JP2006194384A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2006194384A
JP2006194384A JP2005008118A JP2005008118A JP2006194384A JP 2006194384 A JP2006194384 A JP 2006194384A JP 2005008118 A JP2005008118 A JP 2005008118A JP 2005008118 A JP2005008118 A JP 2005008118A JP 2006194384 A JP2006194384 A JP 2006194384A
Authority
JP
Japan
Prior art keywords
bearing
adhesive
gap
lid member
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005008118A
Other languages
Japanese (ja)
Other versions
JP4657734B2 (en
Inventor
Fuyuki Itou
冬木 伊藤
Tatsuya Hayashi
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005008118A priority Critical patent/JP4657734B2/en
Publication of JP2006194384A publication Critical patent/JP2006194384A/en
Application granted granted Critical
Publication of JP4657734B2 publication Critical patent/JP4657734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device with a cover member to be efficiently and precisely installed on a housing. <P>SOLUTION: On the cover member 10 having a thrust bearing face 11a forming a thrust bearing gap between a lower side end face 2b2 of a flange portion 2b of a shaft member 2 and itself, an abutting face 12a is formed for abutting with a lower side end face 8c of a sleeve member 8. An adhesive sump C1 is formed between an outer peripheral face 10a of the cover member 10 and an inner peripheral face 7a of the housing 7 opposed thereto. Adjacent to the adhesive sump C1 on the upper end side (the bearing inside) of the adhesive sump C1, an adhesion gap C4 is formed which has a smaller radial gap than the adhesive sump C1. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、軸受隙間に生じる流体の動圧作用により圧力を発生させて軸部材を非接触支持する動圧軸受装置に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that generates pressure by a hydrodynamic action of fluid generated in a bearing gap and supports a shaft member in a non-contact manner. This bearing device is a spindle motor such as an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable for polygon scanner motors of laser beam printers (LBP) and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

例えば、HDD等のディスク駆動装置のスピンドルモータに組み込まれる動圧軸受装置では、軸部材をラジアル方向で支持するラジアル軸受部およびスラスト方向で支持するスラスト軸受部の双方を動圧軸受で構成する場合がある。この種の動圧軸受装置におけるスラスト軸受部としては、軸部材のフランジ部端面と、これに対向する面、例えば軸受部材の開口部を封口する蓋部材の端面(スラスト受け面)との何れか一方に例えば動圧溝などの動圧発生部を形成すると共に、両端面間にスラスト軸受隙間を形成するものが知られている(例えば、特許文献1参照)。また、蓋部材はプレート状をなし、軸受部材の一端開口部に、例えば接着等の手段によって固定される(例えば、特許文献2参照)。
特開2003−239951号公報 特開2003−343562号公報
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, both the radial bearing portion that supports the shaft member in the radial direction and the thrust bearing portion that supports the axial direction in the thrust direction are configured by the hydrodynamic bearing. There is. As a thrust bearing portion in this type of hydrodynamic bearing device, any one of a flange portion end surface of the shaft member and a surface facing this, for example, an end surface (thrust receiving surface) of a lid member that seals the opening of the bearing member On the other hand, for example, a dynamic pressure generating portion such as a dynamic pressure groove is formed, and a thrust bearing gap is formed between both end faces (for example, see Patent Document 1). The lid member has a plate shape, and is fixed to one end opening of the bearing member by means such as adhesion (see, for example, Patent Document 2).
JP 2003-239951 A JP 2003-343562 A

蓋部材を軸受部材に接着固定する際、通常は、蓋部材を軸受部材の一端開口部に圧入して仮固定した後、両部材間の径方向隙間に接着剤を供給している。   When the lid member is bonded and fixed to the bearing member, usually, the lid member is press-fitted into one end opening of the bearing member and temporarily fixed, and then an adhesive is supplied to the radial gap between the two members.

ところで、特許文献1や2に記載された構造では、軸受部材に対する蓋部材の軸方向位置がスラスト軸受隙間の幅寸法精度を決定づける。そのため、蓋部材を軸受部材の開口部に仮固定する際には、蓋部材の仮固定位置を治具等を用いて精度良く管理する必要があり、工程が複雑化する。   Incidentally, in the structures described in Patent Documents 1 and 2, the axial position of the lid member with respect to the bearing member determines the width dimension accuracy of the thrust bearing gap. Therefore, when temporarily fixing the lid member to the opening of the bearing member, it is necessary to accurately manage the temporary fixing position of the lid member using a jig or the like, and the process becomes complicated.

そこで、本発明では、軸受部材への蓋部材の組み付けを能率良くかつ高精度に行うことのできる動圧軸受装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a dynamic pressure bearing device capable of efficiently and highly accurately assembling the lid member to the bearing member.

前記課題を解決するため、本発明に係る動圧軸受装置は、軸受部材と、軸受部材の内周に挿入され、軸受部材との間で相対回転する軸部材と、スラスト軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部材をスラスト方向に非接触支持するスラスト軸受部と、軸受部材の一端に接着固定され、かつ軸部材の端面との間にスラスト軸受隙間を形成するスラスト受け面を有する蓋部材とを備えた動圧軸受装置において、蓋部材に、スラスト受け面との間に軸方向の段差を有し、かつ軸受部材と軸方向で当接する当接面が設けられると共に、蓋部材とこれに対向する軸受部材との間に接着剤溜りが形成され、接着剤溜りに隣接して、接着剤溜りよりも径方向隙間を狭めた接着隙間が形成されることを特徴とする。   In order to solve the above-described problems, a hydrodynamic bearing device according to the present invention includes a bearing member, a shaft member that is inserted into the inner periphery of the bearing member and rotates relative to the bearing member, and a fluid generated in a thrust bearing gap. A thrust receiver that generates a pressure by dynamic pressure action and supports the shaft member in a non-contact manner in the thrust direction, and a thrust bearing that is bonded and fixed to one end of the bearing member and that forms a thrust bearing gap between the end surface of the shaft member. In the hydrodynamic bearing device including a lid member having a surface, the lid member is provided with a contact surface having an axial step between the thrust receiving surface and abutting the bearing member in the axial direction. An adhesive reservoir is formed between the lid member and the bearing member facing the lid member, and an adhesive gap having a radial gap narrower than the adhesive reservoir is formed adjacent to the adhesive reservoir. To do.

上述のように、本発明では、蓋部材に、軸部材の端面との間でスラスト軸受隙間を形成するスラスト受け面に対して軸方向の段差を有する当接面を設け、この当接面を軸受部材に軸方向で当接させている。従って、蓋部材の軸受部材への組付け時には、位置決め用の治具を用いることなく、当接面が軸受部材に当接するまで蓋部材を軸方向に押し進めるだけで、容易に軸受部材に対する蓋部材、さらにはスラスト受け面の軸方向位置決めを行うことができ、高精度のスラスト軸受隙間が形成可能となる。   As described above, according to the present invention, the lid member is provided with a contact surface having a step in the axial direction with respect to the thrust receiving surface that forms a thrust bearing gap with the end surface of the shaft member. It abuts on the bearing member in the axial direction. Therefore, when the cover member is assembled to the bearing member, the cover member can be easily attached to the bearing member by simply pushing the cover member in the axial direction until the contact surface contacts the bearing member without using a positioning jig. Furthermore, the thrust receiving surface can be positioned in the axial direction, and a highly accurate thrust bearing gap can be formed.

このようにして、蓋部材の軸受部材に対する軸方向の位置決めを行った後、蓋部材とこれに対向する軸受部材との隙間に供給された接着剤により、蓋部材を軸受部材に接着固定する。上記隙間に接着剤を供給する方法としては、例えば予め軸受部材の、蓋部材との対向面に接着剤を塗布してから、蓋部材を軸方向当接位置まで押し込む方法や、軸方向当接位置まで蓋部材を押し込んだ後、軸受外部から上記隙間に接着剤を注入する方法等が考えられる。   Thus, after positioning the cover member in the axial direction with respect to the bearing member, the cover member is bonded and fixed to the bearing member by the adhesive supplied to the gap between the cover member and the bearing member facing the cover member. As a method of supplying the adhesive to the gap, for example, a method of applying the adhesive to the surface of the bearing member facing the lid member in advance and then pushing the lid member to the axial contact position, or an axial contact For example, a method of injecting an adhesive into the gap from the outside of the bearing after the lid member is pushed to the position can be considered.

しかしながら、前者の方法では、蓋部材の押し込みに伴い、塗布済の接着剤がどうしても蓋部材の押込み方向前方に掻き出されるため、接着剤の塗布状態によっては、接着剤が上記隙間に均一に行き届かない可能性がある。後者の方法では、蓋部材とこれに対向する軸受部材との隙間が非常に狭いため、上記隙間の外部開口側から奥側(蓋部材と軸受部材との当接箇所側)にまで接着剤を十分に行き届かせることが難しい。接着剤が均一に充填されないと、両部材間で安定した固定力を得ることができないおそれがある。また、上記隙間に接着剤の未充填箇所があると、そこから軸受内部に充満させた油が軸受外部に漏れ出すおそれがある。   However, in the former method, as the lid member is pushed in, the applied adhesive is inevitably scraped forward in the pushing direction of the lid member. Therefore, depending on the application state of the adhesive, the adhesive uniformly passes through the gap. It may not arrive. In the latter method, since the gap between the lid member and the bearing member facing the lid member is very narrow, the adhesive is applied from the outside opening side to the back side (the contact portion side between the lid member and the bearing member) of the gap. It is difficult to get it fully. If the adhesive is not uniformly filled, there is a possibility that a stable fixing force cannot be obtained between the two members. Further, if there is an unfilled portion of the adhesive in the gap, there is a possibility that oil filled inside the bearing leaks out of the bearing.

そこで、本発明では、蓋部材とこれに対向する軸受部材との間に接着剤溜りを形成し、かつ接着剤溜りに隣接して、接着剤溜りよりも径方向隙間を狭めた接着隙間を形成した。これによれば、一旦接着剤溜りに溜められた接着剤が、例えば毛細管力等の引き込み力によって接着剤溜りよりも狭い接着隙間に引き込まれるため、接着剤を接着隙間に漏れなく均一に行き届かせることができる。これにより、蓋部材と軸部材との間が完全にシールされ、接着剤の未充填箇所から軸受内部の油が外部に漏れ出す事態を避けることができる。また、接着剤が接着隙間に漏れなく均一に充填されることで、両部材間で所要の固定力を安定して得ることができる。また、接着剤溜りに溜められた接着剤は、固化した状態では、蓋部材と軸方向で係合するので、蓋部材の抜止めとしても作用する。   Therefore, in the present invention, an adhesive reservoir is formed between the lid member and the bearing member facing the lid member, and an adhesive gap is formed adjacent to the adhesive reservoir and having a narrower radial gap than the adhesive reservoir. did. According to this, since the adhesive once accumulated in the adhesive reservoir is drawn into the adhesive gap narrower than the adhesive reservoir by a pulling force such as capillary force, the adhesive reaches the adhesive gap evenly without leaking. You can make it. Thereby, the space | interval between a cover member and a shaft member is completely sealed, and the situation where the oil inside a bearing leaks outside from the unfilled location of an adhesive agent can be avoided. Moreover, a required fixing force can be stably obtained between both members because the adhesive is uniformly filled in the adhesive gap without leakage. Further, since the adhesive stored in the adhesive reservoir is engaged with the lid member in the axial direction in the solidified state, it also acts as a retaining member for the lid member.

接着剤溜りは、例えばテーパ状の空間を介して接着隙間とつなげることができる。これによれば、接着剤溜りから接着隙間への接着剤の流動がよりスムーズに行われるため、より確実に接着隙間を接着剤で充填することが可能となる。   The adhesive reservoir can be connected to the adhesive gap through, for example, a tapered space. According to this, since the flow of the adhesive from the adhesive reservoir to the adhesive gap is performed more smoothly, the adhesive gap can be more reliably filled with the adhesive.

接着隙間の開口部には、例えば接着剤を保持する保持空間を形成することができる。これによれば、例えば接着剤の供給量が過剰となり、接着隙間に保持し切れない接着剤が接着隙間の開口部から蓋部材の挿入方向前方(蓋部材と軸受部材との当接部側)に溢れ出ようとする場合、この余剰の接着剤が保持空間で捕捉され、この保持空間に保持される。そのため、溢れ出た接着剤が蓋部材の当接面とこれに当接する軸受部材との間に入り込むのを防ぎ、蓋部材の軸方向位置決めを精度良く行うことができる。また、蓋部材の当接面と当接する軸受部材の当接箇所に、軸受内部での円滑な流体循環を図るための循環溝を形成し、あるいは動圧溝を形成した場合でも、保持空間で余剰の接着剤を保持することで、蓋部材の挿入方向前方に溢れ出た接着剤がこれらの溝を塞ぐ事態を避けることができる。   For example, a holding space for holding an adhesive can be formed in the opening of the bonding gap. According to this, for example, the supply amount of the adhesive becomes excessive, and the adhesive that cannot be held in the adhesive gap is forward from the opening of the adhesive gap in the direction of insertion of the lid member (the contact portion side between the lid member and the bearing member). When it is about to overflow, the excess adhesive is captured in the holding space and held in the holding space. Therefore, the overflowing adhesive can be prevented from entering between the contact surface of the lid member and the bearing member in contact with the lid member, and the axial positioning of the lid member can be performed with high accuracy. Even if a circulation groove for smooth fluid circulation inside the bearing or a dynamic pressure groove is formed at the contact portion of the bearing member that contacts the contact surface of the lid member, By holding the excess adhesive, it is possible to avoid a situation where the adhesive overflowing forward in the insertion direction of the lid member blocks these grooves.

上記保持空間は、例えば接着隙間に向かうにつれて径方向寸法を縮小する形状を採ることもできる。この構成によれば、接着隙間から蓋部材の挿入方向前方(蓋部材と軸受部材との当接部側)へ溢れ出ようとする接着剤が、保持空間に生じる毛細管力により接着隙間側へ引き込まれる。そのため、互いに当接する両部材間に接着剤が侵入するのをより確実に防ぐことができる。   For example, the holding space may have a shape in which the radial dimension is reduced toward the bonding gap. According to this configuration, the adhesive that tends to overflow from the adhesive gap to the front in the insertion direction of the lid member (the contact portion side of the lid member and the bearing member) is drawn into the adhesive gap side by the capillary force generated in the holding space. It is. Therefore, it can prevent more reliably that an adhesive agent penetrate | invades between both members which mutually contact | abut.

蓋部材とこれに対向する軸受部材の間は、例えば接着剤溜りの軸方向一端側に接着隙間が形成され、軸方向他端側に蓋部材と軸受部材の圧入部が設けられた構成とすることができる。あるいは、接着隙間が、接着剤溜りの軸方向両端に形成された構成を採ることもできる。   Between the lid member and the bearing member facing the lid member, for example, an adhesive gap is formed on one axial end side of the adhesive reservoir, and a press-fitting portion between the lid member and the bearing member is provided on the other axial end side. be able to. Alternatively, it is possible to adopt a configuration in which the adhesive gap is formed at both axial ends of the adhesive reservoir.

軸受部材は、例えばラジアル軸受隙間に面するスリーブ部材と、スリーブ部材を内周に固定するハウジングとを備えることもできる。この場合、蓋部材の当接面は、スリーブ部材の軸方向端面と当接する。   The bearing member can also include, for example, a sleeve member that faces the radial bearing gap and a housing that fixes the sleeve member to the inner periphery. In this case, the contact surface of the lid member contacts the axial end surface of the sleeve member.

上述の動圧軸受装置は、例えば動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータとして提供することが可能である。   The above-described hydrodynamic bearing device can be provided as a motor including, for example, a hydrodynamic bearing device, a rotor magnet, and a stator coil.

このように、本発明によれば、接着隙間から接着剤が溢れ出るのを抑えて、この種の動圧軸受装置のスラスト軸受隙間を高精度かつ簡易に設定することができる。   Thus, according to the present invention, it is possible to set the thrust bearing gap of this type of hydrodynamic bearing device with high accuracy and simplicity by suppressing the overflow of the adhesive from the adhesion gap.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を軸受部材に対して回転自在に非接触支持する動圧軸受装置1と、軸部材2に取付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられる。また、ブラケット6は、その内周に動圧軸受装置1を装着している。ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dを一枚または複数枚保持している。このように構成された情報機器用スピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and is attached to the dynamic pressure bearing device 1 for supporting the shaft member 2 in a non-contact manner rotatably with respect to the bearing member, and the shaft member 2. The disk hub 3 is provided with a stator coil 4 and a rotor magnet 5 which are opposed to each other through a radial gap, for example, and a bracket 6. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. The disk hub 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) D such as magnetic disks on the outer periphery thereof. In the spindle motor for information equipment configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the magnetic force between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸受部材を構成するハウジング7およびスリーブ部材8と、ハウジング7の一端開口部を封口する蓋部材10と、スリーブ部材8の内周に挿入された軸部材2とを主に備えている。なお、説明の便宜上、ハウジング7の一端を封口する蓋部材10の側を下側、蓋部材10と反対の側を上側として以下説明を行う。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7 and a sleeve member 8 that constitute a bearing member, a lid member 10 that seals one end opening of the housing 7, and a shaft member 2 that is inserted into the inner periphery of the sleeve member 8. Mainly prepared. For convenience of explanation, the following description will be given with the side of the lid member 10 that seals one end of the housing 7 being the lower side and the side opposite to the lid member 10 being the upper side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、あるいは、金属材料と樹脂材料とのハイブリッド構造とされ、軸部2aと、軸部2aの下端に一体または別体に設けられたフランジ部2bを備えている。   The shaft member 2 is made of, for example, a metal material such as stainless steel, or has a hybrid structure of a metal material and a resin material, and is provided integrally or separately at the lower end of the shaft portion 2a and the shaft portion 2a. A flange portion 2b is provided.

スリーブ部材8は、例えば、銅やアルミ(アルミ合金)等の軟質金属材料、あるいは焼結金属材料で形成されている。この実施形態において、スリーブ部材8は、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、後述するハウジング7の内周面7aに固定される。   The sleeve member 8 is made of, for example, a soft metal material such as copper or aluminum (aluminum alloy), or a sintered metal material. In this embodiment, the sleeve member 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is formed on an inner peripheral surface 7a of the housing 7 to be described later. Fixed.

スリーブ部材8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3(a)に示すへリングボーン形状の動圧溝8a1、8a2が軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a radial dynamic pressure generating portion is formed on the entire inner surface 8a of the sleeve member 8 or a partial cylindrical region. In this embodiment, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 shown in FIG. 3A, for example, are formed at two locations in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region.

スリーブ部材8の外周面8bには、1本又は複数本の軸方向溝8b1が軸方向全長に亘って形成される。この実施形態では、3本の軸方向溝8b1を円周方向等間隔に形成している。   One or a plurality of axial grooves 8b1 are formed on the outer peripheral surface 8b of the sleeve member 8 over the entire length in the axial direction. In this embodiment, three axial grooves 8b1 are formed at equal intervals in the circumferential direction.

スリーブ部材8の下側端面8cの全面または一部の環状領域には、スラスト動圧発生部として、例えば図3(b)に示すように、スパイラル形状の動圧溝8c1が形成される。   For example, as shown in FIG. 3B, a spiral dynamic pressure groove 8c1 is formed as a thrust dynamic pressure generating portion on the entire or a part of the annular region of the lower end surface 8c of the sleeve member 8.

スリーブ部材8の上側端面8dの、径方向の略中央部には、図3(a)に示すように、V字断面の円周溝8d1が全周に亘って形成される。円周溝8d1によって区画された上側端面8dの内径側領域には、一本又は複数本の半径方向溝8d2が形成される。この半径方向溝8d2は、スリーブ部材8をシール部9に軸方向に当接した状態では、図2に示すように、円周溝8d1とスリーブ部材8の内周面8a上端との間を連通する。   As shown in FIG. 3A, a circumferential groove 8d1 having a V-shaped cross section is formed over the entire circumference of the upper end surface 8d of the sleeve member 8 at a substantially central portion in the radial direction. One or a plurality of radial grooves 8d2 are formed in the inner diameter side region of the upper end face 8d defined by the circumferential groove 8d1. The radial groove 8d2 communicates between the circumferential groove 8d1 and the upper end of the inner peripheral surface 8a of the sleeve member 8 when the sleeve member 8 is in axial contact with the seal portion 9 as shown in FIG. To do.

ハウジング7は、例えば液晶ポリマー(LCP)やポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等をベース樹脂とする樹脂組成物で円筒状に射出成形される。ハウジング7の上端内径側には、図2に示すように、シール部9がハウジング7と一体に形成される。   The housing 7 is injection-molded in a cylindrical shape with a resin composition containing, for example, liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), or the like as a base resin. As shown in FIG. 2, a seal portion 9 is formed integrally with the housing 7 on the inner diameter side of the upper end of the housing 7.

蓋部材10は、図2に示すように、円盤状の底部11の外周部を軸方向に突出させた形態をなし、金属材料、好ましくは黄銅等の軟質金属で一体に形成される。蓋部材10のうち、外周突出部12よりも内径側の底部11の端面には、環状のスラスト受け面11aが形成される。このスラスト受け面11aには、スラスト動圧発生部として、図示は省略するが、スパイラル状の動圧溝が形成される。外周突出部12の軸方向端面は環状の当接面12aであり、スリーブ部材8の下側端面8cとその全周で当接する。   As shown in FIG. 2, the lid member 10 has a shape in which the outer peripheral portion of the disk-shaped bottom portion 11 protrudes in the axial direction, and is integrally formed of a metal material, preferably a soft metal such as brass. An annular thrust receiving surface 11 a is formed on the end surface of the bottom portion 11 on the inner diameter side of the outer peripheral protruding portion 12 in the lid member 10. On the thrust receiving surface 11a, although not shown, a spiral dynamic pressure groove is formed as a thrust dynamic pressure generating portion. The axial end surface of the outer peripheral protrusion 12 is an annular contact surface 12a, which contacts the lower end surface 8c of the sleeve member 8 on the entire periphery thereof.

蓋部材10の外周面10aには、凹部10bが形成される。凹部10bは、この実施形態では、軸方向略中央部に位置し、環状に形成される。凹部10bによって区画された外周面10aのうち、凹部10bの下方に位置する第1外周面10a1の外径寸法Do1は、蓋部材10を接着固定するハウジング7の内周面7aに比べて若干大径となっている。これに対して、凹部10bの上方に位置する第2外周面10a2の外径寸法Do2は、ハウジング7の内周面7aに比べて若干小径となっている。凹部10bの軸方向両端には、第1外周面10a1および第2外周面10a2にそれぞれ隣接し、かつ両外周面10a1、10a2に向かうにつれて漸次拡径する第1テーパ面10c1、第2テーパ面10c2がそれぞれ形成される。また、第2外周面10a2と当接面12aとの間には、下方に向かうにつれて漸次拡径する第3テーパ面10c3が形成される。   A recess 10 b is formed on the outer peripheral surface 10 a of the lid member 10. In this embodiment, the concave portion 10b is located in a substantially central portion in the axial direction and is formed in an annular shape. Of the outer peripheral surface 10a defined by the concave portion 10b, the outer diameter dimension Do1 of the first outer peripheral surface 10a1 located below the concave portion 10b is slightly larger than the inner peripheral surface 7a of the housing 7 to which the lid member 10 is bonded and fixed. It is a diameter. On the other hand, the outer diameter Do2 of the second outer peripheral surface 10a2 located above the recess 10b is slightly smaller than the inner peripheral surface 7a of the housing 7. A first tapered surface 10c1 and a second tapered surface 10c2 that are adjacent to the first outer peripheral surface 10a1 and the second outer peripheral surface 10a2, respectively, and gradually increase in diameter toward both the outer peripheral surfaces 10a1 and 10a2 at both axial ends of the recess 10b. Are formed respectively. Further, a third tapered surface 10c3 is formed between the second outer peripheral surface 10a2 and the contact surface 12a. The third tapered surface 10c3 gradually increases in diameter as it goes downward.

蓋部材10は、例えば切削加工等により、蓋部材10を図4に示す形状に粗成形した後、プレス加工により仕上げ成形される。これにより、スラスト受け面11a、当接面12aが最終的な面精度に仕上げられると共に、両面11a、12a間の軸方向段差が最終寸法に仕上げられる。この際、プレス型のスラスト受け面11aの成形部に、スラスト受け面11aの動圧溝形状に対応した溝型を形成しておけば、プレスと同時にスラスト受け面11aに動圧溝を成形することが可能となる。   The lid member 10 is roughly molded by press working after the lid member 10 is roughly molded into the shape shown in FIG. 4 by cutting or the like, for example. Accordingly, the thrust receiving surface 11a and the contact surface 12a are finished with final surface accuracy, and the axial step between the both surfaces 11a and 12a is finished with the final dimensions. At this time, if a groove die corresponding to the dynamic pressure groove shape of the thrust receiving surface 11a is formed in the forming portion of the thrust receiving surface 11a of the press die, the dynamic pressure groove is formed on the thrust receiving surface 11a simultaneously with the pressing. It becomes possible.

このようにして、蓋部材10のスラスト受け面11aと当接面12aとを、共にプレス加工で成形することで、切削加工等による面仕上げに比べて高精度な仕上げ面を得ることができる。この時、上記両面11a、12aのプレス成形は、共通のプレス型に設けた成形部により同時に行うことができるので、この成形部間の距離を精度良く管理すれば、両面11a、12a間の軸方向段差を高精度に仕上げることができる。プレス加工による面仕上げは、切削加工による面仕上げに比べて、加工時間の短縮化、切粉の発生を抑制することに伴う加工後の洗浄工程の簡略化等のメリットを得ることができるので、コストダウンと共に生産性の向上を図ることもできる。   In this way, by forming both the thrust receiving surface 11a and the contact surface 12a of the lid member 10 by press working, it is possible to obtain a highly accurate finished surface as compared with surface finishing by cutting or the like. At this time, the press forming of the both surfaces 11a and 12a can be performed simultaneously by the forming portion provided in the common press die. Therefore, if the distance between the forming portions is managed with high accuracy, the shaft between the both surfaces 11a and 12a can be controlled. The direction step can be finished with high accuracy. Since surface finishing by press working can provide merits such as shortening the processing time and simplifying the cleaning process after processing accompanying suppressing chip generation compared to surface finishing by cutting, Productivity can be improved along with cost reduction.

上記手順で製作した蓋部材10は、図2に示すように、スリーブ部材8を、シール部9の下側端面9aと当接する位置でハウジング7の内周面7aに固定した上で、ハウジング7の内周面7aに接着固定される。具体的には、蓋部材10の接着固定は以下の手順で行われる。なお、スリーブ部材8の内周への軸部材2の挿入は、蓋部材10の固定作業前であれば、ハウジング7へのスリーブ部材8の固定前あるいは固定後、どちらの段階で行ってもよい。   As shown in FIG. 2, the lid member 10 manufactured according to the above procedure fixes the sleeve member 8 to the inner peripheral surface 7 a of the housing 7 at a position where the sleeve member 8 contacts the lower end surface 9 a of the seal portion 9. The inner peripheral surface 7a is bonded and fixed. Specifically, the adhesive fixing of the lid member 10 is performed according to the following procedure. The shaft member 2 may be inserted into the inner periphery of the sleeve member 8 before the lid member 10 is fixed, either before or after the sleeve member 8 is fixed to the housing 7. .

まず、ハウジング7の内周面7aのうち、蓋部材10の外周面10aとの対向領域に接着剤を塗布する。次いで、ハウジング7の下端開口部に当てがった蓋部材10を、当接面12aがスリーブ部材8の下側端面8cに当接するまで押し進める。このとき、例えば図5に示すように、蓋部材10の凹部10bとこれに対向するハウジング7の内周面7aとの間に接着剤溜りC1が形成される。また、蓋部材10の第3テーパ面10c3とこれに対向するハウジング7の内周面7aとの間に、上方に向けて軸方向寸法が漸次拡大する接着剤の保持空間C2が形成される。   First, an adhesive is applied to a region of the inner peripheral surface 7 a of the housing 7 facing the outer peripheral surface 10 a of the lid member 10. Next, the lid member 10 applied to the lower end opening of the housing 7 is pushed forward until the contact surface 12 a contacts the lower end surface 8 c of the sleeve member 8. At this time, as shown in FIG. 5, for example, an adhesive reservoir C1 is formed between the recess 10b of the lid member 10 and the inner peripheral surface 7a of the housing 7 facing the recess 10b. Further, an adhesive holding space C2 in which the axial dimension gradually increases upward is formed between the third tapered surface 10c3 of the lid member 10 and the inner peripheral surface 7a of the housing 7 facing the third tapered surface 10c3.

凹部10bより下側の第1外周面10a1は、この面に対向するハウジング7の内周面7aに比べて若干大径であるため、上記蓋部材10の押込み時、第1外周面10a1と内周面7aとの間には圧入領域C3が形成される。一方で、凹部10bより上側の第2外周面10a2は、この面に対向するハウジング7の内周面7aに比べて若干小径であるため、上記蓋部材10の押込み時、第2外周面10a2と内周面7aとの間には、接着剤が介在可能な隙間(接着隙間)C4が形成される。   Since the first outer peripheral surface 10a1 below the recess 10b has a slightly larger diameter than the inner peripheral surface 7a of the housing 7 facing this surface, when the lid member 10 is pushed in, the first outer peripheral surface 10a1 A press-fit region C3 is formed between the peripheral surface 7a. On the other hand, the second outer peripheral surface 10a2 above the concave portion 10b is slightly smaller in diameter than the inner peripheral surface 7a of the housing 7 facing this surface. Therefore, when the lid member 10 is pushed in, the second outer peripheral surface 10a2 A gap (adhesive gap) C4 in which an adhesive can be interposed is formed between the inner peripheral surface 7a.

蓋部材10の前進に伴って、上記圧入領域C3に面する内周面7aに塗布された接着剤Mが上方に掻き出され、図5に示すように、接着剤溜りC1に溜められる。このとき、接着剤溜りC1上端側の第2テーパ面10c2とハウジング7の内周面7aとの間のテーパ状空間にある接着剤Mは、上方への毛細間力により接着隙間C4へと引き込まれる。このように、予め内周面7aに塗布された接着剤Mに加えて、接着剤溜りC1側の接着剤Mが接着隙間C4に引き込まれることによって、接着隙間C4が接着剤Mで漏れなく均一に充填され、蓋部材10とハウジング7との間が完全にシールされる。また、両部材10、7間で所要の固定力を安定して得ることができる。   As the lid member 10 moves forward, the adhesive M applied to the inner peripheral surface 7a facing the press-fitted region C3 is scraped upward, and is stored in the adhesive reservoir C1 as shown in FIG. At this time, the adhesive M in the tapered space between the second tapered surface 10c2 on the upper end side of the adhesive reservoir C1 and the inner peripheral surface 7a of the housing 7 is drawn into the adhesive gap C4 by the upward capillary force. It is. In this manner, in addition to the adhesive M applied to the inner peripheral surface 7a in advance, the adhesive M on the adhesive reservoir C1 side is drawn into the adhesive gap C4, so that the adhesive gap C4 is uniform without leakage from the adhesive M. The space between the lid member 10 and the housing 7 is completely sealed. Moreover, a required fixing force can be stably obtained between the members 10 and 7.

接着剤Mの内周面7aへの塗布量が過剰な場合には、接着隙間C4から余剰の接着剤Mがスリーブ部材8側へ溢れ出るが、その余剰分は、接着隙間C4の上端部に形成された保持空間C2によって捕捉され、この保持空間C2に保持される。そのため、余剰の接着剤Mがそれ以上軸受内部側(スリーブ部材8側)へ進むことはない。また、この実施形態では、保持空間C2をテーパ状の空間とした(図5参照)ので、テーパ状空間の下方への毛細管力によって接着剤Mが接着隙間C4側に引き込まれる。その結果、接着剤Mがスリーブ部材8側に溢れ出すのを確実に防ぎ、さらには互いに当接する蓋部材10の当接面12aと、スリーブ部材8の下側端面8cとの間に接着剤Mが侵入する事態を避けて、蓋部材10の軸方向位置決めを正確に行うことができる。   When the application amount of the adhesive M to the inner peripheral surface 7a is excessive, excess adhesive M overflows from the adhesive gap C4 to the sleeve member 8 side, but the excess part is at the upper end of the adhesive gap C4. It is captured by the formed holding space C2 and is held in this holding space C2. For this reason, the excessive adhesive M does not proceed further to the bearing inner side (sleeve member 8 side). In this embodiment, since the holding space C2 is a tapered space (see FIG. 5), the adhesive M is drawn toward the bonding gap C4 by the capillary force downward of the tapered space. As a result, the adhesive M is reliably prevented from overflowing to the sleeve member 8 side, and further, the adhesive M is provided between the contact surface 12a of the lid member 10 that contacts each other and the lower end surface 8c of the sleeve member 8. It is possible to accurately position the lid member 10 in the axial direction while avoiding the situation of the intrusion.

この実施形態では、下側端面8cに動圧溝8c1が形成されており、当接面12aは、隣接する動圧溝8c1間の山の領域8c2(図3(b)参照)と当接する。このような場合であっても、保持空間C2で接着剤Mの余剰分を保持あるいは接着隙間C4側に引き込むことで、当接面12aと動圧溝8c1の底面8c11との隙間に接着剤Mが侵入するのを防ぐことができる。   In this embodiment, a dynamic pressure groove 8c1 is formed in the lower end surface 8c, and the contact surface 12a contacts the mountain region 8c2 (see FIG. 3B) between the adjacent dynamic pressure grooves 8c1. Even in such a case, the adhesive M is held in the gap between the contact surface 12a and the bottom surface 8c11 of the dynamic pressure groove 8c1 by holding the excess portion of the adhesive M in the holding space C2 or pulling it to the bonding gap C4 side. Can be prevented from entering.

また、この実施形態では、接着剤溜りC1の下方に圧入領域C3を確保することで、蓋部材10とハウジング7との同軸度が確保され、かつこの圧入領域C3よりも上方(軸受内部側)に接着剤溜りC1を設けることにより、さらなるシール効果を得ることができる。また、接着剤溜りC1に溜まった接着剤Mは、軸方向で蓋部材10と係合して、蓋部材10の抜止めとして作用するので、ハウジング7と蓋部材10との間の固定力をさらに高めることができる。   Further, in this embodiment, by securing the press-fitting region C3 below the adhesive reservoir C1, the coaxiality between the lid member 10 and the housing 7 is secured, and above the press-fitting region C3 (inside the bearing). A further sealing effect can be obtained by providing the adhesive reservoir C1 in the. Further, the adhesive M accumulated in the adhesive reservoir C1 engages with the lid member 10 in the axial direction and acts as a retaining member for the lid member 10, so that the fixing force between the housing 7 and the lid member 10 is increased. It can be further increased.

上述のようにして蓋部材10をハウジング7に接着固定した後、ハウジング7の内部空間に潤滑油を充満させることで、動圧軸受装置1が完成する。このとき、シール部9によって密封されたハウジング7の内部空間に充満した潤滑油の油面は、シール部9の内周に形成され、上方に向かうにつれて漸次拡径するテーパ面9bと、軸部材2の軸部2aの外周面2a1との間に形成されたシール空間S内に維持される。   After the lid member 10 is bonded and fixed to the housing 7 as described above, the fluid pressure bearing device 1 is completed by filling the internal space of the housing 7 with lubricating oil. At this time, the oil surface of the lubricating oil filled in the internal space of the housing 7 sealed by the seal portion 9 is formed on the inner periphery of the seal portion 9, and a tapered surface 9b that gradually increases in diameter toward the upper side, and a shaft member 2 is maintained in a seal space S formed between the outer peripheral surface 2a1 of the two shaft portions 2a.

上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、スリーブ部材8の内周面8aの動圧溝8a1、8a2の形成領域(上下2箇所)と、これら動圧溝8a1、8a2の形成領域にそれぞれ対向する軸部2aの外周面2a1との間のラジアル軸受隙間に、潤滑油の動圧作用による圧力が発生し、軸部材2の軸部2aがラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される(図2参照)。また、スリーブ部材8の下側端面8cに形成される動圧溝8c1の形成領域と、この動圧溝8c1の形成領域に対向するフランジ部2bの上側端面(スラスト受け面)2b1との間のスラスト軸受隙間、および蓋部材10のスラスト受け面11aに形成される動圧溝の形成領域と、この領域と対向するフランジ部2bの下側端面(スラスト受け面)2b2との間のスラスト軸受隙間に、潤滑油の動圧作用による圧力がそれぞれ発生し、軸部材2のフランジ部2bが両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, formation regions (upper and lower two places) of the dynamic pressure grooves 8a1 and 8a2 on the inner peripheral surface 8a of the sleeve member 8, and these dynamic pressure grooves Pressure due to the dynamic pressure action of the lubricating oil is generated in the radial bearing gap between the outer peripheral surface 2a1 of the shaft portion 2a facing the formation area of 8a1 and 8a2, and the shaft portion 2a of the shaft member 2 rotates in the radial direction. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed (see FIG. 2). Further, between the formation region of the dynamic pressure groove 8c1 formed in the lower end surface 8c of the sleeve member 8 and the upper end surface (thrust receiving surface) 2b1 of the flange portion 2b facing the formation region of the dynamic pressure groove 8c1. Thrust bearing gap and a thrust bearing gap between the formation region of the dynamic pressure groove formed on the thrust receiving surface 11a of the lid member 10 and the lower end surface (thrust receiving surface) 2b2 of the flange portion 2b facing this region. In addition, pressure due to the dynamic pressure action of the lubricating oil is generated, and the flange portion 2b of the shaft member 2 is supported in a noncontact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

このように、ハウジング7内を潤滑油で満たした状態で、軸部材2を回転させると、図5に示すように、スリーブ部材8の下側端面8cとフランジ部2bの上側端面2b1との間、およびフランジ部2bの下側端面2b2と蓋部材10のスラスト受け面11aとの間にそれぞれスラスト軸受隙間が形成される。このとき、両スラスト軸受隙間の総和は、蓋部材10のスラスト受け面11aと当接面12aとの間の軸方向段差からフランジ部2bの軸方向幅を減じたものに等しい。すなわち、フランジ部2bの軸方向幅、およびスラスト受け面11aと当接面12aの間の軸方向段差を高精度に設定することにより、組立て時に蓋部材10をスリーブ部材8に当接するまで押し進めるだけで、両スラスト軸受隙間の総和が適正に管理される。   Thus, when the shaft member 2 is rotated in a state where the housing 7 is filled with the lubricating oil, as shown in FIG. 5, the space between the lower end surface 8c of the sleeve member 8 and the upper end surface 2b1 of the flange portion 2b. Thrust bearing gaps are formed between the lower end surface 2b2 of the flange portion 2b and the thrust receiving surface 11a of the lid member 10, respectively. At this time, the sum total of both thrust bearing gaps is equal to the axial step between the thrust receiving surface 11a and the contact surface 12a of the lid member 10 minus the axial width of the flange portion 2b. That is, by setting the axial width of the flange portion 2b and the axial step between the thrust receiving surface 11a and the contact surface 12a with high accuracy, the lid member 10 is simply pushed forward until it contacts the sleeve member 8 during assembly. Thus, the total sum of both thrust bearing gaps is properly managed.

また、上述のように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称(X1>X2)に形成されているため(図3(a)参照)、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、スリーブ部材8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→動圧溝8c1→軸方向溝8b1→円周溝8d1→半径方向溝8d2という経路を循環して、スリーブ部材8の内周面8aと軸部2aの外周面2a1との間の隙間に戻り、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、軸受内部の圧力バランスが調整される。また、軸受内部空間の潤滑油の好ましくない流れ、例えば潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、蓋部材10の固定時、保持空間C2によってスリーブ部材8側に溢れ出ようとする接着剤Mを保持することで、接着剤Mが動圧溝8c1や軸方向溝8b1を塞ぐ事態を避けて、上記循環経路を流れる潤滑油の円滑な流れが阻害されるのを防ぐことができる。   Further, as described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) with respect to the axial center m (see FIG. 3A). When the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the sleeve member 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 It circulates through the path of thrust bearing clearance → dynamic pressure groove 8c1 → axial groove 8b1 → circumferential groove 8d1 → radial groove 8d2, and between the inner peripheral surface 8a of the sleeve member 8 and the outer peripheral surface 2a1 of the shaft portion 2a. Returning to the gap, it is again drawn into the radial bearing gap of the first radial bearing portion R1. Thus, the pressure balance inside the bearing is adjusted by configuring the lubricating oil to flow and circulate in the internal space of the housing 7. Also, an undesirable flow of the lubricating oil in the bearing internal space, for example, a phenomenon in which the pressure of the lubricating oil becomes a negative pressure locally is prevented, and bubbles are generated due to the generation of the negative pressure. Problems such as leakage and vibration can be solved. Further, when the lid member 10 is fixed, the adhesive M that is about to overflow to the sleeve member 8 side is held by the holding space C2, thereby preventing the adhesive M from blocking the dynamic pressure groove 8c1 and the axial groove 8b1. Thus, the smooth flow of the lubricating oil flowing through the circulation path can be prevented from being hindered.

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment.

以上の実施形態では、蓋部材10をハウジング7の下端に圧入接着した場合を説明したが、スリーブ部材8の下側端面8cに当接する当接面12aを備えた蓋部材10で軸方向の位置決めを行うのであれば、特に圧入は必要ない。例えば、蓋部材10をハウジング7にルーズ嵌合した状態で位置決めを行った上で、蓋部材10の外周面10aとハウジング7の内周面7aとの隙間に軸受外部側から接着剤Mを供給する方法を採ることもできる。   In the above embodiment, the case where the lid member 10 is press-fitted and bonded to the lower end of the housing 7 has been described. If this is done, press-fitting is not necessary. For example, after positioning with the lid member 10 loosely fitted to the housing 7, the adhesive M is supplied from the outside of the bearing to the gap between the outer peripheral surface 10 a of the lid member 10 and the inner peripheral surface 7 a of the housing 7. It is also possible to take a method.

この場合、蓋部材10の下方に位置する第1外周面10a1の外径寸法Do1は、ハウジング7の内周面7aとの間で圧入領域C3を設ける必要がないため、上側の第2外周面10a2の外径寸法Do2とほぼ同じでよい。そして、蓋部材10を、当接面12aが下側端面8cに当接するまで押し進める。このとき、例えば図6に示すように、接着剤溜りC1と上端側で隣接する接着隙間C4に加えて、接着剤溜りC1と下端側(第1外周面10a1とハウジング7の内周面7aとの間)で隣接する接着隙間C5が形成される。この場合にも、接着剤溜りC1、さらには保持空間C2を設けることで、接着剤Mを接着隙間C4、C5に漏れなく均一に充填できる。また、接着剤Mが供給過多である場合には、余剰の接着剤Mを保持空間C2に保持して、かかる悪影響を回避することができる。   In this case, since the outer diameter dimension Do1 of the first outer peripheral surface 10a1 located below the lid member 10 does not need to provide the press-fitted region C3 with the inner peripheral surface 7a of the housing 7, the upper second outer peripheral surface It may be substantially the same as the outer diameter dimension Do2 of 10a2. Then, the lid member 10 is pushed forward until the contact surface 12a contacts the lower end surface 8c. At this time, for example, as shown in FIG. 6, in addition to the adhesive gap C4 adjacent to the adhesive reservoir C1 on the upper end side, the adhesive reservoir C1 and the lower end side (the first outer peripheral surface 10a1 and the inner peripheral surface 7a of the housing 7). Adjacent adhesive gaps C5 are formed. Also in this case, the adhesive M can be uniformly filled in the adhesive gaps C4 and C5 by providing the adhesive reservoir C1 and further the holding space C2. Further, when the adhesive M is excessively supplied, the excessive adhesive M can be held in the holding space C2 to avoid such an adverse effect.

また、以上の実施形態では、接着剤の保持空間C2として、蓋部材10の第3テーパ面10c3とハウジング7の内周面7aとの間にテーパ状空間を形成した場合を説明したが、これ以外にも、任意の空間形状を採用することが可能である。接着剤Mを保持可能な空間として、例えば図示は省略するが、当接面12aと第2外周面10a2とをR面を介してつなげた形状とし、このR面と内周面7aとの間に保持空間C2を形成することもできる。また、蓋部材10の側だけでなく、ハウジング7の内周面7aの側にも、保持空間C2を形成するためのテーパ面などを設けることも可能である。   Moreover, although the above embodiment demonstrated the case where the taper-shaped space was formed between the 3rd taper surface 10c3 of the cover member 10 and the inner peripheral surface 7a of the housing 7 as the holding space C2 of an adhesive agent, In addition, any space shape can be employed. As a space capable of holding the adhesive M, for example, although not shown, the contact surface 12a and the second outer peripheral surface 10a2 are connected to each other via the R surface, and the space between the R surface and the inner peripheral surface 7a. It is also possible to form the holding space C2. Further, not only the lid member 10 side but also the inner peripheral surface 7a side of the housing 7 can be provided with a tapered surface or the like for forming the holding space C2.

また、以上の実施形態では、シール部9を、ハウジング7と一体に形成した場合を説明したが、この他にも、例えば図示は省略するが、シール部9を、ハウジング7とは別体に形成し、後付けでハウジング7に装着することもできる。その場合には、先にスリーブ部材8をハウジング7の内周面7aに位置決め固定してから、次に別体としてのシール部9をハウジング7に固定してもよいし、これとは逆の順に、シール部9をハウジング7に固定した後、スリーブ部材8を固定してもよい。   In the above embodiment, the case where the seal portion 9 is formed integrally with the housing 7 has been described. However, for example, although not shown, the seal portion 9 is separated from the housing 7. It can be formed and attached to the housing 7 later. In that case, the sleeve member 8 may first be positioned and fixed to the inner peripheral surface 7a of the housing 7, and then the separate seal portion 9 may be fixed to the housing 7, or the opposite. In order, after fixing the seal part 9 to the housing 7, the sleeve member 8 may be fixed.

また、以上の実施形態では、スリーブ部材8の内周面8aに動圧溝を形成する場合を説明したが、内周面8aと対向する軸部2aの外周面2a1に動圧溝を形成することもできる。その場合には、スリーブ部材8内周への動圧溝加工が不要となるため、軸受部材を複数の部材(スリーブ部材8やハウジング7など)で構成する必要はなく、軸受部材を単一部材で構成することができる。これにより、部品点数の削減と、それに伴う組付け作業を省略して、斯かるコストを削減することができる。   Moreover, although the above embodiment demonstrated the case where a dynamic pressure groove was formed in the internal peripheral surface 8a of the sleeve member 8, a dynamic pressure groove is formed in the outer peripheral surface 2a1 of the axial part 2a facing the internal peripheral surface 8a. You can also In this case, since the dynamic pressure groove processing on the inner periphery of the sleeve member 8 is not required, it is not necessary to configure the bearing member with a plurality of members (such as the sleeve member 8 and the housing 7), and the bearing member is a single member. Can be configured. Thereby, the reduction of the number of parts and the assembling work associated therewith can be omitted, and the cost can be reduced.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are configured to generate the dynamic pressure action of the lubricating fluid by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用してもよい。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2.

図7は、ラジアル軸受部R1、R2の一方又は双方をステップ軸受で構成した場合の一例を示している。この例では、スリーブ部材8の内周面8aのラジアル軸受隙間に面する領域(ラジアル軸受面となる領域)に、複数の軸方向溝形状の動圧溝8a3が円周方向所定間隔に設けられている。   FIG. 7 shows an example in which one or both of the radial bearing portions R1 and R2 are configured by step bearings. In this example, a plurality of axial groove-shaped dynamic pressure grooves 8a3 are provided at predetermined intervals in the circumferential direction in a region facing the radial bearing gap on the inner peripheral surface 8a of the sleeve member 8 (region serving as a radial bearing surface). ing.

図8は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、スリーブ部材8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a4、8a5、8a6で構成されている(いわゆる3円弧軸受)。3つの円弧面8a4、8a5、8a6の曲率中心は、それぞれ、スリーブ部材8(軸部2a)の軸中心Oから等距離オフセットされている。3つの円弧面8a4、8a5、8a6で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、スリーブ部材8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、スリーブ部材8と軸部2aとが非接触支持される。なお、3つの円弧面8a4、8a5、8a6の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成してもよい。   FIG. 8 shows an example of a case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, a region serving as a radial bearing surface of the inner peripheral surface 8a of the sleeve member 8 is configured by three arc surfaces 8a4, 8a5, and 8a6 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a4, 8a5, and 8a6 are offset by the same distance from the axis center O of the sleeve member 8 (shaft portion 2a). In each region defined by the three arcuate surfaces 8a4, 8a5, and 8a6, the radial bearing gap has a shape gradually reduced in a wedge shape in both circumferential directions. Therefore, when the sleeve member 8 and the shaft portion 2a rotate relative to each other, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape according to the direction of the relative rotation, and the pressure rises. The sleeve member 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid. Note that a deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a4, 8a5, 8a6.

図9は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、スリーブ部材8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a7、8a8、8a9で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a7、8a8、8a9で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a7、8a8、8a9の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a10、8a11、8a12が形成されている。そのため、スリーブ部材8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、スリーブ部材8と軸部2aとが非接触支持される。   FIG. 9 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. Also in this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the sleeve member 8 is configured by three arc surfaces 8a7, 8a8, and 8a9 (so-called three arc bearings), but the three arc surfaces 8a7, In each region partitioned by 8a8 and 8a9, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a10, 8a11, and 8a12 called separation grooves are formed at boundaries between the three arcuate surfaces 8a7, 8a8, and 8a9. Therefore, when the sleeve member 8 and the shaft portion 2a rotate relative to each other in a predetermined direction, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. The sleeve member 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid.

図10は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図8に示す構成において、3つの円弧面8a7、8a8、8a9の最小隙間側の所定領域θが、それぞれ、スリーブ部材8(軸部2a)の軸中心Oを曲率中心とする同心かつ同径の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 10 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, in the configuration shown in FIG. 8, the predetermined regions θ on the minimum gap side of the three arcuate surfaces 8a7, 8a8, and 8a9 are concentric with the axial center O of the sleeve member 8 (shaft portion 2a) as the center of curvature. And it is comprised by the circular arc of the same diameter. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用してもよい。また、ラジアル軸受部をステップ軸受や多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、スリーブ部材8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としてもよい。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. May be. In addition, when the radial bearing portion is configured by a step bearing or a multi-arc bearing, the radial bearing portions R1 and R2 are provided with two radial bearing portions spaced apart in the axial direction, It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of the internal peripheral surface 8a.

また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   Further, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings, in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a mold bearing (a step type having a wave shape) or the like.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、スリーブ部材8と軸部材2との間のラジアル軸受隙間や、スリーブ部材8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the sleeve member 8 and the shaft member 2 and the thrust between the sleeve member 8 and the housing 7 and the shaft member 2 are filled. Lubricating oil has been exemplified as a fluid that causes a dynamic pressure action in the bearing gap, but other fluids that can cause a dynamic pressure action in each bearing gap, for example, a fluid such as a gas such as air or a fluid such as a magnetic fluid. An agent or lubricating grease can also be used.

本発明の一実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. (a)はスリーブ部材の断面図、(b)はスリーブ部材の下端面図である。(A) is sectional drawing of a sleeve member, (b) is a bottom end view of a sleeve member. ハウジングの一端に固定される蓋部材の正面断面図である。It is front sectional drawing of the cover member fixed to the end of a housing. 蓋部材とハウジングとの接着隙間周辺の拡大断面図である。It is an expanded sectional view around the adhesion gap between the lid member and the housing. 固定方法を異ならせた場合の接着隙間周辺の拡大断面図である。It is an expanded sectional view of the adhesive gap periphery when different fixing methods are used. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 スリーブ部材
8a1、8a2 動圧溝
8b1 軸方向溝
8c1 動圧溝
8d1 円周溝
8d2 半径方向溝
9 シール部
10 蓋部材
10a1 第1外周面
10a2 第2外周面
10b 凹部
10c1、10c2、10c3 テーパ面
11a スラスト受け面
12a 当接面
C1 接着剤溜り
C2 保持空間
C3 圧入領域
C4、C5 接着隙間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 8 Sleeve member 8a1, 8a2 Dynamic pressure groove 8b1 Axial groove 8c1 Dynamic pressure groove 8d1 Circumferential groove 8d2 Radial groove 9 Sealing part 10 Cover member 10a1 First outer peripheral surface 10a2 Second outer peripheral surface 10b Recessed portion 10c1, 10c2, 10c3 Tapered surface 11a Thrust receiving surface 12a Contact surface C1 Adhesive reservoir C2 Holding space C3 Press-fitted region C4, C5 Adhesive gap R1, R2 Radial bearing portion T1, T2 thrust bearing

Claims (8)

軸受部材と、軸受部材の内周に挿入され、軸受部材との間で相対回転する軸部材と、スラスト軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部材をスラスト方向に非接触支持するスラスト軸受部と、軸受部材の一端に接着固定され、かつ軸部材の端面との間にスラスト軸受隙間を形成するスラスト受け面を有する蓋部材とを備えた動圧軸受装置において、
蓋部材に、スラスト受け面との間に軸方向の段差を有し、かつ軸受部材と軸方向で当接する当接面が設けられると共に、蓋部材とこれに対向する軸受部材との間に接着剤溜りが形成され、接着剤溜りに隣接して、接着剤溜りよりも径方向隙間を狭めた接着隙間が形成されることを特徴とする動圧軸受装置。
A bearing member, a shaft member inserted in the inner periphery of the bearing member and rotating relative to the bearing member, and a dynamic pressure action of a fluid generated in a thrust bearing gap generate pressure so that the shaft member does not contact in the thrust direction. In a hydrodynamic bearing device comprising a thrust bearing portion to be supported and a lid member having a thrust bearing surface that is bonded and fixed to one end of the bearing member and forms a thrust bearing gap between the end surface of the shaft member,
The lid member has an axial step between the thrust receiving surface and an abutting surface that abuts the bearing member in the axial direction. The lid member is bonded to the bearing member facing the lid member. A fluid dynamic bearing device, wherein an adhesive reservoir is formed, and an adhesive gap having a radial gap narrower than the adhesive reservoir is formed adjacent to the adhesive reservoir.
接着剤溜りは、テーパ状の空間を介して接着隙間とつながる請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the adhesive reservoir is connected to the adhesive gap through a tapered space. 接着隙間の開口部に、接着剤を保持する保持空間が形成される請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a holding space for holding the adhesive is formed in an opening of the bonding gap. 保持空間が、接着隙間に向かうにつれて径方向寸法を縮小する請求項3記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the holding space reduces the radial dimension as it goes toward the bonding gap. 接着剤溜りの軸方向一端側に接着隙間が形成され、軸方向他端側に蓋部材と軸受部材の圧入部が設けられる請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an adhesive gap is formed on one axial end side of the adhesive reservoir, and a press-fitting portion of the lid member and the bearing member is provided on the other axial end side. 接着隙間が、接着剤溜りの軸方向両端に形成される請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the adhesive gap is formed at both axial ends of the adhesive reservoir. 軸受部材は、ラジアル軸受隙間に面するスリーブ部材と、スリーブ部材を内周に固定するハウジングとを備える請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing member includes a sleeve member that faces the radial bearing gap and a housing that fixes the sleeve member to the inner periphery. 請求項1〜7の何れかに記載した動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータ。   A motor comprising the hydrodynamic bearing device according to any one of claims 1 to 7, a rotor magnet, and a stator coil.
JP2005008118A 2005-01-14 2005-01-14 Hydrodynamic bearing device Expired - Fee Related JP4657734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008118A JP4657734B2 (en) 2005-01-14 2005-01-14 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008118A JP4657734B2 (en) 2005-01-14 2005-01-14 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006194384A true JP2006194384A (en) 2006-07-27
JP4657734B2 JP4657734B2 (en) 2011-03-23

Family

ID=36800628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008118A Expired - Fee Related JP4657734B2 (en) 2005-01-14 2005-01-14 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4657734B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065780A1 (en) * 2006-11-30 2008-06-05 Ntn Corporation Fluid bearing device and process for manufacturing the same
JP2008275074A (en) * 2007-04-27 2008-11-13 Alphana Technology Kk Method for press-fitting and fixing annular member, and motor
JP2010169240A (en) * 2009-01-26 2010-08-05 Alphana Technology Co Ltd Disk drive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243379B2 (en) * 2015-07-07 2017-12-06 ミネベアミツミ株式会社 motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061636A (en) * 2000-08-23 2002-02-28 Ntn Corp Dynamic pressure type bearing unit and its manufacturing method
JP2004176817A (en) * 2002-11-27 2004-06-24 Nippon Densan Corp Dynamic pressure bearing device and method of manufacturing the same
WO2004092600A1 (en) * 2003-03-31 2004-10-28 Ntn Corporation Fluid bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061636A (en) * 2000-08-23 2002-02-28 Ntn Corp Dynamic pressure type bearing unit and its manufacturing method
JP2004176817A (en) * 2002-11-27 2004-06-24 Nippon Densan Corp Dynamic pressure bearing device and method of manufacturing the same
WO2004092600A1 (en) * 2003-03-31 2004-10-28 Ntn Corporation Fluid bearing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065780A1 (en) * 2006-11-30 2008-06-05 Ntn Corporation Fluid bearing device and process for manufacturing the same
JP2008138713A (en) * 2006-11-30 2008-06-19 Ntn Corp Fluid bearing device and method of manufacturing same
US8419282B2 (en) 2006-11-30 2013-04-16 Ntn Corporation Fluid dynamic bearing device and process for manufacturing the same
JP2008275074A (en) * 2007-04-27 2008-11-13 Alphana Technology Kk Method for press-fitting and fixing annular member, and motor
JP2010169240A (en) * 2009-01-26 2010-08-05 Alphana Technology Co Ltd Disk drive

Also Published As

Publication number Publication date
JP4657734B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7005768B2 (en) Dynamic bearing device, producing method thereof, and motor using the same
US7982349B2 (en) Spindle motor having a fluid dynamic bearing system and a stationary shaft
US7435001B2 (en) Hydrodynamic bearing device, method for manufacturing the same, spindle motor and recording and reproduction apparatus
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2006194416A (en) Fluid bearing device
JP4657734B2 (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2010106994A (en) Fluid bearing device
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP2008144847A (en) Dynamic pressure bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JP2005210896A (en) Spindle motor of disc drive
JP2006214542A (en) Fluid bearing device
JP2008298238A (en) Fluid bearing device
JP2008008313A (en) Method for manufacturing hydrodynamic fluid bearing, and electric motor and rotary device using the same
JP2020153386A (en) Fluid dynamic pressure bearing device
JP2010048309A (en) Fluid bearing device and motor equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees