JP2006269344A - 画像表示装置とその製造方法 - Google Patents

画像表示装置とその製造方法 Download PDF

Info

Publication number
JP2006269344A
JP2006269344A JP2005088591A JP2005088591A JP2006269344A JP 2006269344 A JP2006269344 A JP 2006269344A JP 2005088591 A JP2005088591 A JP 2005088591A JP 2005088591 A JP2005088591 A JP 2005088591A JP 2006269344 A JP2006269344 A JP 2006269344A
Authority
JP
Japan
Prior art keywords
lower electrode
image display
display device
electron source
cathode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088591A
Other languages
English (en)
Inventor
Masakazu Sagawa
雅一 佐川
Toshiaki Kusunoki
敏明 楠
Tomoki Nakamura
智樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Display Inc
Original Assignee
Hitachi Ltd
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Displays Ltd filed Critical Hitachi Ltd
Priority to JP2005088591A priority Critical patent/JP2006269344A/ja
Priority to CNA2005100974550A priority patent/CN1838369A/zh
Priority to US11/325,551 priority patent/US20060216873A1/en
Publication of JP2006269344A publication Critical patent/JP2006269344A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

【課題】 薄膜型電子源を構成する下部電極(信号線)の陽極酸化処理における端子部の酸化を防止して、製造歩留まりと、高信頼性を向上し、同時に形成する層間絶縁層の厚膜化を実現した画像表示装置を提供する。
【解決手段】 信号線の端子部40Aに形成するレジストパターン18を当該端子部40Aの配線上に制限する。レジストパターン18の幅を端子部40Aの配線の幅と略々同じ幅とし、配線の間にあるガラス基板には存在しないようにする。端子部40Aの配線の延在方向にスリット18Aで区画して不連続に形成した。このレジストパターン18のサイズは前記の考察の結果から、電子源と同程度とした。
【選択図】 図10

Description

本発明は、画像表示装置とその製造方法にかかり、特に薄膜型電子源アレイを用いた自発光型のフラットパネルディスプレイとも称する画像表示装置に好適なものである。
微少で集積可能な薄膜型電子源とも称する電子放出型電子源を利用する画像表示装置が開発されている。薄膜型電子源には、上部電極―電子加速層―下部電極の三層薄膜構造を有するものがあり、上部電極―下部電極の間に電圧を印加して上部電極の表面から真空中に電子を放出させる。例えば、金属―絶縁体―金属を積層したMIM(Metal−Insulator−Metal)型、金属―絶縁体―半導体を積層したMIS(Metal−Insulator−Semiconductor)型、金属―絶縁体―半導体−金属型、EL型、ポーラスシリコン型等がある。
MIM型について、例えば特許文献1、特許文献2に、金属―絶縁体―半導体型については非特許文献1に、金属―絶縁体―半導体−金属型については非特許文献2に、EL型については非特許文献3に、ポーラスシリコン型については非特許文献4に報告されている。
図28は、薄膜型電子源の基本構造をMIM型を例として説明する断面図である。そして、図29は、薄膜型電子源の動作原理を説明する図である。MIM型の薄膜型電子源は、基板10に成膜した下部電極11にトンネル絶縁層(電子加速層とも言う)12と層間絶縁層14を介して交叉させて積層した上部電極13を有する。上部電極13には上部電極給電配線16と接続電極15により給電される。
図28に示した薄膜型電子源の動作原理を図29により説明する。図29において、上部電極13と下部電極11の間に駆動電圧Vdを印加して、電子加速層であるトンネル絶縁層12内の電界を1〜10MV/cm程度にすると、下部電極11中のフェルミ準位近傍の電子はトンネル現象により、障壁を透過し、トンネル絶縁層12、上部電極13の伝導帯へ注入されホットエレクトロンとなる。
これらのホットエレクトロンはトンネル絶縁層12中、上部電極13中で拡散されてエネルギーを損失するが、上部電極13の仕事関数φ以上のエネルギーを有する一部のホットエレクトロンは真空20中に放出される。他の薄膜型電子源も、原理は多少異なるものもあるが、薄い上部電極13を通してホットエレクトロンを放出する点で共通する。
そして、このような薄膜型電子源を構成する下部電極と、下部電極とに交差する上部電極およびこの上部電極に給電する上部電極給電線配線を二次元マトリクス状に配置して薄膜型電子源アレイとし、下部電極に表示信号を印加し、上部電極(上部電極給電配線)に走査信号を印加して交差部の薄膜型電子源からの電子を蛍光体に指向させて励起することで画像表示装置を構成する。なお、この場合、上部電極給電配線は走査線バス配線となる。薄膜型電子源に関しては、例えば、特許文献1、2、非特許文献1,2,3,4を挙げることができる。
特開平7−65710号公報 特開平10−153979号公報 特開平8−179361号公報 j.Vac.Sci.Techonol.B11(2)p.429−432(1993) Jpn、j、Appl、Phys、vol.36、pp.939 応用物理 第63巻、第6号、592頁 応用物理 第66巻、第5号、437頁
前記したように、この種の画像表示装置では、下部電極に表示信号を印加し、上部電極(上部電極給電線)に走査信号を印加することで交差部の薄膜型電子源を選択するものであるため、薄膜型電子源アレイの下部電極と上部電極(上部電極給電配線)の間の絶縁が重要である。両者の間に絶縁不良があると、下部電極と上部電極又は上部電極給電配線の間が電気的に短絡し、画像欠陥を生じる。そのため、電子加速層となるトンネル絶縁層、および電子放出部を制限する層間絶縁層は無欠陥であることが要求される。下部電極はアルミニウムあるいはアルミニウム合金で形成され、トンネル絶縁層や層間絶縁層はこのアルミニウムあるいはアルミニウム合金を陽極酸化することで形成している。このとき、下部電極の端子部は外部回路との接続を行うため、その全域を非酸化領域としていた。
トンネル絶縁膜および層間絶縁膜の形成に用いられる陽極酸化という電気化学的成膜法は、他の成膜法に比べて、膜質、膜厚の均一性に格段に優れており、この種の電子源アレイを有する大規模(大面積)の画像表示装置を構成する表示パネルの形成に適している。
陽極酸化は、表面に付着した異物などにより電流が流れない場所があると、絶縁不良を引き起こす。また、薄膜型電子源アレイを形成した表示パネルを構成した場合、スペーサを介してカソード基板(陰極基板とも言う)にかかる大気圧により、薄膜型電子源アレイの層間絶縁膜が機械的な損傷を受け、タイムゼロの絶縁破壊不良を起こす。さらに、一般的に薄膜型電子源の静電容量は液晶素子に比べて大きい。これは、絶縁膜であるアルミナの比誘電率が10と大きいことと、膜厚が10nm程度と薄いためである。このため、十分な電流供給能力を持つ駆動回路チップ(IC若しくはLSI)を使用しなければならず、液晶素子に比べて回路コストが高くなる恐れがある。
静電容量の内訳を見ると、トンネル絶縁層と層間絶縁層がそれぞれ半分を占める。トンネル絶縁層は層間絶縁層に比べて、膜厚、面積とも1/10、一方、誘電率は両者とも同じ(比誘電率:〜10)なので、静電容量としてはほぼ同量となる。寄生容量を減らすには、層間絶縁層の膜厚を増やせば良いが、局所酸化用レジストマスクの絶縁耐圧の関係上、単純に酸化電圧を上げることは困難であった。
端子部を非酸化領域とするために、当該端子部に酸化防止用のレジスト(以下、レジストマスクとも称する)を形成するが、陽極酸化処理中にレジストマスクに亀裂が入ったり、局所的に剥離が生じ、当該端子部として機能しなくなる場合がある。このような現象は陽極酸化電圧が高くなる程、顕著となり、同時に形成する層間絶縁層の厚膜化を妨げる要因の一つとなっている。その結果、画像表示装置の製造歩留まり低下、信頼性の低下を招く。
なお、液晶表示装置のアクティブマトリクスパネルにおけるアルミニウム或いはアルミニウム合金のゲート端子部に陽極酸化でゲート絶縁膜を形成する際に生じる表面突起によるコンタクト不良を回避するために、ゲート線の端子部の表面の内側に複数の非酸化領域を設けたものが特許文献3に開示がある。しかし、これは陽極酸化処理におけるレジストマスクの亀裂や局所的に剥離による不所望の酸化を防止するものでない。
本発明の目的は、薄膜型電子源を構成する下部電極(信号線)の陽極酸化処理における端子部の酸化を防止して、製造歩留まりと、高信頼性を向上し、同時に形成する層間絶縁層の厚膜化を実現した画像表示装置を提供することにある。
本発明の画像表示装置は、薄膜型電子源を一定の間隔で複数個配置したカソード基板と、それらに相対するよう点状または線状に蛍光膜を配置したアノード基板と、前記カソード基板と前記アノード基板とを所定間隔で支持する複数個のスペーサと、真空を保持するための枠ガラスとで真空パネル容器を構成し、前記カソード基板上には、層間絶縁層を介して互いに交差する行方向と列方向に伸びる複数の電気配線があり、それらの交点座標に対応する位置に前記冷陰極型電子源が、列方向と行方向の前記電気配線につながれ、前記冷陰極型電子源を線順次的に駆動することにより画像表示を行う。
そして、前記薄膜型電子源を、下部電極と上部電極、およびこれらの間に挟持される電子加速層から構成する。下部電極の端子部は当該下部電極をカソード基板の周辺に延在して形成されており、かつ当該端子部に複数の未酸化領域を形成する。未酸化領域は、層間絶縁層を形成する際に下部電極の端子部に、その幅の略々全域を被覆し、端子部の延在方向には不連続なレジストパターンを形成することにより得られる。
レジストパターンは画素領域における層間絶縁層の形成部分を除いて形成される。このカソード基板を陽極酸化液の槽に浸すことで層間絶縁層と端子部の未酸化領域以外を陽極酸化する。
端子部のレジストパターンを不連続とすることで、化成電圧を高くでき、その結果、良好な厚膜の層間絶縁層を形成でき、製造歩留まりと、高信頼性を向上し、同時に形成する層間絶縁層の厚膜化を実現した画像表示装置を得ることができる。
以下、本発明の実施の形態につき、実施例の図面を参照して詳細に説明する。なお、以下の実施例では、ホットエレクトロン放出型のMIM型薄膜電子源を用いた電界放出型の画像表示装置を例として説明する。しかし、本発明は、このようなMIM型電子源を用いたものに限るものではなく、背景技術の欄で説明した各種の電子源を用いた種々の画像表示装置にも同様に適用できることは言うまでもない。
図1は、画像表示装置を構成するカソード基板の構成例を説明する平面図である。この画像表示装置は、FED型画像表示装置であり、そのカソード基板10の表示領域ARの周囲の両長辺に信号線(データ線)駆動回路を実装する信号線端子40Aが設けられている(符号40Bは端子の絞り部)。同様に、表示領域ARの周囲の両短辺に走査線駆動回路を実装する信号線端子50Aが設けられている(符号50Bは端子の絞り部、50Cは走査線端部)。信号線11と走査線16の交差部に画素を構成する電子源が形成されている。
図2は、図1の陽極酸化給電端子部を拡大し、さらに要部を拡大して示す図で、図1の左上側の拡大図である。信号線11はアルミニウムAl又はアルミニウム合金(典型的にはアルミニウムAlとネオジムNdの合金Al―Nd)で形成されており、この信号線11の表面に陽極酸化処理を施して層間絶縁層、電子加速層が形成される。これらの陽極酸化処理を行う場合は、2箇所の陽極酸化給電端子部の給電端子120Aを保持して陽極酸化液を入れた化成槽に浸漬し、給電端子120Aから化成電圧を印加する。給電端子120Aは共通給電線120の端部であり、信号線端子40Aを並列に接続している。この共通給電線120と給電端子120Aは画像表示装置の完成時には切断線CLで切断され、信号線端子40Aのそれぞれは独立に分離される。
共通給電線120には、給電端子120Aの部分を除いて信号線端子40Aと共に酸化防止用のレジストパターン18で被覆されている。なお、カソード基板10の隅部には、このカソード基板を蛍光体基板と重ねて封止する枠ガラスを位置合わせする位置合わせマークFGSが設けられている。レジストパターン18は表示領域の電子源を構成する部分にも形成されている。
図3は、信号線と信号線に繋がる共通給電線を陽極酸化処理を施す際に化成電圧を100Vから200Vに上げた場合の問題点を説明する図である。なお、信号線に繋がる共通給電線は後で切断除去されるので給電端子120A近傍に液面保護用として形成する以外は元々不要であるが。ここでは信号線端子40Aの端部保護のためにレジストパターンを形成してある。図3(a)は、通常の化成電圧100Vから耐圧歩留を上げるために200Vに上昇させたときの電子源部分の信号線11を被覆するレジストパターン18の状態を示す。このときの電流Iaは120mAである。図示されたように、電子源部分の信号線11を被覆するレジストパターン18には剥離はなく、電子源ELSにダメージは及ばない。
これに対し、図3(b)に示した共通給電線120と信号線端子40Aの部分では、化成電圧を100Vから上昇させ、200Vに達する前の150V付近、電流Iaは120mA程度でレジストパターン18に剥離が生じる。共通給電線120を被覆するレジストパターンの剥離部分から急激な酸化と腐食が生じて信号線端子40Aに至り、接続不良の原因となる。
図4は、化成電圧を高くしたときのレジストパターンの剥離を抑制する第1の手段を説明する図である。図4では、レジストパターン18をアルミニウム(又はアルミニウム合金)の共通給電線120と信号線端子40Aの上に制限し、レジストの密着力が弱い基板(ガラス)の上にはレジストパターン18が存在しないようにした。そして、レジストパターンにスリット18Aを設けて、一つのレジストパターンに剥離が生じても隣接するレジストパターンにこの剥離が伝播しないようにした。
図5は、図4はに示したレジストパターンを形成したカソード基板を陽極酸化槽に浸漬して陽極酸化処理した状態を示す図である。レジストパターンの膜厚は3μmとし、化成電圧を200V、電流を120mAと240mAに設定して陽極酸化処理した。図中の18A’、40A’はレジストパターンのスリット18Aの位置に形成された陽極酸化層である。 その結果は、電子源の部分は問題がなかったが、共通給電線120でレジストパターンの剥離が発生し、信号線端子40Aでも最大10%の割合でレジストパターンに剥離が生じた。
以上の考察結果を踏まえ、本発明は以下に説明する実施例で説明する構成とした。図6は、本発明の実施例1を説明する図1のA部分の拡大図である。また、図7は、図1のB部分の拡大図、図8は、図1のC部分の拡大図、図9は、図8の上部にある信号線の配線絞り部の拡大図、図10は、図9の上部にある信号線の端子部の拡大図である。図6乃至図10において、前記図1乃至図5と同一符号は同一機能部分に対応する。
実施例1では、図10に示したように、信号線の端子部40Aに形成するレジストパターン18を当該端子部40Aの配線上に制限する。すなわち、レジストパターン18の幅を端子部40Aの配線の幅の略々全域と同じ幅とし、配線の間にあるガラス基板には存在しないようにする。なお、理論的には、レジストパターン18の幅を端子部40Aの配線の幅の全域と同じ幅にすることであるが、実際には合わせ裕度が必要であるため、略々全域と同じ幅となる。そして、端子部40Aの配線の延在方向にスリット18Aで区画して不連続に形成した。このレジストパターン18のサイズは前記の考察の結果から、電子源と同程度とした。なお、共通給電線に、その給電端子120A近傍に液面保護用として形成する以外はレジストパターンの形成は必要ない。
図11は、信号線の端子部に形成するレジストパターンのサイズによるレジストパターンのレジスト剥れ発生の有無を説明する図である。ここでは、電子源のサイズが幅50μm×長さ100μm程度としてある。また、レジストパターンの膜厚は3μm、化成電圧Va=200V、電流Ia=240mAとして陽極酸化処理した。
信号線の端子部に形成するレジストパターンのサイズが、幅90μm×長さ125μm、幅90μm×長さ300μmではレジスト剥れは生じない。これに対し、幅90μm×長さ650μm、幅90μm×長さ2750μmとした場合はレジスト剥れが生じた。この結果から、レジストパターンのサイズが電子源のサイズが幅50μm×長さ100μmに近いほどレジスト剥れが生じ難く、レジストパターンの長さが長いほど発生頻度が高いことが分る。これは、レジストパターンのサイズが小さいほどレジストパターンの膜自身の残留応力の絶対値が小さく、レジスト剥れはこの残留応力に依存することが原因と考えられる。
図12は、図10の本発明の実施例1で説明したレジストパターンを用いて処理した信号線を有するカソード基板に対して酸化電圧の大きさによる層間絶縁層の耐電圧を説明する図である。耐電圧は信号線と走査線の交差部での短絡発生数で測定した。この測定は、VGA(走査線480×(信号線640×3))のカソード基板を用い、走査線毎に耐圧を測定した。図12(a)は100Vで陽極酸化したもの、図12(b)は150Vで陽極酸化したもの、図12(c)は200Vで陽極酸化したものに、その各信号線と走査線の間に電圧を順次印加したときに短絡が発生した走査線の数を示す。なお、図12では、陽極酸化を単に酸化、信号線数をライン数として表記した。
信号線を100Vで陽極酸化して層間絶縁層とした図12(a)では、信号線と走査線の間に印加する電圧が10Vで早くも短絡が発生し、60Vでは短絡走査線数が300本を越えた。信号線を150Vで陽極酸化して層間絶縁層とした図12(b)では、信号線と走査線の間に印加する電圧が40Vで短絡が発生し、100Vでは短絡走査線数が300本近くなった。そして、信号線を200Vで陽極酸化して層間絶縁層とした図12(c)では、信号線と走査線の間に印加する電圧が50Vで短絡が発生し、100Vでは短絡走査線数が450本を越えた。この結果から、本発明の実施例1のレジストパターンを用いた場合、その信号線の陽極酸化処理の電圧を高くでき、高耐圧の層間絶縁層を高スループットで形成できることが分る。
図13は、図10の本発明の実施例1で説明したレジストパターンを用いて処理した信号線を有する画素の容量低減効果を説明する図である。図13では、100V、150V、200Vに対して、電流を120mAとした場合の陽極酸化層の膜厚PR(μm)、走査線との交差部における容量C(nF)、単位面積当りの容量C/S(F/m2)を示す。なお、ここでは走査線はCr/Al/Cr/の3層構造で、陽極酸化層の上にSiONを形成した。図13から、本発明の実施例1で説明したレジストパターンを用い、陽極酸化電圧を100Vから200Vとした場合、画素の容量が34%低減されたことがしめされる。これにより、駆動回路の負荷を低減できる。
次に、本発明による画像表示装置のカソード基板の形成プロセスを図14乃至図23を参照して説明する。図15は図14に続く工程図、図16は図15に続く工程図、・・・図23は図22に続く工程図を示す。
図14において、ガラス等の絶縁性のカソード基板10上に信号電極11(以下、下部電極11)用の金属膜を成膜する。下部電極11の材料としてはアルミニウム(A1)やアルミニウム合金を用いる。ここでは、ネオジム(Nd)を2原子量%ドープしたA1−Nd合金を用いた。この金属膜の成膜には、例えば、スパッタ法を用いる。膜厚は300nmとした。成膜後はホトリソグラフィ工程、エッチングエ程により図14に示すようなストライプ状の下部電極11を形成する。エッチング液には、例えば燐酸、酢酸、硝酸の混合水溶液によるウェットエッチングを適用する。
図15において、下部電極11の一部にレジストパターンを付与し、表面を局所的に陽極酸化する。続いて、局所酸化に用いたレジストパターンを剥離し、下部電極11の表面を再度陽極酸化し、下部電極11上に絶縁層(トンネル絶縁膜)12が形成される。トンネル絶縁膜12の回りにはフィールド絶縁膜12Aが形成される。この時、既に酸化膜が成長した領域では、酸化は行われず、前工程でレジストに覆われていた領域だけに酸化膜が成長する。
図16は、信号線の端子部における図15と同様の説明図である。本発明では、信号線の端子部にも画素部分と同様の絶縁層12が複数形成される。
図17において、絶縁層14として、窒化珪素SiN(例えば、Si34)をスパッタ法により形成する。接続電極15としてクロム(Cr)を100nm、上部電極給電線(上部電極給電配線、走査線バス配線)16としてA1合金を2μm、その上にキャップ電極17としてクロム(Cr)を形成する。
図18において、走査線となる部分にキャップ電極17のCrを残す。Crのエッチングには、硝酸セリウム2アンモニウムと硝酸の混合水溶液が適している。このとき、キャップ電極17の線幅は、次工程で作製される上部電極給電線16の線幅よりも狭くなるように設計する必要がある。これは、上部電極給電線16が2μmのA1合金からなるため、ウェットエッチングにより同程度のサイドエッチングの発生が避けられないためである。これを考慮しないとキャップ電極17が上部電極給電線16から庇上に張り出す。キャップ電極17の庇上に張り出した部分は、強度が不十分で、製造工程中容易に崩落や、剥離を起こし、走査線間のショート不良に至るとともに、高電圧印加時に電界集中を起こすため致命的な放電を誘発する。
図19において、上部電極給電線16を下部電極11とは直交する方向にストライプ状に加工する。エッチング液には例えば、燐酸、酢酸、硝酸の混合水溶液(PAN)が適している。
図20において、接続電極15を絶縁膜14の開口部側にせり出すように、また反対側では上部電極給電配線16に対して後退するように(アンダーカットができるように)加工する。このためには、ホトレジストパターン18を、前者では接続電極15上に、後者ではキャップ電極17上に配してウェットエッチングを行えばよい。エッチング液には前述の硝酸セリウム2アンモニウムと硝酸との混合水溶液が好適である。このとき、絶縁膜下層14はトンネル絶縁膜12をエッチング液から守るエッチングストッパーの役割を担っている。
図21において、電子放出部を開けるために、レジストパターン18を形成しホトリソグラフィとドライエッチングにより絶縁膜14の一部を開口する。エッチングガスにはCF4と02との混合ガスが好適である。露出したトンネル絶縁膜12には再度陽極酸化を施し、エッチングによる加工損傷を修復してもよい。図22に示したようにレジストパターンを除去する。
図23に示したように、上部電極13を形成してカソード基板(電子源基板、陰極基板)が完成する。上部電極13の成膜にはシャドウマスクを用い、基板周辺に配された電気配線の端子部分などに成膜しないようにスパッタリング(スパッタ)法で行う。上部電極給電線16は前述のアンダーカット構造部分で被服不良を起こし、上部電極13が走査線毎に自動的に分離される。上部電極13の材料としては、Ir,Pt,Auの積層膜を用い、それぞれの膜厚は数nmとする。これにより、ホトリソグラフィ・エッチングに付随する上部電極13やトンネル絶縁膜12への汚染や損傷を回避することができる。
MIM型カソード基板を用いた画像表示装置の構成例を図24、図25により説明する。まず、上述したプロセスでカソード基板10上にMIM型電子源を複数個配列したカソード基板を作製する。説明のため、図24には(3×4)ドットのMIM型電子源基板の平面図と断面図を示したが、実際には表示ドット数に対応した数のMIM型電子源のマトリクスを形成する。
図24(a)は平面図、図24(b)は図24(a)のA−A’断面図、図24(c)は図28(a)のB−B’断面図である。前記の説明における符号と同一符号は同一機能部分に対応する。
図25により、アノード基板の構成をその作製方法で説明する。アノード基板110には透光性のガラスなどを用いる。まず、画像表示装置のコントラストを上げる目的でブラックマトリクス117を形成する。ブラックマトリクス117は、PVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した溶液をアノード基板110に塗布し、ブラックマトリクス117を形成したい部分以外に紫外線を照射して感光させた後、未感光部分を除去し、そこに黒鉛粉末を溶かした溶液を塗布してPVAをリフトオフすることにより形成する。
次に、赤色蛍光体111を形成する。蛍光体粒子にPVA(ポリビニルアルコール)と重クロム酸アンモニウムとを混合した水溶液をアノード基板110上に塗布した後、蛍光体を形成する部分に紫外線を照射して感光させた後、未感光部分を流水で除去する。このようにして赤色蛍光体111をパターン化する。同様にして、緑色蛍光体112と青色蛍光体113を形成する。蛍光体としては、例えば赤色にY22S:Eu(P22−R)、緑色にZnS:Cu,Al(P22−G)、青色にZnS:Ag(P22−B)を用いればよい。
次いで、ニトロセルロースなどの膜でフィルミングして表面を平坦化した後、アノード基板110全体にAlを膜厚75nm程度蒸着してメタルバック114とする。このメタルバック114が加速電極として働く。その後、アノード基板110を大気中400℃程度に加熱してフィルミング膜やPVAなどの有機物を加熱分解する。このようにして、アノード基板が完成する。このようにして製作したアノード基板110とカソード基板10とをスペーサ30を介し、表示領域の周囲に枠ガラス116を介在させてフリットガラス115で封着する。
図26は、カソード基板とアノード基板を貼り合わせた画像表示装置断面図であり、図26(a)は図25のA−A’断面に相当し、図26(b)は図25のB‐B’断面に相当する。貼り合わせたアノード基板110とカソード基板10間の距離は1〜3mm程度になるようにスペーサ30の高さを設定する。スペーサ30は、例えば板状のガラスまたはセラミックスを上部電極給電線16上に配置する。この場合、スペーサが表示基板側のブラックマトリクス117の下に配置されるため、スペーサ30は発光を阻害しない。ここでは、説明のため、R(赤)、G(緑)、B(青)に発光するドット毎、すなわち上部電極給電線16上の上に全てスペーサ30を立てているが、実際は機械強度が耐える範囲でスペーサ30の枚数(密度)を減らし、例えば数cmおきに立てればよい。
また、ここでは説明しなかったが、支柱状のスペーサ、格子状のスペーサを使用する場合でも同様な手法によりパネル組み立てが可能である。封着したパネルは、10‐7Torr程度の真空に排気して封じきる。封止後、内蔵したゲッターを活性化し、基板と枠とで構成される容器内を高真空に維持する。例えば、Baを主成分とするゲッター材の場合、高周波誘導加熱等によりゲッター膜を形成できる。また、Zrを主成分とする非蒸発型ゲッターを用いてもよい。このようにして、MIM型電子源を用いた表示パネルが完成する。アノード基板110とカソード基板10間の距離は1〜3mm程度と長いので、メタルバック114に印加する加速電圧を1〜10KVと高電圧に出来る。これにより、蛍光体には陰極線管(CRT)用の蛍光体を使用できる。
図27は、本発明の画像表示装置の全体構成例の概略を説明する展開斜視図である。カソード基板を構成する背面パネルPNL1には、そのカソード基板10の内面に、一方向に延在し該一方向と直交する他方向に並設されて前記他方向に走査信号が順次印加される複数の走査線で構成される上部電極13と、他方向に延在し走査線で構成される上部電極13に交差する如く前記一方向に並設された複数の信号線11(下部電極11)と、上部電極13と下部電極11の各交叉部近傍に設けた電子源ELSを有する。陰極基板10の上に下部電極11が形成され、その上に層間絶縁層を介して上部電極13が形成されている。
そして、アノード基板を構成する前面パネルPNL2には、その基板40の内面にブラックマトリクス43で互いに区画された3色(赤(R)、緑(G)、青(B))の3つの副画素41と、アノード(陽極)43が形成されている。この構成例では、陰極基板10の走査線で構成される上部電極13の上に、当該走査線13に沿ってスペーサ30を設置して両パネルを所定の間隔で図示しない枠ガラスを介在させて貼り合せ、真空封止している。スペーサ30は一枚のみ図示したが、通常は一本の走査線を構成する上部電極13の上に複数に分割して、かつ何本かの上部電極13ごとに設置される。
画像表示装置を構成するカソード基板の構成例を説明する平面図である。 図1の陽極酸化給電端子部を拡大し、さらに要部を拡大して示す図である。 信号線と信号線に繋がる共通給電線を陽極酸化処理を施す際に化成電圧を100Vから200Vに上げた場合の問題点を説明する図である。 化成電圧を高くしたときのレジストパターンの剥離を抑制する第1の手段を説明する図である。 図4はに示したレジストパターンを形成したカソード基板を陽極酸化槽に浸漬して陽極酸化処理した状態を示す図である。 本発明の実施例1を説明する図1のA部分の拡大図である。 図1のB部分の拡大図である。 図1のC部分の拡大図である。 図8の上部にある信号線の配線絞り部の拡大図である。 図9の上部にある信号線の端子部の拡大図である。 信号線の端子部に形成するレジストパターンのサイズによるレジストパターンのレジスト剥れ発生の有無を説明する図である。 図10の本発明の実施例1で説明したレジストパターンを用いて処理した信号線を有するカソード基板に対して酸化電圧の大きさによる層間絶縁層の耐電圧を説明する図である。 図10の本発明の実施例1で説明したレジストパターンを用いて処理した信号線を有する画素の容量低減効果を説明する図である。 本発明の実施例1における薄膜型電子源の製法を示す図である。 本発明の実施例1における薄膜型電子源の製法を示す図14に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図14に続く端子部の図である。 本発明の実施例1における薄膜型電子源の製法を示す図15と図16に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図17に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図18に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図19に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図20に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図21に続く図である。 本発明の実施例1における薄膜型電子源の製法を示す図22に続く図である。 MIM型カソード基板を用いた画像表示装置の構成例を説明する図である。 MIM型カソード基板を用いた画像表示装置の構成例を説明する図である。 カソード基板とアノード基板を貼り合わせた画像表示装置断面図である。 本発明の画像表示装置の全体構成例の概略を説明する展開斜視図である。 薄膜型電子源の素子構造を示す図である。 薄膜型電子源の動作原理を示す図である。
符号の説明
10・・・カソード基板、11・・・信号線(下部電極)、12・・・トンネル絶縁膜、13・・・上部電極、14・・・絶縁膜、15・・・接続電極、16・・・上部電極給電線、17・・・キャップ電極。

Claims (5)

  1. 薄膜型電子源を一定の間隔で複数個配置したカソード基板と、それらに相対するよう点状または線状に蛍光膜を配置したアノード基板と、前記カソード基板と前記アノード基板とを所定間隔で支持する複数個のスペーサと、真空を保持するための枠ガラスとで真空パネル容器を構成し、前記カソード基板上には、層間絶縁層を介して互いに交差する行方向と列方向に伸びる複数の電気配線があり、それらの交点座標に対応する位置に前記薄膜型電子源が列方向と行方向の前記電気配線に繋がれており、
    前記冷陰極型電子源が、アルミニウム又はアルミニウム合金からなる下部電極と、上部電極、およびこれらの間に挟持される電子加速層からなる画像表示装置であって、
    前記下部電極の端子部は当該下部電極を前記カソード基板の周辺に延在して形成されており、かつ前記端子部にはその幅方向略々全域で延在方向に不連続の複数の未酸化領域を有することを特徴とする画像表示装置。
  2. 前記電子加速層は、前記下部電極の陽極酸化膜であることを特徴とする請求項1に記載の画像表示装置。
  3. 前記層間絶縁層は、前記下部電極の陽極酸化膜であることを特徴とする請求項1に記載の画像表示装置。
  4. 薄膜型電子源を一定の間隔で複数個配置したカソード基板と、それらに相対するよう点状または線状に蛍光膜を配置したアノード基板と、前記カソード基板と前記アノード基板とを所定間隔で支持する複数個のスペーサと、真空を保持するための枠ガラスとで真空パネル容器を構成し、前記カソード基板上には、層間絶縁層を介して互いに交差する行方向と列方向に伸びる複数の電気配線があり、それらの交点座標に対応する位置に前記薄膜型電子源が列方向と行方向の前記電気配線に繋がれており、
    前記冷陰極型電子源が、アルミニウム又はアルミニウム合金からなる下部電極と、上部電極、およびこれらの間に挟持される電子加速層からなる画像表示装置の製造方法であって、
    前記下部電極を前記カソード基板の周辺に延在させて、当該下部電極の端子部を形成し、
    前記下部電極の前記端子部を覆って当該端子部状に複数に区画した酸化防止用レジストを形成し、
    前記端子部に陽極酸化処理して、複数の未酸化領域を形成することを特徴とする画像表示装置の製造方法。
  5. 前記酸化防止用レジストを前記下部電極の上にのみ形成することを特徴とする請求項4に記載の画像表示装置の製造方法。

JP2005088591A 2005-03-25 2005-03-25 画像表示装置とその製造方法 Pending JP2006269344A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005088591A JP2006269344A (ja) 2005-03-25 2005-03-25 画像表示装置とその製造方法
CNA2005100974550A CN1838369A (zh) 2005-03-25 2005-12-28 图像显示装置及其制造方法
US11/325,551 US20060216873A1 (en) 2005-03-25 2006-01-05 Image display device and the manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088591A JP2006269344A (ja) 2005-03-25 2005-03-25 画像表示装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2006269344A true JP2006269344A (ja) 2006-10-05

Family

ID=37015692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088591A Pending JP2006269344A (ja) 2005-03-25 2005-03-25 画像表示装置とその製造方法

Country Status (3)

Country Link
US (1) US20060216873A1 (ja)
JP (1) JP2006269344A (ja)
CN (1) CN1838369A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893537B (zh) * 2020-07-16 2021-06-22 合肥微睿光电科技有限公司 一种通过改变装挂方式提高大尺寸上部电极板阳极氧化膜均匀性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177391A (ja) * 1988-01-06 1989-07-13 Seiko Epson Corp 選択陽極酸化法
JPH02234431A (ja) * 1989-03-08 1990-09-17 Hitachi Ltd 薄膜パターンの陽極酸化方法
JPH06196700A (ja) * 1992-08-25 1994-07-15 Alps Electric Co Ltd 電子装置
JPH08179361A (ja) * 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネル
JPH11204024A (ja) * 1998-01-19 1999-07-30 Hitachi Ltd 薄膜型電子源、これを用いた表示パネルおよび表示装置
JP2001052597A (ja) * 1999-08-03 2001-02-23 Hitachi Ltd 薄膜型電子源および表示装置
JP2004363075A (ja) * 2002-12-26 2004-12-24 Hitachi Ltd 画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570321B1 (en) * 1999-09-06 2003-05-27 Hitachi, Ltd. Thin-film electron source, process for manufacturing thin-film electron source, and display
KR20040010026A (ko) * 2002-07-25 2004-01-31 가부시키가이샤 히타치세이사쿠쇼 전계방출형 화상표시장치
JP2004246317A (ja) * 2002-12-20 2004-09-02 Hitachi Ltd 冷陰極型フラットパネルディスプレイ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177391A (ja) * 1988-01-06 1989-07-13 Seiko Epson Corp 選択陽極酸化法
JPH02234431A (ja) * 1989-03-08 1990-09-17 Hitachi Ltd 薄膜パターンの陽極酸化方法
JPH06196700A (ja) * 1992-08-25 1994-07-15 Alps Electric Co Ltd 電子装置
JPH08179361A (ja) * 1994-12-20 1996-07-12 Casio Comput Co Ltd アクティブマトリックスパネル
JPH11204024A (ja) * 1998-01-19 1999-07-30 Hitachi Ltd 薄膜型電子源、これを用いた表示パネルおよび表示装置
JP2001052597A (ja) * 1999-08-03 2001-02-23 Hitachi Ltd 薄膜型電子源および表示装置
JP2004363075A (ja) * 2002-12-26 2004-12-24 Hitachi Ltd 画像表示装置

Also Published As

Publication number Publication date
CN1838369A (zh) 2006-09-27
US20060216873A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US20040017160A1 (en) Field emission display
JP2004363075A (ja) 画像表示装置
JP2006253032A (ja) 画像表示装置
US6765347B2 (en) Display device
JP2006107746A (ja) 画像表示装置
JP2009104827A (ja) 画像表示装置
JP3630036B2 (ja) 薄膜型電子源、およびそれを用いた表示装置
US6617774B1 (en) Thin-film electron emitter device having multi-layered electron emission areas
JP2006269344A (ja) 画像表示装置とその製造方法
JP2008078161A (ja) 冷陰極型フラットパネルディスプレイ
JP3643503B2 (ja) 薄膜型電子源およびその製造方法並びに薄膜型電子源応用機器
JP2006253026A (ja) 画像表示装置
JPH0817365A (ja) 電界放出装置及びその製造方法
KR100670880B1 (ko) 냉음극형 플랫 패널 디스플레이
JP2007005049A (ja) 画像表示装置
JP2002367503A (ja) 薄膜型電子源及びその作製方法、及び画像表示装置
JP4507557B2 (ja) 電子放出素子の製造方法、及び表示装置の製造方法
JP2008257985A (ja) 画像表示装置とその製造方法
JP4209556B2 (ja) 表示装置
JP2006236590A (ja) 画像表示装置
JP3992710B2 (ja) 表示装置
JP3598267B2 (ja) 画像表示装置
JP2001256907A (ja) 画像表示装置
EP1553616A1 (en) Cold cathode type flat panel display
JP4126987B2 (ja) 画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221