JP2006228922A - Double-sided flexible circuit board for repeated bending - Google Patents

Double-sided flexible circuit board for repeated bending Download PDF

Info

Publication number
JP2006228922A
JP2006228922A JP2005040194A JP2005040194A JP2006228922A JP 2006228922 A JP2006228922 A JP 2006228922A JP 2005040194 A JP2005040194 A JP 2005040194A JP 2005040194 A JP2005040194 A JP 2005040194A JP 2006228922 A JP2006228922 A JP 2006228922A
Authority
JP
Japan
Prior art keywords
circuit board
double
flexible circuit
sided flexible
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005040194A
Other languages
Japanese (ja)
Other versions
JP4722507B2 (en
Inventor
Yosuke Takahashi
洋介 高橋
Katsufumi Hiraishi
克文 平石
Yoshihiro Goto
嘉宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005040194A priority Critical patent/JP4722507B2/en
Priority to TW095103415A priority patent/TWI397351B/en
Priority to KR1020060014028A priority patent/KR101195087B1/en
Priority to CN2006100076792A priority patent/CN1829412B/en
Priority to CN2011101532007A priority patent/CN102231936B/en
Publication of JP2006228922A publication Critical patent/JP2006228922A/en
Application granted granted Critical
Publication of JP4722507B2 publication Critical patent/JP4722507B2/en
Priority to KR1020120028096A priority patent/KR101259474B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0277Details of the structure or mounting of specific components for a printed circuit board assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)
  • Telephone Set Structure (AREA)
  • Telephone Function (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-sided flexible circuit board suitable for a mobile phone that is suited to the transmission of high-frequency signals and is provided with a folding part to make the unit thinner, to prevent the disconnection or breakage of a conductor, and to make a circuit board dense. <P>SOLUTION: The double-sided flexible circuit board is provided with a conductor circuit 2 and a cover material 1 on both sides of an insulating layer 3. In this case, the insulating layer is formed of a liquid crystal polymer film or a polyimide film of 10-100 μm in thickness, and the cover material is formed of only a liquid crystal polymer film with a thermal deformation temperature different from that of the insulating layer. The double-sided flexible circuit board for bending is also provided with a surrounding section of which the copper foil stress value Y is used in a range of 0.5-3% as shown in a following formula (1) Y(%)=(t<SB>Cu</SB>+1/2 t<SB>LI</SB>)/(r+t<SB>CL.</SB>+t<SB>Cu</SB>+1/2 t<SB>LI</SB>)×100 (where, t<SB>LI</SB>: thickness of insulating layer (μm); t<SB>CL.</SB>: thickness of cover material (μm); t<SB>Cu</SB>: thickness of copper foil (μm); r: bending radius of surrounding section). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、携帯電話のヒンジ部等の繰り返し屈曲が頻繁になされる用途に適する両面フレキシブル回路基板に関するものである。   The present invention relates to a double-sided flexible circuit board suitable for applications in which bending of a mobile phone hinge part or the like is frequently performed.

携帯電話は電子機器のキーコンポーネントとして重要な役割を担っているが、電子部品の小型化及び高集積化に伴い、より高性能化が要求されている。これらの要求に対して、配線回路を有する回路基板においても、高密度化、軽薄化、フレキシブル性だけではなく、大量の情報を処理するために信号の高周波化が近年注目されている。   A mobile phone plays an important role as a key component of an electronic device, but higher performance is required as electronic components become smaller and highly integrated. In response to these demands, not only high density, light weight, and flexibility of a circuit board having a wiring circuit, in recent years, attention has been focused on increasing the frequency of signals in order to process a large amount of information.

高周波信号を伝送するためには低誘電率、低誘電正接である材料を用いることが必要である。ここで、液晶ポリマーフィルムは、高耐熱性、吸湿寸法安定性、高周波電気特性等に優れた材料として知られている。例えば、従来の回路基板では、寸法の安定性を狙うためにガラス繊維と接着剤としての樹脂を用いたプリプレグ層を絶縁体として用いており、また、微細配線を有する回路基板においても微細配線間への充填性を確保するため、接着剤を塗布したフィルムを用いてカバー材としている。しかしながら、高周波信号を伝送することに対して、上記材料は適さない。ここで、絶縁層とカバー材を同一材料とする、又は、カバー材に液晶ポリマーフィルムのみを用いることで、絶縁層及びカバー材の材料特性を考慮せず、液晶ポリマーフィルムの特性を損なわないフレキシブル回路基板を構成することができる。   In order to transmit a high-frequency signal, it is necessary to use a material having a low dielectric constant and a low dielectric loss tangent. Here, the liquid crystal polymer film is known as a material excellent in high heat resistance, hygroscopic dimensional stability, high-frequency electrical characteristics, and the like. For example, in a conventional circuit board, a prepreg layer using glass fiber and a resin as an adhesive is used as an insulator to aim at dimensional stability, and even in a circuit board having fine wiring, In order to ensure the filling property, a cover material is used using a film coated with an adhesive. However, the above materials are not suitable for transmitting high frequency signals. Here, the insulating layer and the cover material are made of the same material, or by using only the liquid crystal polymer film for the cover material, the material characteristics of the insulating layer and the cover material are not considered, and the characteristics of the liquid crystal polymer film are not impaired. A circuit board can be constructed.

フレキシブル回路基板は、可撓性に優れており、屈曲させて使用することができる材料として知られている。中でも、片面フレキシブル回路基板は、絶縁層の片側に導体層が形成され、繰り返し屈曲用途に使用されている。また、両面フレキシブル回路基板では、絶縁層の両側に導体による回路が形成され、実装時の一度のみの折り曲げ用途に使用されている。   The flexible circuit board is excellent in flexibility and is known as a material that can be bent and used. Among them, the single-sided flexible circuit board has a conductor layer formed on one side of an insulating layer, and is repeatedly used for bending. Further, in a double-sided flexible circuit board, a circuit made of a conductor is formed on both sides of an insulating layer, and is used for bending only once during mounting.

繰り返し屈曲用途を必要とする電子回路基板では、片面フレキシブル回路基板を利用している。しかしながら、片面フレキシブル回路基板では、回路基板の実装密度が両面フレキシブル回路基板の半分になるとか、コストが割高になる等の問題がある。例えば、特許文献1には、両面フレキシブル回路基板と片面フレキシブル回路基板とを含む単一のフレキシブル回路基板で、片面フレキシブル回路基板部を折り曲げて、別の片面フレキシブル回路基板に重ねた部分を屈曲部として構成し、屈曲性を向上することが示されている。特許文献2には、フレキシブル回路基板の屈曲箇所の内側に、円筒面をもつ支持材を配した配置構造にすることで、屈曲部のつぶれや折れを防止、導体の断線や破断を抑制することが示されている他、折り畳み式携帯電話への応用も示されている。   An electronic circuit board that requires repeated bending uses a single-sided flexible circuit board. However, the single-sided flexible circuit board has a problem that the mounting density of the circuit board is half that of the double-sided flexible circuit board and the cost is high. For example, Patent Document 1 discloses that a single flexible circuit board including a double-sided flexible circuit board and a single-sided flexible circuit board is bent at a portion where a single-sided flexible circuit board is folded and overlapped with another single-sided flexible circuit board. It is shown that it improves the flexibility. In Patent Document 2, the arrangement structure in which a support material having a cylindrical surface is arranged inside the bent portion of the flexible circuit board prevents the bent portion from being crushed and broken, and suppresses the disconnection and breakage of the conductor. In addition, application to a foldable mobile phone is also shown.

特開平11-195850号公報Japanese Patent Laid-Open No. 11-195850 特開平15-258388号公報Japanese Patent Laid-Open No. 15-258388

しかしながら、片面フレキシブル回路基板を組み合わせて屈曲部に適用した場合、構成するフレキシブル回路基板の層自体の厚みが増すことで、単一の片面フレキシブル回路基板よりも軽薄性や可撓性が劣ってしまう。また、フレキシブル回路基板に補強構造を持たせた場合、補強構造が存在することにより、電子回路や電子部品における回路基板の高密度化の妨げとなってしまう。   However, when a single-sided flexible circuit board is combined and applied to a bent part, the thickness of the layer of the flexible circuit board to be formed increases, resulting in inferiority and flexibility as compared with a single-sided flexible circuit board. . In addition, when a flexible circuit board is provided with a reinforcing structure, the presence of the reinforcing structure hinders an increase in the density of circuit boards in electronic circuits and electronic components.

本発明の目的は、高周波信号の伝送に適し、軽薄化、導体断線や破断の抑制、回路基板の高密度化を可能とした両面フレキシブル回路基板を提供することにある。   An object of the present invention is to provide a double-sided flexible circuit board that is suitable for transmission of a high-frequency signal and that can be lightened, suppressed conductor breakage and breakage, and can have a high density circuit board.

本発明者は、上記のような課題を解決するために鋭意検討を重ねた結果、携帯電話等の繰り返し屈曲用途向け両面フレキシブル回路基板のカバー材に液晶ポリマーフィルムのみを用いることで、片面フレキシブル回路基板と同等の可撓性が得られることを見出し、本発明を完成した。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventor uses only a liquid crystal polymer film as a cover material of a double-sided flexible circuit board for repeated bending applications such as a mobile phone. The present inventors have found that the same flexibility as that of the substrate can be obtained and completed the present invention.

すなわち、本発明は、 絶縁層の両側に、導体回路とカバー材とが設けられた両面フレキシブル回路基板において、絶縁層は厚み10〜100μmの液晶ポリマーフィルム又はポリイミドフィルムからなり、カバー材は絶縁層とは熱変形温度の異なる液晶ポリマーフィルムのみからなるものであって、下記計算式(1)によって算出される銅箔歪み値Yが0.5〜3%の範囲で使用されることを特徴とする周回部を有する屈曲用途向け両面フレキシブル回路基板である。
Y(%)=(tCu + 1/2 tLI)/(r + tCL. + tCu + 1/2 tLI )×100 (1)
但し、tLIは絶縁層フィルム厚み(μm)、tCL. はカバー材の液晶ポリマーフィルム厚み(μm)、tCu は銅箔厚み(μm)、r は周回部の屈曲半径(但し、屈曲半径rは2.0〜5.0mm)を示す。
That is, the present invention provides a double-sided flexible circuit board in which a conductor circuit and a cover material are provided on both sides of an insulating layer, the insulating layer is made of a liquid crystal polymer film or polyimide film having a thickness of 10 to 100 μm, and the cover material is an insulating layer Is composed of only liquid crystal polymer films having different thermal deformation temperatures, and the copper foil strain value Y calculated by the following formula (1) is used in the range of 0.5 to 3%. It is a double-sided flexible circuit board for bending applications having a portion.
Y (%) = (t Cu + 1/2 t LI ) / (r + t CL. + T Cu + 1/2 t LI ) x 100 (1)
Where t LI is the thickness of the insulating layer film (μm), t CL. Is the thickness of the liquid crystal polymer film of the cover material (μm), t Cu is the thickness of the copper foil (μm), and r is the bending radius of the circular part (however, the bending radius r represents 2.0 to 5.0 mm).

ここで、上記両面フレキシブル回路基板は、次のいずれか1以上の要件を満足することは、よりよい性能を有する両面フレキシブル回路基板を与える。
1)絶縁層が、液晶ポリマーフィルムからなり、その熱変形温度が270〜330℃の範囲にあり、カバー材としての液晶ポリマーフィルム熱変形温度が、それより低いこと、2)導体回路が銅箔から形成されたものであり、その厚みが5〜30μmの範囲にあること、3)カバー材厚みが、10〜100μmの範囲にあること、4)屈曲部と非屈曲部を有する両面フレキシブル回路基板の屈曲部が、周回されて使用されていること、5)周回部の屈曲半径rが、2.0〜5.0mmの範囲にあること。
Here, satisfying any one or more of the following requirements for the double-sided flexible circuit board provides a double-sided flexible circuit board having better performance.
1) The insulating layer is made of a liquid crystal polymer film, and its thermal deformation temperature is in the range of 270 to 330 ° C, and the thermal deformation temperature of the liquid crystal polymer film as the cover material is lower than that, 2) the conductor circuit is copper foil 3) that the thickness is in the range of 5 to 30 μm, 3) the cover material thickness is in the range of 10 to 100 μm, and 4) a double-sided flexible circuit board having a bent portion and a non-bent portion. 5) The bend radius r of the turn portion is in the range of 2.0 to 5.0 mm.

上記両面フレキシブル回路基板は、折り畳み式携帯電話の折り畳み部に有利に使用される。また、本発明は、上記両面フレキシブル回路基板を、折り畳み式携帯電話の折り畳み部に使用したことを特徴とする折り畳み式携帯電話である。更に、本発明は、折り畳み式携帯電話の閉じた状態を0°とした場合、開いた状態の角度が10〜180°の範囲にある上記の折り畳み式携帯電話である。   The double-sided flexible circuit board is advantageously used in a folding part of a folding mobile phone. The present invention is also a foldable mobile phone characterized in that the double-sided flexible circuit board is used in a foldable portion of a foldable mobile phone. Furthermore, the present invention is the above foldable mobile phone in which the angle of the open state is in the range of 10 to 180 ° when the closed state of the foldable mobile phone is 0 °.

以下、本発明の両面フレキシブル回路基板について、更に説明する。
本発明の両面フレキシブル回路基板は、携帯電話のヒンジ部等の屈曲箇所に使用するために好適であり、例えば携帯電話のヒンジ部に使用された場合、その繰り返し屈曲寿命が30万回以上となることが可能である。
Hereinafter, the double-sided flexible circuit board of the present invention will be further described.
The double-sided flexible circuit board of the present invention is suitable for use in a bent portion such as a hinge portion of a mobile phone. For example, when used in a hinge portion of a mobile phone, the repeated bending life is 300,000 times or more. It is possible.

本発明の両面フレキシブル回路基板は、回路加工などの公知の方法で得られるが、液晶ポリマーフィルム又はポリイミドフィルムからなる絶縁層の両面に導体回路が設けられ、その外側に液晶ポリマーフィルムのみからなるカバー材が設けられた構造となっている。   The double-sided flexible circuit board of the present invention can be obtained by a known method such as circuit processing, but a conductor circuit is provided on both sides of an insulating layer made of a liquid crystal polymer film or a polyimide film, and a cover made only of a liquid crystal polymer film on the outside thereof. It has a structure with materials.

絶縁層又はカバー材で使用する液晶ポリマーフィルムは、光学的異方性の溶融相を形成しうる任意の液晶ポリマーフィルムであり、サーモトロピック液晶高分子とも呼ばれている。光学的に異方性の溶融相を形成しうる高分子とは、当業者にはよく知られているように加熱装置を備えた偏光顕微鏡直行ニコル下で溶融状態の試料を観察したときに偏光を透過する性質を有する高分子である。   The liquid crystal polymer film used in the insulating layer or the cover material is an arbitrary liquid crystal polymer film capable of forming an optically anisotropic melt phase, and is also called a thermotropic liquid crystal polymer. As is well known to those skilled in the art, a polymer capable of forming an optically anisotropic molten phase is a material that is polarized when a sample in a molten state is observed under a direct microscope with a polarizing microscope equipped with a heating device. It is a polymer having the property of passing through.

液晶ポリマーフィルムは、耐熱性、加工性の点で200〜400℃、特に250〜350℃の範囲内に光学的に異方性の溶融相への転移温度を有するものが好ましい。また、フィルムの特性を損なわない範囲で、滑剤、酸化防止剤、充填剤などが配合されていても良い。本発明で使用する液晶ポリマーフィルムは、フィルム状もしくは溶液を塗布して使用することができるが、フィルム状として、銅箔に接着させることが有利である。   The liquid crystal polymer film preferably has a transition temperature to an optically anisotropic melt phase in the range of 200 to 400 ° C., particularly 250 to 350 ° C. in terms of heat resistance and workability. Further, a lubricant, an antioxidant, a filler, and the like may be blended within a range that does not impair the characteristics of the film. The liquid crystal polymer film used in the present invention can be used in the form of a film or a solution, but it is advantageous to adhere to a copper foil as a film.

液晶ポリマーフィルムは、押出成形等の公知の方法で得られる。押出成形の場合、任意の押出成形法が適用できるが、周知のTダイ法、ラミネート体延伸法、インフレーション法などが工業的に有利である。特に、インフレーション法やラミネート体延伸法では、フィルムの機械軸方向(以下、MD方向)だけでなく、これと直行する方向(以下、TD方向)にも応力が加えられるため、MD方向とTD方向における機械的性質のバランスのとれたフィルムが得られる。   The liquid crystal polymer film is obtained by a known method such as extrusion. In the case of extrusion molding, any extrusion molding method can be applied, but the known T-die method, laminate stretching method, inflation method and the like are industrially advantageous. In particular, in the inflation method and laminate stretching method, stress is applied not only in the mechanical axis direction of the film (hereinafter referred to as the MD direction) but also in the direction perpendicular to this (hereinafter referred to as the TD direction). A film with a balanced mechanical property can be obtained.

絶縁層に使用されるフィルムは液晶ポリマーフィルムであってもよいが、ポリイミドフィルムであってもよい。ポリイミドフィルムは広くFPC用として知られているものが使用でき、ポリイミドフィルム層は2層以上のポリイミドフィルム層からなってもよい。   The film used for the insulating layer may be a liquid crystal polymer film or a polyimide film. The polyimide film widely used for FPC can be used, and the polyimide film layer may be composed of two or more polyimide film layers.

カバー材には、絶縁層に使用される液晶ポリマーフィルム又はポリイミドフィルムは熱変形温度が異なる液晶ポリマーフィルムを使用する。熱変形温度は10〜100℃の範囲で異なることが好ましい。絶縁層に液晶ポリマーフィルムを使用する場合は、その熱変形温度が270〜330℃の範囲にあり、カバー材の液晶ポリマーフィルムはそれより低いこと、好ましくは10〜100℃低いことがよい。   As the cover material, a liquid crystal polymer film or a polyimide film used for the insulating layer is a liquid crystal polymer film having a different thermal deformation temperature. The heat distortion temperature is preferably different in the range of 10 to 100 ° C. When a liquid crystal polymer film is used for the insulating layer, the thermal deformation temperature is in the range of 270 to 330 ° C, and the liquid crystal polymer film of the cover material is lower than that, preferably 10 to 100 ° C.

本発明の両面フレキシブル回路基板を製造する方法においては、絶縁層の両面に導体層を積層する工程、導体層を回路とする工程、両面にある各導体回路層の上にカバー材を積層する工程とがある。導体層を形成する材料としては銅箔(銅合金箔を含む)が適する。以下、導体層を銅箔で代表して説明することもあるが、銅箔に限定されない。   In the method for producing a double-sided flexible circuit board of the present invention, a step of laminating a conductor layer on both sides of an insulating layer, a step of forming a conductor layer as a circuit, and a step of laminating a cover material on each conductor circuit layer on both sides There is. A copper foil (including a copper alloy foil) is suitable as a material for forming the conductor layer. Hereinafter, the conductor layer may be described as being representative of copper foil, but is not limited to copper foil.

例えば、絶縁層が液晶ポリマーフィルムである場合は、銅箔の両面を粗化処理して液晶ポリマーフィルムと積層し、加熱、加圧下で積層する。次に、公知の方法により銅箔の回路加工を行う。次に、カバー材となる液晶ポリマーフィルムを両面に配置した後、加熱、加圧下で積層する。カバー材として、液晶ポリマーフィルムを導体回路上に配置する場合、上記のように1)液晶ポリマーフィルムのみを配置して、加熱、加圧する方法や、また、2)液晶ポリマーフィルムと銅箔との積層物の液晶ポリマーフィルム面を、導体回路上に配置して加熱、加圧し、その後エッチングにより銅箔を除去する方法とがある。本発明によっては、いずれの方法を用いてもよい。   For example, when the insulating layer is a liquid crystal polymer film, both surfaces of the copper foil are roughened and laminated with the liquid crystal polymer film, and then laminated under heating and pressure. Next, circuit processing of the copper foil is performed by a known method. Next, after arrange | positioning the liquid crystal polymer film used as a cover material on both surfaces, it laminates | stacks under a heating and pressurization. When the liquid crystal polymer film is disposed on the conductor circuit as a cover material, as described above, 1) a method in which only the liquid crystal polymer film is disposed and heated and pressurized, or 2) the liquid crystal polymer film and the copper foil There is a method in which the liquid crystal polymer film surface of the laminate is placed on a conductor circuit, heated and pressurized, and then the copper foil is removed by etching. Any method may be used depending on the present invention.

絶縁層がポリイミドフィルムである場合は、ポリイミドフィルムと接する銅箔面の粗化処理は必ずしも必要ではなく、ポリイミドフィルムは、ポリイミド溶液又はその前駆体溶液の形で塗布、乾燥又は硬化させることにより形成させることができる。   When the insulating layer is a polyimide film, the roughening treatment of the copper foil surface in contact with the polyimide film is not necessarily required, and the polyimide film is formed by applying, drying or curing in the form of a polyimide solution or a precursor solution thereof. Can be made.

銅箔粗化処理はブラスト処理、研磨等の乾式の粗化方法、薬液による湿式の粗化方法が存在するが、特に黒化処理を用いることが望ましい。   The copper foil roughening treatment includes a dry roughening method such as blasting and polishing, and a wet roughening method using a chemical solution. It is particularly preferable to use a blackening treatment.

絶縁層の好ましい厚み範囲は、200μm以下であり、特に好ましくは10〜100μmである。フィルム厚みが、10μmに満たないと容易に裂けるため取り扱いが困難となり、100μmを超えるとフィルムが剛直になりロール状に巻き取ることが困難になるなど取り扱いが困難となる。   A preferable thickness range of the insulating layer is 200 μm or less, and particularly preferably 10 to 100 μm. If the film thickness is less than 10 μm, the film is easily torn and difficult to handle, and if it exceeds 100 μm, the film becomes rigid and difficult to handle in a roll shape.

熱変形温度の異なる液晶ポリマーフィルムを重ね合わせて、両面フレキシブル回路基板を製造する際、絶縁層とカバー材間で、その熱変形温度が10℃以上異なることが望ましい。この熱変形温度の差が10℃未満であると、液晶ポリマーフィルムからなる絶縁層とカバー材を用いて両面フレキシブル回路基板とした場合、積層時の加圧により、液晶ポリマーフィルムが同時に熱変形し、全ての導体回路が動きやすくなり、導体回路の位置決め制御が困難となる恐れがあるからである。ここで、絶縁層が液晶ポリマーフィルムの場合その熱変形温度を260℃以上、特に好ましくは270〜330℃の範囲とする。熱変形温度が270℃未満であると、絶縁層に使用する液晶ポリマーフィルムとカバー材としての液晶ポリマーフィルムのみの熱変形が区別できなくなる恐れがある。一方、熱変形温度が330℃以上であると、液晶ポリマーフィルムの融点を超え、回路基板の形状維持が困難となる。絶縁層がポリイミドの場合においても、絶縁層とカバー材との熱変形温度は異なることが必要であり、絶縁層の熱変形温度よりも10℃以上カバー材の熱変形温度が低いことが望ましい。   When manufacturing a double-sided flexible circuit board by laminating liquid crystal polymer films having different thermal deformation temperatures, it is desirable that the thermal deformation temperature differs by 10 ° C. or more between the insulating layer and the cover material. If the difference in thermal deformation temperature is less than 10 ° C, when a double-sided flexible circuit board is formed using an insulating layer made of a liquid crystal polymer film and a cover material, the liquid crystal polymer film is thermally deformed simultaneously by the pressure applied during lamination. This is because all the conductor circuits are likely to move, and the positioning control of the conductor circuits may be difficult. Here, when the insulating layer is a liquid crystal polymer film, the heat distortion temperature is set to 260 ° C. or higher, particularly preferably 270 to 330 ° C. If the thermal deformation temperature is lower than 270 ° C., there is a possibility that the thermal deformation of only the liquid crystal polymer film used for the insulating layer and the liquid crystal polymer film as the cover material cannot be distinguished. On the other hand, if the heat distortion temperature is 330 ° C. or higher, the melting point of the liquid crystal polymer film is exceeded, and it becomes difficult to maintain the shape of the circuit board. Even in the case where the insulating layer is polyimide, the thermal deformation temperature of the insulating layer and the cover material must be different, and it is desirable that the thermal deformation temperature of the cover material is lower by 10 ° C. or more than the thermal deformation temperature of the insulating layer.

本発明の両面フレキシブル回路基板の式(1)から計算される銅箔歪み値Yは0.5〜3%の範囲である。銅箔歪み値が0.5%に満たないと絶縁層厚み、それと接する銅箔厚み及びカバー材厚みが薄くなることで、導体回路の断線が生じる恐れがある。一方、銅箔歪み値が3%を超えると、両面フレキシブル回路基板を形成する各層厚みの増加、屈曲半径が大きくなることで、軽薄化、フレキシブル性を特徴とする携帯電話繰り返し屈曲用途への実用上の適用が困難となる。   The copper foil strain value Y calculated from the formula (1) of the double-sided flexible circuit board of the present invention is in the range of 0.5 to 3%. If the copper foil strain value is less than 0.5%, the insulating layer thickness, the thickness of the copper foil in contact therewith, and the thickness of the cover material are reduced, which may cause disconnection of the conductor circuit. On the other hand, if the copper foil strain value exceeds 3%, the thickness of each layer forming the double-sided flexible circuit board will increase, and the bending radius will increase, making it practical for use in cell phone repeated bending applications that are lighter and more flexible. The above application becomes difficult.

導体層の好ましい厚さ範囲は、100μm以下である。導体層が銅箔である場合、その厚みは5〜30μmであることが望ましい。銅箔厚みを薄くすることは、ファインパターンを形成可能であるという点からは好ましいが、その厚さが薄くなりすぎると、製造工程上銅箔にしわが生じたりする他、配線基板として回路形成した場合にも配線の破断が生じたり、回路基板の信頼性が低下する恐れがある。一方、銅箔厚みが増すと、銅箔をエッチングする際、回路側面にテーパーが生じ、ファインパターン形成上好ましくなくなる。   A preferable thickness range of the conductor layer is 100 μm or less. When the conductor layer is a copper foil, the thickness is desirably 5 to 30 μm. Although it is preferable to reduce the thickness of the copper foil from the viewpoint that a fine pattern can be formed, if the thickness is too thin, the copper foil may be wrinkled in the manufacturing process, and a circuit may be formed as a wiring board. In some cases, the wiring may break or the reliability of the circuit board may be reduced. On the other hand, when the thickness of the copper foil is increased, the side surface of the circuit is tapered when the copper foil is etched, which is not preferable for forming a fine pattern.

本発明で使用する銅箔としては、圧延法や電気分解法によって製造されるいずれのものでも使用することができる。銅箔には絶縁層としての液晶ポリマーフィルムとの接着力を確保することなどを目的として、粗化処理などの物理的表面処理あるいは酸洗浄などの化学的表面処理を本発明の効果が損なわない範囲で施していても良い。   As the copper foil used in the present invention, any copper foil produced by a rolling method or an electrolysis method can be used. The copper foil does not lose the effect of the present invention by physical surface treatment such as roughening treatment or chemical surface treatment such as acid cleaning for the purpose of ensuring adhesion with the liquid crystal polymer film as an insulating layer. It may be given within a range.

液晶ポリマーフィルムのみからなるカバー材の好ましい厚み範囲は、300μm以下であり、特に好ましくは10〜100μmである。カバー材厚みが、10μmに満たないと銅箔歪み値が著しく大きく、カバー材としての役割である導体回路保護が困難となる恐れがある。一方、カバー材厚みが、100μmを超えると総厚が厚すぎ、軽薄化、フレキシブル性を特徴とする繰り返し屈曲用途への実用上の適用が困難となる。   A preferable thickness range of the cover material made of only the liquid crystal polymer film is 300 μm or less, and particularly preferably 10 to 100 μm. If the cover material thickness is less than 10 μm, the strain value of the copper foil is remarkably large, and it may be difficult to protect the conductor circuit, which serves as the cover material. On the other hand, if the cover material thickness exceeds 100 μm, the total thickness is too thick, making it difficult to practically apply to repeated bending applications characterized by lightening and flexibility.

本発明の両面フレキシブル回路基板を携帯電話等の繰り返し屈曲用途に適用することで、高周波信号の伝送、軽薄化、導体断線や破断の抑制及び回路基板の高密度化に寄与する。   By applying the double-sided flexible circuit board of the present invention to repeated bending applications such as cellular phones, it contributes to high-frequency signal transmission, lightening, suppression of conductor disconnection and breakage, and high density of circuit boards.

以下、本発明の両面フレキシブル回路基板及びその使用例について、図面により説明する。図1は、両面フレキシブル回路基板の層構造の一例を説明するための断面図であり、液晶ポリマーフィルムからなる絶縁層3の両面に導体回路層2を有し、更にその上に液晶ポリマーフィルム1のカバー材が設けられている。図2は、両面フレキシブル回路基板の他の層構造の一例を説明するための断面図であり、ポリイミドフィルムからなる絶縁層4の両面に導体回路層2を有し、更にその上に液晶ポリマーフィルム1のカバー材が設けられている。   Hereinafter, the double-sided flexible circuit board of the present invention and its use examples will be described with reference to the drawings. FIG. 1 is a cross-sectional view for explaining an example of a layer structure of a double-sided flexible circuit board, which has a conductor circuit layer 2 on both sides of an insulating layer 3 made of a liquid crystal polymer film, and further has a liquid crystal polymer film 1 thereon. The cover material is provided. FIG. 2 is a cross-sectional view for explaining an example of another layer structure of a double-sided flexible circuit board, which has a conductor circuit layer 2 on both sides of an insulating layer 4 made of a polyimide film, and further a liquid crystal polymer film thereon 1 cover material is provided.

図3は、両面フレキシブル回路基板の層構造の他一例を説明するための断面図であり、液晶ポリマーフィルムからなる絶縁層3の両面に導体回路層2を有し、更にその上に、エポキシ系接着層6付きポリイミドフィルム5をカバー材としている。図4は、図3の絶縁層3を、ポリイミドフィルムからなる絶縁層4とした例である。図5は、ポリイミドフィルムからなる絶縁層4に、液晶ポリマーフィルム1及びポリイミド系接着フィルム6からなる複合フィルムをカバー材とした例である。なお、図3〜5は本発明の範囲外の両面フレキシブル回路基板を示す。   FIG. 3 is a cross-sectional view for explaining another example of the layer structure of the double-sided flexible circuit board, which has a conductor circuit layer 2 on both sides of an insulating layer 3 made of a liquid crystal polymer film, and further, an epoxy-based layer. A polyimide film 5 with an adhesive layer 6 is used as a cover material. FIG. 4 shows an example in which the insulating layer 3 in FIG. 3 is an insulating layer 4 made of a polyimide film. FIG. 5 shows an example in which a composite film composed of a liquid crystal polymer film 1 and a polyimide adhesive film 6 is used as a cover material for the insulating layer 4 composed of a polyimide film. 3 to 5 show a double-sided flexible circuit board outside the scope of the present invention.

図6は、本発明の両面フレキシブル回路基板をヒンジ部に使用する場合の一例を説明するための模式図であり、(A)に示すようなS字型に屈曲した屈曲部8を有する両面フレキシブル回路基板7が、(B)に示すように、屈曲部付近において断面が円形状になるように巻かれて、周回している。また、周回させることにより、上から見た場合、周回部の両側の非屈曲部9の表面は同じ面となる。周回させる際、その周回軸10となる部分に円筒形体を使用してもよい。   FIG. 6 is a schematic diagram for explaining an example of the case where the double-sided flexible circuit board of the present invention is used for a hinge part. The double-sided flexible circuit having a bent part 8 bent into an S shape as shown in FIG. As shown in (B), the circuit board 7 is wound around the bent portion so as to have a circular cross section. Further, by turning around, the surface of the non-bent part 9 on both sides of the turning part becomes the same surface when viewed from above. When rotating, a cylindrical body may be used for the portion that becomes the rotating shaft 10.

図6(B)は、携帯電話繰り返し屈曲用途において用いられる使用形態の一例であるが、屈曲部の両面フレキシブル回路基板が周回部で一回転しており、周回部での屈曲半径は2.0〜5.0mmの範囲である。これを、折り畳み携帯電話に使用する場合、開閉角度10°〜180°の範囲である。なお、図6(B)は、屈曲部と非屈曲部を有する両面フレキシブル回路基板の屈曲部8が一回転して周回しているものを示し、この部分をα巻という。   FIG. 6B is an example of a usage pattern used in a mobile phone repeated bending application, where the double-sided flexible circuit board in the bent portion is rotated once in the rotating portion, and the bending radius in the rotating portion is 2.0 to 5.0. It is in the mm range. When this is used for a folding mobile phone, the opening / closing angle is in the range of 10 ° to 180 °. FIG. 6B shows a double-sided flexible circuit board having a bent portion and a non-bent portion, in which the bent portion 8 is rotated once, and this portion is called α winding.

周回部での屈曲半径(周回軸10の半径にほぼ等しい)の好ましい半径範囲は、2.0〜5.0mmの範囲である。屈曲半径が2.0mmに満たないと屈曲形状を維持することが困難となる恐れがある。一方、屈曲半径が5.0mmを超えると、軽薄化、フレキシブル性を特徴とする携帯電話繰り返し屈曲用途への実用上の適用が困難となる。   A preferred radius range of the bending radius (approximately equal to the radius of the rotating shaft 10) at the rotating portion is in the range of 2.0 to 5.0 mm. If the bending radius is less than 2.0 mm, it may be difficult to maintain the bent shape. On the other hand, if the bending radius exceeds 5.0 mm, it will be difficult to practically apply to repeated bending of a mobile phone characterized by lightening and flexibility.

図7は折り畳み携帯電話の模式図を示し、両面フレキシブル回路基板7がヒンジ部11で周回されて、本体(ボタン部)12とフタ部(表示部)13間を接続している。本体12とフタ部13が作る開閉角度の好ましい角度範囲は、10〜180°の範囲である。開閉角度が、10°に満たないと開閉できないといった実用上の支障が生じる恐れがある。一方、開閉角度が180°を超えると、携帯電話繰り返し屈曲用途ではなく折り曲げ用途となる。   FIG. 7 is a schematic diagram of a folded cellular phone, in which a double-sided flexible circuit board 7 is wound around a hinge portion 11 to connect between a main body (button portion) 12 and a lid portion (display portion) 13. A preferable angle range of the opening / closing angle formed by the main body 12 and the lid portion 13 is in the range of 10 to 180 °. If the opening / closing angle is less than 10 °, there is a possibility that practical troubles such as opening and closing cannot occur. On the other hand, when the opening / closing angle exceeds 180 °, the cell phone is not repeatedly bent but is bent.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

*銅箔回路加工
液晶ポリマーフィルムからなる両面銅張積層板にドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングした。得られた両面導体回路基板を、光学顕微鏡を用いて回路の剥れや回路間の残銅の有無を確認した。
*厚み測定
JISC5016に準じ、膜厚測定器(ミツトヨ社製 ダイヤルゲージ215-153)を使用して、絶縁層、カバー材及び銅箔厚みを測定した。
*初期抵抗値測定
JISC5016に準じ、抵抗測定器(カスタム社製 CX-180N)を使用して、カバー材をプレス前の両面導体回路基板の抵抗値を測定した。
*銅箔歪み値の計算
両面フレキシブル回路基板に使用する銅箔厚み、絶縁層厚み、カバー材厚み及び屈曲半径から銅箔歪み値から、式(1)により計算した。
*携帯電話繰り返し屈曲試験
耐ヒンジ屈曲試験機(プロス社製 PIS-FPJ310)を使用して、両面フレキシブル回路基板の携帯電話繰り返し屈曲試験を行った。両面フレキシブル回路基板の破断条件は、初期抵抗値から5%の抵抗値上昇とした。
* Copper foil circuit processing A dry film was laminated on a double-sided copper clad laminate made of a liquid crystal polymer film, and a circuit pattern was formed by UV exposure using a pattern film with a resist width of 100 μm and a circuit width of 100 μm. Next, copper foil etching was performed using a copper chloride etching solution. The obtained double-sided conductor circuit board was checked for peeling of the circuit and residual copper between the circuits using an optical microscope.
* Thickness measurement
In accordance with JISC5016, the thickness of the insulating layer, the cover material, and the copper foil were measured using a film thickness measuring instrument (Dial Gauge 215-153 manufactured by Mitutoyo Corporation).
* Initial resistance measurement
According to JISC5016, a resistance measuring device (CX-180N made by Custom Co., Ltd.) was used to measure the resistance value of the double-sided conductor circuit board before pressing the cover material.
* Calculation of copper foil strain value The copper foil strain value calculated from the copper foil thickness value, the insulating layer thickness, the cover material thickness, and the bending radius used for the double-sided flexible circuit board was calculated by the formula (1).
* Cellular phone repeated bending test Using a hinge bending resistance tester (PIS-FPJ310 manufactured by Pros), a cell phone repeated bending test was performed on a double-sided flexible circuit board. The breaking condition of the double-sided flexible circuit board was a resistance value increase of 5% from the initial resistance value.

実施例1
厚さ25μmの液晶ポリマーフィルム280(クラレ社製ベクスター、熱変形温度280℃)を絶縁層とし、その両面に厚さ18μmの圧延銅箔(日鉱マテリアルズ社製BHY-22B-T)を有する両面銅張積層板にドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングし、両面導体回路基板Wを作成した。次に、厚さ25μmの液晶ポリマーフィルム260(クラレ社製ベクスター、熱変形温度260℃)を両面導体回路基板Wのカバー材とするため、その片面に厚さ18μmの上記圧延銅箔を有する片面銅張積層板Sを準備した。
ここで、両面導体回路基板Wと片面銅張積層板Sの液晶ポリマーフィルム面に対してアルカリ水溶液による薬液処理を用い、純水で水洗後、90℃の熱風オーブンで乾燥させた。また、銅箔とカバー材としての液晶ポリマーフィルムを接着させるため、両面導体回路基板の銅表面に黒化処理をした。その後、両面導体回路基板Wを挟み込む形で、フロー温度の異なる液晶ポリマーフィルムを樹脂層とする片面銅張積層板Sを積層し、精密プレスにて、260℃、9MPaの圧力でプレスを行い、回路基板とした。プレス後、得た回路基板の最外層銅箔をエッチングして除去し、絶縁層及びカバー材が液晶ポリマーからなる両面フレキシブル回路基板(図1)とした。
上記により得られた両面フレキシブル回路基板を図6(A)に示す形状にカットし、試験片とした。この試験片の屈曲部を周回させてα巻とし、ライン/スペース=100/100(μm)の回路面を内側になるようにして耐ヒンジ屈曲試験を行った(図6(B)参照)。また、耐ヒンジ屈曲試験終了後の各試験片の銅箔歪み値を算出した。
Example 1
Both sides with 25μm thick liquid crystal polymer film 280 (Kuraray Bexter, heat distortion temperature 280 ° C) as insulation layer and 18μm thick rolled copper foil (Nikko Materials BHY-22B-T) on both sides A dry film was laminated on the copper-clad laminate, and a circuit pattern was formed by UV exposure using a pattern film having a resist width of 100 μm and a circuit width of 100 μm. Next, copper foil etching was performed using a copper chloride etchant to prepare a double-sided conductor circuit board W. Next, in order to use a 25 μm-thick liquid crystal polymer film 260 (Kuraray Bexter, heat distortion temperature 260 ° C.) as a cover material for the double-sided conductor circuit board W, one side having the above-mentioned rolled copper foil with a thickness of 18 μm on one side A copper clad laminate S was prepared.
Here, the liquid crystal polymer film surfaces of the double-sided conductor circuit board W and the single-sided copper-clad laminate S were subjected to chemical treatment with an alkaline aqueous solution, washed with pure water, and then dried in a hot air oven at 90 ° C. Moreover, in order to adhere the liquid crystal polymer film as the cover material to the copper foil, the copper surface of the double-sided conductor circuit board was blackened. After that, in the form of sandwiching the double-sided conductor circuit board W, laminating a single-sided copper-clad laminate S with liquid crystal polymer films with different flow temperatures as the resin layer, pressing with a precision press at 260 ° C and a pressure of 9 MPa, A circuit board was obtained. After the pressing, the outermost layer copper foil of the obtained circuit board was removed by etching to obtain a double-sided flexible circuit board (FIG. 1) in which the insulating layer and the cover material were made of a liquid crystal polymer.
The double-sided flexible circuit board obtained as described above was cut into the shape shown in FIG. The bent part of the test piece was turned around to make α winding, and a hinge bending resistance test was performed with the circuit surface of line / space = 100/100 (μm) facing inward (see FIG. 6B). Moreover, the copper foil distortion value of each test piece after completion | finish of a hinge bending-proof test was computed.

実施例2
カバー材として、50μm厚みの液晶ポリマーフィルム260を使用した以外は、実施例1と同様にして両面フレキシブル回路基板を製作し、評価した。
Example 2
A double-sided flexible circuit board was produced and evaluated in the same manner as in Example 1 except that the liquid crystal polymer film 260 having a thickness of 50 μm was used as the cover material.

実施例3
厚さ25μmのポリイミドの両面に厚さ18μmの圧延銅箔を有する両面銅張積層板M(新日鐵化学社製、エスパネックスMグレード)にドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングし、両面導体回路基板を作成した。次に、厚さ25μmの液晶ポリマーフィルム260を前記両面導体回路基板のカバー材とするため、その片面に厚さ18μmの圧延銅箔を有する片面銅張積層板を準備した。両面導体回路基板を挟み込む形で、液晶ポリマーフィルムを樹脂層とする片面銅張積層板を積層し、精密プレスにて、260℃、9MPaの圧力でプレスを行い、回路基板とした。プレス後、得た回路基板の最外層銅箔をエッチングして除去し、絶縁層にポリイミドフィルム、カバー材を液晶ポリマーフィルムのみとし、異種の樹脂層が積層された両面フレキシブル回路基板(図2)とした。
Example 3
A dry film is laminated on double-sided copper-clad laminate M (Espanex M grade, manufactured by Nippon Steel Chemical Co., Ltd.) having a rolled copper foil of 18 μm thickness on both sides of polyimide with a thickness of 25 μm, resist width 100 μm, circuit width 100 μm A circuit pattern was formed by UV exposure using the pattern film. Next, copper foil etching was performed using a copper chloride etchant to prepare a double-sided conductor circuit board. Next, in order to use the liquid crystal polymer film 260 having a thickness of 25 μm as a cover material for the double-sided conductor circuit board, a single-sided copper-clad laminate having a rolled copper foil having a thickness of 18 μm on one side was prepared. A single-sided copper-clad laminate with a liquid crystal polymer film as a resin layer was laminated with a double-sided conductor circuit board sandwiched between them, and the circuit board was pressed with a precision press at 260 ° C. and 9 MPa. After pressing, the outermost copper foil of the obtained circuit board is removed by etching, a polyimide film on the insulating layer, the cover material is only a liquid crystal polymer film, and a double-sided flexible circuit board in which different resin layers are laminated (FIG. 2) It was.

比較例1
絶縁層を厚さ25μmの液晶ポリマーフィルム280とし、その両面に厚さ18μmの圧延銅箔を有する両面銅張積層板にドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングし、両面導体回路基板を作成した。次に、ポリイミドフィルムK(カプトン:登録商標)にエポキシ系接着層を設けたポリイミドフィルムカバー材を使用して、両面導体回路基板を挟み込む形で、精密プレスにて、160〜170℃、2〜7MPaの圧力でプレスを行い、両面フレキシブル回路基板(図3)とした。
Comparative Example 1
The insulating layer is a liquid crystal polymer film 280 with a thickness of 25 μm, and a dry film is laminated on a double-sided copper-clad laminate that has a rolled copper foil with a thickness of 18 μm on both sides, and a pattern film with a resist width of 100 μm and a circuit width of 100 μm is used. A circuit pattern was formed by UV exposure. Next, copper foil etching was performed using a copper chloride etchant to prepare a double-sided conductor circuit board. Next, using a polyimide film cover material in which an epoxy adhesive layer is provided on a polyimide film K (Kapton: registered trademark), a double-sided conductor circuit board is sandwiched, and a precision press, 160 to 170 ° C., 2 to Pressing was performed at a pressure of 7 MPa to obtain a double-sided flexible circuit board (FIG. 3).

比較例2
カバー材として、ポリイミドフィルムKにエポキシ系接着層を設けた表1に示した厚み構成のポリイミドフィルムカバー材(3種)を使用した以外は、比較例1と同様に行い、評価した。
比較例3
Comparative Example 2
Evaluation was performed in the same manner as in Comparative Example 1 except that a polyimide film cover material (three types) having a thickness structure shown in Table 1 in which an epoxy adhesive layer was provided on a polyimide film K was used as a cover material.
Comparative Example 3

厚さ25μmのポリイミドの両面に厚さ18μmの圧延銅箔を有する両面銅張積層板Mにドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングし、両面導体回路基板を作成した。次に、ポリイミドフィルムKにエポキシ系接着層を設けたポリイミドフィルムカバー材を使用して、前記両面導体回路基板を挟み込む形で、精密プレスにて、160〜170℃、2〜7MPaの圧力でプレスを行い、両面フレキシブル回路基板(図4)とした。   A dry film is laminated on a double-sided copper-clad laminate M with 18 μm-thick rolled copper foil on both sides of a polyimide with a thickness of 25 μm, and a circuit pattern is formed by UV exposure using a pattern film with a resist width of 100 μm and a circuit width of 100 μm. Formed. Next, copper foil etching was performed using a copper chloride etchant to prepare a double-sided conductor circuit board. Next, using a polyimide film cover material in which an epoxy adhesive layer is provided on polyimide film K, the double-sided conductor circuit board is sandwiched and pressed at a pressure of 160 to 170 ° C and 2 to 7 MPa with a precision press. To obtain a double-sided flexible circuit board (FIG. 4).

比較例4
カバー材として、ポリイミドフィルムKにエポキシ系接着層を設けた表1に示した厚み構成のポリイミドフィルムカバー材(3種)を使用した以外は、比較例1と同様に行い、評価した。
Comparative Example 4
Evaluation was performed in the same manner as in Comparative Example 1 except that a polyimide film cover material (three types) having a thickness structure shown in Table 1 in which an epoxy adhesive layer was provided on a polyimide film K was used as a cover material.

比較例5
厚さ25μmのポリイミドの両面に厚さ18μmの圧延銅箔を有する両面銅張積層板Mにドライフィルムをラミネートし、レジスト幅100μm、回路幅100μmのパターンフィルムを使用してUV露光により回路パターンを形成した。次に、塩化銅エッチング液を用いて、銅箔エッチングし、両面導体回路基板を作成した。次に、厚さ25μmの液晶ポリマーフィルム260の片面に厚さ18μmの圧延銅箔を有する片面銅張積層板を準備した。次に、両面導体回路基板をポリイミド系接着フィルム(新日鐵化学社製 ボンディングシートSPB)を介して、液晶ポリマーフィルムを樹脂層とする片面銅張積層板を積層し、精密プレスにて、260℃、9MPaの圧力でプレスを行い、回路基板とした。プレス後、得た回路基板の最外層銅箔をエッチングして除去し、両面フレキシブル回路基板(図5)とした。
Comparative Example 5
A dry film is laminated on a double-sided copper-clad laminate M with 18 μm-thick rolled copper foil on both sides of a polyimide with a thickness of 25 μm, and a circuit pattern is formed by UV exposure using a pattern film with a resist width of 100 μm and a circuit width of 100 μm. Formed. Next, copper foil etching was performed using a copper chloride etchant to prepare a double-sided conductor circuit board. Next, a single-sided copper clad laminate having a rolled copper foil with a thickness of 18 μm on one side of a liquid crystal polymer film 260 with a thickness of 25 μm was prepared. Next, a double-sided conductor circuit board was laminated with a single-sided copper-clad laminate with a liquid crystal polymer film as a resin layer via a polyimide adhesive film (bonding sheet SPB manufactured by Nippon Steel Chemical Co., Ltd.). A circuit board was obtained by pressing at 9 ° C. and a pressure of 9 MPa. After the pressing, the outermost layer copper foil of the obtained circuit board was removed by etching to obtain a double-sided flexible circuit board (FIG. 5).

評価結果を表1に示す。なお、比較例中のカバー材厚み欄の( )内の値は、PF:ポリイミドフィルム、LCPF :液晶ポリマーフィルム、Ad:エポキシ系又はポリイミド系接着層の厚み(μm)を表す。   The evaluation results are shown in Table 1. In addition, the value in () in the cover material thickness column in the comparative example represents the thickness (μm) of PF: polyimide film, LCPF: liquid crystal polymer film, Ad: epoxy type or polyimide type adhesive layer.

Figure 2006228922
Figure 2006228922

両面フレキシブル回路基板の一例を説明するための断面図Sectional drawing for demonstrating an example of a double-sided flexible circuit board 両面フレキシブル回路基板他の一例を説明するための断面図Sectional drawing for demonstrating an example of a double-sided flexible circuit board other 両面フレキシブル回路基板の比較例を説明するための断面図Sectional drawing for demonstrating the comparative example of a double-sided flexible circuit board 両面フレキシブル回路基板の比較例を説明するための断面図Sectional drawing for demonstrating the comparative example of a double-sided flexible circuit board 両面フレキシブル回路基板の比較例を説明するための断面図Sectional drawing for demonstrating the comparative example of a double-sided flexible circuit board 両面フレキシブル回路基板の使用例を説明するための模式図Schematic diagram for explaining an example of using a double-sided flexible circuit board 折り畳み携帯電話の一例を説明するための模式図Schematic diagram for explaining an example of a folding mobile phone

符号の説明Explanation of symbols

1:液晶ポリマーフィルムカバー材
2:導体回路層
3:液晶ポリマーフィルム絶縁層
4:ポリイミドフィルム絶縁層
5:ポリイミドフィルムカバー材
6:接着層
7:試験片
8:屈曲部
9:非屈曲部
10:屈曲部の周回軸
11:ヒンジ部
12:本体
13:フタ部
1: LCD polymer film cover material
2: Conductor circuit layer
3: Liquid crystal polymer film insulation layer
4: Polyimide film insulation layer
5: Polyimide film cover material
6: Adhesive layer
7: Test piece
8: Bending part
9: Non-bent part
10: Circumference axis of bent part
11: Hinge part
12: Body
13: Lid

Claims (8)

絶縁層の両側に、導体回路とカバー材とが設けられた両面フレキシブル回路基板において、絶縁層は厚み10〜100μmの液晶ポリマーフィルム又はポリイミドフィルムからなり、カバー材は絶縁層とは熱変形温度の異なる液晶ポリマーフィルムのみからなるものであって、下記計算式(1)によって算出される銅箔歪み値Yが0.5〜3%の範囲で使用されることを特徴とする周回部を有する屈曲用途向け両面フレキシブル回路基板。
Y(%)=(tCu + 1/2 tLI)/(r + tCL. + tCu + 1/2 tLI )×100 (1)
(但し、tLIは絶縁層フィルム厚み(μm)、tCL. はカバー材の液晶ポリマーフィルム厚み(μm)、tCu は銅箔厚み(μm)、r は周回部の屈曲半径(但し、屈曲半径rは2.0〜5.0mm)を示す)
In a double-sided flexible circuit board in which a conductor circuit and a cover material are provided on both sides of the insulation layer, the insulation layer is made of a liquid crystal polymer film or polyimide film with a thickness of 10 to 100 μm, and the cover material has a heat deformation temperature of the insulation layer. For bending applications having a circular portion, which is composed of only different liquid crystal polymer films and has a copper foil strain value Y calculated by the following formula (1) in the range of 0.5 to 3%. Double-sided flexible circuit board.
Y (%) = (t Cu + 1/2 t LI ) / (r + t CL. + T Cu + 1/2 t LI ) x 100 (1)
(Where t LI is the insulation layer film thickness (μm), t CL. Is the thickness of the liquid crystal polymer film of the cover material (μm), t Cu is the copper foil thickness (μm), and r is the bending radius (where (Radius r is 2.0 to 5.0 mm)
絶縁層が、液晶ポリマーフィルムからなり、その熱変形温度が270〜330℃の範囲にあり、カバー材としての液晶ポリマーフィルムの熱変形温度が、それより低い請求項1記載の両面フレキシブル回路基板。   2. The double-sided flexible circuit board according to claim 1, wherein the insulating layer is made of a liquid crystal polymer film, the heat deformation temperature thereof is in the range of 270 to 330 [deg.] C., and the heat deformation temperature of the liquid crystal polymer film as the cover material is lower. 導体回路が銅箔から形成されたものであり、その厚みが5〜30μmの範囲にある請求項1又は2記載の両面フレキシブル回路基板。   The double-sided flexible circuit board according to claim 1 or 2, wherein the conductor circuit is formed from a copper foil and has a thickness in the range of 5 to 30 µm. カバー材厚みが、10〜100μmの範囲にある請求項1〜3のいずれかに記載の両面フレキシブル回路基板。   The double-sided flexible circuit board according to claim 1, wherein the cover material has a thickness in the range of 10 to 100 μm. 両面フレキシブル回路基板が、屈曲部と非屈曲部を有し、屈曲部が、周回されて使用される請求項1〜4のいずれかに記載の両面フレキシブル回路基板。   The double-sided flexible circuit board according to any one of claims 1 to 4, wherein the double-sided flexible circuit board has a bent part and a non-bent part, and the bent part is wound around. 折り畳み式携帯電話の折り畳み部に使用される請求項1〜5のいずれかに記載の両面フレキシブル回路基板。   The double-sided flexible circuit board according to any one of claims 1 to 5, wherein the double-sided flexible circuit board is used in a folding part of a folding cellular phone. 請求項1〜6のいずれかに記載の両面フレキシブル回路基板を、折り畳み式携帯電話の折り畳み部に使用したことを特徴とする折り畳み式携帯電話。   A foldable mobile phone, wherein the double-sided flexible circuit board according to any one of claims 1 to 6 is used in a foldable portion of a foldable mobile phone. 折り畳み式携帯電話の閉じた状態を0°とした場合、開いた状態の角度が10〜180°の範囲にある請求項7記載の折り畳み式携帯電話。   The foldable mobile phone according to claim 7, wherein when the foldable mobile phone is in a closed state of 0 °, an angle of the open state is in a range of 10 to 180 °.
JP2005040194A 2005-02-17 2005-02-17 Double-sided flexible circuit board for repeated bending applications Expired - Fee Related JP4722507B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005040194A JP4722507B2 (en) 2005-02-17 2005-02-17 Double-sided flexible circuit board for repeated bending applications
TW095103415A TWI397351B (en) 2005-02-17 2006-01-27 Double-sided flexible circuit substrate for reverse bending
KR1020060014028A KR101195087B1 (en) 2005-02-17 2006-02-14 Double sided flexible printed circuit board for use hinge region
CN2006100076792A CN1829412B (en) 2005-02-17 2006-02-17 Double-side flexible circuit substrate capable of repeatedly bending
CN2011101532007A CN102231936B (en) 2005-02-17 2006-02-17 Double sided flexible printed circuit board for use hinge region
KR1020120028096A KR101259474B1 (en) 2005-02-17 2012-03-20 Double sided flexible printed circuit board for use hinge region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005040194A JP4722507B2 (en) 2005-02-17 2005-02-17 Double-sided flexible circuit board for repeated bending applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011011829A Division JP5048850B2 (en) 2011-01-24 2011-01-24 Double-sided flexible circuit board for repeated bending applications

Publications (2)

Publication Number Publication Date
JP2006228922A true JP2006228922A (en) 2006-08-31
JP4722507B2 JP4722507B2 (en) 2011-07-13

Family

ID=36947463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040194A Expired - Fee Related JP4722507B2 (en) 2005-02-17 2005-02-17 Double-sided flexible circuit board for repeated bending applications

Country Status (4)

Country Link
JP (1) JP4722507B2 (en)
KR (2) KR101195087B1 (en)
CN (2) CN1829412B (en)
TW (1) TWI397351B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018979A1 (en) * 2009-08-11 2011-02-17 株式会社村田製作所 Multilayered substrate
JP2011134884A (en) * 2009-12-24 2011-07-07 Nippon Mektron Ltd Flexible circuit board and method of manufacturing the same
US8178191B2 (en) 2007-06-14 2012-05-15 Hitachi Cable, Ltd. Multilayer wiring board and method of making the same
WO2013021834A1 (en) * 2011-08-09 2013-02-14 住友電工プリントサーキット株式会社 Printed circuit board wiring-integrated sheet, printed circuit board formed using printed circuit board wiring-integrated sheet, and manufacturing method for printed circuit board wiring-integrated sheet
US20160262264A1 (en) * 2015-03-06 2016-09-08 Samsung Electronics Co., Ltd. Connection substrate and display device having the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969993B2 (en) * 2006-11-01 2012-07-04 日本メクトロン株式会社 Multilayer flexible printed wiring board and manufacturing method thereof
KR100956238B1 (en) * 2007-12-18 2010-05-04 삼성전기주식회사 Flexible printed circuit board and manufacturing method for the same
TWI393512B (en) * 2008-08-20 2013-04-11 Unimicron Technology Corp Rigid wiring board
JP5284308B2 (en) 2010-04-19 2013-09-11 日本メクトロン株式会社 Flexible circuit board and manufacturing method thereof
WO2012020818A1 (en) * 2010-08-12 2012-02-16 新日鐵化学株式会社 Metal-clad laminated plate
CN102843448B (en) * 2012-08-14 2016-06-15 惠州Tcl移动通信有限公司 A kind of SIM card holder stacked structure and mobile phone thereof
CN104349571B (en) * 2013-07-29 2017-06-06 富葵精密组件(深圳)有限公司 Flexible PCB and preparation method thereof
CN104320908A (en) * 2014-11-14 2015-01-28 镇江华印电路板有限公司 Heat dissipating type multilayer soft and hardness combined printing plate
US20160380326A1 (en) * 2015-06-26 2016-12-29 Stephen H. Hall Flexible circuit structures for high-bandwidth communication
US9786790B2 (en) 2015-12-10 2017-10-10 Industrial Technology Research Institute Flexible device
US11452198B2 (en) 2019-07-25 2022-09-20 Borgwarner, Inc. Thermally insulated printed circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138422A (en) * 1998-10-29 2000-05-16 Yamaichi Electronics Co Ltd Wiring board and its manufacture
JP2000286537A (en) * 1999-03-31 2000-10-13 Kuraray Co Ltd Circuit board and its manufacture
JP2001102700A (en) * 1999-07-27 2001-04-13 Sanyo Electric Co Ltd Flexible printed board and portable telephone terminal having the flexible printed board
JP2003046275A (en) * 2001-07-31 2003-02-14 Fujitsu Ltd Mobile device
JP2003258389A (en) * 2002-03-06 2003-09-12 Sumitomo Electric Printed Circuit Inc Flexible printed circuit board
JP2003258388A (en) * 2002-03-06 2003-09-12 Sumitomo Electric Printed Circuit Inc Arranging structure of flexible printed circuit board
JP2004311740A (en) * 2003-04-08 2004-11-04 Arisawa Mfg Co Ltd Flexible printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195849A (en) 1997-12-26 1999-07-21 Fujikura Ltd Flexible printed wiring board and method for manufacturing it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138422A (en) * 1998-10-29 2000-05-16 Yamaichi Electronics Co Ltd Wiring board and its manufacture
JP2000286537A (en) * 1999-03-31 2000-10-13 Kuraray Co Ltd Circuit board and its manufacture
JP2001102700A (en) * 1999-07-27 2001-04-13 Sanyo Electric Co Ltd Flexible printed board and portable telephone terminal having the flexible printed board
JP2003046275A (en) * 2001-07-31 2003-02-14 Fujitsu Ltd Mobile device
JP2003258389A (en) * 2002-03-06 2003-09-12 Sumitomo Electric Printed Circuit Inc Flexible printed circuit board
JP2003258388A (en) * 2002-03-06 2003-09-12 Sumitomo Electric Printed Circuit Inc Arranging structure of flexible printed circuit board
JP2004311740A (en) * 2003-04-08 2004-11-04 Arisawa Mfg Co Ltd Flexible printed wiring board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178191B2 (en) 2007-06-14 2012-05-15 Hitachi Cable, Ltd. Multilayer wiring board and method of making the same
WO2011018979A1 (en) * 2009-08-11 2011-02-17 株式会社村田製作所 Multilayered substrate
JP5354018B2 (en) * 2009-08-11 2013-11-27 株式会社村田製作所 Multilayer board
US8692125B2 (en) 2009-08-11 2014-04-08 Murata Manufacturing Co., Ltd. Multilayer substrate
JP2011134884A (en) * 2009-12-24 2011-07-07 Nippon Mektron Ltd Flexible circuit board and method of manufacturing the same
US9024198B2 (en) 2009-12-24 2015-05-05 Nippon Mektron, Ltd. Flexible circuit board and method for production thereof
WO2013021834A1 (en) * 2011-08-09 2013-02-14 住友電工プリントサーキット株式会社 Printed circuit board wiring-integrated sheet, printed circuit board formed using printed circuit board wiring-integrated sheet, and manufacturing method for printed circuit board wiring-integrated sheet
JP2013038265A (en) * 2011-08-09 2013-02-21 Sumitomo Electric Printed Circuit Inc Printed wire aggregate sheet, printed wiring board formed using printed wire aggregate sheet, manufacturing method of printed wire aggregate sheet
US20160262264A1 (en) * 2015-03-06 2016-09-08 Samsung Electronics Co., Ltd. Connection substrate and display device having the same

Also Published As

Publication number Publication date
CN1829412A (en) 2006-09-06
CN102231936A (en) 2011-11-02
KR101259474B1 (en) 2013-05-06
TWI397351B (en) 2013-05-21
CN102231936B (en) 2013-02-27
KR101195087B1 (en) 2012-10-29
KR20120032506A (en) 2012-04-05
CN1829412B (en) 2012-06-20
TW200642535A (en) 2006-12-01
KR20060092087A (en) 2006-08-22
JP4722507B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4722507B2 (en) Double-sided flexible circuit board for repeated bending applications
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
JP6499584B2 (en) Thermoplastic liquid crystal polymer film, circuit board, and production method thereof
US7381901B2 (en) Hinge board and method for producing the same
JP6320031B2 (en) Flexible copper clad laminate
JPWO2017154811A1 (en) Method for producing metal-clad laminate and metal-clad laminate
JP5611355B2 (en) Metal-clad laminate
KR20130072145A (en) Both sides metal-clad laminate and method of producing the same
CN108353509B (en) Method for manufacturing printed circuit board with dielectric layer
TWI384909B (en) Laminate for wiring substrate
JP5048850B2 (en) Double-sided flexible circuit board for repeated bending applications
JP6948418B2 (en) Manufacturing method of flexible metal-clad laminate
JP2005105165A (en) Thermoplastic liquid crystalline polymer film laminatable at low temperature
WO2005063468A1 (en) Method for producing flexible laminate
JP4598408B2 (en) Adhesive sheet
KR20060111619A (en) Method for producing flexible laminate
JP2008205413A (en) Method of manufacturing printed wiring board with cover lay
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP2007258697A (en) Method of manufacturing multilayer printed wiring board
JP2008218576A (en) Flexible printed board
JP2014130926A (en) Metal-clad laminate and electronic apparatus
JPH0645714A (en) Circuit substrate and multilayer circuit substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees