JP2006225216A - 水素生成装置及び水素生成装置の保管前処理方法 - Google Patents

水素生成装置及び水素生成装置の保管前処理方法 Download PDF

Info

Publication number
JP2006225216A
JP2006225216A JP2005043486A JP2005043486A JP2006225216A JP 2006225216 A JP2006225216 A JP 2006225216A JP 2005043486 A JP2005043486 A JP 2005043486A JP 2005043486 A JP2005043486 A JP 2005043486A JP 2006225216 A JP2006225216 A JP 2006225216A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
fuel
catalyst
supply path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005043486A
Other languages
English (en)
Inventor
Yukimune Kani
幸宗 可児
Kunihiro Ukai
邦弘 鵜飼
Hidenobu Wakita
英延 脇田
Kiyoshi Taguchi
清 田口
Seiji Fujiwara
誠二 藤原
Yumi Kondo
由美 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005043486A priority Critical patent/JP2006225216A/ja
Publication of JP2006225216A publication Critical patent/JP2006225216A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

【課題】触媒の酸化をより防止することが可能な水素生成装置及びその保管前処理方法を提供すること。
【解決手段】 燃料である炭化水素ガスと水蒸気を反応させて水素リッチガスを生成する改質部10と、改質部10に前記燃料を供給する燃料供給経路11と、改質部10に水を供給する水供給経路12と、水素リッチガスを排出する排出経路21とを備えた水素生成装置の、保管前処理方法であって、燃料供給経路11、改質部10、水供給経路12、及び排出経路21に炭化水素ガスを供給する燃料供給ステップと、燃料供給経路11、水供給経路12、及び排出経路21の各々に設けられた封止部13、14、22により全ての経路を閉じ、前記炭化水素ガスを封止する封止ステップとを備えた、水素生成装置の保管前処理方法である。
【選択図】図1

Description

本発明は、燃料電池発電システムに用いられる水素生成装置、及び水素生成装置の保管前処理方法に関する。
エネルギーを有効に利用する分散型発電装置として、発電効率および総合効率の高い燃料電池コージェネレーションシステムが注目されている。
燃料電池の多く、例えば実用化されているリン酸型燃料電池や、開発が進められている固体高分子型燃料電池(以下、PEFCと呼ぶ。)は、水素を燃料として発電する。しかし、水素はインフラとして整備されていないため、システムの設置場所で生成させる必要がある。
水素生成方法の一つとして、水蒸気改質法がある。天然ガス、LPG、ナフサ、ガソリン、灯油等の炭化水素系、メタノール等のアルコール系の原料を水と混合して、改質触媒を設けた改質部で水蒸気改質反応させ、水素を発生させる方法である。
この水蒸気改質反応では一酸化炭素(以下、COと呼ぶ。)が副成分として生成し、改質部後の改質ガス中にはCOが約10〜15%含まれる。改質ガス中に含まれるCOは、固体高分子型燃料電池の電極触媒を被毒して発電能力を低下させるため、CO低減部を設けて、水素生成装置出口において改質ガス中のCO濃度を100ppm以下、好ましくは10ppm以下に除去する必要がある。
通常、水素生成装置のCO低減部は、COと水蒸気が反応して水素と二酸化炭素を生成する水性ガスシフト反応を進行させる変成反応触媒を有する変成器と、空気を供給して空気中の酸素とCOを選択酸化反応させる選択酸化触媒を有する選択酸化器とを連結させる構成であり、改質ガス中のCO濃度が10ppm以下に除去される。
従来、据置型の燃料電池発電システムにおいて、水素生成装置はユニットとして取り外し可能であり、メンテナンス等の際には、水素生成装置毎交換することによって対応していた。
しかしながら、従来は水素生成装置を保管する前に特別な処理を行っていなかったため、交換用の水素生成装置内には空気が混入し、改質部、シフト反応部、及び選択酸化部の触媒は酸化されていた。
このような状態の水素生成装置を用いて、燃料電池発電システムを動作させると、触媒が酸化されており、活性が低下しているために、燃料電池の動作に必要な水素量が生成されるまでの起動時間が非常に長くなっていた。
又、起動時間を短くするためには、触媒の還元処理が必要となり、交換に時間や手間がかかっていた。又、触媒は酸化還元を繰り返すと性能が劣化するため、酸化されることが好ましくなかった。
上記従来の課題を考慮して、本発明の目的は、触媒の酸化をより防止することが可能な水素生成装置及びその保管前処理方法を提供することである。
上記目的を達成するために、第1の本発明は、
燃料と水蒸気を反応させて水素リッチガスを生成する改質部と、
前記改質部に前記燃料を供給する燃料供給経路と、
前記改質部に水を供給する水供給経路と、
前記水素リッチガスを排出する排出経路とを備えた水素生成装置の、保管前処理方法であって、
前記燃料供給経路、前記改質部、前記水供給経路、及び前記排出経路に炭化水素ガスを供給する燃料供給ステップと、
前記燃料供給経路、前記水供給経路、及び前記排出経路の各々に設けられた封止部により全ての経路を閉じ、前記炭化水素ガスを封止する封止ステップとを備えた、水素生成装置の保管前処理方法である。
又、第2の本発明は、
前記燃料供給ステップは、脱硫部によって硫黄成分を取り除かれた炭化水素ガスを供給するステップである、第1の本発明の水素生成装置の保管前処理方法である。
又、第3の本発明は、
前記炭化水素ガスは、メタン、プロパン、又はブタンである、第1の本発明の水素生成装置の保管前処理方法である。
又、第4の本発明は、
前記水素生成装置は、前記燃料供給経路路の封止部と前記改質部の間に設置された脱硫部を更に備えている、第1の本発明の水素生成装置の保管前処理方法である。
又、第5の本発明は、
前記改質部には、Ru系またはNi系触媒が充填されている、第1の本発明の水素生成装置の保管前処理方法である。
又、第6の本発明は、
前記水素生成装置は、前記水素リッチガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応部を有しており、
前記シフト反応部には、Cu系またはPt系触媒が充填されている、第1の本発明の水素生成装置の保管前処理方法である。
又、第7の本発明は、
前記水素生成装置は、前記シフト反応部から供給される水素リッチガス中の一酸化炭素と酸素を反応させて二酸化炭素を生成する選択酸化反応部を有しており、
前記選択酸化反応部には、Ru系触媒が充填されている、第6の本発明の水素生成装置の保管前処理方法である。
又、第8の本発明は、
前記封止ステップで封止した後の前記炭化水素ガスの充填圧力が、0℃において大気圧よりも大きくなるように、前記燃料ガス供給ステップにおける前記炭化水素ガスの供給が行われる、第1の本発明の水素生成装置の保管前処理方法である。
又、第9の本発明は、
燃料と水蒸気を反応させて水素リッチガスを生成する改質部と、
前記改質部に前記燃料を供給する燃料供給経路と、
前記改質部に水を供給する水供給経路と、
前記水素リッチガスを排出する排出経路とを備え、
前記燃料供給経路、前記水供給経路、及び前記排出経路の各々に設けられた封止部によって、前記改質部、前記燃料供給経路、前記水供給経路、及び前記排出経路に炭化水素ガスが充填され、封止されている水素生成装置である。
本発明によれば、触媒の酸化をより防止することが可能な水素生成装置、及びその保管前処理方法を提供することが出来る。
図1は、本発明の実施の形態における水素生成装置の構成図である。図1に示すように、本実施の形態の水素生成装置1は、炭化水素系の燃料と水とから水素リッチな改質ガスを生成する改質部10を備えている。この改質部10には、Ni系又はRu系等の改質触媒が充填されており、この触媒を加熱するための加熱部23が改質部10に設置されている。又、改質部10へ燃料を供給するための燃料供給経路11と、水を供給するための水供給経路12が設置されており、各々の供給経路上には遮断弁等による封止部13、14が設けられている。尚、燃料としては、メタン、プロパン、都市ガス(メタンを主成分とする)、天然ガス、LPG、メタノール等のアルコール、ガソリン、灯油、ナフサなどの炭化水素化合物を用いることが出来る。
又、燃料の供給方向を基準として改質部10の下流側に、改質部10にて生成された改質ガス中のCOをシフト反応により低減するためのシフト反応部15が設置されている。このシフト反応部15と改質部10は、改質ガス経路16によって連結しており、シフト反応部15には、Cu―Zn系又はPt系等の触媒が充填されている。
又、シフト反応部15の下流側に、シフト反応部15通過後の改質ガス中のCOを選択酸化反応により更に低減させるための、選択酸化部17が設置されている。この選択酸化部17には、Ru系の選択酸化触媒が充填されている。この選択酸化部17とシフト反応部15は、改質ガス経路18によって連結している。又、シフト反応部15と選択酸化部17の間を連結している改質ガス経路18には選択酸化反応のための空気を供給する空気供給経路19が接続されている。この空気供給経路19には、封止部20が設置されている。又、選択酸化部17には、CO濃度のさらに低減された改質ガスを排出する改質ガス排出経路21が設置されており、この改質ガス排出経路21上には封止部22が設置されている。
次に、本実施の形態における水素生成装置を用いた燃料電池発電システムの構成について説明する。
図2は、本実施の形態における水素生成装置を用いた燃料電池発電システムの構成図である。図2に示すように、一点鎖線で囲まれている部分が、図1で説明した水素生成装置1である。図2に示す燃料電池発電システムは、改質部10に燃料を供給する燃料供給部31と、改質部10に水を供給する改質水供給部32と、水素生成装置1で生成された水素と空気を用いて発電する燃料電池28とを備えている。燃料供給部31から供給された燃料は、脱硫部24によって硫黄成分を除去され、燃料供給経路11′から図1で説明した燃料供給経路11を経て改質部10へと供給される。尚、図1で説明した封止部13は、図2では開通されており、封止部13′として黒丸で示されている。又、改質水供給部32から供給された改質水は、水供給経路12′、封止部14′、及び水供給経路12を順に通って改質部10へと供給される。
又、空気供給経路19′、封止部20′、及び図1で説明した空気供給経路19を介して、選択酸化部17に空気を供給するための選択酸化空気供給部34が設置されている。
又、改質部10を加熱する加熱部23に燃焼ガスを供給する燃焼ガス供給経路27が設置されている。水素生成装置1で生成された水素リッチな改質ガスは、選択酸化部17から改質ガス排出経路21、封止部22′、及び改質ガス排出経路21′を経て燃料電池28へと供給される。又、燃料電池28の排ガスの出口と燃焼ガス供給経路27を結ぶ排ガス経路30が設置されており、この排ガス経路30と改質ガス排出経路21′とを結び燃料電池28をバイパスする燃料電池バイパス経路33が設置されている。この燃料電池バイパス経路33と改質ガス排出経路21′との合流部には、切替弁29が配置されている。
次に、本実施の形態における水素生成装置の動作について説明する。
改質方法には、水蒸気を加える水蒸気改質、空気を加えておこなう部分改質などがあるが、本実施の形態の水素生成装置では、天然ガスを水蒸気改質して改質ガスを得る方法を用いている。
燃料である天然ガスが燃料供給部31から脱硫部24を通り、改質部10に供給される。改質水供給部32から供給された水は、改質部10内で蒸発し、燃料と混合し、改質部10内に充填された改質触媒体に接触する。
改質部10では、水蒸気/炭素比率(スチームカーボン比、以下S/Cと示す)が2.5〜3.5となるように、燃料と改質水の供給量を調節することが好ましい。S/Cが2.5より低い場合には改質触媒上に炭素が析出したり、原料から水素への転換率が低下する。逆にS/Cが3.5より高い場合には、水を蒸発させるために加熱部23での加熱量を大きくする必要があり、水素生成装置の効率が低下する場合がある。本実施の形態ではS/Cを3となるようにした。
改質触媒体が600℃〜700℃に加熱され、燃料は触媒上で水蒸気と反応し、水素を主成分とする改質ガスに転換される。生成した改質ガスの組成は、改質触媒体の温度や水蒸気と燃料の比率によって多少変化するが、水蒸気を除いた平均的な値として、水素が約80体積%、二酸化炭素及び一酸化炭素がそれぞれ約10体積%含まれている。
この改質ガス中に含まれている一酸化炭素は、改質部10の下流側に設置されたシフト反応部15において、200℃〜300℃程度の温度でシフト反応により水蒸気と反応し、その濃度は0.5体積%〜1体積%まで低減される。
次に、シフト反応部15通過後の改質ガス中に残存している一酸化炭素は、選択酸化部17で、選択酸化空気供給部34から供給された空気中の酸素と反応することによって、10ppm以下まで除去される。
このようにして、一酸化炭素濃度の低減された改質ガスは、燃料電池28に供給される。燃料電池28を通過した排ガスは発電時に使用されなかった水素や改質部10で水素に転換されなかたメタンが残留している。そのため、燃焼ガス供給経路27から供給される燃焼ガスとともに、加熱部23で燃焼される。
水素生成装置1を起動する時には、燃焼ガス供給経路27より燃焼ガスが供給されることにより加熱部23は着火し、燃料供給部31と改質水供給部32から燃料ガスと水が供給され、改質部10で改質反応が行われる。また、同時にシフト反応部15と選択酸化部17に設置されている電気ヒータ(図示せず)に通電され、加熱が開始される。
改質部10の温度が上昇するとシフト反応部15に供給される改質ガスの温度が上昇する。シフト反応部15の温度が所定の温度まで上昇すると、シフト反応部15を通過後のCO濃度が所定の値まで低下する。シフト反応部15を通過後のCO濃度が所定の濃度(本実施の形態ではCO濃度約0.5%)まで低下すると、選択酸化部17でCOの除去が可能となる。すなわち、選択酸化部17通過後のCO濃度が10ppm以下となるので、切替弁29により燃料電池28に改質ガスの供給が開始される。同時にシフト反応部15と選択酸化部17の電気ヒーターを停止させ、無駄な電力の消費を抑制する。
なお、本実施の形態での燃料電池28の許容CO濃度は10ppmであるため、選択酸化部17でのCO濃度はそれ以下であればよい。
次に、本発明にかかる実施の形態における水素生成装置1の保管前処理方法について説明する。
硫黄成分を除去した炭化水素ガスを図1に示す燃料供給経路11から水素生成装置1内に充填する。そして、封止部14、20、22を閉じ、最後に封止部13を閉じる。ここで、封止部13、14、20、22によって閉じられた水素生成装置1内における燃料ガスの充填圧力は、保管時に空気が流入しにくいように、0℃において大気圧よりも大きくなっている。
このように、保管をする前処理として水素生成装置1内に炭化水素ガスを充填させることによって、改質触媒、及びシフト反応触媒が空気中に含まれている酸素によって酸化されることを防ぐことが出来る。
そのため、図2に示した燃料電池発電システムの水素生成装置1を交換した後の起動時間に長時間を要さず、又、交換前に改質触媒、シフト反応触媒、及び選択酸化触媒の還元処理を行う必要がなく、交換時間を短縮できる。
さらに、本実施の形態において、充填ガスに用いたメタン、プロパン、ブタンに例示されるような炭化水素ガスは、水素生成装置内の酸化劣化を引き起こさない窒素ガス、アルゴン等の不活性ガスに比して、家庭等のガスインフラ等で量的に入手しやすく、充填ガスとして好適である。
尚、本実施の形態では、燃料供給経路11から炭化水素ガスを供給したが、炭化水素ガスを供給可能な他の炭化水素ガス供給源より供給しても良い。
又、本実施の形態では、硫黄成分を除去した燃料ガスを水素生成装置1内に供給したが、硫黄成分を除去していない燃料ガスを供給してもよい。この場合、空気が流入した状態ほどではないが、触媒が硫黄によって被毒され、触媒活性が低下するため脱硫した方がより好ましい。
又、本実施の形態の水素生成装置の封止部13と改質部10の間の燃料供給経路11上に脱硫部を備えてもよい。この場合、脱硫部にも燃料ガスが充填された状態で封止されている。
以下に、本発明の水素生成装置及びその保管前処理方法について、実施例にてより詳しく説明する。
(実施例1)
実施例1では、図3に示すような触媒評価装置を用い、改質触媒の活性に与える影響を評価した。図3に示す触媒評価装置は、評価する触媒を保持する触媒保持部40と、触媒をその反応に適した温度に温める電気炉41とを備えている。又、触媒保持部40にガスを供給するためのガス供給配管42が設置されており、そのガス供給配管42の途中に気化器43が設置されている。この気化器43に水を供給するための水供給配管44と水タンク45が設置されている。
改質触媒にはペレット状のNi系触媒Aを用い、6mLを触媒保持部40に充填した。この触媒保持部40に窒素を毎分300mL、水素を毎分5mL流通させながら、電気炉41を用いて触媒を650℃まで加熱し、還元処理を行った。還元処理後、室温まで放冷した。
次に、メタンガスをガス供給配管42より毎分300mLを供給し、改質水にはイオン交換水を用い、水タンク45より改質水をS/Cが2.5となるように供給した。この状態で電気炉41の温度が400、500、600、700℃の順で触媒層温度とガス組成を測定し、メタン転化率を算出した。これにより、還元処理後の初期の触媒活性データが得られた。
その後、触媒保持部40に窒素を毎分100mL流通させながら室温まで放冷した後、窒素を止め、銀を担持したゼオライト300mLを充填した脱硫部によって吸着脱硫した都市ガスを毎分100mL、10分間流通させた。次に、触媒保持部40に窒素を毎分100mL10分間流通させ、反応系をパージした。
続いて、触媒保持部40にメタンガスを毎分300mL供給し、改質水にはイオン交換水を用い、水タンク45より改質水をS/Cが2.5となるように供給した。この状態で電気炉41の温度が400、500、600、700℃の順で触媒層温度を記録し、ガスクロマトグラフによりガス組成を測定しメタン転化率を算出した。これにより、脱硫した都市ガスを流通した後の触媒活性データが得られた。
又、脱硫処理せずにメタンを主成分とした都市ガスをそのまま流通させた場合と、空気を流通させた場合も同様に試験を行った。
上記結果をまとめたグラフを図4に示す。また、ブタンガスについても同様の試験を行った、その結果を図5に示す。
図4及び図5から、空気流通させた場合には低温域において活性の低下がみられる。これは、触媒が酸化され、還元されるのに時間がかかるためである。また、脱硫していない都市ガス、LPガス、ブタンガスを流通させた場合にも活性の低下が見られる。これは被毒物質である硫黄化合物が触媒に吸着し、反応を阻害するためである。
以上から、予め還元された状態の触媒と、酸化された状態の触媒、硫黄化合物が吸着した状態の触媒では、低温域における触媒活性が異なるために、同じ起動シーケンスで運転すると所定量の水素を発生できるまでの所要時間が異なることがわかる。
また、Ru系触媒BについてLPガスを用いて同様の検討を行った結果を図6に示す。Ni系触媒Aの場合と比較すると、ほんの微量ではあるが、空気流通後の触媒活性が低下している。このように触媒活性の低下がほんの微量であるのは、Ru系触媒Bが貴金属であるため、酸化の影響を少ししか受けないためである。
又、脱硫していないLPガスでは触媒活性が低下している。これは被毒物質である硫黄化合物が触媒に吸着し、反応を阻害するためである。
(実施例2)
次に、実施例2において、空気流入がシフト反応触媒の活性に与える影響について実験を行った。実施例2では、図3で示した触媒評価装置を用い、触媒保持部40にシフト反応触媒として用いられるペレット状のCu−Zn系触媒Cを、6mL充填した。
この触媒評価装置のガス供給配管42から窒素を毎分200mL、水素を毎分5mL流通させながら、電気炉41を用いて触媒を270℃まで加熱し、Cu―Zn系触媒Cの還元処理を行った。そして、還元処理後、室温まで放冷した。
次に、一酸化炭素10%、二酸化炭素10%、水素80%の組成の混合ガスをガス供給配管42より毎分400mL供給した。同時に、露点が70℃となるように水タンク45よりイオン交換水を供給した。このような状態で、電気炉41の温度を180〜260℃の間で変化させ、20℃毎に触媒層温度を測定し、そのときのガス組成をガスクロマトグラフによって測定した。これにより、シフト反応触媒として用いている、Cu―Zn系触媒Cの触媒活性データが得られた。
その後、窒素を毎分100mL流通させながら室温まで放冷した。
次に、銀を担持したゼオライト300mLを充填した脱硫部によって吸着脱硫した都市ガスを触媒保持部40に毎分100mL10分間流通させた。次に、窒素を毎分100mL10分間流通させ、反応系をパージした。
次に、一酸化炭素10%、二酸化炭素10%、水素80%の組成の混合ガスをガス供給配管42より毎分400mL供給した。同時に、露点が70℃となるように水タンク45よりイオン交換水を供給した。このような条件で、電気炉41の温度を180〜260℃の間で変化させ、20℃毎に触媒層温度とガス組成を測定した。これにより、脱硫した都市ガスを流通させた後のCu―Zn系触媒Cの触媒活性データが得られた。
又、都市ガスをそのまま流通させた場合と空気を流通させた場合も同様に試験を行った。上記結果をまとめたグラフを図7に示す。図7に示すように、空気流通させた場合には低温域において活性の低下がみられる。触媒が酸化され、還元されるのに時間がかかるためである。また、脱硫していない都市ガスを流通させた場合にも活性の低下が見られる。これは被毒物質である硫黄化合物が触媒に吸着し、反応を阻害するためである。
以上から、予め還元された状態の触媒と、酸化された状態の触媒、硫黄化合物が吸着した状態の触媒では、低温域における触媒活性が異なるために、同じ起動シーケンスで運転すると所定のCO濃度へ低減できるまでの所要時間が異なることがわかる。
また、Pt系触媒Dについて用いて同様の検討を行った結果を図8に示す。Cu―Zn系触媒Cの場合と比較すると、低温域においてほんの少しではあるが、空気流通後の触媒活性が低下している。このように、触媒活性の低下が少しなのは、Pt系触媒Dが貴金属であるため、酸化の影響を少ししか受けないためである。
又、脱硫していない都市ガスでは触媒活性がやや低下している。これは被毒物質である硫黄化合物が触媒に吸着し、反応を阻害するためである。
(実施例3)
次に、実施例3において、空気流入が選択酸化触媒の活性に与える影響について実験を行った。図9は、実施例3で用いた選択酸化触媒評価装置の構成図である。この選択酸化触媒評価装置は、図3で示した触媒評価装置と比較すると、触媒保持部40に空気を供給する空気供給配管46を更に備えている。
図9で示した選択酸化触媒評価装置に触媒保持部40にペレット状のRu系触媒Eを、6mL充填した。
ガス供給配管42から窒素を毎分100mL、水素を毎分5mL、触媒保持部40に流通させながら、電気炉41を用いて触媒を180℃まで加熱し、還元処理を行った。還元処理後、室温まで放冷した。
次に、一酸化炭素0.5%、二酸化炭素19.5%、水素80%の組成の混合ガスをガス供給配管42より毎分450mL供給し、露点が70℃となるように水タンク45よりイオン交換水を供給した。そして、O/CO(モル比)が1.5となるように空気供給配管46から空気を供給した。このような状態で、電気炉41の温度を80〜160℃の間で変化させ、20℃毎に触媒層温度を記録しガス組成をガスクロマトグラフによって測定した。これにより選択酸化触媒として用いているRu系触媒Eの触媒活性データが得られた。
その後、窒素を毎分100mL流通させながら室温まで放冷した。
次に、触媒保持部40に銀を担持したゼオライト300mL充填した脱硫部によって吸着脱硫した都市ガスを毎分100mL10分間流通させた。次に、窒素を毎分100mL10分間流通させ、反応系をパージした。
次に、一酸化炭素0.5%、二酸化炭素19.5%、水素80%の組成の混合ガスをガス供給配管42より毎分200mL供給し、露点が64℃となるように水タンク45よりイオン交換水を供給した。このような状態で、電気炉41の温度を80〜160℃の間で変化させ、20℃毎に触媒層温度とガス組成を測定した。これにより、脱硫した都市ガスを流通させた後のRu系触媒Eの触媒活性データが得られた。
都市ガスをそのまま流通させた場合と空気を流通させた場合も同様に試験を行った。上記結果をまとめたものが図10である。図10では、実線のグラフは、各条件におけるCO濃度の変化を示しており、点線のグラフは、各条件におけるメタン濃度の温度変化を示している。
選択酸化反応ではCO濃度を低減させることが目的であり、著しいメタン化反応がなければ実用上差し支えない。しかしながら、CO濃度という観点からは、図10に示すように、空気流通させた場合には低温域では活性の低下がみられる。触媒が酸化され、還元されるのに時間がかかるためである。また、脱硫していない都市ガス、LPガス、ブタンガスを流通させた場合にも活性の低下が見られる。これは被毒物質である硫黄化合物が触媒に吸着し、反応を阻害するためである。改質触媒であるRu系触媒Bが空気流通の影響を受けなかったのに対し、選択酸化触媒であるRu系触媒Eは空気流通の影響を受けた。これは触媒性状が異なるためであり、Ruを使用した触媒全てが空気流通の影響を受けないということではない。
以上から、予め還元された状態の触媒と、酸化された状態の触媒、硫黄化合物が吸着した状態の触媒では、低温域における触媒活性が異なるために、同じ起動シーケンスで運転しても、所定のCO濃度へ低減出来るまでの所要時間が異なることがわかる。
(実施例4)
実施例4では、実施の形態で説明した水素生成装置を用いて、空気流入が触媒の活性に与える影響について評価を行った。
改質部10にはNi系触媒が充填され、シフト反応部15にはCu―Zn系触媒が充填され、選択酸化部17にはRu系触媒が充填されている水素生成装置1を用いて、以下に示す実験を行った。
選択酸化部17に充填されているRu系触媒が180℃程度であり、シフト反応部15に充填されているCu―Zn系触媒が270℃程度になるようにヒーター等で装置を加熱した。また、改質部10に充填されているNi系触媒が650℃程度になるよう、加熱部23においてバーナーで都市ガスを燃焼させ加熱した。
この状態の水素生成装置1に改質ガス排出経路21から還元ガス(窒素10L毎分、水素0.2L毎分)を供給し、燃料供給経路11から排出することによって還元処理を行い、窒素流通を行いながら放冷した。そして、都市ガスを2L毎分供給し、S/C=3として起動試験を行った結果、30分後には排出ガス中のCO濃度は10ppm以下にまで低減されていた。
又、比較例として、同様に還元処理を行った水素生成装置に、室温において空気を1L毎分10分間供給した後に、都市ガスを2L毎分供給し、S/C=3として起動試験を行った結果、30分後でも排出ガス中のCO濃度は10ppm以下に低減することは出来なかった。
上述した実施例1〜4より、燃料電池発電システムの水素生成装置を交換する際に、交換用の水素生成装置内に空気が混入していると、改質触媒、シフト反応触媒、及び選択酸化触媒の活性が低温域では低下しているため、所定量の水素を供給するまでに時間がかかることがわかる。所定量の水素を供給するために時間がかかるということは、より多くの燃料を消費してしまうことになり、効率の悪化を招くため好ましくない。
また、保管時における燃料ガスの充填圧力が大気圧よりも負圧になると、封止部の性能にも依るが、空気が流入してしまう可能性があるため、保管場所や運搬においてなりうる最低温度(例えば、0℃)において充填圧力が大気圧よりも高くなるように予め充填することが望ましい。
本発明の水素生成装置及びその保管前処理方法は、触媒の酸化をより防止することが可能な効果を有し、据置型の燃料電池発電システム等に用いる交換用の水素生成装置として有用である。
本発明の実施の形態における水素生成装置の構成図 本発明の実施の形態における水素生成装置を用いた燃料電池発電システムの構成図 本発明の実施例1における触媒評価装置の構成図 本発明の実施例1における改質触媒としてNi系触媒を用いた場合の都市ガスパージ影響のグラフを示す図 本発明の実施例1における改質触媒としてNi系触媒を用いた場合のブタンガスパージ影響のグラフを示す図 本発明の実施例1における改質触媒としてRu系触媒を用いた場合のLPガスパージ影響のグラフを示す図 本発明の実施例2におけるシフト触媒としてCu―Zn系触媒を用いた場合の都市ガスパージ影響のグラフを示す図 本発明の実施例2におけるシフト触媒としてPt系触媒を用いた場合の都市ガスパージ影響のグラフを示す図 本発明の実施例3における選択酸化触媒評価装置の構成図 本発明の実施例3における選択酸化触媒としてRu系触媒を用いた場合の都市ガスパージ影響のグラフを示す図
符号の説明
1 水素生成装置
10 改質部
11 燃料供給経路
12 水供給経路
13、14、20、22 封止部
15 シフト反応部
16、18 改質ガス経路
17 選択酸化部
19 空気供給経路
21 改質ガス排出経路
23 加熱部

Claims (9)

  1. 燃料と水蒸気を反応させて水素リッチガスを生成する改質部と、
    前記改質部に前記燃料を供給する燃料供給経路と、
    前記改質部に水を供給する水供給経路と、
    前記水素リッチガスを排出する排出経路とを備えた水素生成装置の、保管前処理方法であって、
    前記燃料供給経路、前記改質部、前記水供給経路、及び前記排出経路に炭化水素ガスを供給する燃料供給ステップと、
    前記燃料供給経路、前記水供給経路、及び前記排出経路の各々に設けられた封止部により全ての経路を閉じ、前記炭化水素ガスを封止する封止ステップとを備えた、水素生成装置の保管前処理方法。
  2. 前記燃料供給ステップは、脱硫部によって硫黄成分を取り除かれた炭化水素ガスを供給するステップである、請求項1記載の水素生成装置の保管前処理方法。
  3. 前記炭化水素ガスは、メタン、プロパン、又はブタンを主成分とする炭化水素ガスである、請求項1記載の水素生成装置の保管前処理方法。
  4. 前記水素生成装置は、前記燃料供給経路の封止部と前記改質部の間に設置された脱硫部を更に備えている、請求項1記載の水素生成装置の保管前処理方法。
  5. 前記改質部には、Ru系またはNi系触媒が充填されている、請求項1記載の水素生成装置の保管前処理方法。
  6. 前記水素生成装置は、前記水素リッチガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応部を有しており、
    前記シフト反応部には、Cu系またはPt系触媒が充填されている、請求項1記載の水素生成装置の保管前処理方法。
  7. 前記水素生成装置は、前記シフト反応部から供給される水素リッチガス中の一酸化炭素と酸素を反応させて二酸化炭素を生成する選択酸化反応部を有しており、
    前記選択酸化反応部には、Ru系触媒が充填されている、請求項6記載の水素生成装置の保管前処理方法。
  8. 前記封止ステップで封止した後の前記炭化水素ガスの充填圧力が、0℃において大気圧よりも大きくなるように、前記燃料ガス供給ステップにおける前記炭化水素ガスの供給が行われる、請求項1記載の水素生成装置の保管前処理方法。
  9. 燃料と水蒸気を反応させて水素リッチガスを生成する改質部と、
    前記改質部に前記燃料を供給する燃料供給経路と、
    前記改質部に水を供給する水供給経路と、
    前記水素リッチガスを排出する排出経路とを備え、
    前記燃料供給経路、前記水供給経路、及び前記排出経路の各々に設けられた封止部によって、前記改質部、前記燃料供給経路、前記水供給経路、及び前記排出経路に炭化水素ガスが充填され、封止されている水素生成装置。
JP2005043486A 2005-02-21 2005-02-21 水素生成装置及び水素生成装置の保管前処理方法 Pending JP2006225216A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043486A JP2006225216A (ja) 2005-02-21 2005-02-21 水素生成装置及び水素生成装置の保管前処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043486A JP2006225216A (ja) 2005-02-21 2005-02-21 水素生成装置及び水素生成装置の保管前処理方法

Publications (1)

Publication Number Publication Date
JP2006225216A true JP2006225216A (ja) 2006-08-31

Family

ID=36986906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043486A Pending JP2006225216A (ja) 2005-02-21 2005-02-21 水素生成装置及び水素生成装置の保管前処理方法

Country Status (1)

Country Link
JP (1) JP2006225216A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913152B2 (en) 2018-12-28 2024-02-27 Ricoh Company, Ltd. Liquid discharge apparatus, dyeing apparatus, embroidery machine, and maintenance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913152B2 (en) 2018-12-28 2024-02-27 Ricoh Company, Ltd. Liquid discharge apparatus, dyeing apparatus, embroidery machine, and maintenance device

Similar Documents

Publication Publication Date Title
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP4911927B2 (ja) 固体酸化物形燃料電池システム
JP5340657B2 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
JP2004284875A (ja) 水素製造システムおよび燃料電池システム
JP2001189165A (ja) 燃料電池システム、該燃料電池システムの停止方法及び立ち上げ方法
JP2003002605A (ja) 水蒸気改質器の起動方法及び停止方法
JP5340933B2 (ja) 水素生成装置、これを備えた燃料電池発電システム、および水素生成装置の停止方法
US9079771B2 (en) Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
JP4902165B2 (ja) 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム
JP2007157407A (ja) 燃料改質システム
JP5982665B2 (ja) 燃料電池システム
JP2008130266A (ja) 燃料電池システムにおける凝縮水の循環方法
JP2006076839A (ja) 水素精製装置およびそれを用いた燃料電池システム
JP5065627B2 (ja) 燃料電池システムの起動方法
JP5809049B2 (ja) 燃料電池用水蒸気改質触媒の使用方法及び水素製造システム
JP2006225216A (ja) 水素生成装置及び水素生成装置の保管前処理方法
JP5086144B2 (ja) 水素製造装置および燃料電池システムの停止方法
JP2004296102A (ja) 燃料電池システムおよび燃料電池システム停止方法
JP2005179082A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP4790230B2 (ja) 燃料改質器における析出炭素除去方法及びそのためのシステム
KR101362209B1 (ko) 연료전지 시스템 연료변환기의 황 피독 개질촉매 재생방법 및 장치
JP2005082436A (ja) 水素生成装置およびそれを用いた燃料電池システム
JP2011225410A (ja) 水素生成装置、これを備える燃料電池システム、並びに水素生成装置の運転方法
JP4682518B2 (ja) 燃料電池システム
JP2007149567A (ja) 燃料電池システム、燃料電池システムのパージ方法、プログラム、及び記録媒体