ハードコート層に添加した表面配向性の化合物が、反射防止層に拡散したことを意味する。すなわち、試料5〜13はいずれも、表面配向性の化合物を反射防止層に含有していることになる。
[実施例3]
上記ハードコート層用塗布液A−2において、更に「ブライト20GNR4.6−EH」{ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物球状粉体にニッケル及び金をめっきしたもの、日本化学工業(株)製}を0.15%の濃度になるように分散し、ハードコート層用塗布液A−9を調製した。
実施例1の試料5の作製において、ハードコート層用塗布液A−9を使用した以外は同様にして、試料14を作製し、実施例1の方法で鹸化処理した。
上記ハードコート層用塗布液A−2において、更に「ブライト20GNR4.6−EH」{ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物球状粉体にニッケル及び金をめっきしたもの、日本化学工業(株)製}を0.15%の濃度になるように分散し、ハードコート層用塗布液A−9を調製した。
実施例1の試料5の作製において、ハードコート層用塗布液A−9を使用した以外は同様にして、試料14を作製し、実施例1の方法で鹸化処理した。
鹸化済みの試料14に対して実施例1の評価に加え、さらに以下の塵埃除去性の評価を行った。
(4)塵埃除去性
反射防止フィルムをモニターに張り付け、モニター表面に塵埃(布団、衣服の繊維屑)を振りかけた。クリーニングクロスで塵埃を拭き取り、塵埃の除去性を調べ、下記4段階で評価した。
○ ;3回以内の拭き取りで塵埃が完全に取り除けたもの。
○△;塵埃が完全に取り除けるが、4回以上6回以下の拭き取りが必要。
△ ;6回の拭き取りでは塵埃が若干残ったもの。
× ;塵埃がかなり残ったもの。
(4)塵埃除去性
反射防止フィルムをモニターに張り付け、モニター表面に塵埃(布団、衣服の繊維屑)を振りかけた。クリーニングクロスで塵埃を拭き取り、塵埃の除去性を調べ、下記4段階で評価した。
○ ;3回以内の拭き取りで塵埃が完全に取り除けたもの。
○△;塵埃が完全に取り除けるが、4回以上6回以下の拭き取りが必要。
△ ;6回の拭き取りでは塵埃が若干残ったもの。
× ;塵埃がかなり残ったもの。
試料14について実施例1に準じた評価を行った結果、実施例1の試料5と同様に本発明の効果が認められた。更に、塵埃除去性は○の評価結果であり、塵埃除去性に優れた試料であることが分かる。表面抵抗を測定した結果、LogSRで10.5であった。
[実施例4]
(ハードコート層用塗布液A−10の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(KAYARAD PET−30、日本化薬(株)製)45.0質量部に、重合開始剤(
イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)2.0質量部、表面配向性化合物(F−2)0.08質量部、オルガノシラン化合物(KBM−5103、信越化学工業(株)製)10.0質量部、ポリメタクリル酸メチル20質量%トルエン溶液(質量平均分子量12万、シグマアルドリッチジャパン(株)製)8.5質量部、トルエン28.5質量部を添加して撹拌した。この溶液を塗布したのち、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで分散した樹脂粒子(8μ の架橋ポリメチルメタクリレート粒子、屈折率1.50)の30%トルエン分散液25.5質量部を添加して撹拌した。孔径30μmのポリプロピレン製フィルターでろ過してハードコート層用塗布液A−10を調製した。
(ハードコート層用塗布液A−10の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(KAYARAD PET−30、日本化薬(株)製)45.0質量部に、重合開始剤(
イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)2.0質量部、表面配向性化合物(F−2)0.08質量部、オルガノシラン化合物(KBM−5103、信越化学工業(株)製)10.0質量部、ポリメタクリル酸メチル20質量%トルエン溶液(質量平均分子量12万、シグマアルドリッチジャパン(株)製)8.5質量部、トルエン28.5質量部を添加して撹拌した。この溶液を塗布したのち、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで分散した樹脂粒子(8μ の架橋ポリメチルメタクリレート粒子、屈折率1.50)の30%トルエン分散液25.5質量部を添加して撹拌した。孔径30μmのポリプロピレン製フィルターでろ過してハードコート層用塗布液A−10を調製した。
(反射防止層用塗布液Dの調製)
熱架橋性含フッ素ポリマー(特開平11−189621公報実施例1に記載の含フッ素含シリコーン熱硬化ポリマー)4.52g、硬化剤(サイメル303;商品名、日本サイテックインダストリーズ(株)製)1.13g、硬化触媒(キャタリスト4050;商品名、日本サイテックインダストリーズ(株)製)0.11g、シリカ分散液A(中空シリカのシクロヘキサノン分散液、シリカに対して重合性官能基含有表面処理剤15%使用、固形分濃度23%)15.0g、ゾル液a2.5g、光重合開始剤(PM980M、分子量527、和光純薬製)0.60g、およびメチルエチルケトン114gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液Dを調製した。
熱架橋性含フッ素ポリマー(特開平11−189621公報実施例1に記載の含フッ素含シリコーン熱硬化ポリマー)4.52g、硬化剤(サイメル303;商品名、日本サイテックインダストリーズ(株)製)1.13g、硬化触媒(キャタリスト4050;商品名、日本サイテックインダストリーズ(株)製)0.11g、シリカ分散液A(中空シリカのシクロヘキサノン分散液、シリカに対して重合性官能基含有表面処理剤15%使用、固形分濃度23%)15.0g、ゾル液a2.5g、光重合開始剤(PM980M、分子量527、和光純薬製)0.60g、およびメチルエチルケトン114gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液Dを調製した。
(反射防止層用塗布液Eの調製)
熱架橋性含フッ素ポリマー(特開平11−189621公報実施例1に記載の含フッ素含シリコーン熱硬化ポリマー)4.52g、硬化剤(サイメル303;商品名、日本サイテックインダストリーズ(株)製)1.13g、硬化触媒(キャタリスト4050;商品名、日本サイテックインダストリーズ(株)製)0.11g、シリカ分散液B(中空シリカのシクロヘキサノン分散液、シリカに対して表面処理剤5%使用、固形分濃度21%)15.0g、ゾル液a2.5g、光重合開始剤(PM980M、分子量527、和光純薬製)0.60g、およびメチルエチルケトン114gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液Eを調製した。
熱架橋性含フッ素ポリマー(特開平11−189621公報実施例1に記載の含フッ素含シリコーン熱硬化ポリマー)4.52g、硬化剤(サイメル303;商品名、日本サイテックインダストリーズ(株)製)1.13g、硬化触媒(キャタリスト4050;商品名、日本サイテックインダストリーズ(株)製)0.11g、シリカ分散液B(中空シリカのシクロヘキサノン分散液、シリカに対して表面処理剤5%使用、固形分濃度21%)15.0g、ゾル液a2.5g、光重合開始剤(PM980M、分子量527、和光純薬製)0.60g、およびメチルエチルケトン114gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、反射防止層用塗布液Eを調製した。
(反射防止層用塗布液Fの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、シリカに対して重合性官能基含有表面処理剤15%使用、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア907、分子量279、(商品名)、チバ・スペシャルティ・ケミカルズ(株)製)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Fを調製した。
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、シリカに対して重合性官能基含有表面処理剤15%使用、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア907、分子量279、(商品名)、チバ・スペシャルティ・ケミカルズ(株)製)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Fを調製した。
(反射防止層用塗布液Gの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア369(商品名)、チバ・スペシャルティ・ケミカルズ(株)製、分子量367)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Gを調製した。
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア369(商品名)、チバ・スペシャルティ・ケミカルズ(株)製、分子量367)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Gを調製した。
(反射防止層用塗布液Hの調製)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア819(商品名)、チバ・スペシャルティ・ケミカルズ(株)製、分子量419)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Gを調製した。
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)2.65g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)30.0g、ゾル液a2.93g、反応性シリコーンX−22−164C(商品名;信越化学工業社製)0.15g、含フッ素化合物F3035(商品名;日本油脂株式会社製、固形分濃度30%)0.15g、光重合開始剤(イルガキュア819(商品名)、チバ・スペシャルティ・ケミカルズ(株)製、分子量419)0.20g、およびメチルエチルケトン103g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Gを調製した。
(反射防止層用塗布液Iの調製)
ラジカル重合性含フッ素ポリマー(特開2003−222702号公報に記載の含フッ素含シリコーンラジカル重合性ポリマーP9)5.22g、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)0.50g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)15.0g、ゾル液a4.4g、光重合開始剤イルガキュア369(チバ・スペシャルティ・ケミカルズ(株)製、分子量367)0.17gおよびメチルエチルケトン114g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Iを調製した。
ラジカル重合性含フッ素ポリマー(特開2003−222702号公報に記載の含フッ素含シリコーンラジカル重合性ポリマーP9)5.22g、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)0.50g、シリカ分散液A(中空シリカ分散液、固形分濃度23%)15.0g、ゾル液a4.4g、光重合開始剤イルガキュア369(チバ・スペシャルティ・ケミカルズ(株)製、分子量367)0.17gおよびメチルエチルケトン114g、シクロヘキサノン3.5gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Iを調製した。
使用した分散液を以下に示す。
中空シリカ分散液A:(中空シリカ微粒子ゾル、平均粒子径65nm、シェル厚み8nm、シリカ粒子の屈折率1.28、特開2002−79616の調製例4に準じサイズを変更して作成)、表面処理剤として3−アクリロイルオキシプロピルトリメトキシシラン15質量部で表面修飾し、修飾後シクロヘキサノンに溶媒置換し固形分濃度を23%とした。)
中空シリカ分散液B:(中空シリカ微粒子ゾル、平均粒子径65nm、シェル厚み8nm、シリカ粒子の屈折率1.28、特開2002−79616の調製例4に準じサイズを変更して作成)、表面処理剤としてトリメチルメトキシシラン5質量部で表面修飾し、修飾後シクロヘキサノンに溶媒置換し固形分濃度を21%とした。)
中空シリカ分散液A:(中空シリカ微粒子ゾル、平均粒子径65nm、シェル厚み8nm、シリカ粒子の屈折率1.28、特開2002−79616の調製例4に準じサイズを変更して作成)、表面処理剤として3−アクリロイルオキシプロピルトリメトキシシラン15質量部で表面修飾し、修飾後シクロヘキサノンに溶媒置換し固形分濃度を23%とした。)
中空シリカ分散液B:(中空シリカ微粒子ゾル、平均粒子径65nm、シェル厚み8nm、シリカ粒子の屈折率1.28、特開2002−79616の調製例4に準じサイズを変更して作成)、表面処理剤としてトリメチルメトキシシラン5質量部で表面修飾し、修飾後シクロヘキサノンに溶媒置換し固形分濃度を21%とした。)
反射防止フイルム 試料15の作製
(1)ハードコート層の塗設
40μmの厚さのトリアセチルセルロースフイルム(富士写真フイルム(株)製)をロール形態で巻き出して、上記のハードコート層用塗布液A−10を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量80mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ10μmの層を形成し、巻き取った。
(1)ハードコート層の塗設
40μmの厚さのトリアセチルセルロースフイルム(富士写真フイルム(株)製)をロール形態で巻き出して、上記のハードコート層用塗布液A−10を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量80mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ10μmの層を形成し、巻き取った。
(2)反射防止層の塗設
前記ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出し、そのハードコート層の上に、前記反射防止層用塗布液Dを線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度20m/分の条件で塗布し、120℃で150秒乾燥の後、更に110℃で10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量400mJ/cm2の紫外線を照射し、厚さ95nmの反射防止層を形成し、巻き取った。
前記ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出し、そのハードコート層の上に、前記反射防止層用塗布液Dを線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度20m/分の条件で塗布し、120℃で150秒乾燥の後、更に110℃で10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量400mJ/cm2の紫外線を照射し、厚さ95nmの反射防止層を形成し、巻き取った。
ハードコート層と反射防止層を表3に示すように組み合わせて反射防止フイルム 試料16〜20を作製した。この際、反射防止層用塗布液Eを用いた場合は試料15と同様の硬化条件で硬化させた。反射防止層用塗布液F〜Iを使用した場合には、搬送速度15m/分の条件で塗布し、100℃で150秒乾燥の後、窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量400mJ/cm2の紫外線を照射し、厚さ95nmの反射防止層を形成し、巻き取った。
このようにして得られた試料15〜20を実施例1と同様に鹸化し、評価した結果を表3に合わせて示す。
表3によれば、本発明に従えば、低反射で、耐擦傷性に優れる反射防止フイルムが得られることが分かる。また、反射防止層に使用する重合開始剤の分子量が300を超えると耐擦傷性がより改善されることが分かる(試料17と18,19の比較)。
本発明の試料15〜20の反射防止層表面をTOF−SIMS法で分析したところ、表
面配向性の化合物の化学構造に由来したフラグメントイオンが検知され、ハードコート層に添加した表面配向性の化合物が、反射防止層に拡散したことが確認された。
本発明の試料15〜20の反射防止層表面をTOF−SIMS法で分析したところ、表
面配向性の化合物の化学構造に由来したフラグメントイオンが検知され、ハードコート層に添加した表面配向性の化合物が、反射防止層に拡散したことが確認された。
[実施例5]
PVAフィルムをヨウ素2.0g/l、ヨウ化カリウム4.0g/lの水溶液に25℃にて240秒浸漬し、さらにホウ酸10g/lの水溶液に25℃にて60秒浸漬後、特開2002−86554号公報に記載の図2の形態のテンター延伸機に導入し、5.3倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保った。80℃雰囲気で乾燥させた後テンターから離脱した。左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形は観察されなかった。
PVAフィルムをヨウ素2.0g/l、ヨウ化カリウム4.0g/lの水溶液に25℃にて240秒浸漬し、さらにホウ酸10g/lの水溶液に25℃にて60秒浸漬後、特開2002−86554号公報に記載の図2の形態のテンター延伸機に導入し、5.3倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保った。80℃雰囲気で乾燥させた後テンターから離脱した。左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形は観察されなかった。
さらに、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤としてケン化処理した富士写真フィルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに80℃で乾燥して有効幅650mmの偏光板を得た。得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。この偏光板の550nmにおける透過率は43.7%、偏光度は99.97%であった。さらに310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得た。
次に、実施例1の本発明試料(鹸化処理済み)の各々のフィルムを上記偏光板と貼り合わせて防眩性反射防止付き偏光板を作製した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製したところ、外光の映り込みがないために優れたコントラストが得られ、防眩性により反射像が目立たず優れた視認性を有していた。
次に、実施例1の本発明試料(鹸化処理済み)の各々のフィルムを上記偏光板と貼り合わせて防眩性反射防止付き偏光板を作製した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製したところ、外光の映り込みがないために優れたコントラストが得られ、防眩性により反射像が目立たず優れた視認性を有していた。
[実施例6]
1.5mol/l、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)と、実施例1の各本発明試料の裏面鹸化済みトリアセチルセルロースフィルムに、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光子の両面を接着、保護して偏光板を作製した。このようにして作製した偏光板を、反射防止膜側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えたところ、背景の映りこみが極めて少なく、表示品位の非常に高い表示装置が得られた。
1.5mol/l、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)と、実施例1の各本発明試料の裏面鹸化済みトリアセチルセルロースフィルムに、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光子の両面を接着、保護して偏光板を作製した。このようにして作製した偏光板を、反射防止膜側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えたところ、背景の映りこみが極めて少なく、表示品位の非常に高い表示装置が得られた。
[実施例7]
実施例1の本発明試料を貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、視野角拡大フィルム(ワイドビューフィルムエース、富士写真フイルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。
実施例1の本発明試料を貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、視野角拡大フィルム(ワイドビューフィルムエース、富士写真フイルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。
[実施例8]
実施例1の本発明試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
実施例1の本発明試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
[実施例9]
実施例1の本発明試料を用いて、片面反射防止フィルム付き偏光板を作製し、偏光板の反射防止膜を有している側の反対面にλ/4板を張り合わせ、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。
実施例1の本発明試料を用いて、片面反射防止フィルム付き偏光板を作製し、偏光板の反射防止膜を有している側の反対面にλ/4板を張り合わせ、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。
1 反射防止フィルム
2 透明支持体
3 帯電防止層
4 ハードコート層
5 反射防止層
6 微粒子
7 中屈折率層
8 高屈折率層
2 透明支持体
3 帯電防止層
4 ハードコート層
5 反射防止層
6 微粒子
7 中屈折率層
8 高屈折率層
Claims (9)
- 支持体上に乾燥時の膜厚が3〜20μmであり、かつ表面配向性の化合物を含有する少なくとも1層のハードコート層があり、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層が塗布されており、該反射防止層が中空シリカ微粒子を含有することを特徴とする反射防止フィルム。
- 支持体上に乾燥時の膜厚が3〜20μmである少なくとも1層のハードコート層を有し、さらに該ハードコート層の外側に、乾燥時の膜厚が0.5μm以下である少なくとも1層の反射防止層を有し、該反射防止層が中空シリカ微粒子を含有し、さらに表面配向性の化合物が該ハードコート層と該反射防止層の界面、及び/又は反射防止層に含有されることを特徴とする反射防止フィルム。
- 前記表面配向性の化合物が、フッ素原子を有する化合物であることを特徴とする請求項1又は請求項2に記載の反射防止フィルム。
- 前記表面配向性の化合物が、フルオロ脂肪族基を有する化合物であることを特徴とする請求項3に記載の反射防止フィルム。
- 前記表面配向性の化合物が、炭素数7以下のフルオロ脂肪族基を有する化合物であることを特徴とする請求項4に記載の反射防止フィルム。
- 前記ハードコート層が中心線平均粗さ(Ra)値0.1〜0.3μmである凹凸な表面を有することを特徴とする請求項1〜5に記載の防眩性の反射防止フィルム。
- 前記支持体と前記ハードコート層の間に帯電防止層が塗設されていることを特徴とする請求項1〜6に記載の反射防止フィルム。
- 請求項1〜7のいずれかに記載の反射防止フィルムが、偏光板における偏光子2枚の保護フィルムのうち一方に用いられていることを特徴とする偏光板。
- 請求項1〜7のいずれかに記載の反射防止フィルム、及び請求項8に記載の偏光板のうち少なくとも一つが、ディスプレイの最表面に用いられていることを特徴とする画像表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006068075A JP2006293334A (ja) | 2005-03-14 | 2006-03-13 | 反射防止フィルム、偏光板、及び画像表示装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005071128 | 2005-03-14 | ||
JP2006068075A JP2006293334A (ja) | 2005-03-14 | 2006-03-13 | 反射防止フィルム、偏光板、及び画像表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006293334A true JP2006293334A (ja) | 2006-10-26 |
Family
ID=37413914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006068075A Pending JP2006293334A (ja) | 2005-03-14 | 2006-03-13 | 反射防止フィルム、偏光板、及び画像表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006293334A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010007900A1 (ja) * | 2008-07-17 | 2010-01-21 | 東レフィルム加工株式会社 | ディスプレイ用フィルター |
JP2010032916A (ja) * | 2008-07-30 | 2010-02-12 | Fujifilm Corp | 防眩フィルム、偏光板、および画像表示装置 |
WO2010095325A1 (ja) * | 2009-02-17 | 2010-08-26 | コニカミノルタオプト株式会社 | 低反射部材、反射防止フィルム、偏光板及び画像表示装置 |
JP2017019247A (ja) * | 2015-07-14 | 2017-01-26 | 大日本印刷株式会社 | 光学積層体 |
-
2006
- 2006-03-13 JP JP2006068075A patent/JP2006293334A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010007900A1 (ja) * | 2008-07-17 | 2010-01-21 | 東レフィルム加工株式会社 | ディスプレイ用フィルター |
JP2010032916A (ja) * | 2008-07-30 | 2010-02-12 | Fujifilm Corp | 防眩フィルム、偏光板、および画像表示装置 |
US8705174B2 (en) | 2008-07-30 | 2014-04-22 | Fujifilm Corporation | Antiglare film, polarizing plate, and image display device |
WO2010095325A1 (ja) * | 2009-02-17 | 2010-08-26 | コニカミノルタオプト株式会社 | 低反射部材、反射防止フィルム、偏光板及び画像表示装置 |
JP2017019247A (ja) * | 2015-07-14 | 2017-01-26 | 大日本印刷株式会社 | 光学積層体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5114438B2 (ja) | 光学フィルム、その製造方法、偏光板および画像表示装置 | |
JP4404769B2 (ja) | 反射防止フィルム、偏光板、及び画像表示装置 | |
JP4666983B2 (ja) | 光学機能フィルムの製造方法 | |
JP5102958B2 (ja) | 反射防止フィルムの製造方法 | |
JP4900892B2 (ja) | 光学フィルムの作製方法 | |
JP4474114B2 (ja) | フルオロ脂肪族基含有ポリマーを含む組成物、フィルム、偏光板 | |
JP4900890B2 (ja) | 光学フィルム、光学フィルムの作製方法、偏光板、及びそれを用いた画像表示装置 | |
JP2005186568A (ja) | 反射防止フィルム、偏光板及び液晶表示装置 | |
JP4139673B2 (ja) | 反射防止膜およびディスプレイ装置 | |
JP2006048025A (ja) | 反射防止フィルムおよびその製造方法 | |
JP2005307176A (ja) | 微粒子分散物、コーティング組成物、それを用いて形成した光学フィルムおよび反射防止フィルム、並びにそれを用いた偏光板、画像表示装置 | |
JP2007102208A (ja) | 光学フィルム、反射防止フィルム、並びに該光学フィルムまたは該反射防止フィルムを用いた偏光板および画像表示装置 | |
JP5358080B2 (ja) | 無機微粒子、組成物、硬化物、光学フィルム、偏光板、及び画像表示装置 | |
JP4792305B2 (ja) | 反射防止フィルム、偏光板、及び画像表示装置 | |
JP2005234476A (ja) | 反射防止膜、反射防止フィルムおよび画像表示装置 | |
JP2007065635A (ja) | 光学フィルム、特に反射防止フィルム及びその製造方法、並びに反射防止フィルムを用いた偏光板及び液晶表示装置 | |
JP2010061044A (ja) | 反射防止フィルム、偏光板および画像表示装置 | |
JP4393232B2 (ja) | 反射防止フィルムの製造方法 | |
JP2006268031A (ja) | 反射防止フィルム、偏光板、及び画像表示装置 | |
JP2007057612A (ja) | 防眩性反射防止フィルム及びその製造方法、該防眩性反射防止フィルムを用いた偏光板、並びに該偏光板を用いた液晶表示装置及び液晶表示装置 | |
JP2005275391A (ja) | 反射防止フィルムおよび製造方法、並びに偏光板およびそれを用いた液晶表示装置 | |
JP2006293334A (ja) | 反射防止フィルム、偏光板、及び画像表示装置 | |
JP2005053105A (ja) | 光学フィルム、反射防止膜、偏光板及び表示装置 | |
JP2005148623A (ja) | 反射防止フィルム | |
JP2006251665A (ja) | 光学フイルム、偏光板、及びそれらを用いた画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061127 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071109 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071126 |