JP2010048309A - Fluid bearing device and motor equipped with the same - Google Patents

Fluid bearing device and motor equipped with the same Download PDF

Info

Publication number
JP2010048309A
JP2010048309A JP2008211871A JP2008211871A JP2010048309A JP 2010048309 A JP2010048309 A JP 2010048309A JP 2008211871 A JP2008211871 A JP 2008211871A JP 2008211871 A JP2008211871 A JP 2008211871A JP 2010048309 A JP2010048309 A JP 2010048309A
Authority
JP
Japan
Prior art keywords
housing
bearing
bearing sleeve
peripheral surface
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008211871A
Other languages
Japanese (ja)
Inventor
Hiromichi Kunigome
広道 國米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008211871A priority Critical patent/JP2010048309A/en
Publication of JP2010048309A publication Critical patent/JP2010048309A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device with high adhesive strength of a bearing sleeve to a housing and stably exerting predetermined bearing performance. <P>SOLUTION: The fluid bearing device 1 is equipped with the bottomed cylindrical housing 7 with one end opened and the other end blocked, the bearing sleeve 8 adhering to be fixed to an inner periphery of the housing 7, and a shaft member 2 inserted into an inner periphery of the bearing sleeve 8 as main components. A lower-end outer periphery of the bearing sleeve 8 is provided with a step part 13 which forms a first space 15 as an adhesive reservoir between itself and a first inner peripheral surface 7a1 of a small diameter part 7a composing the housing 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体軸受装置およびこれを備えるモータに関するものである。   The present invention relates to a hydrodynamic bearing device and a motor including the same.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−R/RW、DVD−R/RW等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft member with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, magnetic disk devices such as HDD, optical disk devices such as CD-R / RW and DVD-R / RW, spindle motors such as magneto-optical disk devices such as MD and MO, laser beam printer (LBP) It is suitably used as a bearing device for motors such as polygon scanner motors and fan motors.

上記各種モータのうち、ディスク装置等のスピンドルモータに組み込まれる流体軸受装置として、例えば特許文献1に記載のように、一端を開放すると共に他端を閉塞した有底筒状のハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えるものが公知である。有底筒状のハウジングに対する軸受スリーブの固定手段としては、接着、圧入、圧入接着、レーザ溶接等を採用可能であるが、費用対効果を考慮すると、接着、圧入接着など、接着剤を用いた固定手段を採用する場合が多い。
特開2003−239974号公報
Among the various motors described above, as a hydrodynamic bearing device incorporated in a spindle motor such as a disk device, for example, as described in Patent Document 1, a bottomed cylindrical housing having one end opened and the other end closed, A shaft member made of a bearing sleeve fixed to the inner periphery, a shaft member inserted in the inner periphery of the bearing sleeve, and an oil film formed in a radial bearing gap between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member It is well-known what is provided with the radial bearing part which supports this to a radial direction. Adhesion, press-fitting, press-fitting, laser welding, etc. can be used as means for fixing the bearing sleeve to the bottomed cylindrical housing, but considering cost effectiveness, an adhesive such as gluing, press-fitting, etc. was used. In many cases, fixing means are employed.
JP 2003-239974 A

ところで、近時においては、ディスク装置の大容量化に伴いモータに搭載されるディスク枚数が増加する傾向にある。これによる重量増は衝撃荷重の増大を招くことから、所期の軸受性能を安定的に維持する上で、ハウジングに対する軸受スリーブの固定強度を一層高めることが求められている。   Recently, the number of disks mounted on a motor tends to increase as the capacity of a disk device increases. This increase in weight causes an increase in impact load. Therefore, in order to stably maintain the desired bearing performance, it is required to further increase the fixing strength of the bearing sleeve to the housing.

有底筒状のハウジングに対する軸受スリーブの接着固定は、通常、相互に固定されるハウジングの内周面あるいは軸受スリーブの外周面の少なくとも一方に接着剤を予め塗布した状態でハウジング内周の所定位置まで軸受スリーブを挿入した後、接着剤を固化させることにより行われる。しかしながら、相互に固定されるハウジングの内周面と軸受スリーブの外周面の径差(寸法差)は至極微小なものとされるから、軸受スリーブの挿入に伴って軸受スリーブの挿入方向前方側(ハウジングの閉塞側)に接着剤がかき出され、軸受スリーブの一端面等に接着剤が回り込む場合がある。かかる事態が生じると、ハウジングと軸受スリーブとの間に介在させるべき接着剤量が不十分となって必要とされる接着強度を満足できないばかりでなく、回り込んだ接着剤が軸受スリーブの一端面や軸部材等に付着して軸受性能に悪影響を及ぼすおそれがある。   Usually, the bearing sleeve is fixed to the bottomed cylindrical housing at a predetermined position on the inner periphery of the housing in a state where an adhesive is applied in advance to at least one of the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve. After the bearing sleeve is inserted, the adhesive is solidified. However, since the diameter difference (dimension difference) between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve fixed to each other is extremely small, the insertion side of the bearing sleeve in the insertion direction front side ( In some cases, the adhesive is scraped to the closed side of the housing, and the adhesive wraps around one end surface of the bearing sleeve. When such a situation occurs, not only the amount of adhesive to be interposed between the housing and the bearing sleeve is insufficient, but the required adhesive strength is not satisfied, but the wraparound adhesive is not removed from one end surface of the bearing sleeve. May adhere to the shaft member and the like and adversely affect the bearing performance.

本発明は以上の実状に鑑みてなされたものであり、その課題とするところは、ハウジングと軸受スリーブの間の接着強度が高く、所期の軸受性能を安定的に発揮可能な流体軸受装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a hydrodynamic bearing device that has high adhesive strength between the housing and the bearing sleeve and can stably exhibit the desired bearing performance. It is to provide.

上記課題を解決するため、本発明では、一端を開放し、他端を閉塞したハウジングと、ハウジングの内周に接着固定された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部とを備える流体軸受装置において、軸受スリーブのハウジング閉塞側の端部外周に、ハウジングとの間で接着剤溜りを形成する段部を設けたことを特徴とする流体軸受装置を提供する。   In order to solve the above problems, in the present invention, a housing having one end opened and the other end closed, a bearing sleeve bonded and fixed to the inner periphery of the housing, a shaft member inserted into the inner periphery of the bearing sleeve, A hydrodynamic bearing device including a radial bearing portion that supports a shaft member in a radial direction with an oil film formed in a radial bearing gap between an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member. A hydrodynamic bearing device is provided in which a step portion for forming an adhesive reservoir with a housing is provided on the outer periphery of the end portion of the housing.

上記のように、軸受スリーブのハウジング閉塞側の端部外周に、ハウジングとの間で接着剤溜りを形成する段部を設ければ、軸受スリーブの挿入時に、その挿入方向前方側(ハウジングの閉塞側)で保持可能な接着剤の容量を増大させることができる。そのため、軸受スリーブの挿入に伴って接着剤がかき出され、このかき出された接着剤が軸受スリーブの端面側へ回り込もうとするのを効果的に抑制あるいは防止することができる。また、接着剤のかき出しが効果的に抑制等され、かつハウジングとの間で接着剤溜りが形成されることから、相互に固定されるハウジングの内周面と軸受スリーブの外周面との間により多くの接着剤を保持することができる。従って、軸受性能を低下させることなくハウジングに対する軸受スリーブの接着強度を高めることができ、流体軸受装置の信頼性を高めることができる。さらに、接着剤の保持容量を増大させることができる分、接着剤塗布量のばらつきを許容することが可能となるので、ハウジングに対する軸受スリーブの組付工程を簡略化することもできる。   As described above, if a step portion that forms an adhesive reservoir with the housing is provided on the outer periphery of the end portion on the housing closing side of the bearing sleeve, when the bearing sleeve is inserted, the front side in the insertion direction (the housing closing state). The volume of adhesive that can be held on the side) can be increased. Therefore, the adhesive is scraped with the insertion of the bearing sleeve, and it is possible to effectively suppress or prevent the scraped adhesive from going around to the end face side of the bearing sleeve. Further, since the adhesive scraping is effectively suppressed and an adhesive pool is formed between the housing and the housing, the space between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve fixed to each other is increased. Many adhesives can be retained. Therefore, the adhesive strength of the bearing sleeve to the housing can be increased without deteriorating the bearing performance, and the reliability of the hydrodynamic bearing device can be increased. Further, since the adhesive holding capacity can be increased, it is possible to allow variations in the amount of adhesive applied, so that the assembly process of the bearing sleeve to the housing can be simplified.

軸受スリーブのハウジング閉塞側の外周縁部にはチャンファ(面取り)を設けることができ、このとき上記接着剤溜りは、チャンファとハウジングの内周面との間に形成される空間に通じているものとすることができる。このようにすれば、必要以上に大きなチャンファを設けずとも接着剤溜りの容量をさらに増大させることができる。そのため、例えば軸受スリーブの一端面でスラスト軸受部(スラスト軸受隙間)を形成する場合には、スラスト軸受部の軸受性能を低下させることなく、上記メリットをより有効に享受することができる。   A chamfer (chamfering) can be provided on the outer peripheral edge of the bearing sleeve on the housing closing side, and at this time, the adhesive reservoir communicates with a space formed between the chamfer and the inner peripheral surface of the housing. It can be. In this way, the capacity of the adhesive pool can be further increased without providing a chamfer larger than necessary. Therefore, for example, when the thrust bearing portion (thrust bearing gap) is formed on one end face of the bearing sleeve, the above-mentioned merit can be more effectively enjoyed without reducing the bearing performance of the thrust bearing portion.

接着剤溜りは、一端(ハウジング閉塞側の端部)が前記空間に通じて軸方向に延びる部分(以下、これを「軸方向部」という)のみからなるものとする他、軸方向部と、この軸方向部の他端(ハウジング開口側の端部)から外径側に延びる半径方向部とを有するものとすることもできる。後者の構成であれば、接着剤溜りをラビリンス構造とすることができるので、前者の構成に比べ、接着剤溜りにおける接着剤の保持能力を高めることができる。また一般に、せん断接着強度に比べて引張り接着強度の方が大きい。そのため、後者の構成を採用すれば、前者の構成を採用する場合に比べ、接着強度を高めることもできる。なお、かかる構成は、軸受スリーブに設けた段部との間に軸方向部および半径方向部を形成する段部をハウジングに設けることで得られる。   The adhesive reservoir is composed only of a portion (hereinafter referred to as “axial portion”) having one end (end portion on the housing closing side) extending in the axial direction through the space, and an axial portion; A radial direction portion extending from the other end of the axial direction portion (an end portion on the housing opening side) to the outer diameter side may be provided. With the latter configuration, the adhesive reservoir can have a labyrinth structure, so that the adhesive retention capacity in the adhesive reservoir can be increased compared to the former configuration. In general, the tensile bond strength is larger than the shear bond strength. Therefore, if the latter configuration is adopted, the adhesive strength can be increased as compared with the case where the former configuration is adopted. Such a configuration can be obtained by providing the housing with a step portion that forms an axial portion and a radial portion between the step portion provided on the bearing sleeve.

本発明に係る流体軸受装置は、さらに、軸受スリーブの一端面とこれに対向する軸部材の一端面との間の第1スラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト一方向に支持する第1スラスト軸受部と、ハウジングの内底面とこれに対向する軸部材の他端面との間の第2スラスト軸受隙間に生じる潤滑流体の動圧作用で軸部材をスラスト他方向に支持する第2スラスト軸受部とを備えるものとすることができる。このとき、接着剤溜りの半径方向部の幅(軸方向寸法)は、第1および第2スラスト軸受隙間の隙間幅の合計量よりも大きく設定するのが望ましい。半径方向部の幅が両スラスト軸受隙間の隙間幅の合計量よりも小さいと、所定幅のスラスト軸受隙間を形成できなくなるおそれがあるからである。   The hydrodynamic bearing device according to the present invention further includes a shaft member in one thrust direction by a dynamic pressure action of a fluid generated in a first thrust bearing gap between one end surface of the bearing sleeve and one end surface of the shaft member facing the bearing sleeve. The shaft member is supported in the other direction of the thrust by the dynamic pressure action of the lubricating fluid generated in the second thrust bearing gap between the first thrust bearing portion to be supported and the inner bottom surface of the housing and the other end surface of the shaft member opposed to the first thrust bearing portion. And a second thrust bearing portion. At this time, it is desirable to set the width (axial dimension) of the radial direction portion of the adhesive reservoir to be larger than the total amount of the gap widths of the first and second thrust bearing gaps. This is because if the width of the radial portion is smaller than the total amount of the gap widths of the thrust bearing gaps, there is a possibility that a thrust bearing gap having a predetermined width cannot be formed.

接着剤溜りが軸方向部と半径方向部とを有する場合、半径方向部の幅(軸方向寸法)を軸方向部の幅(径方向寸法)よりも小さくすれば、毛細管力による接着剤の引き込み作用により、接着剤溜りにおける接着剤の保持能力を一層高めることが可能となる。   When the adhesive reservoir has an axial part and a radial part, if the width of the radial part (axial dimension) is smaller than the width of the axial part (radial dimension), the adhesive is drawn by capillary force. By the action, it becomes possible to further increase the holding ability of the adhesive in the adhesive reservoir.

接着剤溜りの軸方向部は、幅一定(断面積一定)で軸方向に延びるものとしても良いが、その他端側に向かってその幅を漸次縮小させれば、毛細管力による引き込み作用により、接着剤の保持能力がより一層高まる。   The axial part of the adhesive reservoir may be axially constant with a constant width (cross-sectional area), but if the width is gradually reduced toward the other end side, the adhesive will be attracted by the pulling action by capillary force. The retention capacity of the agent is further increased.

この種の流体軸受装置では、軸受運転時に内部圧力に不均衡が生じるのを防止すべく、ハウジングの内周面と軸受スリーブの外周面との間に、軸受スリーブの両端に開口した循環路を設け、この循環路を介して軸受内部の潤滑流体を流動循環させるようにする場合がある。かかる循環路を設ける場合には、循環路の形成位置と接着剤溜りの形成位置とを周方向で相互に異ならせるのが望ましい。ハウジングに対する軸受スリーブの接着固定時に接着剤が循環路に流入して、循環路が正常に機能しなくなるのを防止するためである。   In this type of hydrodynamic bearing device, in order to prevent imbalance in internal pressure during bearing operation, a circulation path opened at both ends of the bearing sleeve is provided between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve. In some cases, the lubricating fluid inside the bearing is caused to flow and circulate through the circulation path. When such a circulation path is provided, it is desirable that the formation position of the circulation path and the formation position of the adhesive reservoir are different from each other in the circumferential direction. This is to prevent the adhesive from flowing into the circulation path when the bearing sleeve is bonded and fixed to the housing, so that the circulation path does not function normally.

また、この種の流体軸受装置では、通常、ハウジングの一端をシールするシール部材が設けられる。本発明はハウジングに対する軸受スリーブの接着強度向上に寄与するものであるから、例えば、シール部材の内周側に第1のシール空間が形成されると共に、シール部材の外周側に第2のシール空間が形成される構成、すなわち軸受スリーブにシール部材が固定される構成の流体軸受装置に対して特に好適である。例えば特許文献1に開示された構成の流体軸受装置では、軸受スリーブとシール部材とを軸方向に重ねてハウジング内周に固定するため、シール部材によってハウジングに対する軸受スリーブの固定強度が補完されるが、軸受スリーブにシール部材を固定する構成ではかかる補完効果が期待できないからである。   In this type of hydrodynamic bearing device, a seal member that seals one end of the housing is usually provided. Since the present invention contributes to improving the adhesive strength of the bearing sleeve to the housing, for example, the first seal space is formed on the inner peripheral side of the seal member, and the second seal space is formed on the outer peripheral side of the seal member. This is particularly suitable for a hydrodynamic bearing device in which the seal member is fixed to the bearing sleeve. For example, in the hydrodynamic bearing device having the configuration disclosed in Patent Document 1, since the bearing sleeve and the seal member are axially overlapped and fixed to the inner periphery of the housing, the seal member supplements the fixing strength of the bearing sleeve with respect to the housing. This is because such a complementary effect cannot be expected in the configuration in which the seal member is fixed to the bearing sleeve.

以上の構成を有する流体軸受装置は、ステータコイルと、ロータマグネットとを有するモータ、例えばディスク駆動装置用のスピンドルモータに組み込んで、好適に使用することができる。   The hydrodynamic bearing device having the above configuration can be suitably used by being incorporated in a motor having a stator coil and a rotor magnet, for example, a spindle motor for a disk drive device.

以上に示すように、本発明によれば、ハウジングと軸受スリーブの間の接着強度が高く、所期の軸受性能を安定的に発揮可能な流体軸受装置を提供することができる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device that has high adhesive strength between the housing and the bearing sleeve and can stably exhibit the desired bearing performance.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚(図示例は2枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクDを保持したディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device according to the present invention. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator magnet 4 and a rotor magnet 5 which are opposed to each other. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or a plurality of disks D such as a magnetic disk (two in the illustrated example). When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 holding the disk D and the shaft member 2 are rotated together. .

図2は、上記スピンドルモータで使用される流体軸受装置1の一実施形態を示すものである。この流体軸受装置1は、軸部材2と、有底筒状のハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、ハウジング7の開口部をシールするシール部材9とを主要な構成部品として備える。なお、以下では、説明の便宜上、シール部材9を設けた側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an embodiment of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a shaft member 2, a bottomed cylindrical housing 7, a bearing sleeve 8 fixed to the inner periphery of the housing 7, and a seal member 9 that seals the opening of the housing 7. As a component. In the following description, for the sake of convenience of explanation, the description will be given with the side provided with the seal member 9 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部材2は、その全体を金属材料で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で形成した金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The shaft member 2 may be formed of a metal material as a whole, or may be a metal-resin hybrid structure in which, for example, the entire flange portion 2b or a part thereof (for example, both end surfaces) is formed of resin.

ハウジング7は、円筒状の側部と、該側部と一体的に設けられて側部の下端開口を閉塞する円盤状の底部7cとからなる有底筒状を呈し、側部は小径部7aと、小径部7aの上側に配置された大径部7bとで構成される。小径部7aの内周面は、底部側に位置する相対的に小径の第1内周面7a1と、この第1内周面7a1よりも開口側に位置する相対的に大径の第2内周面7a2とを有する。小径部7aの内周面(第2内周面7a2)と大径部7bの内周面7b1とは、軸線と直交する方向に延びる段差面7eで繋がっている。このハウジング7は樹脂の射出成形品とされ、成形収縮時の収縮量の差による変形を防止すべく各部7a〜7cは略均一厚に形成される。ハウジング7の成形に用いる樹脂材料は主に熱可塑性樹脂であり、結晶性樹脂あるいは非晶性樹脂の何れもが使用可能である。なお、ハウジング7は樹脂材料の他、金属材料で形成することもできる。   The housing 7 has a bottomed cylindrical shape including a cylindrical side portion and a disc-shaped bottom portion 7c that is provided integrally with the side portion and closes the lower end opening of the side portion, and the side portion has a small diameter portion 7a. And a large-diameter portion 7b disposed on the upper side of the small-diameter portion 7a. The inner peripheral surface of the small diameter portion 7a includes a first inner peripheral surface 7a1 having a relatively small diameter located on the bottom side, and a second inner surface having a relatively large diameter located on the opening side from the first inner peripheral surface 7a1. And a peripheral surface 7a2. The inner peripheral surface (second inner peripheral surface 7a2) of the small diameter portion 7a and the inner peripheral surface 7b1 of the large diameter portion 7b are connected by a step surface 7e extending in a direction orthogonal to the axis. The housing 7 is an injection-molded product of resin, and the portions 7a to 7c are formed to have a substantially uniform thickness so as to prevent deformation due to a difference in shrinkage during molding shrinkage. The resin material used for molding the housing 7 is mainly a thermoplastic resin, and either a crystalline resin or an amorphous resin can be used. The housing 7 can be formed of a metal material in addition to the resin material.

ハウジング7の内底面7c1には、第2スラスト軸受部T2のスラスト軸受面となる環状領域(図2の黒塗り部分)が設けられ、該領域には、詳細な図示は省略するが、例えば複数の動圧溝をスパイラル形状に配列してなるスラスト動圧発生部Cが形成される。スラスト動圧発生部Cは、ハウジング7を射出成形するのと同時に型成形される。なお、スラスト動圧発生部Cは軸部材2のフランジ部2bの下側端面2b2に形成することもできる。   The inner bottom surface 7c1 of the housing 7 is provided with an annular region (blacked portion in FIG. 2) that becomes the thrust bearing surface of the second thrust bearing portion T2. A thrust dynamic pressure generating portion C formed by arranging the dynamic pressure grooves in a spiral shape is formed. The thrust dynamic pressure generating portion C is molded at the same time as the housing 7 is injection molded. The thrust dynamic pressure generating portion C can also be formed on the lower end surface 2b2 of the flange portion 2b of the shaft member 2.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料で、円盤状の第1シール部9aと、第1シール部9aの外径側から下方に延びる円筒状の第2シール部9bとを一体に備える断面逆L字形状に形成される。このシール部材9は軸受スリーブ8の上端外周に固定され、固定された状態で、第2シール部9bの下端面とハウジング7の段差面7eとの間に軸方向隙間11を形成する。第1シール部9aの下側端面9a1には、放射状に延びる一又は複数の径方向溝10が形成されている。   The seal member 9 is made of, for example, a soft metal material such as brass, another metal material, or a resin material, and has a disk-shaped first seal portion 9a and a cylindrical shape extending downward from the outer diameter side of the first seal portion 9a. The second seal portion 9b is integrally formed with an inverted L-shaped cross section. The seal member 9 is fixed to the outer periphery of the upper end of the bearing sleeve 8, and in the fixed state, an axial gap 11 is formed between the lower end surface of the second seal portion 9 b and the stepped surface 7 e of the housing 7. In the lower end surface 9a1 of the first seal portion 9a, one or a plurality of radial grooves 10 extending radially are formed.

第1シール部9aの内周面9a2は、軸部2aの外周面2a1との間に所定容積の第1シール空間S1を形成する。また、第2シール部9bの外周面9b1は、ハウジング7の大径部7bの内周面7b1との間に所定容積の第2シール空間S2を形成する。第1シール部9aの内周面9a2およびハウジング7の大径部7bの内周面7b1は何れも上方に向かって内径寸法を漸次拡大させたテーパ面状に形成されているため、両シール空間S1,S2は下方(ハウジング7の内部側)に向かって漸次縮径したテーパ形状を呈する。   The inner peripheral surface 9a2 of the first seal portion 9a forms a first seal space S1 having a predetermined volume with the outer peripheral surface 2a1 of the shaft portion 2a. Further, the outer peripheral surface 9b1 of the second seal portion 9b forms a second seal space S2 having a predetermined volume with the inner peripheral surface 7b1 of the large diameter portion 7b of the housing 7. Since both the inner peripheral surface 9a2 of the first seal portion 9a and the inner peripheral surface 7b1 of the large-diameter portion 7b of the housing 7 are formed in a tapered surface shape whose inner diameter dimension is gradually increased upward, both seal spaces S <b> 1 and S <b> 2 exhibit a tapered shape that is gradually reduced in diameter downward (inside the housing 7).

軸受スリーブ8は、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の小径部7aの内周に圧入された状態で接着固定される(圧入接着)。軸受スリーブ8は、焼結金属以外にも、例えば黄銅等の軟質金属で形成しても良い。   The bearing sleeve 8 is formed of a porous body made of a sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is formed into a cylindrical shape and is press-fitted into the inner periphery of the small-diameter portion 7 a of the housing 7. Bonded and fixed (press-fit adhesion). The bearing sleeve 8 may be formed of a soft metal such as brass other than the sintered metal.

軸受スリーブ8の内周面8aには、第1および第2ラジアル軸受部R1,R2のラジアル軸受面となる円筒状領域(図2の黒塗り部分)が軸方向の二箇所に離隔して設けられ、該二つの領域には、それぞれ、図3(a)に示すように複数の動圧溝Aa1,Aa2をヘリングボーン形状に配列してなるラジアル動圧発生部A1,A2が形成されている。上側の動圧溝Aa1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝Aa2は軸方向対称に形成され、その上下領域の軸方向寸法は上記軸方向寸法X2と等しくなっている。なお、ラジアル動圧発生部A1,A2は、軸部2aの外周面2a1に形成することもでき、また、複数の動圧溝をスパイラル形状等に配列したものとしても良い。   On the inner peripheral surface 8a of the bearing sleeve 8, cylindrical regions (blacked portions in FIG. 2) that serve as the radial bearing surfaces of the first and second radial bearing portions R1 and R2 are provided separately in two axial directions. As shown in FIG. 3A, radial dynamic pressure generating portions A1 and A2 each having a plurality of dynamic pressure grooves Aa1 and Aa2 arranged in a herringbone shape are formed in the two regions, respectively. . The upper dynamic pressure groove Aa1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. On the other hand, the lower dynamic pressure groove Aa2 is formed symmetrically in the axial direction, and the axial dimension of the upper and lower regions thereof is equal to the axial dimension X2. The radial dynamic pressure generating portions A1 and A2 can be formed on the outer peripheral surface 2a1 of the shaft portion 2a, or a plurality of dynamic pressure grooves can be arranged in a spiral shape or the like.

軸受スリーブ8の下側端面8bには、第1スラスト軸受部T1のスラスト軸受面となる環状領域(図2の黒塗り部分)が設けられ、該領域には、図3(b)に示すように、複数の動圧溝Baをスパイラル形状に配列してなるスラスト動圧発生部Bが形成されている。スラスト動圧発生部Bは、フランジ部2bの上側端面2b1に形成することもでき、また、複数の動圧溝をヘリングボーン形状等に配列したものとしても良い。   The lower end surface 8b of the bearing sleeve 8 is provided with an annular region (blacked portion in FIG. 2) that becomes the thrust bearing surface of the first thrust bearing portion T1, and this region is as shown in FIG. 3 (b). In addition, a thrust dynamic pressure generating portion B is formed by arranging a plurality of dynamic pressure grooves Ba in a spiral shape. The thrust dynamic pressure generating portion B can be formed on the upper end surface 2b1 of the flange portion 2b, or a plurality of dynamic pressure grooves can be arranged in a herringbone shape or the like.

軸受スリーブ8の下端外周の周方向に離隔した複数箇所(本実施形態では3箇所。図3(b)を参照)には、ハウジング7を構成する小径部7aの第1内周面7a1との間で接着剤溜りとしての第1空間15を形成する段部13が設けられている。この段部13は、軸受スリーブ8の下端外周縁部に設けられた第2チャンファ8gと大径外周面8dとを繋ぐように設けられており、軸線に沿って延びる小径外周面8eと、小径外周面8eの上端から軸線と直交するように外径側に延びる段差面8fとで構成される。さらに述べると、軸受スリーブ8の外周面のうち、周方向に離隔した3つの領域では、上から順にテーパ状の第1チャンファ8h、大径外周面8d、およびテーパ状の第2チャンファ8gが設けられる一方、この領域間に介在する3つの周方向領域では、上から順に第1チャンファ8h、大径外周面8d、小径外周面8e、および第2チャンファ8gが設けられる。なお、段部13は、軸受スリーブ8を成形するのと同時に型成形される。   A plurality of locations (three locations in the present embodiment, see FIG. 3B) spaced apart in the circumferential direction on the outer periphery of the lower end of the bearing sleeve 8 are connected to the first inner peripheral surface 7a1 of the small diameter portion 7a constituting the housing 7. A step portion 13 that forms a first space 15 as an adhesive reservoir is provided therebetween. This step portion 13 is provided so as to connect the second chamfer 8g provided at the outer peripheral edge of the lower end of the bearing sleeve 8 and the large-diameter outer peripheral surface 8d, and a small-diameter outer peripheral surface 8e extending along the axis, and a small-diameter The step surface 8f extends from the upper end of the outer peripheral surface 8e to the outer diameter side so as to be orthogonal to the axis. More specifically, in the outer circumferential surface of the bearing sleeve 8, three regions spaced apart in the circumferential direction are provided with a tapered first chamfer 8 h, a large-diameter outer circumferential surface 8 d, and a tapered second chamfer 8 g in order from the top. On the other hand, in the three circumferential regions interposed between these regions, a first chamfer 8h, a large-diameter outer peripheral surface 8d, a small-diameter outer peripheral surface 8e, and a second chamfer 8g are provided in order from the top. The step portion 13 is molded at the same time as the bearing sleeve 8 is molded.

大径外周面8dは軸方向全長に亘って径一定で、ハウジング7の小径部7aの第1内周面7a1よりも所定量大径に、かつ第2内周面7a2よりも僅かに小径とされる。小径外周面8eは軸方向全長に亘って径一定で、小径部7aの第1内周面7a1よりも所定量小径とされる。以上から、軸受スリーブ8をハウジング7(小径部7a)の内周に固定すると、大径外周面8dと第1内周面7a1とが相互に密着する一方、小径外周面8eと第1内周面7a1との間には接着剤溜りとして隙間幅(断面積)一定の第1空間15が形成される。また、軸受スリーブ8の第2チャンファ8gと小径部7aの第1内周面7a1との間に、接着剤溜りとしての第1空間15に通じるようにして、下方に向かって隙間幅(断面積)を漸次拡大させたテーパ状の第2空間16が形成される。   The large-diameter outer peripheral surface 8d has a constant diameter over the entire length in the axial direction, has a predetermined amount larger in diameter than the first inner peripheral surface 7a1 of the small-diameter portion 7a of the housing 7, and slightly smaller in diameter than the second inner peripheral surface 7a2. Is done. The small-diameter outer peripheral surface 8e has a constant diameter over the entire length in the axial direction, and has a predetermined amount smaller than the first inner peripheral surface 7a1 of the small-diameter portion 7a. From the above, when the bearing sleeve 8 is fixed to the inner periphery of the housing 7 (small diameter portion 7a), the large diameter outer peripheral surface 8d and the first inner peripheral surface 7a1 are in close contact with each other, while the small diameter outer peripheral surface 8e and the first inner peripheral surface are in close contact with each other. A first space 15 having a constant gap width (cross-sectional area) is formed between the surface 7a1 as an adhesive reservoir. Further, a gap width (cross-sectional area) is formed between the second chamfer 8g of the bearing sleeve 8 and the first inner peripheral surface 7a1 of the small diameter portion 7a so as to communicate with the first space 15 as an adhesive reservoir. ) Is gradually enlarged to form a tapered second space 16.

軸受スリーブ8の外周面には、両端面に開口し、ハウジング7の小径部7aの内周面およびシール部材9の第2シール部9bの内周面9b1との間に循環路12を形成する1又は複数本の軸方向溝8d1が形成される。より詳細に述べると、本実施形態では、図3(b)に示すように、周方向で隣り合う段部13間にそれぞれ1本ずつ軸方向溝8d1が形成される。   On the outer peripheral surface of the bearing sleeve 8, the circulation path 12 is formed between the inner peripheral surface of the small diameter portion 7 a of the housing 7 and the inner peripheral surface 9 b 1 of the second seal portion 9 b of the seal member 9. One or a plurality of axial grooves 8d1 are formed. More specifically, in this embodiment, as shown in FIG. 3B, one axial groove 8d1 is formed between each step 13 adjacent in the circumferential direction.

以上の構成からなる流体軸受装置1は、例えば、ハウジング7内に軸部材2を配置した状態でハウジング7内周の所定位置に軸受スリーブ8を接着固定した後、軸受スリーブ8にシール部材9を固定し、さらにその後、ハウジング7の内部空間に潤滑流体としての潤滑油を充満させることで完成する。具体的な手順の一例を以下示す。   In the hydrodynamic bearing device 1 having the above configuration, for example, after the shaft member 2 is disposed in the housing 7, the bearing sleeve 8 is bonded and fixed at a predetermined position on the inner periphery of the housing 7, and then the seal member 9 is attached to the bearing sleeve 8. Then, the inner space of the housing 7 is filled with lubricating oil as a lubricating fluid. An example of a specific procedure is shown below.

まず、接着剤Gを、例えば軸受スリーブ8の段部13に適量塗布する(さらに、ハウジング7の小径部7a内周面に塗布しても良い)。接着剤Gとして、ここでは熱硬化性接着剤を用いる。次いで、軸部材2をハウジング7の内周に配置した状態で、接着剤Gを塗布した側(下側端面8b側)から軸受スリーブ8をハウジング7の小径部7aの内周に挿入(厳密には圧入)し、ハウジング7に対する軸受スリーブ8の相対的な軸方向の位置決め、換言すると両スラスト軸受隙間の隙間出しを行う。本実施形態では、フランジ部2bの下側端面2b2をハウジング7の内底面7c1に当接させた状態で、下側端面8bがフランジ部2bの上側端面2b1に当接するまで軸受スリーブ8をハウジング7の内周に押し込んだ後、第1および第2スラスト軸受隙間の隙間幅の合計量分だけ軸部材2を引き上げることによって隙間出しを行う。   First, an appropriate amount of adhesive G is applied to, for example, the step portion 13 of the bearing sleeve 8 (and may be applied to the inner peripheral surface of the small diameter portion 7a of the housing 7). Here, a thermosetting adhesive is used as the adhesive G. Next, with the shaft member 2 disposed on the inner periphery of the housing 7, the bearing sleeve 8 is inserted into the inner periphery of the small diameter portion 7 a of the housing 7 from the side where the adhesive G is applied (the lower end surface 8 b side) (strictly And the axial positioning of the bearing sleeve 8 relative to the housing 7, in other words, the clearance between both thrust bearing gaps is made. In the present embodiment, in a state where the lower end surface 2b2 of the flange portion 2b is in contact with the inner bottom surface 7c1 of the housing 7, the bearing sleeve 8 is moved until the lower end surface 8b contacts the upper end surface 2b1 of the flange portion 2b. Then, the shaft member 2 is lifted up by the total amount of the gap widths of the first and second thrust bearing gaps, and the gap is made.

軸受スリーブ8の挿入に伴い、段部13に塗布された接着剤Gが軸受スリーブ8の大径外周面8dと小径部7aの内周面との間に供給される。このとき、接着剤Gが潤滑剤として機能するため、軸受スリーブ8の押し込みをスムーズに進行させることができる。そして、ハウジング7に対する軸受スリーブ8の相対的な軸方向の位置決めが完了すると前記両面8d,7a1間に供給されなかった余剰接着剤Gは、接着剤溜りとしての第1空間15、さらには第2空間16に保持される。なお、軸受スリーブ8を所定位置まで挿入した後、軸受スリーブ8の大径外周面8dとハウジング7の第2内周面7a2との間にさらに接着剤Gを充填するようにしても良い。   As the bearing sleeve 8 is inserted, the adhesive G applied to the step portion 13 is supplied between the large-diameter outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface of the small-diameter portion 7a. At this time, since the adhesive G functions as a lubricant, it is possible to smoothly push the bearing sleeve 8 in. Then, when the relative axial positioning of the bearing sleeve 8 with respect to the housing 7 is completed, the excess adhesive G that has not been supplied between the both surfaces 8d and 7a1 becomes the first space 15 as an adhesive reservoir, and further the second. It is held in the space 16. Note that after inserting the bearing sleeve 8 to a predetermined position, the adhesive G may be further filled between the large-diameter outer peripheral surface 8 d of the bearing sleeve 8 and the second inner peripheral surface 7 a 2 of the housing 7.

ハウジング7に対する軸受スリーブ8の相対的な位置決めが完了した後、ハウジング7と軸受スリーブ8の組立品に加熱処理(ベーキング)を施して接着剤Gを固化させると、ハウジング7の小径部7aの内周に軸受スリーブ8が圧入状態で接着固定(圧入接着)される。以上のようにしてハウジング7に対する軸受スリーブ8の組付けが完了した後、軸受スリーブ8の上端外周にシール部材9を固定する。シール部材9を固定した後、シール部材9で密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め潤滑流体としての潤滑油を充満させることにより図2に示す流体軸受装置1が完成する。   After the relative positioning of the bearing sleeve 8 with respect to the housing 7 is completed, the assembly of the housing 7 and the bearing sleeve 8 is subjected to heat treatment (baking) to solidify the adhesive G, so that the inner diameter of the small diameter portion 7a of the housing 7 is increased. The bearing sleeve 8 is bonded and fixed around the periphery in a press-fit state (press-fit adhesion). After the assembly of the bearing sleeve 8 to the housing 7 is completed as described above, the seal member 9 is fixed to the outer periphery of the upper end of the bearing sleeve 8. After the sealing member 9 is fixed, the internal space of the housing 7 sealed with the sealing member 9 is filled with lubricating oil as a lubricating fluid including the internal pores of the bearing sleeve 8, whereby the hydrodynamic bearing device 1 shown in FIG. Complete.

なお、以上では、熱硬化性を有する接着剤G(熱硬化性接着剤)を用いてハウジング7内周に軸受スリーブ8を接着固定する場合について説明を行ったが、その他の硬化特性を有する接着剤、例えば嫌気性接着剤を用いて前記両者を接着固定することも可能である。また、熱硬化性および嫌気性を兼ね備えた接着剤を用いても良い。   In the above description, the case where the bearing sleeve 8 is bonded and fixed to the inner periphery of the housing 7 by using the thermosetting adhesive G (thermosetting adhesive) has been described. It is also possible to bond and fix the both using an agent, for example, an anaerobic adhesive. Moreover, you may use the adhesive agent which has thermosetting and anaerobic property.

以上の構成からなり、また以上のようにして組み立てられた流体軸受装置1において軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面となる上下2箇所の領域は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜は、動圧溝Aa1,Aa2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。   When the shaft member 2 rotates in the hydrodynamic bearing device 1 having the above-described configuration and assembled as described above, the upper and lower two regions serving as the radial bearing surfaces of the inner peripheral surface 8a of the bearing sleeve 8 are respectively It faces the outer peripheral surface 2a1 of the shaft portion 2a via a radial bearing gap. As the shaft member 2 rotates, the oil film formed in the radial bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves Aa1 and Aa2, and the shaft member 2 can rotate in the radial direction by this pressure. Is supported in a non-contact manner. As a result, radial bearing portions R1 and R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、これと同時に、軸受スリーブ8の下側端面8bのスラスト軸受面となる環状領域とフランジ部2bの上側端面2b1との間、およびハウジング7の内底面7c1のスラスト軸受面となる環状領域とフランジ部2bの下側端面2b2との間に、それぞれ第1および第2スラスト軸受隙間が形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜は、動圧溝の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がスラスト両方向に回転自在に非接触支持される。これにより、軸部材2をスラスト一方向に回転自在に非接触支持する第1スラスト軸受部T1と、軸部材2をスラスト他方向に回転自在に非接触支持する第2スラスト軸受部T2とが形成される。   At the same time, between the annular region serving as the thrust bearing surface of the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and the annular region serving as the thrust bearing surface of the inner bottom surface 7c1 of the housing 7 First and second thrust bearing gaps are respectively formed between the lower end surface 2b2 of the flange portion 2b. As the shaft member 2 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure groove, and the shaft member 2 can be rotated in both thrust directions by this pressure. Touch supported. As a result, a first thrust bearing portion T1 that supports the shaft member 2 in a non-contact manner so as to be rotatable in one thrust direction and a second thrust bearing portion T2 that supports the shaft member 2 in a non-contact manner so as to be rotatable in the other direction of the thrust are formed. Is done.

また、上述のように、第1および第2のシール空間S1、S2が、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用によってシール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1、S2は、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1、S2内にある。なお、第1シール部9aの内周面9a2を円筒面とする一方、これに対向する軸部2aの外周面をテーパ面状としても良い。この場合、第1のシール空間S1には、さらに遠心力シールとしての機能も付与することができるのでシール効果が一層高まる。   Further, as described above, since the first and second seal spaces S1, S2 have a tapered shape that gradually decreases toward the inside of the housing 7, the lubricating oil in both the seal spaces S1, S2 is reduced. The seal space is pulled in the direction in which the seal space is narrowed by the pull-in action by the capillary force, that is, toward the inside of the housing 7. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. Further, the seal spaces S1 and S2 have a buffer function of absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the housing 7, and within the range of the assumed temperature change, The oil level is always in the seal space S1, S2. In addition, while the inner peripheral surface 9a2 of the first seal portion 9a is a cylindrical surface, the outer peripheral surface of the shaft portion 2a facing this may be tapered. In this case, since the function as a centrifugal force seal can be further imparted to the first seal space S1, the sealing effect is further enhanced.

また、上述したように、上側の動圧溝Aa1は、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっているため、軸部材2の回転時、動圧溝Aa1による潤滑油の引き込み力は上側領域が下側領域に比べて相対的に大きくなる。このような引き込み力の差圧により、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油は下方に流動し、第1スラスト軸受部T1の第1スラスト軸受隙間→軸受スリーブ8の軸方向溝8d1で形成される循環路12→第1シール部9aの径方向溝10で形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the upper dynamic pressure groove Aa1 has an axial dimension X1 in the upper region that is larger than the axial dimension X2 in the lower region than the axial center m. The pulling force of the lubricating oil by the dynamic pressure groove Aa1 is relatively larger in the upper region than in the lower region. Due to such differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 The first radial bearing portion is circulated through the first thrust bearing clearance → the circulation path 12 formed by the axial groove 8d1 of the bearing sleeve 8 → the fluid passage formed by the radial groove 10 of the first seal portion 9a. It is drawn again into the radial bearing gap of R1.

このような構成とすることで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、第1のシール空間S1が連通し、さらに軸方向隙間11を介して第2のシール空間S2が連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1、S2内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響は一層効果的に防止される。   By adopting such a configuration, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, the occurrence of lubricant leakage and vibration due to the generation of bubbles, etc. The problem can be solved. When the first seal space S1 communicates with the circulation path, and the second seal space S2 communicates with the axial clearance 11, the bubbles are mixed into the lubricating oil for some reason. However, when the bubbles circulate with the lubricating oil, the air is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal spaces S1 and S2 to the outside air. Therefore, adverse effects due to bubbles can be prevented more effectively.

以上に示すように、軸受スリーブ8の下端外周に、ハウジング7の小径部7aとの間で接着剤溜り(第1空間15)を形成する段部13を設ければ、軸受スリーブ8の挿入時に、その挿入方向前方側(ハウジング7の底部7c側)で保持可能な接着剤Gの容量を増大させることができる。そのため、軸受スリーブ8の挿入に伴って接着剤Gがかき出され、このかき出された接着剤Gが軸受スリーブ8の下側端面8b側に回り込もうとするのを効果的に抑制あるいは防止することができる。これにより、軸受スリーブ8の下側端面8bに設けられるスラスト軸受面や予め配置されたフランジ部2bに接着剤が付着するのを回避することができ、軸受性能、特に第1スラスト軸受部の軸受性能が低下するのを可及的に防止することができる。   As described above, if the step 13 forming the adhesive reservoir (first space 15) with the small diameter portion 7a of the housing 7 is provided on the outer periphery of the lower end of the bearing sleeve 8, the bearing sleeve 8 can be inserted when the bearing sleeve 8 is inserted. The capacity of the adhesive G that can be held on the front side in the insertion direction (the bottom 7c side of the housing 7) can be increased. Therefore, the adhesive G is scraped with the insertion of the bearing sleeve 8, and the scraped adhesive G is effectively suppressed or prevented from going around the lower end surface 8 b of the bearing sleeve 8. can do. As a result, it is possible to avoid adhesion of the adhesive to the thrust bearing surface provided on the lower end surface 8b of the bearing sleeve 8 and the flange portion 2b arranged in advance, and bearing performance, particularly the bearing of the first thrust bearing portion. It is possible to prevent performance degradation as much as possible.

また、接着剤Gのかき出しが抑制あるいは防止されることから、相互に固定されるハウジング7(小径部7a)の内周面と軸受スリーブ8の外周面との間に、より多くの接着剤Gを保持することができる。そのため、ハウジング7に対する軸受スリーブ8の接着強度を、軸受性能、特に第1スラスト軸受部T1の軸受性能を低下させることなく高めることができ、流体軸受装置1の信頼性向上に寄与することができる。   Further, since the sticking out of the adhesive G is suppressed or prevented, more adhesive G is provided between the inner peripheral surface of the housing 7 (small diameter portion 7a) and the outer peripheral surface of the bearing sleeve 8 fixed to each other. Can be held. Therefore, the adhesive strength of the bearing sleeve 8 with respect to the housing 7 can be enhanced without deteriorating the bearing performance, particularly the bearing performance of the first thrust bearing portion T1, and this can contribute to the improvement of the reliability of the fluid dynamic bearing device 1. .

さらに、接着剤溜りとしての第1空間15は、第2チャンファ8gと小径部7aの第1内周面7a1との間に形成される空間(第2空間16)に通じるように形成されることから、必要以上に第2チャンファ8gを大きくとって軸受スリーブ8の下側端面8bの面積を縮小させることなく、保持可能な接着剤Gの容量を一層増大させることができる。従って、第1スラスト軸受部T1の軸受性能を低下させることなく上記効果を一層有効に享受することができる。   Further, the first space 15 as an adhesive reservoir is formed so as to communicate with a space (second space 16) formed between the second chamfer 8g and the first inner peripheral surface 7a1 of the small diameter portion 7a. Therefore, the capacity of the adhesive G that can be held can be further increased without taking the second chamfer 8g larger than necessary and reducing the area of the lower end surface 8b of the bearing sleeve 8. Therefore, the above effect can be enjoyed more effectively without deteriorating the bearing performance of the first thrust bearing portion T1.

また、上述のように、接着剤Gの保持容量を増大することができる分、接着剤G塗布量のばらつきを許容することができるので、ハウジング7に対する軸受スリーブ8の組付けを簡略化することができる。   Further, as described above, since the dispersion capacity of the adhesive G can be allowed by the amount that the holding capacity of the adhesive G can be increased, the assembly of the bearing sleeve 8 to the housing 7 can be simplified. Can do.

また、循環路12と周方向位置を異ならせるようにして接着剤溜りとしての第1空間15を周方向で断続的に配置した。すなわち、本実施形態では、循環路12を形成する軸方向溝8d1と周方向位置を異ならせるようにして周方向で断続的に設けた段部13に接着剤Gを塗布して軸受スリーブ8をハウジング7に接着固定したので、軸受スリーブ8の挿入に伴って接着剤Gが軸方向溝8d1内に流れ込み、これによって軸方向溝8d1(循環路12)が埋められてしまう事態を効果的に防止することができる。そのため、ハウジング7の内部空間における潤滑油の流動循環が円滑に行われ、所期の軸受性能を安定的に維持することができる。   Moreover, the 1st space 15 as an adhesive reservoir was intermittently arrange | positioned in the circumferential direction so that the circulation path 12 and the circumferential direction position might differ. That is, in this embodiment, the adhesive sleeve G is applied to the stepped portion 13 provided intermittently in the circumferential direction so as to be different from the axial groove 8d1 forming the circulation path 12 in the circumferential direction. Since it is bonded and fixed to the housing 7, the adhesive G flows into the axial groove 8d1 as the bearing sleeve 8 is inserted, thereby effectively preventing the axial groove 8d1 (circulation path 12) from being filled. can do. Therefore, the lubricating oil flows and circulates smoothly in the inner space of the housing 7, and the desired bearing performance can be stably maintained.

なお、軸受スリーブ8の外周面に軸方向溝を形成するのに替えて、ハウジング7の小径部7aの内周面(さらにはシール部材9の第2シール部9bの内周面9b1)に軸方向溝を形成することで循環路12を形成することも可能である。この場合、小径部7aに形成した軸方向溝への接着剤Gの流れ込みを回避すべく、段部13と軸方向溝の周方向位置とが相互に異なるように位置合わせを行った上で、軸受スリーブ8をハウジング7内周に挿入するのが望ましい。   Instead of forming an axial groove on the outer peripheral surface of the bearing sleeve 8, a shaft is formed on the inner peripheral surface of the small-diameter portion 7a of the housing 7 (and the inner peripheral surface 9b1 of the second seal portion 9b of the seal member 9). It is also possible to form the circulation path 12 by forming a directional groove. In this case, in order to avoid the inflow of the adhesive G into the axial groove formed in the small diameter portion 7a, alignment is performed so that the circumferential position of the step portion 13 and the axial groove is different from each other. It is desirable to insert the bearing sleeve 8 into the inner periphery of the housing 7.

以上では、接着剤溜りとしての第1空間15を軸方向に延びるストレートな部分のみで構成した場合について説明を行ったが、第1空間15は、図4にも示すように、下端が第2空間16に通じて軸方向に延びる部分(以下、これを軸方向部15aという)と、この軸方向部15aの上端から外径側に延びる半径方向部15bとを有する断面逆L字形状とすることもできる。かかる構成の接着剤溜りとしての第1空間15は、同図にも示すように、軸受スリーブ8の段部13との間に所定幅の半径方向隙間および軸方向隙間を形成する段部14を、ハウジング7(小径部7a)の内周に設けることで得ることができる。この段部14は、第1内周面7a1の下側に設けた第1内周面7a1よりも小径の第3内周面7a3と、この第3内周面7a3と第1内周面7a1とをつなぐ段差面7a4とで構成される。   The case where the first space 15 as the adhesive reservoir is configured by only a straight portion extending in the axial direction has been described above, but the lower end of the first space 15 has a second lower end as shown in FIG. The cross section has an inverted L shape having a portion that extends in the axial direction through the space 16 (hereinafter referred to as an axial portion 15a) and a radial portion 15b that extends from the upper end of the axial portion 15a to the outer diameter side. You can also. As shown in the figure, the first space 15 as an adhesive reservoir having such a structure has a step portion 14 that forms a radial gap and an axial gap of a predetermined width with the step portion 13 of the bearing sleeve 8. It can be obtained by providing it on the inner periphery of the housing 7 (small diameter portion 7a). The step portion 14 includes a third inner peripheral surface 7a3 having a smaller diameter than the first inner peripheral surface 7a1 provided below the first inner peripheral surface 7a1, and the third inner peripheral surface 7a3 and the first inner peripheral surface 7a1. It is comprised by the level | step difference surface 7a4 which connects.

かかる構成とすれば、接着剤溜りとして機能する第1空間15がラビリンス構造となるので、接着剤Gの保持能力を一層高めることが可能となる。また一般に、せん断接着強度に比べて引張り接着強度の方が大きい。そのため、接着剤溜りとしての第1空間15の半径方向部15bにおいても接着剤Gを保持するようにすれば、図2に示す形態の第1空間15で接着剤Gを保持する場合に比べてハウジング7に対する軸受スリーブ8の接着強度を一層高めることができる。   With such a configuration, the first space 15 functioning as an adhesive reservoir has a labyrinth structure, so that the holding ability of the adhesive G can be further enhanced. In general, the tensile bond strength is larger than the shear bond strength. Therefore, if the adhesive G is held also in the radial direction portion 15b of the first space 15 as an adhesive reservoir, compared to the case where the adhesive G is held in the first space 15 of the form shown in FIG. The adhesion strength of the bearing sleeve 8 to the housing 7 can be further increased.

なお、第1空間15の半径方向部15bの幅(軸方向寸法)tは、第1および第2スラスト軸受隙間の隙間幅の合計量よりも所定量大きく設定される。仮に半径方向部15bの幅tが両スラスト軸受隙間の隙間幅の合計量よりも小さいと、上述した態様で両スラスト軸受隙間の隙間出しをすることができなくなるからである。もちろん、このような組付け手順を採用しない場合には、かかる寸法設定を採用しなくとも足りる。   Note that the width (axial dimension) t of the radial direction portion 15b of the first space 15 is set larger by a predetermined amount than the total amount of the gap widths of the first and second thrust bearing gaps. This is because if the width t of the radial direction portion 15b is smaller than the total amount of the gap widths of the two thrust bearing gaps, the gaps of the two thrust bearing gaps cannot be formed in the above-described manner. Of course, when such an assembling procedure is not adopted, it is not necessary to adopt such a dimension setting.

また、上記構成の第1空間15において、半径方向部15bの幅tは、軸方向部15aの幅(径方向寸法)dよりも小さく設定している。このようにすれば、毛細管力による接着剤Gの引き込み作用により、第1空間15の軸方向部15a内および第2空間16内で接着剤Gを確実に保持することができる。そのため、軸受スリーブ8の下側端面8b側への接着剤Gの回り込み、またこれに起因した軸受性能の低下を一層効果的に防止することができる。   In the first space 15 having the above-described configuration, the width t of the radial direction portion 15b is set smaller than the width (radial dimension) d of the axial direction portion 15a. In this way, the adhesive G can be reliably held in the axial direction portion 15a of the first space 15 and in the second space 16 by the drawing-in action of the adhesive G by the capillary force. Therefore, it is possible to more effectively prevent the adhesive G from wrapping around the lower end surface 8b of the bearing sleeve 8 and the deterioration of the bearing performance due to this.

図4では、第1空間15の軸方向部15aを形成する軸受スリーブ8の小径外周面8eと、ハウジング7の第3内周面7a3とを全長に亘って軸線と平行なストレートな面とし、軸方向部15aの幅dを全長に亘って一定としているが、軸方向部15aの幅dは、上方に向かって漸次縮小させることもできる。このようにすれば、毛細管力による接着剤Gの引き込み作用により、第1空間15における接着剤Gの保持能力をさらに高めることができる。なお、かかる構成は、図5(a)に示すように、軸受スリーブ8の小径外周面8eを上方に向かって漸次拡径させることによって得ることもできるし、図5(b)に示すように、ハウジング7の第3内周面7a3を上方に向かって漸次縮径させることによって得ることもできる。また、図示は省略するが、軸受スリーブ8の小径外周面8eを上方に向かって漸次拡径させると共にハウジング7の第3内周面7a3を上方に向かって漸次縮径させることによって得ることもできる。   In FIG. 4, the small-diameter outer peripheral surface 8e of the bearing sleeve 8 that forms the axial portion 15a of the first space 15 and the third inner peripheral surface 7a3 of the housing 7 are straight surfaces that are parallel to the axis over the entire length. Although the width d of the axial direction portion 15a is constant over the entire length, the width d of the axial direction portion 15a can be gradually reduced upward. If it does in this way, the retention capability of the adhesive G in the 1st space 15 can further be heightened by the drawing-in action of the adhesive G by capillary force. Such a configuration can be obtained by gradually expanding the small-diameter outer peripheral surface 8e of the bearing sleeve 8 upward as shown in FIG. 5A, or as shown in FIG. 5B. The third inner peripheral surface 7a3 of the housing 7 can also be obtained by gradually reducing the diameter upward. Although illustration is omitted, it can also be obtained by gradually expanding the small-diameter outer peripheral surface 8e of the bearing sleeve 8 upward and gradually reducing the diameter of the third inner peripheral surface 7a3 of the housing 7 upward. .

このように、軸方向部15aの幅dを上方に向かって漸次縮小させる場合に、半径方向部15bの幅tを軸方向部15aの最小幅部(上端部)よりも小さくすれば、第1空間15における接着剤Gの保持能力をさらに高めることができる。   Thus, when the width d of the axial direction portion 15a is gradually reduced upward, if the width t of the radial direction portion 15b is made smaller than the minimum width portion (upper end portion) of the axial direction portion 15a, the first The holding ability of the adhesive G in the space 15 can be further enhanced.

また、以上では、軸受スリーブ8の一端側にのみ段部13を形成した場合について説明を行ったが、段部13は軸受スリーブ8の両端外周に形成しても良い。かかる構成とすれば、軸受スリーブ8の内周面8aや端面に動圧発生部を形成する際の方向依存性が無くなるので、製造工程を簡略化することができる。   Further, the case where the step portion 13 is formed only on one end side of the bearing sleeve 8 has been described above. However, the step portion 13 may be formed on the outer periphery of both ends of the bearing sleeve 8. With such a configuration, since the direction dependency when the dynamic pressure generating portion is formed on the inner peripheral surface 8a and the end surface of the bearing sleeve 8 is eliminated, the manufacturing process can be simplified.

また、以上では、軸受スリーブ8の大径外周面8dをハウジング7の第1内周面7a1に圧入接着した場合について説明を行ったが、軸受スリーブ8の大径外周面8dは、ハウジング7の第1内周面7a1に対して隙間接着するようにしても良い。   In the above description, the case where the large-diameter outer peripheral surface 8d of the bearing sleeve 8 is press-fitted and bonded to the first inner peripheral surface 7a1 of the housing 7 has been described, but the large-diameter outer peripheral surface 8d of the bearing sleeve 8 A gap may be adhered to the first inner peripheral surface 7a1.

以上、本発明の構成を適用した流体軸受装置1の一実施形態について説明を行ったが、以上で示した本発明の構成は、図2に示す構造の流体軸受装置1に限定適用されるものではなく、例えば、図6に示す構造の流体軸受装置1に適用することも可能である。同図に示す流体軸受装置1が図2に示すものと異なる主な点は、シール部材9をリング状に形成すると共にこれをハウジング7の開口部内周に固定し、シール部材9の内周面とこれに対向する軸部2aの外周面との間にのみシール空間S1を形成した点にある。すなわち、本発明を特許文献1に開示された構成の流体軸受装置に適用したものである。なお、図示例では、接着剤溜りとしての第1空間15を図2に示すものと同一の構成としているが、第1空間15の幅を上方に向かって漸次縮小させることもできるし、図4や図5の構成とすることもできる。   Although one embodiment of the hydrodynamic bearing device 1 to which the configuration of the present invention is applied has been described above, the configuration of the present invention described above is limited to the hydrodynamic bearing device 1 having the structure shown in FIG. Instead, for example, the present invention can be applied to the hydrodynamic bearing device 1 having the structure shown in FIG. The main difference of the hydrodynamic bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the seal member 9 is formed in a ring shape and is fixed to the inner periphery of the opening of the housing 7. And the seal space S1 is formed only between the outer peripheral surface of the shaft portion 2a opposed to the shaft portion 2a. That is, the present invention is applied to a hydrodynamic bearing device having a configuration disclosed in Patent Document 1. In the illustrated example, the first space 15 as an adhesive reservoir has the same configuration as that shown in FIG. 2, but the width of the first space 15 can be gradually reduced upward, as shown in FIG. Alternatively, the configuration shown in FIG.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波型軸受を採用しても良い。また、ラジアル軸受部をステップ軸受や多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周側の上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。さらには、ラジアル軸受部R1,R2として動圧発生部を有しないいわゆる真円軸受を、またスラスト軸受部として、軸部材の一端を接触支持するピボット軸受を採用することもできる。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the herringbone shape or spiral shape dynamic pressure grooves. So-called step bearings, multi-arc bearings, or non-circular bearings may be used as the portions R1 and R2, and so-called step bearings and wave bearings may be employed as the thrust bearing portions T1 and T2. Further, when the radial bearing portion is constituted by a step bearing or a multi-arc bearing, in addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, the bearing sleeve 8 It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of the inner peripheral side. Furthermore, a so-called perfect circular bearing having no dynamic pressure generating portion may be used as the radial bearing portions R1 and R2, and a pivot bearing that contacts and supports one end of the shaft member may be employed as the thrust bearing portion.

流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus. 本発明の一実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on one Embodiment of this invention. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す平面図である。(A) is a sectional view of the bearing sleeve, and (b) is a plan view showing a lower end surface of the bearing sleeve. 図2の拡大断面図に示す部分の他の構成例である。FIG. 3 is another configuration example of the part shown in the enlarged sectional view of FIG. 2. FIG. (a)(b)図共に、図2の拡大断面図に示す部分の他の構成例である。(A) (b) Both figures are the other structural examples of the part shown to the expanded sectional view of FIG. 本発明の他の実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ
9 シール部材
9a 第1シール部
9b 第2シール部
13 段部
15 第1空間(接着剤溜り)
15a 軸方向部
15b 半径方向部
16 第2空間
G 接着剤
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 7 Housing 8 Bearing sleeve 9 Seal member 9a First seal part 9b Second seal part 13 Step part 15 First space (adhesive reservoir)
15a Axial direction portion 15b Radial direction portion 16 Second space G Adhesives R1, R2 Radial bearing portions T1, T2 Thrust bearing portions S1, S2 Seal space

Claims (10)

一端を開放し、他端を閉塞したハウジングと、ハウジングの内周に接着固定された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部とを備える流体軸受装置において、
軸受スリーブのハウジング閉塞側の端部外周に、ハウジングとの間で接着剤溜りを形成する段部を設けたことを特徴とする流体軸受装置。
A housing with one end open and the other end closed, a bearing sleeve bonded and fixed to the inner periphery of the housing, a shaft member inserted into the inner periphery of the bearing sleeve, an inner peripheral surface of the bearing sleeve, and an outer periphery of the shaft member In a hydrodynamic bearing device comprising a radial bearing portion that supports a shaft member in a radial direction with an oil film formed in a radial bearing gap between the surface and
A hydrodynamic bearing device, characterized in that a step portion for forming an adhesive reservoir with a housing is provided on an outer periphery of an end portion of the bearing sleeve on the housing closing side.
接着剤溜りが、軸受スリーブのハウジング閉塞側の外周縁部に形成されたチャンファとハウジングの内周面との間に形成される空間に通じている請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the adhesive reservoir communicates with a space formed between a chamfer formed at an outer peripheral edge portion of the bearing sleeve on the housing closing side and an inner peripheral surface of the housing. 接着剤溜りは、一端が前記空間に通じて軸方向に延びる軸方向部と、該軸方向部の他端から外径側に延びる半径方向部とを有するものである請求項2記載の流体軸受装置。   3. The hydrodynamic bearing according to claim 2, wherein the adhesive reservoir has an axial portion extending in the axial direction at one end through the space and a radial portion extending from the other end of the axial portion toward the outer diameter side. apparatus. ハウジングに段部を設け、この段部と軸受スリーブの段部との間に、軸方向部と半径方向部とを形成した請求項3記載の流体軸受装置。   The hydrodynamic bearing device according to claim 3, wherein a step portion is provided in the housing, and an axial portion and a radial portion are formed between the step portion and the step portion of the bearing sleeve. さらに、軸受スリーブの一端面とこれに対向する軸部材の一端面との間の第1スラスト軸受隙間に生じる潤滑流体の動圧作用で軸部材をスラスト一方向に支持する第1スラスト軸受部と、ハウジングの内底面とこれに対向する軸部材の他端面との間の第2スラスト軸受隙間に生じる潤滑流体の動圧作用で軸部材をスラスト他方向に非接触支持する第2スラスト軸受部とを備え、
半径方向部の幅が、第1および第2スラスト軸受隙間の隙間幅の合計量よりも大きく設定された請求項3記載の流体軸受装置。
And a first thrust bearing portion that supports the shaft member in one thrust direction by a dynamic pressure action of a lubricating fluid generated in a first thrust bearing gap between the one end surface of the bearing sleeve and the one end surface of the shaft member facing the bearing sleeve. A second thrust bearing portion for supporting the shaft member in a non-contact manner in the other direction of the thrust by the dynamic pressure action of the lubricating fluid generated in the second thrust bearing gap between the inner bottom surface of the housing and the other end surface of the shaft member facing the housing; With
The hydrodynamic bearing device according to claim 3, wherein the width of the radial portion is set to be larger than a total amount of gap widths of the first and second thrust bearing gaps.
半径方向部の幅が、軸方向部の幅よりも小さく設定された請求項3記載の流体軸受装置。   The hydrodynamic bearing device according to claim 3, wherein a width of the radial portion is set smaller than a width of the axial portion. 軸方向部の幅を、その他端側に向かって漸次縮小させた請求項3記載の流体軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the width of the axial portion is gradually reduced toward the other end side. さらに、ハウジングの内周面と軸受スリーブの外周面との間に形成され、軸受スリーブの両端に開口した一又は複数の循環路を備え、
循環路の形成位置と、接着剤溜りの形成位置とを周方向で相互に異ならせた請求項1記載の流体軸受装置。
Furthermore, it is formed between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve, and includes one or a plurality of circulation paths opened at both ends of the bearing sleeve,
The hydrodynamic bearing device according to claim 1, wherein the formation position of the circulation path and the formation position of the adhesive reservoir are different from each other in the circumferential direction.
さらに、ハウジングの一端をシールするシール部材を備え、シール部材の内周側に第1のシール空間が形成されると共に、シール部材の外周側に第2のシール空間が形成された請求項1記載の流体軸受装置。   2. A seal member for sealing one end of the housing, wherein a first seal space is formed on the inner peripheral side of the seal member, and a second seal space is formed on the outer peripheral side of the seal member. Fluid bearing device. 請求項1記載の流体軸受装置と、ステータコイルと、ロータマグネットとを備えるモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2008211871A 2008-08-20 2008-08-20 Fluid bearing device and motor equipped with the same Withdrawn JP2010048309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211871A JP2010048309A (en) 2008-08-20 2008-08-20 Fluid bearing device and motor equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211871A JP2010048309A (en) 2008-08-20 2008-08-20 Fluid bearing device and motor equipped with the same

Publications (1)

Publication Number Publication Date
JP2010048309A true JP2010048309A (en) 2010-03-04

Family

ID=42065563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211871A Withdrawn JP2010048309A (en) 2008-08-20 2008-08-20 Fluid bearing device and motor equipped with the same

Country Status (1)

Country Link
JP (1) JP2010048309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204371A (en) * 2019-06-18 2020-12-24 Ntn株式会社 Dynamic pressure type bearing unit and motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204371A (en) * 2019-06-18 2020-12-24 Ntn株式会社 Dynamic pressure type bearing unit and motor
JP7313920B2 (en) 2019-06-18 2023-07-25 Ntn株式会社 Hydrodynamic bearing unit and motor

Similar Documents

Publication Publication Date Title
JP5306747B2 (en) Hydrodynamic bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20100166346A1 (en) Dynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP4559336B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5133131B2 (en) Hydrodynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2010106994A (en) Fluid bearing device
JP2010048309A (en) Fluid bearing device and motor equipped with the same
JP2007327588A (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007071312A (en) Dynamic pressure bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP4588561B2 (en) Hydrodynamic bearing device
JP5214401B2 (en) Hydrodynamic bearing device
JP2008267530A (en) Method for manufacturing fluid bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP4647585B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2008298238A (en) Fluid bearing device
JP2006214542A (en) Fluid bearing device
JP2008064123A (en) Fluid bearing device, and its manufacturing method
JP2008111559A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101