JP2006234317A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2006234317A
JP2006234317A JP2005051375A JP2005051375A JP2006234317A JP 2006234317 A JP2006234317 A JP 2006234317A JP 2005051375 A JP2005051375 A JP 2005051375A JP 2005051375 A JP2005051375 A JP 2005051375A JP 2006234317 A JP2006234317 A JP 2006234317A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioning
load
compressor
conditioning load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005051375A
Other languages
English (en)
Inventor
Takuya Okada
拓也 岡田
Yasushi Watanabe
泰 渡辺
Mitsushi Yoshimura
充司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005051375A priority Critical patent/JP2006234317A/ja
Publication of JP2006234317A publication Critical patent/JP2006234317A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】 空調負荷の変動を緩和し、安価で耐久性を備えた空気調和装置を提供することを目的とする。
【解決手段】 容量制御機能を有し、冷媒を圧縮して冷媒回路7を循環させる少なくとも1台の圧縮機17および圧縮機17を駆動するガスエンジン53を備えた室外ユニット5と、室外ユニット5に冷媒回路7によって接続された複数の室内ユニット3と、空調運転を制御する制御部37と、を備えたGHP1において、制御部37には、空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させる負荷調節運転モードMが備えられていることを特徴とする。
【選択図】 図1

Description

本発明は、空気調和装置に関するものである。
従来、エンジンによって駆動され、冷媒を圧縮する圧縮機を有する冷媒回路で接続された室外ユニットおよび複数の室内ユニットで構成された空気調和装置は広く用いられている。この空気調和装置では、使用される室内ユニットの使用条件が大きく変動するため、室内ユニット側で必要とされる冷媒量も大きく変動する。
このため、室内ユニットが要求する冷媒量、すなわち空調負荷の変動に伴い、例えば特許文献1に示されるように圧縮機の容量制御が広く行なわれていた。この圧縮機の容量制御は、例えば、圧縮機が複数ある場合の各圧縮機の駆動の断接あるいはフルロードとパーシャルロードとの切替え等、エンジンに対して急激な負荷変動を及ぼすものである。
特開平6−11174号公報(段落[0015]〜[0036],及び図1〜図5)
ところで、この負荷変動による影響は、エンジンと圧縮機との間に変速機を組み込めば処理できるが、変速機は高価であるため、通常は用いられていない。このため、エンジンと圧縮機とを連結するベルトあるいは連結軸、クラッチ、エンジン本体等にこの負荷変動が作用して、これらの部材の寿命を短縮化させるという問題があった。
また、負荷変動が著しい場合には、エンジンは一次的に回転数がハンチングする恐れがあるという問題があった。
本発明は、上記問題点に鑑み、空調負荷の変動を緩和し、安価で耐久性を備えた空気調和装置を提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明にかかる空気調和装置は、容量制御機能を有し、冷媒を圧縮して冷媒回路を循環させる少なくとも1台の圧縮機および該圧縮機を駆動する駆動源を備えた室外ユニットと、 該室外ユニットに前記冷媒回路によって接続された複数の室内ユニットと、空調運転を制御する制御部と、を備えた空気調和装置において、前記制御部には、空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させる負荷調節運転モードが備えられていることを特徴とする。
暖房運転時または冷房運転時に、室内ユニットの稼動数の変動等、室内側で要求される冷暖能力が冷媒回路の流量調節では収まらない程度に変動すると、圧縮機の容量制御、例えば圧縮機駆動の断接あるいはフルロードとパーシャルロードとの切替えが行われ、空調負荷が急激に変動することとなる。
本発明によると、負荷調節運転モードによって空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させるので、変動時の空調負荷の変動がなだらかになる。このように、空調負荷の変動がなだらかになると、圧縮機を駆動する駆動源にかかる急激な負荷変動が減少するので、高価な変速機を用いることなく駆動源の耐久性を向上させることができる。
また、本発明にかかる空気調和装置は、前記冷媒回路には、前記圧縮機の吐出側の冷媒回路と冷房運転時または暖房運転時に冷媒の熱を放出するエバポレータとして機能し、前記冷媒を前記圧縮機の吸入側の冷媒回路へ戻す熱交換器の上流側の冷媒回路とを接続するバイパス回路が備えられ、前記負荷調節運転モードは、ファンの回転数および/または前記バイパス回路の冷媒流量を調節し、空調負荷を変動させることを特徴とする。
ファンの回転数を増減させると、冷媒の冷却程度が増減するので、圧縮機の負荷(高圧圧力)を増減することができる。
また、バイパス回路に送られる冷媒は、冷媒回路を通り熱交換器に入る低温低圧の冷媒によって冷却されて圧縮機の吸入側に戻されるので、バイパス回路を通る冷媒流量を調節させると、圧縮機の吐出圧力、すなわち高圧圧力を調節することができる。
本発明によると、空調負荷を変動させる前に、ファンの回転数および/またはバイパス回路の冷媒流量を調節し、一時的にその変動方向とは反対の方向に空調負荷を変動させるので、変動時の空調負荷の変動がなだらかになる。このように、空調負荷の変動がなだらかになると、圧縮機を駆動する駆動源にかかる急激な負荷変動が減少するので、高価な変速機を用いることなく駆動源の耐久性を向上させることができる。
また、本発明にかかる空気調和装置では、前記負荷調節運転モードは、前記駆動源に対して空調負荷の変動を予測した調節を行うことを特徴とする。
本発明によると、空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させ、変動時の空調負荷の変動がなだらかにするのに加えて、駆動源側でも、空調負荷の変動に対応した調節を行うので、空調負荷の変動に伴う駆動源にかかる負荷変動を一層低減させることができる。
本発明によると、負荷調節運転モードによって空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させるので、圧縮機を駆動する駆動源にかかる急激な負荷変動が減少し、高価な変速機を用いることなく駆動源の耐久性を向上させることができる。
以下、本発明の第一実施形態にかかるガスヒートポンプ式空気調和装置(以下「GHP」という。)について、図1〜図4を用いて説明する。
図1は、本実施形態にかかるGHP(空気調和装置)1の全体概略構成を示す回路図である。
GHP1は、図1に示すように、室内に配置される複数の室内ユニット3と、室外に配置される室外ユニット5と、室内ユニット3および室外ユニット5との間で冷媒を循環させる冷媒回路7とから概略構成されている。
各室内ユニット3には、室内熱交換器9と、冷房運転時に高圧の冷媒を減圧・膨張させる室内側電子膨張弁11と、室内側電子膨張弁11の前後に配置された異物を除去するストレーナ13と、冷媒の温度を検出する温度センサ15と、室内の空気を室内熱交換器9へ送る室内側ファン10と、室内側ファン10を回転させる室内側ファンモータ12と、が設けられている。
室内熱交換器9は、冷房運転時には室内側ファン10によって送られる室内の空気から熱を奪い、低温低圧の液冷媒を蒸発させるエバポレータとして機能し、暖房運転時には室内気に熱を放出し、高温高圧のガス冷媒を凝縮させるコンデンサとして機能するものである。
室外ユニット5は、その内部において二つの大きな構成部分に分割される。第1の構成部分は、後述する圧縮機や室外熱交換器などの機器を中心として室内ユニット3とともに冷媒回路を構成する部分であり、以後「冷媒回路部14」と呼ぶ。また、第2の構成部分は圧縮機駆動用のガスエンジンを中心として、これに付随する機器を備えた部分であり、以後「ガスエンジン部16」と呼ぶ。
冷媒回路部14には、圧縮機17と、オイルセパレータ19と、四方弁21と、室外熱交換器(熱交換器)23と、室外側ファン(ファン)36と、室外側ファンモータ38と、室外側膨張弁25と、レシーバ27、過冷却コイル(熱交換器)29と、水熱交換器31と、逆止弁33と、操作弁35と、ストレーナ13と、が備えられており、それぞれが冷媒回路7により接続されている。
また、室外ユニット5には、温度センサや圧力センサなどの出力に基づき、少なくとも室内側電子膨張弁11、室外側膨張弁25を含む各弁類を制御する制御部37が配置されている。制御部37には、後述する負荷調節運転モードMが搭載されている。
圧縮機17は、後述するガスエンジン53により駆動され、室内熱交換器9または室外熱交換器23のいずれかから吸入される低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する。
圧縮機17には、図示しない容量制御機構が備えられている。容量制御機構は、圧縮機17の吐出量を全量であるフルロード(F)と一部であるパーシャルロード(P)との2状態で切り替えられるように構成されている。
圧縮機17の吐出側には、吐出された冷媒の温度を検出する吐出温度センサ39と圧力を検出する吐出圧力センサ41とが配置され、吸入側には、吸入される冷媒の温度を検出する吸入温度センサ43と圧力を検出する吸入圧力センサ45とが配置されている。
なお、本実施形態においては、2台の圧縮機17を用いる実施形態に適用して説明している。
オイルセパレータ19は、圧縮機17と四方弁21との間に配置され、圧縮機17から吐出された冷媒中に含まれる圧縮機17のオイルを遠心分離して、圧縮機17に戻すために設けられている。具体的には、各圧縮機17から吐出された冷媒が導入される2本の略円筒形状のオイル分離部と、その下方に配置された略円筒形状のオイル貯留部とから構成されている。
オイル貯留部の横断面積は、オイル分離部の横断面積に比べて数倍の大きさとされている。これは、オイルの貯留空間を確保するためであり、こうすることによって、オイル分離部の高さを確保してオイル分離能力を維持させつつオイルセパレータ19全体の高さを減少させている。
オイル貯留部には、分離されたオイルの温度を制御するヒータ47が配置されている。また、オイルセパレータ19のオイル貯留部と圧縮機17との間には、分離されたオイルを圧縮機17に供給する供給回路が配置されている。
四方弁21は、オイルセパレータ19の下流側に配置された冷媒の流れを切り替える切り替え弁であり、冷媒が流入・流出する4つのポートD,C,S,Eが設けられている。
ポートDは圧縮機17の吐出側と接続され、ポートCは室外熱交換器23と、ポートSは圧縮機17の吸入側と、ポートEは室内熱交換器9と接続されている。
室外熱交換器23は、冷房運転時に室外側ファン36によって送られる外気に熱を放出して高温高圧のガス冷媒を凝縮させるコンデンサとして機能し、暖房運転時に外気から熱を奪い低温低圧の冷媒を蒸発させるエバポレータとして機能する。
また、室外熱交換器23には、冷媒の温度を検出する温度センサ15が配置されている。
なお、本実施形態においては、2台の室外熱交換器23を用いる実施形態に適用して説明している。
レシーバ27は、室外熱交換器23(冷房運転時)または室内熱交換器9(暖房運転時)から流出した液冷媒に含まれるガス冷媒をトラップし、液冷媒のみを室内熱交換器9(冷房運転時)または室外熱交換器23(暖房運転時)に供給するものである。
室外熱交換器23とレシーバ27との間には室外側膨張弁25と逆止弁33とが並列に配置され、室外側膨張弁25および逆止弁33の上流側、下流側にストレーナ13が配置されている。逆止弁33は、室外熱交換器23からレシーバ27に向けて冷媒を流すように配置されている。
過冷却コイル29は、レシーバ27と室内ユニット3とを接続する冷媒回路7に配置されている。過冷却コイル29には、レシーバ27と過冷却コイル29との間を流れる冷媒の一部を過冷却コイル29に導く冷媒配管20が設けられ、この冷媒配管20にはストレーナ13および冷媒の圧力を減圧・膨張させる過冷却用膨張弁49が配置されている。
冷媒配管20を通る一部の冷媒は、過冷却用膨張弁49で気液二相の低温とされ、過冷却コイル29に導入され、冷媒回路7を通る冷媒によって暖められガス冷媒とされる。すなわち、過冷却コイル29は、エバポレータとして機能するものである。過冷却コイル29を通過した一部の冷媒は、冷媒配管20を通って四方弁21と圧縮機17の吸入側とを接続する冷媒回路7に導かれる。
過冷却コイル29は、冷房運転時に、室内ユニット3に必要な温度に過冷却された冷媒を送るために設けられている。すなわち、過冷却用膨張弁49により形成された低温の冷媒により室内ユニット3に送られる冷媒をより冷却して(過冷却度を高めて)いる。そのため、室内ユニット3の配置位置が室外ユニット5から離れ、室内ユニット3に流入する冷媒の温度が室外ユニットから流出したときより高くなる場合でも、その温度上昇分を補い、確実に液冷媒を室内ユニット3へ供給することができる。これは、質量流量を減少させ圧力損失を減少させ、かつ室内ユニットにおける冷媒の分配を容易とするためである。
水熱交換器31は、室外熱交換器23とレシーバ27とを接続する冷媒回路から分岐して四方弁21と圧縮機17の吸入側とを接続する冷媒回路7に合流する冷媒配管に配置され、冷媒の流入側にはストレーナ13および冷媒の圧力を減圧・膨張させる水熱交換器用膨張弁51が配置されている。
また、水熱交換器31には、後述するガスエンジン(駆動源)53のエンジン冷却水が循環するように配置されている。
水熱交換器31は、後述するエンジン冷却水の熱を冷媒に回収させるために設けられている。すなわち、暖房運転時において、冷媒は室外熱交換器23における熱交換のみに頼るのではなく、ガスエンジン53のエンジン冷却水からも排熱を回収することとなり、暖房運転の効率をより高めることができる。
室外ユニット5の冷媒回路7には、四方弁21の上流側(吐出側)の分岐点Xから分岐するバイパス回路24が設けられている。バイパス回路の他端は、暖房バイパス回路26と冷房バイパス回路28とに分岐されている。
暖房バイパス回路26の他端は、室外熱交換器23と室外側膨張弁25との間の合流点Yに接続されている。暖房運転時、合流点Yは、室外熱交換器23の上流側に、室外側膨張弁25の下流側に位置することとなる。
そして、冷房バイパス回路28の他端は、冷媒配管20における過冷却コイル29と過冷却用膨張弁49との間の合流点Zに接続されている。冷房運転時、合流点Zは、過冷却コイル29の上流側に、過冷却用膨張弁49の下流側に位置することとなる。
バイパス回路24の上流部分には、ストレーナ13と開度調節可能なバイパス弁30とが設置されている。また、暖房バイパス回路26の上流側には、回路を開閉する暖房バイパス開閉弁32が設置されている。冷房バイパス回路28の上流側には、回路を開閉する冷房バイパス開閉弁34が設置されている。
一方、ガスエンジン部16には、ガスエンジン53を中心として、冷却水系55および燃料吸入系57のほか、排気ガス系やエンジンオイル系(いずれも図示せず)が備えられている。
ガスエンジン53は、冷媒回路7内に設置されている圧縮機17をクラッチ22の断接によって接続されるシャフトまたはベルトなどを介して駆動している。
冷却水系55は、水ポンプ59、リザーバタンク61、ラジエータ63等を備え、これらを配管にて接続して構成される回路(図中の破線で表示)を循環するエンジン冷却水によって、ガスエンジン53を冷却する系である。
水ポンプ59は、ガスエンジン53の冷却水を循環させるために配置され、リザーバタンク61は、この回路を循環する冷却水の余剰分を一時貯蔵するため、あるいは、回路を循環する冷却水が不足する場合に冷却水を供給するために配置されている。ラジエータ63は、室外熱交換器23の近傍に配置され、エンジン冷却水がガスエンジン53から奪った排熱を放出するために配置されている。
また、冷却水系55には、上述した構成のほかに、排気ガス熱交換器65が設けられている。排気ガス熱交換器65は、ガスエンジン53から排出される排気ガスの熱を、エンジン冷却水に回収するためのものである。また、冷却水系55には、前述した水熱交換器31が配置され、冷媒回路部14および冷却水系55の両系にまたがるように配置されている。
そのため、暖房運転時には、エンジン冷却水はガスエンジン53から熱を奪うだけではなく、排気ガスからも熱を回収し、かつ、その回収した熱を、水熱交換器31を介して冷媒に与える構成になっている。
なお、冷却水系55におけるエンジン冷却水の流量制御は、2つの流量制御弁67,68によって行なわれている。
燃料吸入系57は、ガスエンジン53に液化天然ガス(LNG)などの都市ガス、または液化プロパンガス(LPG)をガス燃料として供給するための系であり、ガス燃料の供給量を調節する燃料ガス弁69が備えられている。燃料吸入系57からガスエンジン53に供給された燃料ガスは、ガスエンジン53の吸気孔(図示せず)から吸入された空気と混合された後、ガスエンジン53の燃焼室に供給されている。
図2は、室外ユニット5の一部を切欠いて示す斜視図である。
室外ユニット5は、ガスエンジン53と、2台の圧縮機17とを収容するエンジン室71を下部に備えている。ガスエンジン3は、動力源の一例であって、可燃ガスを燃料として作動するガスエンジンである。エンジン室7の上方には、GHP(空気調和装置)1の室外熱交換器およびファン等を内蔵する熱交換器室73が設けられている。
ガスエンジン53の駆動軸75には、駆動プーリ77が取り付けられている。圧縮機17の回転軸79には、従動プーリ81がクラッチ22(図1参照)を介して取り付けられており、圧縮機17の回転軸79は、クラッチ22の断接によって、従動プーリ81と断接される。駆動プーリ77と各従動プーリ81とには、ベルト83が巻き掛けられている。
なお、ベルト83には、裏からのテンションに強いリブドベルトが用いられている。
ガスエンジン53と圧縮機17とは、ベルト83のテンションが程好い緊張状態となるように架台85によって一体的に固定されている。
なお、ガスエンジン53は、ガソリンエンジンやディゼルエンジンでも良い。また、室外ユニット5のエンジン室71には、上述の他、図示を省略しているが、ガスエンジン53を冷却するためのラジエータ63及びこの冷却水を循環するための水ポンプ59などの冷却水系55、吸気サイレンサなどガスエンジン53の吸気系、排気マフラなどガスエンジン53の排気ガス系、ガスエンジン53の潤滑油を循環させるオイル系、室内及び室外の熱交換器内を循環する冷媒の冷媒回路7などが内蔵されている。
次に、上記構成からなるGHP1について、室内を冷暖房するそれぞれの運転時の作用について説明する。
最初に、図1に基づいて冷房運転時について説明する。なお、冷媒およびエンジン冷却水の流れ方向が実線の矢印で示されている。
冷房運転が選択されると、四方弁21のポートD/C間およびポートE/S間が連通され、圧縮機17の吐出側と室外熱交換器23とが接続される。
また、バイパス弁30、室内側電子膨張弁11および過冷却用膨張弁49が制御部37により制御され、暖房バイパス弁32、室外側膨張弁25および水熱交換器用膨張弁51が全閉にされる。
まず、圧縮機17から吐出された高温高圧のガス冷媒は、オイルセパレータ19により潤滑油が分離され、四方弁21を通過して室外熱交換器23に流入する。
室外熱交換器23において、ガス冷媒は熱を放出して凝縮・液化して液冷媒となる。
室外熱交換器23から流出した液冷媒は、逆止弁33を通過してレシーバ27に流入し、気液分離されて液冷媒のみがレシーバ27から流出する。
レシーバ27から流出した液冷媒の一部は、過冷却コイル29および室内側電子膨張弁11を通って、室内熱交換器9に流入する。残りの冷媒は、過冷却用膨張弁49を通って過冷却コイル29に流入する。
室内熱交換器9に流入する冷媒は、過冷却コイル29を通過する過程で、後述する過冷却用膨張弁49と通過した低温低圧の液冷媒に熱を奪われる。その後、室内側電子膨張弁11を通過する過程で減圧され、低温低圧の液冷媒となる。室内熱交換器9において、低温低圧の液冷媒は、室内気から熱を奪い、蒸発・気化してガス冷媒となる。
過冷却コイル29に流入する冷媒は、過冷却用膨張弁49を通過する過程で減圧され、低温低圧の気液二相冷媒となる。この冷媒は、過冷却コイル29において上述した室内熱交換器9に流入する液冷媒から熱を奪い、蒸発・気化してガス冷媒となる。
室内熱交換器9において蒸発したガス冷媒は、四方弁21のポートEからポートSを経て圧縮機17の吸入口に流入する。また、過冷却コイル29において蒸発したガス冷媒は、四方弁21のポートSと圧縮機17の吸入口との間に流入する。
以降、同様の過程が繰り返され、冷房運転が継続して行われる。
次に、冷房運転時において、負荷調節運転モードMによって空調負荷を変動させる方法について説明する。
図3は、空調負荷を増加させる場合の負荷調節運転モードMのフローを示している。
まず、室内ユニット3側が要求する冷房能力(冷媒量)と現時点での圧縮機17が供給できる冷媒量とを比較し、圧縮機17の負荷、すなわち空調負荷を変動させることが必要かを判定する(ステップS1)。
ここでは、例えば、1台の圧縮機17がパーシャルロードで運転されているのを、フルロードに変更する、あるいはもう1台の圧縮機17を稼動させる、すなわち、クラッチ22を投入することが必要かを判断することになる。
ステップS1で、負荷変動の必要がない(No)と判定された場合は、何も処置せず、再度ステップS1に戻る。
一方、負荷変動が必要(Yes)と判定された場合には、室外側ファン36の回転数を所定値まで増加させる(ステップS2)。なお、回転数の所定値としては、例えば、最高回転数を用いている。
室外側ファン36の回転数を増加させると、室外熱交換器23において冷媒はより多く冷却されるので、圧縮機17の高圧が低下する、すなわち、圧縮機17の空調負荷が低減されることになる。
なお、この時、室内側ファン10の回転数を増加させ、空調負荷の低減に伴う冷房フィーリングの変化(冷房の不足)を感じさせないようにするとよい。
次いで、吐出圧力センサ41によって圧縮機17の高圧圧力(HP)を測定し、高圧が基準値以下になっているか判定する(ステップS3)高圧圧力の基準値は、圧縮機17の負荷状態に対応して設定されている。
ステップS3で、高圧圧力が基準値以下に低減されていない(No)と判定させた場合には、バイパス弁30の開度を調整し、バイパス回路24および冷房バイパス回路28を通り過冷却コイル29の上流側に位置する合流点Zに供給する冷媒流量を増加させる(ステップS4)。
この冷媒は、過冷却用膨張弁49によって絞られた低温の気液二相冷媒と混合され冷却されて圧縮機17の吸入側に戻されるので、これが増加すれば圧縮機17で処理する冷媒量は同じであるが、圧縮機17での圧力が低減され、圧縮機17の負荷が低減されることになる。
一方、ステップS3で、高圧圧力が基準値以下に低減されている(Yes)と判定された場合には、制御部37はガスエンジン53について負荷増加に耐えるような準備を行なう(ステップS5)。
ガスエンジン53側の受入準備には、例えば、次のようなことを行なう。
PI制御をしている場合にその定数を調節する。また、トルクが出るように点火時期を変化(進角、遅角)させる。回転数が低下することを見込んで回転数を上げる。
このようにして、ガスエンジン53側の準備が完了すると、容量制御機構によってパーシャルロードからフルロードへの転換および/またはクラッチの接続を行い(ステップS6)、空調負荷の増加を行う。
ステップS6が完了すると、室外側ファン36の回転数およびバイパス弁30の開度を元の状態に復帰させる。
次に、空調負荷を低減させる場合の負荷調節運転モードMについて、図4に基づいて説明する。空調負荷を低減させる場合には、ガスエンジン53にかかる負荷が急激に減少するので、ガスエンジン53が吹き上がる恐れがある。負荷調節運転モードMはこれが発生しないように調節する。
まず、室内ユニット3側が要求する冷房能力(冷媒量)と現時点での圧縮機17が供給できる冷媒量とを比較し、圧縮機17の負荷、すなわち空調負荷を変動させることが必要かを判定する(ステップS7)。
ここでは、空調負荷を低減させる場合であるので、例えば、1台の圧縮機17がフルロードで運転されているのを、パーシャルロードに変更する、あるいは1台の圧縮機17を停止させる、すなわち、クラッチ22を切断することが必要かを判断することになる。
ステップS7で、負荷変動の必要がない(No)と判定された場合は、何も処置せず、再度ステップS7に戻る。
一方、負荷変動が必要(Yes)と判定された場合には、室外側ファン36の回転数を低減させる(ステップS8)。
室外側ファン36の回転数を減少させると、室外熱交換器23における冷媒の冷却量が低減されるので、圧縮機17の高圧が高くなる、すなわち、圧縮機17の空調負荷が増加されることになる。
なお、この時、室内側ファン10の回転数を減少させ、空調負荷の増加に伴う冷房フィーリングの変化(冷房の効きすぎ)を感じさせないようにするとよい。
次いで、バイパス回路24のバイパス弁30の開度を判定する(ステップS9)。
バイパス弁30が開いている場合(Yes)には、バイパス弁を閉じる(ステップ10)。このようにして、冷媒をバイパス回路に流れないようにすると、過冷却用膨張弁49によって絞られた低温の気液二相冷媒と混合され冷却されて圧縮機17の吸入側に戻される冷媒がなくなるので、その分だけ圧縮機17の負荷が増加することになる。
バイパス弁30が閉じられている場合(No)およびステップ10でバイパス弁30が閉じられた場合には、制御部37はガスエンジン53について負荷減少に対応するような準備を行なう(ステップS11)。
ガスエンジン53側の受入準備には、例えば、次のようなことを行なう。
PI制御をしている場合にその定数を調節する。また、トルクが低下するように点火時期を変化(進角、遅角)させる。回転数が増加することを見込んで回転数を下げる。
このようにして、ガスエンジン53側の準備が完了すると、容量制御機構によってフルロードからパーシャルロードへの転換および/またはクラッチの切断を行い(ステップS12)、空調負荷の低減を行う。
ステップS12が完了すると、室外側ファン36の回転数およびバイパス弁30の開度を元の状態に復帰させる。
このように、空調負荷を変動させる場合に、負荷調節運転モードMによって一時的に空調負荷を変動させる方向とは反対方向に変動させるので、負荷変動時の空調負荷はなだらかに変動することになる。
このため、負荷変動時にガスエンジン53にかかる急激な負荷変動が減少され、ガスエンジン53への影響を最小限として滑らかに空調負荷の変動を行なうことができる。これにより、ガスエンジン53の耐久性を向上させることができる。
また、空調負荷の一時的な負荷変動に加えて、ガスエンジン53側でも、負荷変動に備えた制御を行なうので、ガスエンジン53にかかる空調負荷の変動に伴う影響を一層低減させることができる。
次に、図1に基づいて暖房運転時について説明する。なお、冷媒およびエンジン冷却水の流れ方向が破線の矢印で示されている。
暖房運転が選択されると、制御部37によって冷媒回路部の四方弁21が切り替えられて、ポートD/E間およびポートC/S間が連通され、圧縮機17の吐出側と室内熱交換器9とが接続される。また、バイパス弁30、室外側膨張弁25および水熱交換器用膨張弁51が制御部37により制御され、室内側電子膨張弁11および暖房バイパス開閉弁32が全開にされるとともに、冷房バイパス開閉弁34および過冷却用膨張弁49が全閉にされる。
まず、圧縮機17から吐出された高温高圧のガス冷媒は、オイルセパレータ19に流入して、ガス冷媒中に含まれるオイルが分離される。
オイルが分離されたガス冷媒は、四方弁21を通って室内熱交換器9に流入する。ガス冷媒は室内熱交換器9において室内気に熱を放出して凝縮・液化される。室内気はガス冷媒から熱を吸収して暖められる。
液化した冷媒は、室内側電子膨張弁11、過冷却コイル29を通過してレシーバ27に流入する。レシーバ27において冷媒は気液分離され、液冷媒のみがレシーバ27から流出する。
レシーバ27から流出した液冷媒の一部は、室外側膨張弁25を通って室外熱交換器23に流入する。残りの冷媒は、水熱交換器用膨張弁51を通って水熱交換器31に流入する。
室外熱交換器23に流入する冷媒は、室外側膨張弁25を通過する過程で減圧され、低温低圧の気液二相冷媒となる。室外熱交換器23において、低温低圧の気液二相冷媒は外気などから熱を奪い、蒸発・気化してガス冷媒となる。
水熱交換器31に流入する冷媒は、水熱交換器用膨張弁51を通過する過程で減圧され、低温低圧の液冷媒となる。水熱交換器31では、低温低圧の液冷媒がエンジン冷却水から熱を奪い、蒸発・気化してガス冷媒となる。
室外熱交換器23において蒸発したガス冷媒は、四方弁21のポートCからポートSを経て圧縮機17の吸入口に流入する。また、水熱交換器31において蒸発したガス冷媒は、四方弁21のポートSと圧縮機17の吸入口との間の冷媒回路7に流入する。
圧縮機17に吸入されたガス冷媒は、圧縮機17により圧縮され高温高圧のガス冷媒となり、再びオイルセパレータ19に向けて吐出される。
以降、同様の過程が繰り返され、暖房運転が継続して行われる。
次に、暖房運転時において、負荷調節運転モードMによって空調負荷を変動させる方法について説明する。
暖房運転時における負荷調節運転モードMは、冷房運転時におけるそれから室外側ファン36の調節をなくした以外は同じであるので、異なる点を主として説明し、重複した説明は省略する。
暖房運転時における空調負荷を増加させる場合には、図3に示す冷房運転時のフローからステップ2を除いたものとなるので、これに基づいて説明する。
暖房時には、冷房時とは逆に、冷媒の放熱作用を増加して空調負荷を低減させるのは室内側ファン10となる。
以後の操作で空調負荷を低下させた場合、室内熱交換器9を流れる冷媒が減少するので、室内側ファン10の回転数を増加させると、充分に加温されない空気が大量に室内に供給されることになり、暖房フィーリングが悪化することになる。
このため、暖房運転時の負荷調節運転モードMでは、室内側ファン10の回転数を増加させて空調負荷を低下させるステップS2を除いたものとしている。
したがって、暖房運転時における負荷調節は概略次のように行なう。
まず、ステップ1にて、室内ユニット3側が要求する暖房能力(冷媒量)と現時点での圧縮機17が供給できる冷媒量とを比較し、圧縮機17の負荷、すなわち空調負荷を変動させることが必要かを判定する。
次いで、空調負荷の変動を要する時は、ステップ3にて、高圧圧力が基準値以下に低減されているか判定し、低減されていない場合(Yes)には、バイパス弁30の開度を上げることによって空調負荷を低減させる。
高圧圧力が基準値以下に低減されるとステップ5に移り、制御部37はガスエンジン53について負荷増加に耐えるような準備を行なう。
その後、ステップS6に移り、空調負荷の増加(クラッチ22の接続および/または容量制御機構の切替)を行なう。
ステップS6が完了すると、バイパス弁30の開度を元の状態に復帰させる。
次に、暖房運転時における空調負荷を低減させる場合について説明する。
この場合には、図4に示す冷房運転時のフローからステップ2を除いたものとなるので、これに基づいて説明する。
ファン回転数を減少させない理由は、前述した空調負荷を増加させる場合と同様に暖房フィーリングを悪化させないためである。
したがって、暖房運転時における負荷調節は概略次のように行なう。
まず、ステップ7にて、室内ユニット3側が要求する暖房能力(冷媒量)と現時点での圧縮機17が供給できる冷媒量とを比較し、圧縮機17の負荷、すなわち空調負荷を変動させることが必要かを判定する。
次いで、空調負荷の変動(減少)を要する時は、ステップ9にて、バイパス回路24のバイパス弁30の開度を判定し、バイパス弁30が開いている場合(Yes)には、ステップ10に移り、バイパス弁を閉じ、空調負荷を増加させる。
そして、バイパス弁30が閉じられている場合(No)およびステップ10でバイパス弁30が閉じられた場合には、制御部37はガスエンジン53について負荷増加に耐えるような準備を行なう。
その後、ステップS12に移り、空調負荷の減少(クラッチ22の切断および/または容量制御機構の切替)を行なう。
ステップS12が完了すると、バイパス弁30の開度を元の状態に復帰させる。
このように、暖房運転時においても、空調負荷を変動させる場合に、負荷調節運転モードMによって一時的に空調負荷を変動させる方向とは反対方向に変動させる(例えば、空調負荷を増加させる場合には、事前に空調負荷を減少させる)ので、負荷変動時の空調負荷はなだらかに変動することになる。
このため、負荷変動時にガスエンジン53にかかる急激な負荷変動が減少され、ガスエンジン53への影響を最小限として滑らかに空調負荷の変動を行なうことができる。これにより、ガスエンジン53の耐久性を向上させることができる。
また、空調負荷の一時的な負荷変動に加えて、ガスエンジン53側でも、負荷変動に備えた制御を行なうので、ガスエンジン53にかかる空調負荷の変動に伴う影響を一層低減させることができる。
なお、本実施形態では、負荷調節運転モードMに、ガスエンジン53側の負荷変動に対応する調整を行なうステップを設けているが、これは省略してもよい。
また、
本発明の一実施形態にかかるGHPの全体概略構成を示すブロック図である。 本発明の一実施形態にかかる室外ユニットの一部を破断して示す斜視図である。 本発明の一実施形態にかかる負荷調節運転モードを示すフロー図である。 本発明の一実施形態にかかる負荷調節運転モードを示すフロー図である。
符号の説明
1 GHP
3 室内ユニット
5 室外ユニット
7 冷媒回路
17 圧縮機
23 室外熱交換器
24 バイパス回路
29 過冷却コイル
36 室外側ファン
37 制御部
53 ガスエンジン
M 負荷調節運転モード

Claims (3)

  1. 容量制御機能を有し、冷媒を圧縮して冷媒回路を循環させる少なくとも1台の圧縮機および該圧縮機を駆動する駆動源を備えた室外ユニットと、
    該室外ユニットに前記冷媒回路によって接続された複数の室内ユニットと、
    空調運転を制御する制御部と、を備えた空気調和装置において、
    前記制御部には、空調負荷を変動させる前に、一時的にその変動方向とは反対の方向に空調負荷を変動させる負荷調節運転モードが備えられていることを特徴とする空気調和装置。
  2. 前記冷媒回路には、前記圧縮機の吐出側の冷媒回路と冷房運転時または暖房運転時に冷媒の熱を放出するエバポレータとして機能し、前記冷媒を前記圧縮機の吸入側の冷媒回路へ戻す熱交換器の上流側の冷媒回路とを接続するバイパス回路が備えられ、
    前記負荷調節運転モードは、ファンの回転数および/または前記バイパス回路の冷媒流量を調節し、空調負荷を変動させることを特徴とする請求項1に記載の空気調和装置。
  3. 前記負荷調節運転モードは、前記駆動源に対して空調負荷の変動を予測した調節を行うことを特徴とする請求項1または請求項2に記載の空気調和装置。
JP2005051375A 2005-02-25 2005-02-25 空気調和装置 Withdrawn JP2006234317A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051375A JP2006234317A (ja) 2005-02-25 2005-02-25 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051375A JP2006234317A (ja) 2005-02-25 2005-02-25 空気調和装置

Publications (1)

Publication Number Publication Date
JP2006234317A true JP2006234317A (ja) 2006-09-07

Family

ID=37042175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051375A Withdrawn JP2006234317A (ja) 2005-02-25 2005-02-25 空気調和装置

Country Status (1)

Country Link
JP (1) JP2006234317A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111457584A (zh) * 2019-01-25 2020-07-28 广东三竺新能源有限公司 浴室取暖器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111457584A (zh) * 2019-01-25 2020-07-28 广东三竺新能源有限公司 浴室取暖器

Similar Documents

Publication Publication Date Title
JP5030344B2 (ja) ガスヒートポンプ式空気調和装置、エンジン冷却水加熱装置及びガスヒートポンプ式空気調和装置の運転方法
JP4375171B2 (ja) 冷凍装置
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
JP4774171B2 (ja) 空気調和装置
JP2018169064A (ja) エンジン駆動式空気調和装置
JP2006194565A (ja) 空気調和装置
JP2007107859A (ja) ガスヒートポンプ式空気調和装置
JP2003056931A (ja) 空気調和装置
EP2581689A1 (en) Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP2007107860A (ja) 空気調和装置
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP4570292B2 (ja) 空気調和装置
JP2006234321A (ja) 室外ユニットおよび空気調和装置
JP4585422B2 (ja) ガスヒートポンプ式空気調和装置
JP2006234317A (ja) 空気調和装置
JP2006232145A (ja) 車両用空調装置
JP4773637B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP6950328B2 (ja) 空気調和装置
JP5691498B2 (ja) エンジン駆動式空気調和装置
JPH0914778A (ja) 空気調和装置
JP3617742B2 (ja) スクロールコンプレッサ及び空調装置
JP4658395B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP3626927B2 (ja) ガスヒートポンプ式空気調和装置
JP2005291558A (ja) 空気調和装置
JP4658394B2 (ja) マルチ型ガスヒートポンプ式空気調和装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513