JP2006278439A - 磁気センサの製造方法 - Google Patents

磁気センサの製造方法 Download PDF

Info

Publication number
JP2006278439A
JP2006278439A JP2005091616A JP2005091616A JP2006278439A JP 2006278439 A JP2006278439 A JP 2006278439A JP 2005091616 A JP2005091616 A JP 2005091616A JP 2005091616 A JP2005091616 A JP 2005091616A JP 2006278439 A JP2006278439 A JP 2006278439A
Authority
JP
Japan
Prior art keywords
film
groove
giant magnetoresistive
thick film
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091616A
Other languages
English (en)
Inventor
Hideki Sato
秀樹 佐藤
Yukio Wakui
幸夫 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2005091616A priority Critical patent/JP2006278439A/ja
Priority to CN200680008164.2A priority patent/CN101142494B/zh
Priority to EP06729152A priority patent/EP1860450B1/en
Priority to PCT/JP2006/305131 priority patent/WO2006098367A1/ja
Priority to TW095108810A priority patent/TWI313078B/zh
Priority to US10/584,666 priority patent/US8178361B2/en
Priority to AT06729152T priority patent/ATE512370T1/de
Publication of JP2006278439A publication Critical patent/JP2006278439A/ja
Priority to US13/459,644 priority patent/US9054028B2/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 1枚の基板に3個以上の巨大磁気抵抗素子を配置し、三軸方向の磁界の強さを検知することができる小型の磁気センサを得る。
【解決手段】 基板1上に形成された厚膜の平坦面に、X軸センサを構成する4個のGMR素子2a〜2dとY軸センサを構成する4個のGMR素子3e〜3hを配置する。Z軸センサは、厚膜の一部をエッチングして形成した複数の溝の斜面に形成した4個のGMR素子4i〜4lで構成する。
【選択図】 図1

Description

この発明は、磁気センサの製造方法に関し、特に1枚の基板に3個以上の巨大磁気抵抗素子を配置し、三軸方向の磁界の強さを検知することができる小型の磁気センサを得るようにしたものである。
本出願人は、既に特開2004−6752号公報により、1枚の基板上に3個以上の巨大磁気抵抗素子を配置してなり、三軸方向の磁界の強さを測定することができる磁気センサを提案している。
この先行発明では、シリコン基板に溝を形成し、この溝の斜面にZ軸検知用の巨大磁気抵抗素子を配置し、基板平坦面にX軸検知用の巨大磁気抵抗素子とY軸検知用の巨大磁気抵抗素子を配置したもので、小型化が可能なものである。
また、これに引き続いて、基板上に酸化ケイ素からなる山部を形成し、この山部の斜面にZ軸検知用の巨大磁気抵抗素子を配置し、基板の平坦面にX軸検知用の巨大磁気抵抗素子とY軸検知用の巨大磁気抵抗素子を配置した三軸磁気センサを提案している。
特開2004−6752号公報
本発明は、これら先行発明の延長線上にあるもので、その課題とするところは、同様に、1枚の基板に3個以上の巨大磁気抵抗素子を配置し、三軸方向の磁界の強さを検知することができる小型の磁気センサを得ることにある。
かかる課題を解決するため、
請求項1にかかる発明は、基板の最上層の配線層上に、この配線層を覆うとともに平坦面を形成する平坦化層を形成し、この上にパッシベーション膜を成膜した後、
この上に厚膜を形成し、さらにこの厚膜上にレジスト膜を形成し、
このレジスト膜に、厚膜に形成する溝の形状に相当する凸状部が設けられた型を押し当てて溝形状を形成するとともに、このレジスト膜のうち、一部を除去し、残ったレジスト膜に加熱処理を施して、レジスト膜の側面を傾斜面となし、
次いで、レジスト膜と厚膜とを、そのエッチング選択比がほぼ1:1となるエッチング条件でエッチングし、溝を厚膜に形成し、
次ぎに、厚膜の平坦面と上記溝の斜面ならびに頂部または底部に巨大磁気抵抗素子のバイアス磁石部を形成し、この上に巨大磁気抵抗素子膜を成膜した後、基板をマグネットアレイ上に置いて熱処理を施し、
次いで、巨大磁気抵抗素子膜の一部をエッチングにより除去して、厚膜の平坦面および溝の斜面に巨大磁気抵抗素子の帯状部を形成し、この上に保護膜を成膜することを特徴とする磁気センサの製造方法である。
かかる課題を解決するため、
請求項2にかかる発明は、基板の最上層の配線層上に、この配線層を覆うとともに平坦面を形成する平坦化層を形成し、この上にパッシベーション膜を成膜した後、
この上に厚膜を形成し、さらにこの厚膜上にレジスト膜を形成し、
このレジスト膜に対向するように、厚膜に形成する溝に相当する部分に、この溝の中央に相当する位置から、溝の両端に相当する位置に向かって、単位面積当たりの数が次第に増加するように微細なパターンが設けられたフォトマスクを配置して、レジスト膜を露光し、現像してレジスト膜に溝形状を形成し、このレジスト膜のうち、一部を除去し、残ったレジスト膜に加熱処理を施して、レジスト膜の側面を傾斜面となし、
次いで、レジスト膜と厚膜とを、そのエッチング選択比がほぼ1:1となるエッチング条件でエッチングし、溝を厚膜に形成し、
次ぎに、厚膜の平坦面と上記溝の斜面ならびに頂部または底部に巨大磁気抵抗素子のバイアス磁石部を形成し、この上に巨大磁気抵抗素子膜を成膜した後、基板をマグネットアレイ上に置いて熱処理を施し、
次いで、巨大磁気抵抗素子膜の一部をエッチングにより除去して、厚膜の平坦面および溝の斜面に巨大磁気抵抗素子の帯状部を形成し、この上に保護膜を成膜することを特徴とする磁気センサの製造方法である。
請求項1に記載の発明によれば、溝の形成と、この溝の斜面への巨大磁気抵抗素子の形成と、ビア部およびパッド部の形成が一連のプロセスとして行えることになる。また、レジスト膜に、厚膜に形成する溝の形状に相当する凸状部が設けられた型を押し当てて溝形状を形成することにより、厚膜のエッチング工程において、所定の溝形状を形成し易くなる。これにより、溝の斜面をより均一な平坦面とすることができる。したがって、このような斜面に巨大磁気抵抗素子の帯状部が設けられた磁気センサを、Z軸センサの感知軸の向きが揃った、感度の高いものとすることができる。
請求項2に記載の発明によれば、溝の形成と、この溝の斜面への巨大磁気抵抗素子の形成と、ビア部およびパッド部の形成が一連のプロセスとして行えることになる。また、レジスト膜に対向するように、厚膜に形成する溝に相当する部分に、この溝の中央に相当する位置から、溝の両端に相当する位置に向かって、単位面積当たりの数が次第に増加するように微細なパターンが設けられたフォトマスクを配置して、レジスト膜を露光し、現像してレジスト膜に溝形状を形成することにより、厚膜のエッチング工程において、所定の溝形状を形成し易くなる。これにより、溝の斜面をより均一な平坦面とすることができる。したがって、このような斜面に巨大磁気抵抗素子の帯状部が設けられた磁気センサを、Z軸センサの感知軸の向きが揃った、感度の高いものとすることができる。
(磁気センサ)
図1は、本発明の磁気センサの製造方法によって得られる磁気センサの一例を模式的に示すものであり、基板上の巨大磁気抵抗素子の配置を示すものである。
図1において、符号1は基板を示す。この基板1は、シリコンなどの半導体基板に磁気センサの駆動回路、信号処理回路などの半導体集積回路、配線層などが予め形成されており、この上に平坦化膜、パッシベーション膜、酸化ケイ素膜などからなる厚膜が順次積層されたものであり、これらの各膜は図示を省略してある。
この基板1の厚膜上には、X軸センサ2と、Y軸センサ3と、Z軸センサ4とが設けられている。X軸センサ2は、図1に示した座標軸において、X方向に、Y軸センサ3は、同じくY方向に、Z軸センサ4は、同じくZ方向に感知軸を有するものである。
X軸センサ2は、4個の巨大磁気抵抗素子2a、2b、2c、2dから構成され、Y軸センサ3は、4個の巨大磁気抵抗素子3e、3f、3g、3hから構成され、Z軸センサ4は、4個の巨大磁気抵抗素子4i、4j、4k、4lから構成されている。
X軸センサ2をなす4個の巨大磁気抵抗素子のうち、巨大磁気抵抗素子2a、2bは、基板1のほぼ中央部に並んで設けられ、残りの2個の巨大磁気抵抗素子2c、2dは、これらからやや離れた基板1の端部に互い並んで、巨大磁気抵抗素子2a、2bと対峙するように設けられている。
Y軸センサ3をなす4個の巨大磁気抵抗素子のうち、巨大磁気抵抗素子3e、3fは、基板1の一方の端部側に配され、残りの2個の巨大磁気抵抗素子3g、3hは、基板1の他方の端部側に互いに並んで、巨大磁気抵抗素子3e、3fと対峙するように配置されている。
Z軸センサ4をなす4個の巨大磁気抵抗素子のうち、2個の巨大磁気抵抗素子4k、4lは、巨大磁気抵抗素子3e、3fに近い位置に互いに並んで配され、残りの2個の巨大磁気抵抗素子4i、4jは、巨大磁気抵抗素子2a、2bからやや離れた位置に互いに並んで配置されている。
これらの巨大磁気抵抗素子は、基本的には従来の巨大磁気抵抗素子と同様のもので、例えば、X軸センサ、またはY軸センサを例にすると、図2に示すように、4個の帯状部5、5、5、5と、これらの帯状部5、5、5、5を電気的に直列に接続する3個のバイアス磁石部6、6、6とから構成されている。
帯状部5は、巨大磁気抵抗素子の本体をなす部分であり、細長い帯状の平面形状をなすものである。
帯状部5は、磁化の向きが所定の向きに固定されたピンド層と、磁化の向きが外部磁界の向きに応じて変化するフリー層を備えたもので、具体的にはフリー層上に導電性のスペーサ層、ピンド層、キャッピング層を順次積層してなる多層金属薄膜積層物から構成されている。
フリー層としては、例えば、コバルト−ジルコニウム−ニオブのアモルファス磁性層とニッケル−コバルトの磁性層とコバルト−鉄の磁性層との三層からなるものが用いられる。スペーサ層としては、例えば、銅からなるものが用いられる。ピンド層としては、例えば、コバルト−鉄の強磁性層と白金−マンガンの反磁性層との二層からなるものが用いられる。キャピング層としては、例えば、タンタルからなるものが用いられる。
バイアス磁石部6は、4個の帯状部5、5、5、5を電気的に直列に接続するとともに、帯状部5の磁気特性を整えるためのバイアス磁界を帯状部5に印加するためのものである。また、このバイアス磁石部6は、例えば、コバルト−白金−クロム層とクロム層との二層からなる薄膜金属積層物から構成されている。
基板1の平坦面に設けられたX軸センサ2およびY軸センサ3をなす巨大磁気抵抗素子2a、2b、2c、2d、3e、3f、3g、3hについての構造は、図2に示すように、4個の帯状部5、5、5、5と、3個のバイアス磁石部6、6、6とから構成されている。4個の帯状部5、5、5、5のうち、両外側の2個の帯状部5、5のバイアス磁石部6が接続されていない端部には配線層7、7が接続され、この配線層7、7は、図示しないビア部に接続されている。
図3ないし図5は、Z軸センサ4をなす4個の巨大磁気抵抗素子のうち、巨大磁気抵抗素子4i、4jの構造を示すものである。他の巨大磁気抵抗素子4k、4lは、巨大磁気抵抗素子4i、4jと同様の構造となっているので、これについては説明を省略する。
図3は、巨大磁気抵抗素子4i、4jの概略平面図であり、図4は、図3において破断線IV−IVで切断した概略断面図であり、図5は、巨大磁気抵抗素子の帯状部5とバイアス磁石部6の配置状態を模式的に示した斜視図である。
図4において、符号1は基板を示し、符号11は基板1上に堆積された酸化ケイ素などからなる厚膜を示す。
この厚膜11には、この厚膜11を部分的に削り取って形成された4個のV字状の溝8、8、8、8が互いに並んで平行に設けられている。
この溝8は、その深さが3μm〜7μm、長さが250μm〜300μmとされる細長い形状の凹部となっており、その斜面の幅が3μm〜8μmとなっている。また、溝8の斜面と厚膜11表面とのなす角度は30〜80度、好ましくは70度程度となっている。
なお、図4では、溝8の斜面を平坦面として描いているが、実際には製造プロセス上、外方に向けてやや張り出した湾曲面となっている。
また、これらの溝8、8、8、8の互いに隣接する8つの斜面には、斜面の長手方向に沿い、かつ斜面の中央部分の平坦性が良好な位置に、8個の巨大磁気抵抗素子の帯状部5、5、5、5が設けられている。
また、これら8つの斜面の内、第1の斜面8aに形成された帯状部5の一方の端部から溝8の底部8bを経て隣の第2の斜面8cに形成された帯状部5の一方の端部にかけてバイアス磁石部6が設けられて、電気的に接続されている。
また、第2の斜面8cに形成された帯状部5の他方の端部から溝8の頂部8dを跨ぐようにして隣の第3の斜面8eに形成された帯状部5の一方の端部にかけてバイアス磁石部6が設けられて、電気的に接続されている。
さらに、第3の斜面8eに形成された帯状部5の他方の端部から溝8の底部8fを経て隣の第4の斜面8gに形成された帯状部5の一方の端部にかけてバイアス磁石部6が設けられて、電気的に接続され、1個の巨大磁気抵抗素子4iが構成されている。
そして、同様にして残りの4個の帯状部5、5、5、5が3個のバイアス磁石部6、6、6によって直列に接続され、1個の巨大磁気抵抗素子4jが構成されている。
また、厚膜11の平坦部に設けられたX軸センサ2およびY軸センサ3をなす巨大磁気抵抗素子と同様に、これら帯状部5、5、5、5のうち、両外側の2個の帯状部5、5のバイアス磁石部6が接続されていない端部には、配線層7、7が接続され、この配線層7、7は、図示しないビア部に接続されている。この配線層7は、この例では巨大磁気抵抗素子のバイアス磁石部6をなすマグネット膜から構成されており、これによりバイアス磁石部6と配線層7を同時に作製することができる。
また、X軸センサ2をなす巨大磁気抵抗素子およびY軸センサ3をなす巨大磁気抵抗素子においては、図2に示すように、その感知軸は、帯状部5の長手方向に直交方向(図中の矢印の方向)で基板1の表面に平行に向けられている。また、帯状部5のピニング方向およびバイアス磁石部6のバイアス磁界の着磁方向は、帯状部5の長手方向に対して30〜60度、好ましくは45度で、基板1の表面に平行となっている。
また、Z軸センサ4をなす巨大磁気抵抗素子4i、4jにおいては、図5に示すように、その感知軸は、帯状部5の長手方向に対して直交方向(図中の矢印の方向)で溝8の斜面に平行でかつ斜面の上向きに向けられている。また、帯状部5のピニング方向およびバイアス磁石部6のバイアス磁界の着磁方向は、帯状部5の長手方向に対して30〜60度、好ましくは45度で、溝8の斜面に平行で斜面の上向きとなっている。
一方、Z軸センサ4をなす巨大磁気抵抗素子4k、4lにおいては、図6に示すように、その感知軸は、帯状部5の長手方向に対して直交方向(図中の矢印の方向)で溝8の斜面に平行でかつ斜面の下向きに向けられている。また、帯状部5のピニング方向およびバイアス磁石部6のバイアス磁界の着磁方向は、帯状部5の長手方向に対して30〜60度、好ましくは45度で、溝8の斜面に平行で斜面の下向きとなっている。
このような感知軸方向を得るためには、マグネットアレイを基板上方から接近させた状態で、基板を260〜290℃にて、3時間〜5時間加熱する加熱処理を施せばよく、これは従来のピニング処理と同様である。
通常の巨大磁気抵抗素子では、感知軸方向とピニング方向とは、ともに帯状部の長手方向に対して直交方向で、基板表面に平行とされている。一方、本発明では、上述のように、帯状部5の感知軸方向とピニング方向とを異ならせることによって、巨大磁気抵抗素子の耐強磁界性が向上することになる。
図7は、上述のX軸センサ2をなす4個の巨大磁気抵抗素子2a、2b、2c、2d、Y軸センサ3をなす4個の巨大磁気抵抗素子3e、3f、3g、3h、および、Z軸センサ4をなす4個の巨大磁気抵抗素子4i、4j、4k、4lの結線方法を示すもので、各軸センサの4個の巨大磁気抵抗素子の出力をブリッジ結線したものが示されている。
このようなブリッジ結線を行うことで、図1の座標軸のX軸、Y軸、Z軸の正方向に磁界を印加した時に、それぞれのX軸センサ2、Y軸センサ3およびZ軸センサ4からの出力が増加し、逆方向に磁界を印加した時には、それぞれのX軸センサ2、Y軸センサ3およびZ軸センサ4からの出力が低下する特性が得られることになる。
また、図1ないし図6では、図示していないが、X軸センサ2、Y軸センサ3およびZ軸センサ4を構成するすべての巨大磁気抵抗素子を含む基板1全面には、窒化ケイ素などのパッシベーション膜、ポリイミドなどの保護膜が被覆されており、各センサは外界から保護されている。
図8は、基板1に設けられたビア部の構造の一例を示すもので、図8において符号21aは、ビア部を構成するアルミニウムなどからなる導体部を示し、この導体部21aは、下層の配線部に電気的に接続されている。
この導体部21aの表面の周辺部は、上述の平坦化膜22、パッシベーション膜23、厚膜11で覆われている。厚膜11の端縁部は、図示のように傾斜面となっている。
さらに、導体部21の表面の中央部分は、配線膜25で被覆されており、この配線膜25は、上述の巨大磁気抵抗素子の配線層7に接続されている。この配線膜25も配線層7と同様にバイアス磁石部6をなすマグネット膜から構成されており、バイアス磁石部6と同時に作製することができる。
この配線膜25は、図示のように、厚膜11の端縁部において、階段状の段差が形成されている。この段差部分の隅部では、プロセス上、配線膜25の厚みが薄くなって断線のおそれがある。このため、この段差部分および中央部分を覆うように、配線膜25上に保護導体膜26が積層されている。
この保護導体膜26としては、この例では、巨大磁気抵抗素子の帯状部5をなす巨大磁気抵抗素子膜が用いられており、これによれば帯状部5の作製と同時に配線膜25上に保護導体膜26を積層できる。これによって、配線膜25の断線のおそれを回避できることになる。
さらに、このようなビア部には、窒化ケイ素などのパッシベーション膜27、ポリイミドなどの保護膜28が被覆され、外界から保護されている。
このような磁気センサにあっては、1枚の基板1に、X軸センサ2、Y軸センサ3およびZ軸センサ4が配置されているので、小型の三軸磁気センサとして機能する。また、溝8の斜面の平坦性の良好な部分に巨大磁気抵抗素子の帯状部を形成することができ、感度に優れる磁気センサが得られる。
ビア部の開口縁部でのバイアス磁石膜からなる配線膜25の上に巨大磁気抵抗素子膜からなる保護導体膜26が積層され、隅部での配線膜25の断線が生じるおそれが少なくなる。
さらに、帯状部5のピニング方向を、帯状部5の長手方向に対して30〜60度としたことで、得られる巨大磁気抵抗素子の耐強磁界性が良好となる。
(磁気センサの製造方法の第一の実施形態)
次に、本発明に係る磁気センサの製造方法の第一の実施形態について説明する。
以下の説明においては、主に、上記の溝8、8、・・・の斜面に形成されたZ軸センサ4を構成する巨大磁気抵抗素子、ビア部、パッド部の作製方法について説明する。
まず、基板1を用意する。この基板1は、上述のように、シリコンなどの半導体基板に磁気センサの駆動回路、信号処理回路などの半導体集積回路、配線層などが予め形成されたものである。
図9(a)に示すように、この基板1には、その最上層の配線層の一部をなすビア部Aのアルミニウムなどからなる導体部21aと、パッド部Bのアルミニウムなどからなる導体部21bが設けられている。
この基板1上に、まず平坦化膜31を成膜する。この平坦化膜31としては、例えば、プラズマCVD法による厚み300nmの酸化ケイ素膜、厚み600nmのSOG膜、トリエトキシシランを原料として製膜した厚み50nmの酸化ケイ素膜を順次積層したものなどが用いられる。
次に、図9(b)に示すように、ビア部A、パッド部Bの導体部21a、21b上の平坦化膜31をエッチングにより取り除き、それらの導体部21a、21bを開口させる。
さらに、図9(c)に示すように、基板1全面にパッシベーション膜32を成膜する。このパッシベーション膜32としては、例えば、プラズマCVD(Chemical Vapor Deposition;化学気相成長)法により形成され、下層をなす厚み250nmの酸化ケイ素膜33と、プラズマCVD法により形成され、上層をなす厚み600nmの窒化ケイ素膜34との積層膜などが用いられる。
次いで、図9(d)に示すように、ビア部A、パッド部Bの導体部21a、21bの上方に堆積している窒化ケイ素膜34をエッチングにより除去する。この際、酸化ケイ素膜33は残し、窒化ケイ素膜34の除去の範囲は、平坦化膜31の開口幅よりも小さくする。このようにすることにより、ビア部Aおよびパッド部Bの開口部分において、平坦化膜31の端面が露出して、基板1に形成された配線層や半導体集積回路などに水分が侵入することが防止される。
次いで、図10(a)に示すように、この上に厚み5μm程度のプラズマCVD法による酸化ケイ素からなる厚膜35を形成する。この厚膜35は、後述するように、上記の溝8、8、・・・が形成されるものである。
次ぎに、図10(b)に示すように、この厚膜35上に厚み5μm程度のレジスト膜36を全面に形成する。
次いで、図10(c)に示すように、エッチング処理により、このレジスト膜36の一部を除去して、ビア部Aおよびパッド部Bが開口するとともに、スタンパ法により、レジスト膜36の一部の溝形成部Cを、断面形状が頂部の尖った形状、すなわち、断面形状が頂点(頂部)を境としてジグザグに連続する形状となるように開口する。
ここで、スタンパ法により、レジスト膜36の溝形成部Cに開口する工程について説明する。
スタンパ法を用いる場合、予め基板1に最上層の配線層を形成する際に、基板1の向かい合う端部に少なくとも一対の位置決め用のアライメントマークを設けておく。
まず、図11(a)に示すように、厚膜35の全面にレジストを塗布し、レジスト膜36を形成する。
この後、レジスト膜36に温度120℃にて、5分間程度の加熱処理を施す。これにより、厚膜35とレジスト膜36との密着性が向上し、後段の工程にて、レジスト膜36に接触させた型を、レジスト膜36から剥離し易くなる。
次いで、図11(b)に示すように、コンタクトアライナー(図示略)に、型37を取り付けた後、レジスト膜36が設けられた基板1をコンタクトアライナーの所定位置に配置し、型37を基板1上に設けられたレジスト膜36に対向させる。この際、基板1に設けられたアライメントマークと、型37の基板1に対応する位置に設けられたアライメントマークを合わせて、基板1に対して型37の位置を合わせる。
型37は石英などからなり、上述のように、基板1に対応する位置にアライメントマークが設けられている。また、型37の厚膜35の溝形成部Cに相当する位置には、断面形状が頂点(頂部)を境としてジグザグに連続する凸状部37aが複数設けられている。
次いで、図11(c)に示すように、型37をレジスト膜36に押し当てる(接触させる)。型37のレジスト膜36に対する接触面(凸状部37aが設けられている側の面)には、レジスト膜36から型37を剥離し易くするために、フッ素樹脂を被覆するなどの表面処理(シリコン処理)を施しておくことが望ましい。
この後、レジスト膜36に温度150℃にて、10分程度の加熱処理を施し、レジスト膜36を溶融させ、ビア部Aおよびパッド部Bにおいては、端面を傾斜面とし、溝形成部Cにおいては、凸状部37aの形状に相当する溝を形成する。
なお、レジスト膜36は、室温から温度を上げていくと、150℃付近から、軟化してくる。さらに温度を上げて200℃を超えると、焼き固まる状態になるが、150℃程度では、固化しない。ここでの処理は、レジスト膜36が軟化した状態で型に押し当てることにより、型の形に変形させる。型を押し当てたままレジスト膜36を冷却し、型を外すと、その形が崩れずにレジスト膜36は硬くなる。また、これとは別に、100℃を超えたあたりから、溶媒が揮発し、基板1に対するレジスト膜36の密着性が高くなる。
次いで、図11(d)に示すように、レジスト膜36から型37を剥離する。これにより、基板1の上には、型37の凸状部37aの形状に相当する溝36aが形成されたレジスト膜36が設けられる。
なお、上記の型37をフォトマスクと一体に設けて、レジスト膜36のパターン形成と、溝36aの形成を同時に行ってもよい。
この後、図12(a)に示すように、レジストと酸化ケイ素とのエッチング選択比がほぼ1対1となるような条件にて、レジスト膜36と厚膜35に対してドライエッチングを行い、厚膜35に溝8、8、・・・を形成すると同時に、ビア部Aおよびパッド部Bに薄くなった厚膜35を残す。
このドライエッチング条件を、以下の通りとする。
CF/CHF/N/O=60/180/10/100sccm、圧力=400mTorr、RF Power=750W、電極温度15℃、チャンバ温度15℃とする。
このドライエッチングの際に、図12(a)に示すように、ビア部Aおよびパッド部Bでは、その開口の広さがパッシベーション膜32の開口の広さよりも大きくならないようにする。
この後、厚膜35上に残っているレジスト膜36を除去する。
これにより、図12(a)に示すように、厚膜35の溝形成部Cには、溝8、8、・・・が形成される。さらに、図12(b)に示すように、ビア部Aの導体部21aを覆っている厚膜35および酸化ケイ素膜33をレジストワーク、エッチングにより取り除き、導体部21aを露出する。
次いで、基板1全面に、巨大磁気抵抗素子のバイアス磁石部6となるマグネット膜をスパッタリングにより成膜し、レジストワーク、エッチングにより不要部分を除去し、図12(c)に示すように、溝8、8、・・・の斜面上にバイアス磁石部6を形成し、これと同時にビア部Aの導体部21a上に配線膜25を形成し、この配線膜25と巨大磁気抵抗素子のバイアス磁石部6とを繋ぐ配線層7を形成する。
このマグネット膜には、先に述べたとおりの多層金属薄膜が用いられる。
この際に、厚膜35の平坦面にも、X軸センサ2、Y軸センサ3を構成する各巨大磁気抵抗素子のバイアス磁石部6とこれの配線層7も形成する。
このバイアス磁石部6の形成のためのレジストワークの際に、溝8の斜面でのマグネット膜のエッチングを適切に行うため、パターン形成後のレジスト膜に加熱処理を施して、レジスト膜の端面を傾斜面とすることが好ましい。
次いで、この上に巨大磁気抵抗素子の帯状部5となる巨大磁気抵抗素子膜をスパッタリングにより全面に成膜する。この巨大磁気抵抗素子膜としては、先に述べた通りの多層金属薄膜が用いられる。
さらに、この状態の基板1をマグネットアレイ上にセットして、温度260〜290℃にて、3時間〜5時間の熱処理を施し、巨大磁気抵抗素子膜に対して、ピニング処理を施す。
この後、巨大磁気抵抗素子膜に対してレジストワーク、エッチングを行い、不要部分を除去して、図13(a)に示すように、溝8、8、・・・の斜面上に帯状部5、5、・・・を形成し、巨大磁気抵抗素子を作製する。これにより、Z軸センサ4が完成する。
同時にビア部Aの導体部21a上に先に形成されたマグネット膜からなる配線膜25上にも巨大磁気抵抗素子膜を残し、保護導体膜26とする。これにより図8に示すビア部Aの構造が得られる。
さらに、これと同時に、厚膜35の平坦面にも、帯状部5を形成し、巨大磁気抵抗素子を作製する。これによりX軸センサ2と、Y軸センサ3が完成する。
次いで、図13(b)に示すように、プラズマCVD法による厚み1μmの窒化ケイ素膜からなるパッシベーション膜27を成膜し、さらにこの上にポリイミドからなる保護膜28を設ける。さらに、この保護膜28、パッシベーション膜27のうち、パッド部Bにある部分を除去し、開口する。
次いで、図13(c)に示すように、保護膜28をマスクとして、エッチングを行い、パッド部Bの導体部28を覆っている酸化ケイ素膜33と厚膜35を除去し、パッド部Bの導体部21bを露出させて、目的とする磁気センサを得る。
このような磁気センサの製造方法によれば、1枚の基板にX軸センサ2、Y軸センサ3およびZ軸センサ4を作製することができる上に、これと同時にビア部、パッド部も作製することができ、一連の連続したプロセスで小型の三軸磁気センサを一挙に製造することが可能になる。また、レジスト膜36に、厚膜35に形成する溝8、8、・・・の形状に相当する凸状部37aが設けられた型37を押し当てて溝形状を形成することにより、厚膜35のエッチング工程において、所定の溝形状を形成し易くなる。これにより、溝8、8、・・・の斜面をより均一な平坦面とすることができる。したがって、このような斜面に巨大磁気抵抗素子の帯状部が設けられた磁気センサを、Z軸センサの感知軸の向きが揃った、感度の高いものとすることができる。
(磁気センサの製造方法の第二の実施形態)
次に、本発明に係る磁気センサの製造方法の第二の実施形態について説明する。
この実施形態は、基板1の上に形成されたレジスト膜36の溝形成部Cに相当する部分に溝を形成する工程に関してのみ、上述の第一の実施形態と異なる。したがって、この工程についてのみ説明する。
この実施形態では、図14に示すようなグレーレチクルなどのフォトマスク40を用いる。
このフォトマスク40には、図14(a)に示すように、レジスト膜36をなすレジストの解像度以下の微細なパターン41、41、・・・が多数設けられている。この微細なパターン41、41、・・・は、図14(b)に示すように、フォトマスク40において、レジスト膜36に形成される溝の中央に相当する位置から、溝の両端に相当する位置に向かって、単位面積当たりの数(以下、「パターン率」と言うこともある。)が次第に増加するように設けられている。このパターン率の増加の度合いは、目的とする溝形状(溝の斜面の傾き)に応じて、適宜調整される。
このようなフォトマスク40を用いて、レジスト膜36を露光すると、パターン率が高い領域は露光され易く、パターン率の少ない領域は露光され難くなる。これにより、現像後のレジスト膜36は、図15に示すように、パターン率に応じて、厚みが大きくなる。その結果、図16に示すように、レジスト膜36には、中央から両端に向かって厚みが次第に増加する溝36aが形成される。
以下、上述の第一の実施形態と同様にして、エッチングにより厚膜に溝を形成するなどして、目的とする磁気センサを得る。
なお、この実施形態では、フォトマスクを用いたレジスト膜への溝の形成をポジ型のレジストを用いた場合を示したが、本発明はこれに限定されない。本発明にあっては、フォトマスクのパターン率を上述の場合と反対に設定すれば、ネガ型のレジストを用いることもできる。
このような磁気センサの製造方法によれば、1枚の基板にX軸センサ2、Y軸センサ3およびZ軸センサ4を作製することができる上に、これと同時にビア部、パッド部も作製することができ、一連の連続したプロセスで小型の三軸磁気センサを一挙に製造することが可能になる。また、レジスト膜36に対向するように、厚膜に形成する溝に相当する部分に、この溝の中央に相当する位置から、溝の両端に相当する位置に向かって、単位面積当たりの数が次第に増加するように微細なパターン41、41、・・・が設けられたフォトマスク40を配置して、レジスト膜36を露光し、現像してレジスト膜36に溝形状を形成することにより、厚膜のエッチング工程において、所定の溝形状を形成し易くなる。これにより、溝の斜面をより均一な平坦面とすることができる。したがって、このような斜面に巨大磁気抵抗素子の帯状部が設けられた磁気センサを、Z軸センサの感知軸の向きが揃った、感度の高いものとすることができる。
本発明の磁気センサの一例を示す概略平面図である。 本発明でのgmrの例を示す概略平面図である。 本発明でのZ軸センサを構成するgmrの例を示す概略平面図である。 本発明でのZ軸センサを構成するgmrの例を示す概略断面図である。 本発明でのZ軸センサを構成するgmrの例を示す概略斜視図である。 本発明でのZ軸センサを構成するgmrの他の例を示す概略斜視図である。 本発明での各軸センサをなすgmrの結線方法の例を示す説明図である。 本発明の磁気センサのビア部の構造の例を示す概略断面図である。 本発明の磁気センサの製造方法の第一の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第一の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第一の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第一の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第一の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第二の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第二の実施形態を工程順に示す概略断面図である。 本発明の磁気センサの製造方法の第二の実施形態を工程順に示す概略断面図である。
符号の説明
1・・・基板、2・・・X軸センサ、3・・・Y軸センサ、5・・・帯状部、6・・・バイアス磁石部、7・・・配線層、A・・・ビア部、B・・・パッド部、8・・・溝、21a,21b・・・導体部、25・・・配線膜、27・・・パッシベーション膜、28・・・保護膜、31・・・平坦化膜、32・・・パッシベーション膜、33・・・酸化ケイ素膜、34・・・窒化ケイ素膜、35・・・厚膜、36・・・レジスト膜、37・・・型、40・・・フォトマスク。

Claims (2)

  1. 基板の最上層の配線層上に、この配線層を覆うとともに平坦面を形成する平坦化層を形成し、この上にパッシベーション膜を成膜した後、
    この上に厚膜を形成し、さらにこの厚膜上にレジスト膜を形成し、
    このレジスト膜に、厚膜に形成する溝の形状に相当する凸状部が設けられた型を押し当てて溝形状を形成するとともに、このレジスト膜のうち、一部を除去し、残ったレジスト膜に加熱処理を施して、レジスト膜の側面を傾斜面となし、
    次いで、レジスト膜と厚膜とを、そのエッチング選択比がほぼ1:1となるエッチング条件でエッチングし、溝を厚膜に形成し、
    次ぎに、厚膜の平坦面と上記溝の斜面ならびに頂部または底部に巨大磁気抵抗素子のバイアス磁石部を形成し、この上に巨大磁気抵抗素子膜を成膜した後、基板をマグネットアレイ上に置いて熱処理を施し、
    次いで、巨大磁気抵抗素子膜の一部をエッチングにより除去して、厚膜の平坦面および溝の斜面に巨大磁気抵抗素子の帯状部を形成し、この上に保護膜を成膜することを特徴とする磁気センサの製造方法。
  2. 基板の最上層の配線層上に、この配線層を覆うとともに平坦面を形成する平坦化層を形成し、この上にパッシベーション膜を成膜した後、
    この上に厚膜を形成し、さらにこの厚膜上にレジスト膜を形成し、
    このレジスト膜に対向するように、厚膜に形成する溝に相当する部分に、この溝の中央に相当する位置から、溝の両端に相当する位置に向かって、単位面積当たりの数が次第に増加するように微細なパターンが設けられたフォトマスクを配置して、レジスト膜を露光し、現像してレジスト膜に溝形状を形成し、このレジスト膜のうち、一部を除去し、残ったレジスト膜に加熱処理を施して、レジスト膜の側面を傾斜面となし、
    次いで、レジスト膜と厚膜とを、そのエッチング選択比がほぼ1:1となるエッチング条件でエッチングし、溝を厚膜に形成し、
    次ぎに、厚膜の平坦面と上記溝の斜面ならびに頂部または底部に巨大磁気抵抗素子のバイアス磁石部を形成し、この上に巨大磁気抵抗素子膜を成膜した後、基板をマグネットアレイ上に置いて熱処理を施し、
    次いで、巨大磁気抵抗素子膜の一部をエッチングにより除去して、厚膜の平坦面および溝の斜面に巨大磁気抵抗素子の帯状部を形成し、この上に保護膜を成膜することを特徴とする磁気センサの製造方法。

JP2005091616A 2005-03-17 2005-03-28 磁気センサの製造方法 Pending JP2006278439A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005091616A JP2006278439A (ja) 2005-03-28 2005-03-28 磁気センサの製造方法
CN200680008164.2A CN101142494B (zh) 2005-03-17 2006-03-15 磁传感器及其制造方法
EP06729152A EP1860450B1 (en) 2005-03-17 2006-03-15 Magnetic sensor and manufacturing method thereof
PCT/JP2006/305131 WO2006098367A1 (ja) 2005-03-17 2006-03-15 磁気センサ及びその製造方法
TW095108810A TWI313078B (en) 2005-03-17 2006-03-15 Magnetic sensor and manufacturing method therefor
US10/584,666 US8178361B2 (en) 2005-03-17 2006-03-15 Magnetic sensor and manufacturing method therefor
AT06729152T ATE512370T1 (de) 2005-03-17 2006-03-15 Magnetsensor und herstellungsverfahren dafür
US13/459,644 US9054028B2 (en) 2005-03-17 2012-04-30 Magnetic sensor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091616A JP2006278439A (ja) 2005-03-28 2005-03-28 磁気センサの製造方法

Publications (1)

Publication Number Publication Date
JP2006278439A true JP2006278439A (ja) 2006-10-12

Family

ID=37212924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091616A Pending JP2006278439A (ja) 2005-03-17 2005-03-28 磁気センサの製造方法

Country Status (1)

Country Link
JP (1) JP2006278439A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147663A (ja) * 2006-12-06 2008-06-26 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
JP2013518273A (ja) * 2010-01-29 2013-05-20 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク 集積磁力計およびその製造プロセス
JP2015078906A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 磁気センサおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147663A (ja) * 2006-12-06 2008-06-26 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
JP2013518273A (ja) * 2010-01-29 2013-05-20 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク 集積磁力計およびその製造プロセス
JP2015078906A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 磁気センサおよびその製造方法

Similar Documents

Publication Publication Date Title
JP4984408B2 (ja) 磁気センサおよびその製法
US8178361B2 (en) Magnetic sensor and manufacturing method therefor
US7687284B2 (en) Magnetic sensor and manufacturing method therefor
TWI356447B (en) Method of fabricating pattern in semiconductor dev
JP2001168185A5 (ja) 半導体装置
US20100007035A1 (en) Semiconductor device and method of manufacturing the same
US8288242B2 (en) Overlay vernier key and method for fabricating the same
JP4984412B2 (ja) 磁気センサおよび磁気センサの製造方法
JP2006278439A (ja) 磁気センサの製造方法
JP4760073B2 (ja) 磁気センサおよびその製法
JP4961736B2 (ja) 磁気センサの製造方法
JP2006194733A (ja) 磁気センサおよびその製法
JPWO2008026328A1 (ja) 磁気検出装置およびその製造方法
JP4734987B2 (ja) 磁気センサの製造方法
JP5447412B2 (ja) 磁気センサの製法
JP4972871B2 (ja) 磁気センサおよびその製造方法
JP4984424B2 (ja) 磁気センサおよびその製造方法
US20210199524A1 (en) Sensor membrane structure and method for forming the same
JP5089853B2 (ja) 磁気センサの製造方法
JP5028769B2 (ja) 磁気センサの製法
JP2007278733A (ja) 磁気センサ及びその製造方法
WO2022134162A1 (zh) 可转移的柔性互联结构的制备方法以及结构
JP2003017711A (ja) 半導体センサの製造方法
JP2006147812A (ja) 積層薄膜電気配線板
JP2001210571A (ja) アライメントマークの形成方法