JP2006145320A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2006145320A
JP2006145320A JP2004334162A JP2004334162A JP2006145320A JP 2006145320 A JP2006145320 A JP 2006145320A JP 2004334162 A JP2004334162 A JP 2004334162A JP 2004334162 A JP2004334162 A JP 2004334162A JP 2006145320 A JP2006145320 A JP 2006145320A
Authority
JP
Japan
Prior art keywords
hole
substrate
wiring
electrode
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334162A
Other languages
English (en)
Inventor
Sumio Akai
澄夫 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004334162A priority Critical patent/JP2006145320A/ja
Publication of JP2006145320A publication Critical patent/JP2006145320A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 貫通孔配線底部におけるパッケージ基板の欠け等の欠陥発生を防止するとともに、安定した電気的接続を確保することができる半導体装置とその製造方法を提供する。
【解決手段】 パッケージ基板の所定の位置に非貫通孔を形成した後、ウエットエッチング加工によりこの非貫通孔をエッチングして貫通孔とするとともに、その貫通孔内壁面に、金属膜形成手段によりクロムおよびチタンから選ばれる少なくとも1種の金属からなる配線群と、アルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群とを積層した貫通孔配線を形成する。
【選択図】 図1

Description

本発明は、静電容量型圧力センサや加速度センサ、角速度センサ等に用いられる半導体装置およびその製造方法に関する。
一般に、静電容量型半導体センサは、固定電極が形成されたパッケージ基板、可動電極が形成されたデバイス基板、パッケージ基板に設けられた貫通孔、パッケージ基板上に形成された金属電極パターン、および貫通孔内壁面に形成され、可動電極や固定電極と金属電極パターンとを接続する金属膜配線を主な構成要素として備えている。
そして、静電容量型半導体センサは、外部応力(圧力、加速度、衝撃など)の変化を静電容量の変化に変換して検出するものであり、例えば、半導体圧力センサでは、被測定圧力に応じてデバイス基板上に形成された可動電極が変位し、パッケージ基板に形成した固定電極との距離が変化することにより生じる静電容量の変化量を検出している。
すなわち、固定電極と可動電極とを容量ギャップを介して対向するように配置し、被測定圧力に応じて可動電極を固定電極に対して相対的に変位させることによって、被測定圧力と容量ギャップ内の圧力との差を固定電極と可動電極との間の静電容量に変換する方式が採られている。
この静電容量型半導体センサの検出精度を上げるため、デバイス基板にダイアフラム(薄肉部)やビーム(梁)を形成し、このダイアフラム上に可動電極を形成した構造が採られている。さらに、センサの小型化を図るため、パッケージ基板に貫通孔を設け、この貫通孔の内壁面に蒸着等により形成された金属膜配線により、デバイス基板上の可動電極に接続する表面電極やパッケージ基板上の固定電極とパッケージ基板表面の金属電極パターンとを電気的に接続する構造が採られている。
このような半導体センサおよびその製造方法に関する技術について、特許文献1に開示されている。この文献に記載されたマイクロセンサは、パッケージウエハとデバイスウエハとを主な構成要素とし、パッケージウエハに形成された貫通孔(コンタクトホール)に金属蒸着層を連続的に形成することにより、デバイスウエハ上の表面電極とパッケージウエハ上の金属電極パターンとを電気的に接続している。
このように構成した半導体センサでは、貫通孔内壁面に金属膜配線を設けているので、パッケージウエハとデバイスウエハにそれぞれ形成した電極からの信号を外部に取り出すことができる。
特開2001−15768号公報
しかしながら、特許文献1に開示された製造方法では、デバイスウエハの表面にパッケージウエハをボンディングすることにより両者を接合した後に、超音波切削法あるいはサンドブラスト法により貫通孔を形成し、この貫通孔表面に金属膜配線を蒸着により形成している。かかる方法によれば、貫通孔形成時に貫通孔内壁面に微細な傷が入り、表面が荒れた状態となっている。したがって、このような貫通孔形成過程において、凹凸のある表面に超音波切削ピンや微細粉末粒の衝撃が加わり、特に貫通孔底部のパッケージウエハエッジ部に欠けやひび割れ等の欠陥が発生しやすい。
また、金属膜配線が単一層で形成されるため、貫通孔内壁面、特に貫通孔底部において金属膜蒸着時に加わる熱歪も大きなものとなる。特許文献1では貫通孔底部にラウンド部を設けているものの、この貫通孔内壁面の表面凹凸のため、金属膜蒸着時の熱歪による表面凹部への応力集中によって貫通孔底部のパッケージウエハエッジ部に欠けやひび割れ等の欠陥が発生するのを避けられない。
そして、このようなパッケージウエハエッジ部の欠けが、場合によっては金属蒸着膜の断線を招くといった問題があった。また、それゆえに、貫通孔底部において安定した電気的接続が確保できないといった問題があった。
なお、特許文献1には、従来技術として、貫通孔を形成した後に、デバイスウエハとパッケージウエハを接合し、その後貫通孔表面に金属膜配線を蒸着する方法が記載されている。この方法でも、貫通孔形成時に貫通孔内壁面に微細な傷が形成され、表面が荒れた状態となっているため、当然のことながら、貫通孔形成時ならびに金属膜蒸着時において貫通孔底部のパッケージウエハエッジ部に欠け等の欠陥が生じるのを避けられなかった。
さらに、このような方法では、デバイスウエハとパッケージウエハとを個別に製造することができないため、上記のような問題が生じた場合、製品の歩留まりが悪くなるといった問題もあった。
本発明は、かかる問題を解決するためになされたものであり、貫通孔底部におけるパッケージウエハエッジ部に欠け等の欠陥が発生を防止するとともに、安定した電気的接続を確保することを目的としている。さらに、製品の歩留まりを向上させることをも目的としている。
本発明は、パッケージ基板(第2の基板)の貫通孔内壁面に形成される金属膜(貫通孔配線)の構造と材質を適正化することにより、さらには、貫通孔を最終的にウエットエッチング加工により形成することで貫通孔内壁面の表面凹凸を低減することによって、貫通孔形成時のみならず、貫通孔配線形成時において、貫通孔底部のパッケージ基板エッジ部における欠けやひび割れ等の欠陥の発生を防止するとともに、貫通孔底部において安定した電気的接続を確保するものである。さらに、本発明ではパッケージ基板の表面粗度を適正範囲内に調整することにより、このパッケージ基板エッジ部の欠け等の発生をより効果的に防止することができる。
また、本発明は、パッケージ基板の貫通孔内壁面に金属膜を形成した後に、陽極接合により可動電極に接続する表面電極と貫通孔金属膜底部を接合するものである。貫通孔配線表面の凹凸を低減し、デバイス基板表面に形成した表面電極の材質を適正化することにより、貫通孔配線底部と表面電極との陽極接合反応を速やかに進行させ、安定した信頼性の高い電気的接続を確保するものである。
そして、本発明の製造方法では、パッケージ基板とデバイス基板を個別に製造し、不良な基板が見つかった場合、それらを製造工程の途中で取り除けるため、最終的な製品の歩留まりを向上させることができる。
以下、特許請求の範囲に掲げた内容に沿って本発明を説明する。
請求項1に係る発明は、主表面に電極を有する第1の基板と、この電極と相対する領域に貫通孔を有し、第1の基板上に積層された第2の基板とを備え、貫通孔の内壁面に形成した貫通孔配線と前記電極とを電気的に接続してなる半導体装置において、貫通孔配線は、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる配線群を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群を積層してなることを特徴としている。
この請求項1の発明によれば、貫通孔配線の配線群を2層に分けて形成するため、貫通孔底部に発生する熱歪を低く抑えることができ、このことにより表面凹凸に起因する応力集中を緩和し、貫通孔配線底部において第2の基板エッジ部の欠け等が発生するのを防止することができる。
貫通孔配線の基板側配線群をクロムおよびチタンから選ばれる少なくとも1種の金属で構成することにより、基板との密着性が高く、強固に積層された貫通孔配線とすることができる。また、表面側配線群をアルミニウム、アルミニウム合金、金および金−錫合金から選ばれ選ばれる少なくとも1種の金属で構成することによって、比較的軟らかく表面凹凸の少ない滑らかな貫通孔配線を形成することができる。この表面側配線群の金属は耐食性にも優れており、種々の環境下において、信頼性の高い貫通孔配線とすることができる。
また、請求項2に係る発明は、請求項1の発明において、電極が、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる層を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる層を積層してなることを特徴としている。
この請求項2の発明によれば、第1の基板と第2の基板とを陽極接合する際に、第2の基板に形成された貫通孔配線底部と第1の基板に形成された電極との接合反応を促進することができ、貫通孔配線と電極とを強固にかつ接合不良等の欠陥を生じることなく接合することができる。
請求項3に係る発明は、請求項1または請求項2の発明において、第2の基板の少なくとも第1の基板と対向する表面の表面粗度が中心線最大粗さRmaxで0.1μm以下であることを特徴としている。
この請求項3の発明によれば、第2の基板エッジ部の表面凹凸に起因する応力集中を緩和し、貫通孔配線底部において第2の基板エッジ部の欠け等の欠陥が発生するのを効果的に防止することができる。
次に、請求項4に係る発明は、請求項1の構成を有する半導体装置の製造方法であって、第2の基板の前記電極と相対することとなる領域に非貫通孔を形成した後、ウエットエッチング加工により非貫通孔をエッチングして貫通孔とし、この貫通孔の内壁面に金属膜形成手段により、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる配線群を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群を積層してなる貫通孔配線を形成した後、第1の基板の電極と第2の基板の貫通孔を対向配置し、電極と貫通孔配線とを接合することを特徴としている。ここで、非貫通孔は、サンドブラスト加工法あるいはその他の加工法により穿孔され、最終的にウエットウッチング法により貫通孔に加工形成される。また、電極と貫通孔配線とは、第1の基板と第2の基板とを陽極接合するに際して、同時に陽極接合されることになる。
この請求項4の発明によれば、最終的に貫通孔をウエットエッチング加工により形成することにより、貫通孔形成時において第2の基板エッジ部に欠け等の欠陥が発生するのを完全に防止することができる。しかも、サンドブラスト加工等により形成された表面凹凸を滑らかにすることができ、さらには貫通孔配線の配線群を2層に分けて形成するため、貫通孔配線形成時において熱歪による応力集中を緩和することができ、より効果的に第2の基板エッジ部に欠け等の欠陥が発生するのを防止することができる。また、貫通孔配線の表面自体も滑らかなものとすることができるため、安定した電気的接続を実現することができる。
また、最終的にウエットエッチング加工された貫通孔の内壁面に上記金属からなる基板側配線群と表面側配線群とを形成することにより、その表面を比較的軟らかく滑らかなものとすることができ、このことから陽極接合時において貫通孔配線底部と電極との接合反応をスムーズに進行させることができ、欠陥のない安定した電気的接続を実現することができる。
請求項5に係る発明は、請求項4の発明で、貫通孔配線を形成する工程において、貫通孔を形成した第2の基板をダミー基板に対向配置し、貫通孔の第1の基板と相対する側の開口部を塞ぐように貫通孔配線を形成し、その後、ダミー基板を除去することを特徴としている。このような開口部を塞ぐ貫通孔配線は、望ましくは開口部を全て塞ぐように形成されるが、開口部の一部を塞ぐように形成されても良い。
この請求項5の発明によれば、陽極接合時に、第2の基板の貫通孔開口部を閉塞するように形成された貫通孔底部の配線群と第1の基板に形成された電極とを接合することになり、接合時の金属反応をスムーズに進行させて、欠陥のない安定した電気的接続を確保することができる。
さらに、請求項6に係る発明は、請求項4または請求項5の発明において、第2の基板の少なくとも第1の基板と対向する表面の表面粗度が中心線最大粗さRmaxで0.1μm以下であることを特徴としている。
この請求項6の発明によれば、第2の基板エッジ部の表面凹凸に起因する応力集中を緩和し、貫通孔配線底部において第2の基板エッジ部の欠け等の欠陥が発生するのを顕著に防止することができる。
本発明によれば、サンドブラスト加工とウエットエッチング加工からなる工法により第2の基板に貫通孔を形成することにより貫通孔内壁面の表面凹凸を低減し、また、貫通孔内壁面に形成される貫通孔配線ならびに第1の基板表面に形成される表面電極の構造と材質を適正化することにより、貫通孔配線底部におけるパッケージ基板エッジ部の欠け等の発生を防止することができ、安定した信頼性の高い電気的接続を確保することができる。さらに、本発明によれば、第1の基板と第2の基板を個別に製造できるため、最終的な製品の歩留まりを向上させることができる。
(実施例1)
以下、本発明の実施形態(実施例1)を、静電容量型の半導体圧力センサの場合を例にとって、図1〜図2を参照して説明する。図1は半導体圧力センサ1(半導体装置)の全体構成を模式的に示す縦断面図、図2は貫通孔周辺の構成を拡大して示す縦断面図(a:陽極接合前、b:陽極接合後)である。図中の符号11はデバイス基板(第1の基板)、21はパッケージ基板(第2の基板)、15は表面電極、23は貫通孔(コンタクトホール)、24は貫通孔配線である。
図1および図2において、デバイス基板(第1の基板)11は薄肉部(ダイアフラム)12と梁(ビーム)13を有し、この薄肉部12の主表面(パッケージ基板21に対向する面)側に可動電極14が形成されており、表面電極15はこの可動電極14と電気的に接続され、デバイス基板11上の同じ主表面側に配設されている。
また、パッケージ基板(第2の基板)21は、密封された容量ギャップ26を介して可動電極14に対向する位置に固定電極25が形成されており、デバイス基板11上に載置され、陽極接合により接合されている。
さらに、デバイス基板11の主表面と反対側の面には、圧力導入孔32を有するガラス基板31が積層されている。外部圧力は圧力導入孔32を介してダイアフラム12に導かれ、外部圧力の変化に対応して可動電極14を変位させることになる。このときの固定電極25と可動電極14との距離が変化することにより容量値に変化が生じ、この容量値変化を検出することにより外部圧力を計測することができる。
表面電極15は、貫通孔23の内壁面に形成された貫通孔配線24と電気的に接続され、可動電極14の電気信号は表面電極15および貫通孔配線24を介してパッケージ基板21上面にて外部に取り出されることになる。また、図示されていないが、固定電極25もまた同様の貫通孔配線によりパッケージ基板21上面に接続され、固定電極25の電気信号が外部に取り出されている。
貫通孔配線24は、貫通孔23内壁面に形成された金属薄膜であり、クロムおよびチタンから選択される少なくとも1種の金属からなる配線群(基板側=下層)24aと、アルミニウム、アルミニウム合金、金および金−錫合金から選択される少なくとも1種の金属からなる配線群(表面側=上層)24bとから構成されている。貫通孔配線24の基板側配線群24aおよび表面側配線群24bの厚みは、それぞれ例えば1〜2μm程度が好適である。
また、表面電極15は、アルミニウム、アルミニウム合金、金および金−錫合金から選択される少なくとも1種の金属からなる金属層を有し、貫通孔配線24の場合と同様、この金属層を上層として、その下層にクロムおよびチタンから選択される少なくとも1種の金属からなる金属層を有する構成とするのが好ましい。そして、この貫通孔配線24と表面電極15の金属層(上層)とは、デバイスウエハとパッケージ基板との接合時に、併せて接合されることになる。表面電極15の厚みも例えば1〜2μm程度が好適である。
下層配線群24aのクロムやチタンは基板との密着性が高く、上層配線群24bのアルミニウム、アルミニウム合金、金や金−錫合金は耐腐食性に優れるとともに、表面凹凸の少ない滑らかな貫通孔配線表面を形成することができる。このことにより、表面凹凸に起因する応力集中を緩和し、貫通孔配線底部において第2の基板エッジ部の欠け等が発生するのを防止することができる。なお、金−錫合金としては錫を約20重量%含み、残部が金からなる合金が好適である。
パッケージ基板21として、ガラス(例えばホウ珪酸ガラスやアルミノ珪酸ガラスなど)またはセラミックス(例えばアルミナ、窒化アルミなど)からなる絶縁性基板が用いられる。パッケージ基板の厚みは、例えば300〜700μm程度である。その基板表面(おもて面および裏面)は鏡面研磨加工により仕上げられ、その表面粗度を中心線最大粗さRmaxで0.1μm以下とするのが好ましい。パッケージ基板として、表面粗さが中心線最大粗さRmaxで0.1μm以下まで鏡面加工した厚さ500μm程度の絶縁基板(ホウ珪酸ガラス)を用いるのが好ましい。
パッケージ基板21の片側の表面には、金属膜(一例としてクロムやアルミ合金、金合金など)を形成し、パターニングした固定電極25が形成される。固定電極25の厚みは、例えば1〜2μm程度が好適である。
デバイス基板11は、その材質がシリコンで、例えば厚さ400μm程度のものが用いられる。デバイス基板11に形成される可動電極14も、同様の金属膜(一例としてクロムやアルミ合金、金合金など)が用いられ、可動電極14の厚みは、例えば1〜2μm程度が好適である。なお、デバイス基板11の抵抗率を小さくする(1mΩ・cm以下)ことにより、デバイス基板11自体を表面電極15や表面電極15との接続配線とすることも可能である。
さらに、図示されていないが、パッケージ基板21表面には貫通孔23に接続する金属電極パターンが形成されており、可動電極や固定電極の電気信号を外部に取り出すためのチップを備えている。パッケージに実装する際、このチップとパッケージ電極とをワイヤボンディングにより電気的に接続する。金属電極パターンの材料としては、例えば、シリコンや銅などを含むアルミ合金、クロム、金、金−錫合金などが挙げられ、それらを単独または2種類以上積層した状態で形成される。その厚みは数μm程度である。
次に、本発明の実施形態(実施例1)における静電容量型の半導体圧力センサの製造方法を、図3を参照して説明する。図3は本実施形態の半導体圧力センサ(半導体装置)の製造方法を手順を追って示す同装置の縦断面図である。
本実施形態(実施例1)においては、図3に示すように、(a)容量ギャップ形成工程、(b)貫通孔形成工程、(c)貫通孔配線形成工程、(d)固定電極・配線形成工程を経てパッケージ基板を作製し、他方で(e)薄肉部形成工程、(f)可動電極・表面電極形成工程を経てデバイス基板を作製する。そして、最後にパッケージ基板とデバイス基板とを(g)陽極接合工程で接合し、半導体圧力センサを製造する。
まず、図3(a)に示すように、容量ギャップ形成工程において、パッケージ基板21の一表面をエッチング用マスク41で覆い、パターニングにより所定の位置(凹部22形成位置)のマスクを除去した後、サンドブラスト法(粒径を制御した砂を高速で照射して穿孔加工する方法)によるエッチング加工を行うことにより、平滑な底面を有する凹部(容量ギャップ)22を形成する。
次に、図3(b)に示すように、貫通孔形成工程において、凹部(容量ギャップ)22を形成した面の反対側の表面をエッチング用マスク41’で覆い、パターニングにより所定の位置(貫通孔23形成場所)のマスクを除去した後、第1段階として非貫通孔を形成するためのエッチング加工を行う。このエッチング加工では、パッケージ基板21を貫通させずに穿孔操作を停止することとし、そのエッチング深さは、パッケージ基板厚みの50〜90%とすることが望ましい。この非貫通孔形成のためのエッチング加工法としては、サンドブラスト法、DEEP−RIE(Deep−Reactive Ion Etching)法、マイクロドリルを用いた超音波切削法等が使用できる。これらの加工法の中でサンドブラスト法が好ましく、サンドブラスト加工によると、小径でかつ狭ピッチの貫通孔を精度よく形成することができる。
そして、上記のエッチング加工の後、第2段階としてフッ酸を含む水溶液に浸漬してウエットエッチング加工を行い、パッケージ基板21を貫通する貫通孔23を形成させる。第1段階のエッチング加工により形成された非貫通孔内壁面の表面凹凸は、このウエットエッチング加工により平滑化されることから、表面に吸着するガスを低減できる。また、ウエットエッチングにより貫通孔23を形成することから、貫通孔23底部におけるパッケージ基板21の欠陥(欠けやひび割れ等)を防止できる。
エッチング用マスクの材料としては、レジンやガラス基板などが使用される。エッチング用マスクは、サンドブラスト加工の際だけでなく、ウエットエッチングする際にも使用できる。
続いて、貫通孔を形成した後、貫通孔配線形成工程において、図3(c)に示すように、スパッタリングにより貫通孔23内壁面およびその周辺のパッケージ基板21上に金属膜を形成する。スパッタリング源(ターゲット)として、第一段階ではクロムおよびチタンからなる群から選択された1種の金属を用い、第二段階ではアルミニウム、アルミニウム合金、金および金−錫合金からなる群から選択された1種の金属を用いる。パッケージ基板21上の金属膜は、パターニングした後、エッチング加工を行うことにより所望の形状の貫通孔周辺配線とすることができる。
このような操作により、貫通孔23内壁面に、それぞれ任意の金属からなる配線群を積層した貫通孔配線(金属膜配線)24を形成することができる。ここで、下層24aを構成するクロムやチタンは基板との密着性が高いため、貫通孔内壁面と強固に結合した貫通孔配線24を形成することができる。また、上層24bを構成するアルミニウム、アルミニウム合金、金や金−錫合金は耐腐食性に優れ、軟らかくて表面凹凸を低減できるため、高い信頼性と安定性をもつ貫通孔配線24とすることができる。
なお、貫通孔配線の形成手段として、スパッタリングの他に、メッキ法や他の化学的または物理的蒸着法を用いることができる。
さらに続いて、図3(d)に示すように、固定電極・配線形成工程において、パッケージ基板21の凹部(容量ギャップ)22を形成した側の表面上にスパッタリングにより金属膜を形成する。スパッタリング源(ターゲット)として、貫通孔配線形成工程で用いたものと同様のものを用いる。すなわち、貫通孔配線24の開口部周辺のスパッタリングには、第1層用としてクロム、チタンから選ばれる少なくとも1種の金属、第2層用としてアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属を用い、固定電極25およびそれに連接する配線部分のスパッタリングには、これらの第1層用ならびに第2層用の金属から選ばれた1種の金属(一例としてクロム、アルミニウム合金、金合金などの金属)を用いる。そして、凹部22底面の所定の位置(固定電極25およびそれに連接する配線(図示せず)の形成位置)および貫通孔配線24の開口部周辺をパターニングした後、エッチング加工を行うことにより、パターニングを行った部分を除いてパッケージ基板21上の金属膜を除去する。このような操作により凹部22底面上の所定の位置に固定電極25とそれに連接する配線を形成するとともに、貫通孔配線24の開口部周辺に貫通孔配線24に連接する貫通孔配線展開層24’を形成する。
他方、デバイス基板11については、まず、図3(e)に示すように、薄肉部形成工程において、デバイス基板11の一表面にエッチング用マスク(レジストなど)を形成した後、パターニングにより所定の位置(薄肉部12の形成位置)のマスクを除去し、さらにエッチングを行うことにより薄肉部12を形成する。
次に、図3(f)に示すように、可動電極・表面電極形成工程において、薄肉部12の形成位置に対応してその反対側のデバイス基板11表面上にスパッタリングにより金属膜を形成する。スパッタリング源(ターゲット)として、表面電極15の形成位置のスパッタリングには、第一段階でクロムおよびチタンからなる群から選択された1種の金属を用い、第二段階でアルミニウム、アルミニウム合金、金および金−錫合金からなる群から選択された1種の金属を用い、可動電極14の形成位置のスパッタリングには、一例としてクロム、アルミニウム合金、金合金などの金属を用いる。そして、デバイス基板11表面の所定の位置(可動電極14および表面電極15の形成位置)をパターニングした後、エッチング加工を行うことにより、パターニングを行った部分を除いてデバイス基板11上の金属膜を除去し、所定の位置に可動電極14および表面電極15を形成する。
そして最後に、図3(g)に示すように、陽極接合工程において、貫通孔配線24を形成したパッケージ基板21と表面電極15を形成したデバイス基板11とを陽極接合する。この陽極接合方法・条件の一例として、パッケージ基板21(ホウ珪酸ガラス)を負極とし、デバイス基板11(シリコン)を正極として、400℃で600Vの直流電圧を印加する。この陽極接合工程では、パッケージ基板21とデバイス基板11を接合するとともに、パッケージ基板21の貫通孔配線24底部とデバイス基板11上の表面電極15をも同時に接合することができる。
なお、実施例1では、表面電極15を2層構造としているが、これはデバイス基板11との密着性、貫通孔配線24底部との接合性を向上させるためのものであり、いずれか1層であっても実用性能上に支障はない。
(実施例2)
次に、本発明の別の実施形態(実施例2)となる静電容量型の半導体圧力センサの製造方法を、図4を参照して説明する。図4は本実施形態の半導体圧力センサ(半導体装置)の製造方法を手順を追って示す同装置の縦断面図である。製造される圧力センサの構成・断面構造は、図1および図2に示されるものと同様である。
本実施形態(実施例2)においては、図4に示すように、(a)容量ギャップ形成工程、(b)貫通孔形成工程、(c)貫通孔配線形成工程、(d)固定電極・配線形成工程を経てパッケージ基板を作製するが、(c)貫通孔配線形成工程と(d)固定電極・配線形成工程において実施例1の場合と作製方法が異なる。なお、デバイス基板を作製する手順、ならびにパッケージ基板とデバイス基板とを陽極接合して半導体圧力センサを製造する手順については、実施例1の場合と同様である。ここでは、実施例1と同様の手順となる工程については説明を省く。
まず、図4(c)に示すように、貫通孔配線形成工程において、貫通孔を形成した第2の基板21の凹部22を形成した側の面にダミー基板51を当接配置した状態で、スパッタリングによりクロム、チタンから選ばれる少なくとも1種の金属からなる配線群(第1層)とアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群(第2層)とを積層して貫通孔配線を形成する。スパッタリング源に関しては、実施例1で述べたものと同様である。この実施例2で形成される貫通孔配線は、その底部(貫通孔の第1の基板と相対する側の開口部)においても上記の第1層と第2層が重なり、その開口部を塞ぐように形成される。なお、ダミー基板には、例えば、ガラス基板やシリコン基板を用いることができる。
次に、ダミー基板51を取り除いた後、図4(d)に示すように、固定電極・配線形成工程において、パッケージ基板21の凹部(容量ギャップ)22を形成した側の表面上にスパッタリングにより金属膜を形成する。スパッタリング源(ターゲット)には、貫通孔配線形成工程で用いたものと同様のもの(一例としてクロム、アルミニウム合金、金合金などの金属)を用いる。そして、凹部22底面上の所定の位置(固定電極25およびそれに連接する配線(図示せず)の形成位置)をパターニングした後、エッチング加工を行うことにより、パターニングを行った部分を除いてパッケージ基板21上の金属膜を除去し、凹部22底面上の所定の位置に固定電極25とそれに連接する配線を形成する。
そして最後に、図4(g)に示すように、陽極接合工程において、実施例1の場合と同様にして、貫通孔配線24を形成したパッケージ基板21と表面電極15を形成したデバイス基板11、およびパッケージ基板21の貫通孔配線24底部とデバイス基板11上の表面電極15を同時に接合する。
以上の実施例1および実施例2では、静電容量型の半導体圧力センサの場合を例にとって本発明の半導体装置とその製造方法について説明したが、本発明の半導体装置はこの半導体圧力センサに限定されるものではなく、当然のことながら、同様な構造をもつ半導体センサ全般ならびに他の半導体装置にも適用できる。
本発明の実施形態である半導体装置の縦断面図である。 本発明の実施形態である半導体装置の貫通孔部周辺を拡大した縦断面図である。 本発明の実施形態である半導体装置の製造方法を示す同装置の縦断面図(a:陽極 接合前、b:陽極接合後)である。 本発明の別の実施形態である半導体装置の製造方法を示す同装置の縦断面図である。
符号の説明
11 デバイス基板(第1の基板)
12 ダイアフラム(薄肉部)
13 ビーム(梁)
14 可動電極(第1の電極)
15 表面電極(デバイス基板上電極パターン)
21 パッケージ基板(第2の基板)
22 凹部(容量ギャップ)
23 貫通孔
24 貫通孔配線(金属膜配線)
24a クロムまたはチタンからなる配線群(第1層)
24b アルミニウム、金または金−錫合金からなる配線群(第2層)
24’ 貫通孔配線展開層
25 固定電極(第2の電極)
31 第3の基板(ガラス基板)
32 圧力導入孔
41,41’ エッチング用マスク
51 ダミー基板

Claims (6)

  1. 主表面に電極を有する第1の基板と、該電極と相対する領域に貫通孔を有し、前記第1の基板上に積層された第2の基板とを備え、前記貫通孔の内壁面に形成した貫通孔配線と前記電極とを電気的に接続してなる半導体装置において、
    前記貫通孔配線は、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる配線群を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群を積層してなることを特徴とする半導体装置。
  2. 前記電極は、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる層を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる層を積層してなることを特徴とする請求項1に記載の半導体装置。
  3. 前記第2の基板の少なくとも前記第1の基板と対向する表面の表面粗度が、中心線最大粗さRmaxで0.1μm以下であることを特徴とする請求項1または2に記載の半導体装置。
  4. 主表面に電極を有する第1の基板と、該電極と相対する領域に貫通孔を有し、前記第1の基板上に積層された第2の基板とを備え、前記貫通孔の内壁面に形成した貫通孔配線と前記電極とを電気的に接続してなる半導体装置の製造方法であって、
    前記第2の基板の前記電極と相対することとなる領域に非貫通孔を形成した後、ウエットエッチング加工により該非貫通孔をエッチングして貫通孔とし、前記貫通孔の内壁面に金属膜形成手段により、基板側にクロムおよびチタンから選ばれる少なくとも1種の金属からなる配線群を、表面側にアルミニウム、アルミニウム合金、金および金−錫合金から選ばれる少なくとも1種の金属からなる配線群を積層してなる貫通孔配線を形成した後、前記第1の基板の前記電極と前記第2の基板の前記貫通孔を対向配置し、前記電極と前記貫通孔配線とを接合することを特徴とする半導体装置の製造方法。
  5. 前記貫通孔配線を形成する工程において、貫通孔を形成した前記第2の基板をダミー基板に対向配置し、前記貫通孔の前記第1の基板と相対することとなる側の開口部を塞ぐように前記貫通孔配線を形成し、その後、前記ダミー基板を除去することを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記第2の基板の少なくとも前記第1の基板と対向する表面の表面粗度が、中心線最大粗さRmaxで0.1μm以下であることを特徴とする請求項4または請求項5に記載の半導体装置の製造方法。
JP2004334162A 2004-11-18 2004-11-18 半導体装置およびその製造方法 Pending JP2006145320A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334162A JP2006145320A (ja) 2004-11-18 2004-11-18 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334162A JP2006145320A (ja) 2004-11-18 2004-11-18 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2006145320A true JP2006145320A (ja) 2006-06-08

Family

ID=36625190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334162A Pending JP2006145320A (ja) 2004-11-18 2004-11-18 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2006145320A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090215A (ko) * 2018-02-19 2020-07-28 후지 덴키 가부시키가이샤 반도체 모듈 및 그 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090215A (ko) * 2018-02-19 2020-07-28 후지 덴키 가부시키가이샤 반도체 모듈 및 그 제조 방법
KR102454589B1 (ko) * 2018-02-19 2022-10-13 후지 덴키 가부시키가이샤 반도체 모듈 및 그 제조 방법
US11749581B2 (en) 2018-02-19 2023-09-05 Fuji Electric Co., Ltd. Semiconductor module and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4919984B2 (ja) 電子デバイスパッケージとその形成方法
JP4688600B2 (ja) 半導体センサの製造方法
US7803649B2 (en) Angular rate sensor and method of manufacturing the same
JP4353939B2 (ja) Mems素子パッケージおよびその製造方法
US8071413B2 (en) Micro-electro-mechanical system (MEMS) sensor and method for making same
JP2007000986A (ja) マイクロ構造体
CN104793015B (zh) 加速度计内嵌压力传感器的单硅片复合传感器结构及方法
JP2006047279A (ja) ガラス基板及びそれを用いた静電容量型圧力センサ
KR100928761B1 (ko) 커패시턴스형 동적량 센서 및 그 제조 방법
JP2006186376A (ja) Mems素子パッケージおよびその製造方法。
KR100314622B1 (ko) 마이크로 센서 및 그 패키지방법
JP2006145320A (ja) 半導体装置およびその製造方法
US10048286B2 (en) Wafer level package of MEMS sensor and method for manufacturing the same
JP2005039078A (ja) 薄板基板構造形成用ウエーハ基板、この製造方法およびmems素子の製造方法
JP5331799B2 (ja) 多層基板の金属配線の製造方法及びその構造
JP2007184810A (ja) 圧電振動子の製造方法
CN101993033B (zh) 微机电的结构及制造方法
JP4356217B2 (ja) 電子部品の製造方法及び電子部品
JP5294375B2 (ja) 角速度センサ及び電子機器
JP4865686B2 (ja) 加速度センサの製造方法および加速度センサ
JP2010054210A (ja) 静電容量型半導体物理量センサの製造方法及び静電容量型半導体物理量センサ
JP4631406B2 (ja) 半導体部品の電気信号取り出し部構造及びその製造方法
JP4820590B2 (ja) 静電容量型圧力センサ素子
JP5262658B2 (ja) 力学量センサおよびその製造方法
JP2007220780A (ja) 半導体デバイスの製造方法