JP2006122686A - 超音波血管測定装置および方法 - Google Patents

超音波血管測定装置および方法 Download PDF

Info

Publication number
JP2006122686A
JP2006122686A JP2005314576A JP2005314576A JP2006122686A JP 2006122686 A JP2006122686 A JP 2006122686A JP 2005314576 A JP2005314576 A JP 2005314576A JP 2005314576 A JP2005314576 A JP 2005314576A JP 2006122686 A JP2006122686 A JP 2006122686A
Authority
JP
Japan
Prior art keywords
image
intensity
concentration
information
tissue structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005314576A
Other languages
English (en)
Other versions
JP5805357B2 (ja
Inventor
Helmuth Fritz
ヘルムート、フリッツ
Terry Fritz
テリ、フリッツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Sonosite Inc
Original Assignee
Fujifilm Sonosite Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Sonosite Inc filed Critical Fujifilm Sonosite Inc
Publication of JP2006122686A publication Critical patent/JP2006122686A/ja
Application granted granted Critical
Publication of JP5805357B2 publication Critical patent/JP5805357B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Abstract

【課題】超音波イメージング方法における限界を補償するIMT測定方法を提供すること。
【解決手段】超音波画像などの画像に含まれる動脈壁の境界をはじめとするさまざまな組織構造アスペクトを識別するシステムおよび方法を開示する。識別した組織構造アスペクトに対する情報を用いて、さまざまな測定値を得ることができる。例えば、内膜中膜複合体厚も得られる。さらに、または別法として、画像の濃度を決定することなどにより、動脈内のプラークなどの組織構造アスペクトを特徴付けることも可能である。1枚の画像に含まれる組織構造アスペクトの識別に用いた測定値データなどのさまざまな情報を、格納して、ビデオシーケンス画像などの後続画像に適用することができる。
【選択図】図4

Description

本発明は、血管を含む脈管構造に関するデジタル画像(digital image)を処理する方法および装置に関する。より具体的に、本発明は、総頚動脈に関する超音波画像(ultrasonic image)を解釈実行するする方法に関する。
本願は、2002年4月7日に出願された米国特許出願第10/407,682号、「METHOD,APPARATUS,AND PRODUCT FOR ACCURATELY DETERMINING THE INTIMA−MEDIA THICKNESS OF A BLOOD VESSEL」の一部継続出願である、2003年10月9日に出願された米国特許出願第10/682,699号、「ULTRASONIC BLOOD VESSEL MEASUREMENT APPARATUS AND METHOD」の一部継続出願であり、上記両特許から、2002年11月6日に出願された米国特許仮出願第60/424,027号、「METHOD AND APPARATUS FOR INTIMA−MEDIA THICKNESS MEASURING MECHANISM EMBEDDED IN ULTRASOUND IMAGING DEVICE」、2002年11月8日に出願された同第60/424,464号、「METHOD AND APPARATUS FOR MEASURING INTIMA−MEDIA THICKNESS ACROSS MULTIPLE SIMILAR IMAGES」、2002年11月8日に出願された同第60/424,471号、「METHOD AND APPARATUS FOR INCORPORATING INTIMA−MEDIA TAPERING EFFECTS ON INTIMA−MEDIA THICKNESS CALCULATIONS」、2002年11月8日に出願された同第60/424,463号、「METHOD AND APPARATUS FOR USING ULTRASOUND IMAGES TO CHARACTERIZE ARTERIAL WALL TISSUE COMPOSITION」、および2002年11月8日に出願された同第60/424,465号、「METHOD AND APPARATUS FOR REGENERATION OF INTIMA−MEDIA THICKNESS MEASUREMENTS」までについて優先権を主張するものである。上記特許内容を本明細書内に援用する。
冠動脈疾患(CAD)は、酸素および栄養分を運搬する血液を心臓に供給する動脈が狭窄した状態である。CADは、息切れやアンギナ、悪くすると心臓発作の原因となり得る。この動脈の狭窄状態は通常、プラークの堆積、すなわち言い換えれば、アテローム動脈硬化負荷量の増加により生じる。プラークが堆積されると、脳卒中、心臓発作、およびプラーク片が動脈壁から剥がれて、より細い血管を閉塞して起こる塞栓症の危険性が高まる。動脈壁が破断し、その破断部分をカバーしている血餅部分が剥離する危険性は、血餅形成直後でまだこれが軟らかく、細分化されやすい段階で特に大きい。
冠状動脈のアテローム動脈硬化負荷量を測定することは、これ自体が難しく、侵襲性である。しかも、危険度の予知には、アテローム動脈硬化負荷量と進展速度との両方の測定が必要となる場合が多い。したがって、この予知には、長時間にわたる複数の侵襲性処置が行われる。CADの治療にはまた、治療の有効性を測るための侵襲性処置がさらに必要となる。
首の皮膚近くに位置する頚動脈は、冠状動脈のアテローム動脈硬化負荷量をそのまま示すことがわかっている。また、これまでの研究から、冠状動脈内のアテローム動脈硬化負荷量を減らすと、頚動脈内の負荷量も平行して同様に減ることがわかっている。
この頚動脈の超音波画像を解析することが、アテローム動脈硬化負荷量を測定する1つの非侵襲式方法である。1つの適した方法として、高解像度B−モード超音波検査法により、こうした画像を生成することができる。超音波画像から通常、頚動脈壁を含むさまざまな層のデジタル画像が得られるため、これから、アテローム性動脈硬化症の程度を決定または推定することができる。磁気共鳴画像法(MRI)および高周波画像法などの他の画像法システムからも同様に、頚動脈のデジタル画像を得ることができる。
頚動脈壁は、血流に最も近く位置して脂肪材料およびプラークの沈着物で厚くなる、または厚く見える内膜と、内膜に隣接し、高血圧症により厚くなる中膜と、動脈壁の構造上の支持部となる外膜とを含む。血液の流れるチャネルがルーメンである。内膜層と中膜層を組み合わせた厚さ、すなわち内膜中膜複合体厚(IMT)は、動脈の状態を反映するため、初期のアテローム動脈硬化性疾患を正確に識別または反映できるものである。
超音波画像は通常、複数の画素の配列を含んでおり、それぞれの画素が、その強度に対応する特定の値を有している。画素の強度(輝度)は、その画素が表す組織の濃度(density of tissue)に比例し、明るい画素ほど濃度の高い組織を表す。このため、1枚の超音波画像内で濃度の異なる異種組織が区別可能となっている。ルーメン、内膜、中膜および外膜はそれぞれ、濃度が異なるため、1枚の超音波画像内で識別可能である。
超音波画像は通常、測定対象である組織に向けて音波を発した後、その組織から反射される音波の強度および相を測定することにより形成される。ただし、この画像形成方法には、限界と誤差が伴う。例えば、センサが完璧でなければ、画像にはノイズが入りかねない。また、身体内で深い位置にある、または濃度がより高い組織の下に位置する組織から反射される音波が減衰していると、これも誤差を引き起こす別の原因となる。特に非二次元超音波により、さまざまな物体または組織境界からの反射が不規則になると、ノイズを増加する場合がある。
このように超音波検査法に限界があるため、超音波画像の解釈は複雑となっている。IMT厚を算出するように設計された他のシステムでは、この限界を補償すると画像の正確な部分が拒否されてしまう。IMT測定システムによっては、その動脈壁を含む組織層の位置を特定するため、画像を複数の列に区切り、画像の最大値部分、最小値部分、または一定部分を求めて各列を調べるものがある。このシステムでは、選択した壁部分の識別が容易にできない画像データでは、その列全体が拒否されてしまうことがある。この方法では、同じ列内で認識可能な他の動脈壁部分をうまく生かすことができない。また、画素列を個々に調べるということは、外挿、補間、または画素列内の情報に対する他の誘導検査をすることのできる隣接列内の正確な情報を利用できないものとしている。
従来の方法でもう1つ限界となっているのが、画素列内で検査する画素範囲を適切に制限できないということである。ノイズがあり、画質が不十分であれば、最大値、最小値、または強度勾配のいずれを検査しても、明らかに誤った結果しか得られない。検査する場を制限することは、正確ではあり得ない結果をなくす、一種のフィルタリングである。従来技術による方法で、重要地点に対する検査場を制限しているものはなく、いずれも、解析する画像の事情に合わせて決められていない、おそらく関連してもいない固定制約条件を適用している。
米国特許出願第10/407,682号 米国特許出願第10/682,699号 米国特許仮出願第60/424,027号 米国特許仮出願第60/424,464号 米国特許仮出願第60/424,471号 米国特許仮出願第60/424,463号 米国特許仮出願第60/424,465号
超音波イメージング方法における限界を補償するIMT測定方法が必要である。各画素列内の正確な情報を活用しつつ、ノイズや不十分な画質を補償するIMT測定方法を提供できれば、これは当技術分野において一歩前進となる。重要地点を検査する場を、実際の組織または組織境界が位置しているであろう領域に限定したIMT測定方法を提供できれば、さらなる前進となる。
本発明は上記に鑑みてなされたものであり、頚動脈などのさまざまな組織構造に対する超音波画像から、IMT測定値などの測定値を得る新規方法および装置を提供することが、本発明による実施形態の第1の目的である。
本発明の別の目的は、ルーメン/内膜の境界、中膜/外膜の境界などの組織境界に対する検査を、その境界を含んでいるであろう領域に限定することにより、測定誤差を減らすことである。
本発明の別の目的は、処理速度および精度を改良するため、測定領域の広い部分に対する解析に基づいて予め算出した1つまたは複数のデータを用いて、検査領域を制限することである。
本発明の別の目的は、画像の実際構造を反映する閾値を用いて、推定境界位置を検証することである。
本発明の別の目的は、頚動脈などの組織構造の超音波画像に含まれる既知の形状への近接度に基づいて、推定境界位置を検証することである。
本発明の別の目的は、動脈軸に対する画像フレーム基準のずれと、頚動脈の傾きおよ漸減とを補償することである。
本発明の別の目的は、画像の高コントラスト部分からその画像の低コントラスト部分を外挿および補間することにより、低コントラストおよびノイズを補償することである。
本発明の別の目的は、超音波画像を用いて、プラーク濃度情報(plaque density information)などの組織濃度情報を決定することである。
上記目的に合致し、本明細書内で具現化し、かつ広義に記載する本発明による装置を、本発明の一実施形態において、画像処理アプリケーションを動作させ、総頚動脈の画像など、組織構造の超音波画像を受信するようにプログラムされたコンピュータを含むものとして開示する。
画像処理アプリケーションは、より正確な測定値およびより高い再現性を提供し、利用者の熟練度の必要性を低くしながら、内膜中膜複合体厚(IMT)測定処理を実行することができる。実際問題として、強度は具体的組織の構造により変化する。しかし、強度の最大値差異だけでは通常、解剖学的構造の境界の位置を特定することはできない。したがって、比較的「ノイズの多い」データに直面しても、カーブ・フィッティング解析および信号処理のさまざまな技術を適用することで、構造上の境界をはっきり画定できることがわかっている。
本発明による方法および装置の特定実施形態において、超音波画像デバイスまたは、磁気共鳴画像システム(MRI)、コンピュータ断層撮影装置(CTスキャン)、高周波画像あるいは他の機構をはじめとする他の画像デバイスを用いて、デジタル画像を生成することができる。通常、デジタル画像はさまざまな画素を含んでおり、その各画素が、その画像の特定位置をなす画の要素を表している。各画素は強度の程度で記録される。典型的な強度値は、ゼロ〜255の範囲である。代替実施形態において、画素に、色と強度とを持たせることが可能である。
特定の実施形態において、任意の画像がまず、寸法に対して較正される。つまり、IMT値を決定するために、例えば、画像の寸法を好ましくは基準測定値に対して較正する。したがって、画像全体の二次元測定値を示すために、画像上の目盛りを付けることができる。
特定の実施形態において、仰向けに寝ている患者について、超音波画像を水平方向に撮って作製する。したがって、画像の長手方向は、通常水平の向きとなり、頚動脈の軸方向とおよそ一致することになり、画像の垂直方向は、頚動脈を横切る方向にほぼ対応する。
本発明による方法および装置に対する特定の実施形態において、利用者または自動化したアルゴリズムにより、測定領域を選択することができる。超音波システムから得られるコンピュータ画像を見慣れた利用者であれば、測定領域を迅速に選択することができる。例えば、問題となっている血管の中膜/外膜境界近傍を、画像の水平方向中心に選択することができる。
濃度の低い材料ほど、送信機からの超音波信号を吸収してセンサへの戻り反射量が少なくなるため、超音波画像では暗くなりやすい。したがって、利用者は、外膜領域内における濃度のより高い反射材料を表す高強度領域と、ルーメン領域内における暗く、濃度が低い、すなわち吸収性領域とを比較的迅速に見分けることができる。
一般に、血管内のプラーク堆積を特徴付ける方法の例として、見かけ上の内膜中膜複合体厚の測定が挙げられる。一実施形態において、この方法に、画像を提供するステップを含めることができる。画像は通常、見る側に対して、水平方向に延びる長手方向と垂直方向に延びる横方向とに形成される。この形成方向は、診察台に横たわっている利用者の首の頚動脈に対して撮られる画像に対応するものである。したがって、頚動脈は実質的に水平方向に方向付けられる。その軸方向が血管内の血流方向であり、横方向が実質的にこれに直交する。この画像は通常、画素で構成される。各画素が、波動受信機で受信された波動で形成される画像の被選択領域で表される、被験者位置から反射された音波の強度に準ずる強度に対応している。
本発明による装置および方法に対する被選択実施形態において、画像に沿った一連の長手方向位置を選択することができ、各長手方向位置について、横方向の検査で見出された最も明るい画素が識別される。すべての長手方向位置における最も明るい画素が、画像の横断方向画素内で位置を特定され、その画像で最も高いレベルの強度を有する画素である。その最も明るい画素を、長手方向に沿って領域を描く曲線にカーブ・フィッティングすることができる。この曲線は通常、その長手方向の位置を含み、最も明るい複数の画素それぞれの横方向位置に対応する範囲を有するものである。この最も明るい画素のカーブ・フィッティングにより、外膜データをなす曲線が得られる。
この外膜データは有用であるが、これが外膜の中心や境界であるとは限らない。それでも、多項式、指数、または他の適した数学関数を用いて、画素の横方向位置をフィッティングすることができる。長手方向に散らばる最も明るい画素位置を区分毎にフィッティングしても、このカーブ・フィッティングを行うことができる。他のカーブ・フィッティングを、カーブ範囲内の画素を選択する何らかの他の基準を用いて、同じ領域について行うことも可能である。実施形態によっては、一次、二次、または三次多項式を選択して、画像の長手方向範囲の区分に沿って外膜データを区分毎にカーブ・フィッティングすることができる。他の関数を用いて、対象領域全体で選択基準に見合う画素について、区分毎または他の方式でカーブ・フィッティングしてもよい。
特定の実施形態において、ルーメンのデータの位置を、数種類の方法の1つで特定することができる。一実施形態では、そのカーブ形状に沿った実質的にすべての画素の強度が特定の閾値より低くなっているルーメン内の位置に外膜データを並進させることにより、ルーメン・データが見つけられる。この閾値を、画像内で最も低い強度とすることができる。別法として、閾値を、画像内で最も低い強度は上回っているが、一般領域強度または、ルーメン内またはルーメン近傍で見られるその境界限度に相当したものとしてもよい。画像内の最も低い強度は、測定領域内の画素強度に関するヒストグラムから抽出可能である。実施形態によっては、この閾値を、測定領域内で最も低い強度の画素に、測定領域内で見られる最高強度と最低強度との間の強度差の10パーセントをプラスした強度として設定される。さらに別の実施形態では、単純に、操作者が閾値を指定することができる。
別の実施形態において、何らかの閾値に近い、またはその閾値を下回る最低強度を有する画素の位置を特定することにより、ルーメン・データを識別することができる。このデータをさらに、横断方向に並ぶ数個の画素も同様に、外膜から横(垂直、横断)方向にその低い強度となっている場所に限定することができる。いずれの手段で見出されても、ルーメン・データは、境界をなす条件にしたがって実質的に最小強度に相当する1組の画素を表す、画素のカーブ・フィッティングを含むものである。
特定の実施形態において、実質的にルーメン・データと外膜データとの間で長手方向に散らばる中膜の暗い画素の横方向位置にさらに別のカーブをフィッティングすることにより、中膜データを画定する、またはその位置を特定することができる。中膜の暗い画素は、ルーメン・データと外膜データとの間で、横方向の画素を連続的に検査していくと、明らかに局部的最小強度を示すことがわかっている。すなわち、画像強度は、まずルーメンから離れるにしたがって増加し、中膜内で局部的最小値まで下がり、それからまた外膜に向かうにしたがって増加する傾向がある。
実際問題として、強度や距離の閾値は、画像データを用いるあらゆる検査または他の操作について対象範囲を限定するために設けることができるものである。例えば、任意の測定領域内における最大強度と最小強度との差の10パーセントに等しく、最小強度を上回る閾値であれば、見出した中膜の暗い画素が実際にルーメンに密接しすぎていないことを確実にする上で、良好な最小閾値であることがわかっている。同様に、中膜の暗い画素を検査するに当たり、外膜近傍の非対象領域内にまだある可能性がある最小強度部分を確実に無視するために、測定領域内の最大強度を下回る値として閾値を設定することができる。場合によっては、最大強度と最小強度との差の25パーセントを最小強度にプラスすると、これが十分な増加分となって、閾値を決定することができる。
適切な局部的最小強度が見つからないなどの状況によって、外膜データとルーメン・データとの間で位置を特定した画素、または外膜データからルーメン・データまでの距離の半分で位置を特定した画素を、中膜の暗い画素の位置として用いてもよい。すなわち、実際の強度が外膜からルーメンに向けて単調に低下していれば、ルーメンに到達するまでに局部的最小強度は存在しない可能性がある。こうした状況では、中膜データ地点と考えられる地点を、ルーメン・データと外膜データとの中間地点より外膜に近い地点に限定することが、有効フィルタになることがわかっている。
一般に、中膜データは、中膜の暗い画素のラインにカーブ・フィッティングされる。しかし、中膜の暗い画素について一時的カーブ・フィッティングを確定して、その一時的カーブ・フィッティングと外膜データとの間にある中膜の暗い画素すべてを直接(横方向に)一時的カーブ・フィッティングへとずらすことも有効であることがわかっている。逆に、一時的カーブ・フィッティングからルーメンに向けた位置に中膜の暗い画素があった場合、その画素は、その実際の値を維持することができる。このフィルタ概念を物理学的に正当化する1つの理由は、外膜の境界が、データのノイズが現れるほどに変動を受けないことである。したがって、また特に実際の中膜/外膜境界が大変に重要であるため、一時的カーブ・フィッティングと外膜データとの間でどの地点にもフィットしない中膜データに重み付けすることは、有効フィルタであると見られている。
特定の実施形態において、最大局部的強度勾配の位置を特定することにより、すなわち、ルーメン・データから中膜データへの横断方向において、横方向に対する強度の最大変化率を見つけることにより、ルーメン/内膜境界を決定することができる。この横断方向において局部的に最も急峻な上昇を見せる地点が、ルーメン/内膜境界を正確に表すことがわかっている。ルーメン/内膜境界にスパイク除去操作を適用して、境界内の異常スパイクを除去してもよい。こうして得られた境界を、誤差を低減するためにカーブフィットすることができる。実施形態によっては、このスパイク除去操作を、カーブフィットの前に行って、精度を高めたカーブを得るようにする。
同様に、中膜/外膜境界も、中膜データから外膜データへの横断方向において、横方向位置に対して強度が最も急峻に上昇する、または強度が最も迅速に変化する地点を表す地点すなわち画素により正確に表されることがわかっている。明らかに、ルーメン/内膜境界と中膜/外膜境界との間の距離が、内膜中膜複合体厚を表している。中膜/外膜境界にスパイク除去操作を適用して、境界内の異常スパイクを除去してもよい。こうして得られた境界を、誤差を低減するためにカーブフィットすることができる。実施形態によっては、このスパイク除去操作を、カーブフィットの前に行って、精度を高めた曲線を得るようにする。
本発明の一実施形態において、ソフトウェア技術を用いて、頚動脈壁内のプラークなど、組織構造の1種類または複数種類のアスペクト(aspect)を自動的に突き止める。例えば、ソフトウェア技術により、頚動脈をはじめとする既知の組織構造に対する、超音波画像などの画像を処理し、その特定の解剖学的領域を識別する。識別した解剖学的領域に対する情報を用いて、ソフトウェア技術が、さまざまな特徴を有する組織構造および/または特徴付けられるアスペクトの濃度および位置に対する知識により、その組織構造のアスペクトを特徴付けることができる。例えば、プラークの典型的な濃度およびサイズと、頚動脈の解剖学から見てこうしたプラークがどこに形成されるかということの知識により、頚動脈内のプラークを特徴付けることができる。
別の実施形態において、そのソフトウェアの操作者が、頚動脈壁などの組織構造に含まれる対象領域内の地点を指定し、そこに含まれるプラークなどのアスペクトの物理的範囲を決定するためにソフトウェア技術が用いられる。
別の実施形態において、そのソフトウェアの操作者が、組織構造のアスペクトを取り囲む通路または領域を指定し、その組織構造アスペクトの外側境界が決定されるまでその領域から内向きに検査を行うために、ソフトウェア技術が用いられる。
別の実施形態において、プラークなどの組織構造アスペクトの位置が特定されたら、自動的に、半自動的に、または手動により、ソフトウェア・アルゴリズムを用いて、その組織構造アスペクトの濃度特性を決定する。この特性の例として、平均濃度、ピーク濃度、濃度範囲(最大濃度から最小濃度を引いたもの)、プラークの合計面積(total area)、最も濃度の高い領域面積(area of densest region)、濃度のヒストグラム、濃度標準偏差または分散、およびこれに限定するものではないが、濃度重心が挙げられる。
別の実施形態において、組織構造アスペクトの濃度が決定されたら、その濃度値を正規化して、超音波デバイスなどのイメージング・デバイスがその組織構造画像をキャプチャした時点での器具のゲイン設定へのあらゆる従属性を取り払うことができる。これは、1)画像の最小平均強度(これは、その画像が頚動脈のものであれば、頚動脈のルーメンに通常相当する)と、2)画像の最大平均強度(これは、その画像が頚動脈のものであれば、その頚動脈から遠い方の壁の外膜に通常相当する)との双方により得られた濃度値を正規化することにより、達成することができる。
別の実施形態において、重症度分類データベースを構築するため、正規化していない組織構造アスペクトの情報を用いて、組織情報アスペクトの濃度情報、およびその濃度情報を収集した患者の事象(脳卒中、心臓発作など)に関するデータベースを構築することができる。
別の実施形態において、組織構造アスペクトの濃度が決定され、超音波器具のゲイン設定を取り払う任意の正規化処理を行った後、その濃度情報を、広域母集団から収集された組織構造アスペクト濃度との比較に使用するため、記録することができる。この情報を後に重症度分類に使用することが可能である。
別の実施形態において、任意の患者について組織構造アスペクト濃度を時系列で追い、濃度およびアスペクト形成速度を決定する。
別の実施形態において、組織構造アスペクトの位置を、既知の標識構造から手動または自動で決定し、後の基準用に記録することができる。この位置情報を組織構造アスペクト・データベースと相関させて、この組織構造アスペクト位置の重症度を決定することも可能である。
上記は、以下に記載する本発明の詳細な説明をよりよく理解できるよう、本発明の特徴および技術的利点をかなり広義に述べたものである。本発明の他の特徴および利点については、本発明の請求範囲の主部をなす以下に記載する。当業者であれば、開示した概念および具体的実施形態を、本発明の同じ目的を実行する他の構造を修正または設計するための基礎として容易に利用できることを理解されたい。また、当業者であれば、こうした等価構造が、請求範囲に規定した本発明の趣旨および範囲を逸脱するものでないことがわかるであろう。添付図と併せて考慮すると以下の記載から、本発明の特徴と考えられる新規特徴を、その構成および操作方法の双方に関して、別の目的および利点と共に、よりよく理解できるであろう。ただし、各図は例示および説明のみを目的としたものであり、本発明を何ら限定するものでないことを特に理解されたい。
本発明をさらに深く理解するため、添付図面を参照しながら、以下の記載について説明する。
上記のみならず本発明の他の目的および特徴は、添付図面と併せて以下の説明を読むとさらに明白となるであろう。図面は、本発明による典型的実施形態を描いているにすぎないため、本発明の範囲を限定するものとして図面を解釈すべきではないことを理解すると、添付図面に描かれている付加的特異性および詳細にも本発明が含まれていることがわかるであろう。
本明細書に概して記載し、図に例示した本発明のコンポーネントを、多種多様に異なる構成に配置および設計できることは容易に理解できるであろう。したがって、図1〜図29に表して以下にさらに詳しく記載する本発明によるシステムおよび方法に関する実施形態は、本明細書で主張する本発明の範囲を何ら限定するものではなく、現時点で好適である本発明による実施形態を単に代表するものである。こうした実施形態は図面を参照すると最も理解できるものであり、複数枚の図面を通して、同様の部分に同様の参照符号を付している。
当業者であれば無論、図1〜図29に例示した詳細に対してさまざまな修正を、本発明の基本的特徴から逸脱することなく加えられることを理解できるであろう。したがって、以下の説明は、例証のみを目的とするものであり、本明細書で主張する本発明と合致し、現時点で好適である実施形態を例示するものである。
ここで図1を参照すると、装置10は、プロセッサ12すなわちCPU12を含むノード11(クライアント11、コンピュータ11)を具備することができる。CPU12を、メモリ・デバイス14に操作接続することができる。メモリ・デバイス14は、ハード・ドライブ16または不揮発性記憶デバイス16、読出し専用メモリ18(ROM)、およびランダムアクセス(通常は揮発性)メモリ20(RAM)などの1つまたは複数のデバイスを具備することができる。
装置10は、利用者または他のデバイスからの入力を受信する入カデバイス22を具備することができる。同様に、ノード11内に、または装置10内でアクセス可能な状態で、出力デバイス24を設けることができる。ネットワーク・カード26(インターフェイス・カード)またはポート28を、ネットワーク30などの外側デバイスに接続するために設けてもよい。
内側では、プロセッサ12、メモリ・デバイス14、入カデバイス22、出力デバイス24、ネットワーク・カード26、およびポート28を、バス32(システム・バス32)で操作的に相互接続することができる。このバス32を、データ・キャリアと見なすことができる。バス32自体は数多くの構成で埋め込むことが可能なものである。可視光、赤外線および高周波による有線通信、光ファイバ通信、および無線電磁通信も同様に、バス32およびネットワーク30に適したものとして実施することができる。
入カデバイス22の例として、1種類または複数種類の物理的実施形態を挙げることができる。例えば、利用者との対話にキーボード34およびマウス36を使用することができる。タッチ・スクリーン38、電話39、または単に電話線39を、他のデバイス、利用者などとの通信に使用してもよい。
同様に、スキャナ40を用いて、特徴の異なるフォーマットに転換できるグラフ表示の入力を受信できるようにしてもよい。ハード・ドライブ41または他のメモリ・デバイス14を、これがネットワーク30のノード11内または他のノード52(例えば、52a、52bなど)にあろうと、別のネットワーク50からのデバイスであろうと、入力デバイスとして使用することができる。
同様に、出力デバイス24に、1つまたは複数の物理的ハードウェア・ユニットを具備することができる。例えば、一般に、ポート28を用いて、入力を受け入れ、出力をノード11から送信する。ただし、処理時のフィードバックとして、またはプロセッサ12と利用者との間の双方向通信を補助するため、モニタ42を用いて出力を利用者に提供してもよい。プリンタ44またはハード・ドライブ46を、出力デバイス24として、情報を出力するために用いることもできる。
一般に、ノード11をネットワーク30に接続し、そのネットワーク30を、ルータ48を介して別のネットワーク50に接続することができる。一般に、2つのノード11、52はネットワーク30上にあって、ネットワーク30と50とを接合するか、複数のルータ48および複数のネットワーク50を隔てて、別々のノード11、52としてインターネットワーク上にあるかのどちらかとすることができる。個々のノード52に、さまざまな通信機能を持たせることができる。
特定の実施形態において、いずれのノード52でも、最小限の論理的機能を利用可能とすることができる。参照符号末尾に関係なくすべてのノード52が、全部まとめたものとして、1個のノード52、または複数個のノード52として基準となり得ることに留意されたい。
ネットワーク30に、1つまたは複数のサーバ54を具備することができる。サーバにより、ネットワーク30の多数のファイルについて、その管理、格納、通信、転送、アクセス、更新などを行うことができる。通常、サーバ54は、ネットワーク30に含まれるすべてのノード11、52からアクセス可能である。ただし、通信、アプリケーションなどをはじめとする他の特殊機能の実行には、単一サーバ54または複数のサーバ54を使用することができる。
一般に、ノード11を、ネットワーク30を介してサーバ54、ルータ48、またはノード52と通信可能としなければならない場合がある。同様に、ノード11を、インターネットワーク接続(例えば、インターネット)内の別のネットワーク(50)を介して、遠隔ノード52と通信可能としなければならない場合がある。さらに、装置10のここのコンポーネント間でデータを通信し合えるようにしなければならない場合もある。通信リンクは一般に、どのデバイスやコンポーネントの組み合わせの間にも構成することが可能である。
本明細書内における用語「ノード」52は、ノード48、52、54、56、58、60、62、11のいずれかまたはすべてを意味するものである。したがって、ノード52のいずれにも、ノード11内に例示したコンポーネント部品のいずれかまたはすべてを含めることができる。
分散処理すなわちアクセスを支援するため、当技術分野で既知であるように、ディレクトリ・サービス・ノード60をディレクトリ・サービスに当てることができる。したがって、ディレクトリ・サービス・ノード60は、ネットワーク30のノード52にディレクトリ・サービスを提供するために必要なソフトウェアおよびデータ構造を受け入れることが可能であり、他のネットワーク50のノード52についても同様である。
ディレクトリ・サービス・ノード60を通常、ネットワーク内のサーバ54とすることができる。ただし、これを任意のノード52内に導入してもよい。ディレクトリ・サービスを支援するため、ディレクトリ・サービス・ノード52には通常、ネットワーク30に接続するためのネットワーク・カード26と、ディレクトリ・サービス内のソフトウェア・コマンドを実行可能に処理するためのプロセッサ12と、メモリおよびハード・ドライブ16などの不揮発性記憶デバイス16を動作可能とするメモリ・デバイス20とを具備することができる。通常、ディレクトリ・サービス・ノード60には利用者との対話用に、入カデバイス22および出力デバイス24が設けられる。
一実施形態としての図1を参照すると、ノード11は、デスクトップ・コンピュータ11などの任意のデジタル計算機11として具体化することができるものである。このノード11を、イメージングすべき組織に向けて音波を発し、その組織から反射された音波を感受するために、トランスジューサ64または「サウンド・ヘッド」64を有する超音波システム62と通信させることができる。すると、超音波システム62が反射された音波を解釈して、その組織の画像を形成する。この画像は、モニタ42での表示用および/または解析用にノード11に転送される。トランスジューサ64を、患者66の首に位置する頚動脈65近傍に配置して、総頚動脈(以下、「頚動脈」とする)に対する超音波画像を生成することができる。無論、磁気共鳴画像(MRI)などの他のイメージング方法を用いて頚動脈65の画像を生成してもよい。
サーバ54を、ネットワーク30を介してノード11に接続することができる。サーバ54は、解析結果を格納する、かつ/また頚動脈の測定値および医学的条件の診断に関する他のデータをアーカイブすることができる。
図3は、超音波システム62により生成された頚動脈超音波画像を示す一例である。グレーのシェード部分は、組織の反射率、および通常はその濃度を示す。ホワイト領域は、最も濃度が高く最も反射性の高い組織を表し、ブラック領域は、最も濃度が低い、または最も反射性の低い組織を表している。この超音波システムにより出力された画像に、較正マーク72a〜72eや時刻表示72fなどの標識を入れてもよい。
図4を参照すると、頚動脈に対する超音波画像が複数の画素列を含んでおり、各画素は、その画素の強度(例えば、ブラック、ホワイト、グレー・シェードなど)を表す数値と関連している。したがって、水平方向74を画素の行方向、垂直方向76を画素の列方向と規定することができる。本発明の実施形態によって、垂直方向76を、頚動脈内の血流方向に実質的に垂直とし、水平方向74は、同じ血流方向に実質的に平行とすることができる。
頚動脈に対する超音波画像から通常、その動脈のさまざまな基本的特徴が明らかになり、その例として、血液が流動する動脈の腔部分を表すルーメン78、内膜80、中膜82、および外膜84が挙げられ、これらはすべて動脈壁をなしている。内膜80および中膜82の厚さ(内膜中膜複合体厚、すなわちIMT)を、冠動脈疾患をはじめとする動脈硬化症に対する患者の危険度を診断するために、測定することができる。
この画像は通常、動脈の近位壁86と遠位壁88とを示している。近位壁86は、皮膚に近い方の壁を指している。遠位壁88は通常、内膜80および中膜82が外膜84より濃度が低いために外膜84から反射される音波と干渉する量が少ないことから、近位壁86よりはっきりした画像となる。近位壁86をイメージングするには、内膜80および中膜82から反射された音波が、それより濃度の高い外膜84を通過しなければならず、外膜84がその音波を多少干渉してしまうためである。
総頚動脈は、頭部に向かって延在しているため、内側頚動脈と外側頚動脈とに分岐することになる。その分岐の直前に、拡張部90がある。この拡張部90より下位に位置する、およそ10mmの区分94(心臓から遠位の総頚動脈部分)のIMT92は通常、拡張部90から10mm〜20mmに位置する区分98(心臓から近位の総頚動脈部分)のIMT96を上回る。これは、若年層(平均年齢25歳)において測定時の88%に当てはまり、区分94のIMT92は区分98のIMT96より14%厚かった。一方、時間IMT92の12%はIMT96と同じかまたはそれ以下となり得る。老年層(平均年齢55歳)では、IMT92は、その69%においてIMT96より8%厚い。しかし、同じ老年層の31%において、IMT92はIMT96以下である。
このようにIMTが分岐部から次第に細くなることで、IMT測定値の変動が、単に測定値を求める地点のずれによる可能性があるため、IMT測定値の解釈が不確かなものとなりかねない。
さらに、壁部86、88が、水平方向74に対して角度100をなしている可能性がある。したがって、画素の垂直方向列を解析するIMT測定値が、実際の厚さの変動ではなく、画像内の頚動脈方向のために変動するおそれがある。
図5を参照すると、プロセッサ12に連結されたメモリ・デバイス14は、測定、とりわけ頚動脈のIMT測定に適した実行可能かつ操作可能なデータ構造を有する画像処理アプリケーション110を具備することができる。この画像処理アプリケーションには、較正モジュール112、画像基準モジュール114、準備モジュール116、位置特定モジュール118、計算モジュール120、画質モジュール122、および報告モジュール124を含めることができる。
較正モジュール112は、画像上での測定距離を実際の距離に相関させることができる。較正モジュール112は通常、画像内の2地点による画像座標、およびその地点間の実際の距離を入力値としてとり、その後、こうしてわかった値を用いて、画像内で測定された他の距離を、それに対する真の値に変換する。
較正モジュール112は、較正マーク72a〜72eを探すことで、画像から画素座標を抽出することができる。マーク72a〜72d間の真の距離がわかり、これにより、利用者の介入がなくてもその距離が得られるようにする、または、較正モジュールが利用者に、その距離を入力するかファイルなどからその値を抽出するように促すことが可能である。別法として、実施形態によっては、マーク72eにより、この距離を較正マーク72a〜72d間に示し、この情報を超音波機械62のズーム・モードなどのモデルとして表示して、較正モジュール112が、さまざまな超音波機械62およびそのさまざまなズーム・モードに写像される較正率などを格納してもよい。
次に較正モジュールは、特定のズーム・モードにおける特定の超音波機械62に対する既知の較正率に基づいて1枚の画像を較正する。この較正モジュール112は、1枚の画像内の物理的特徴、パターンまたは構造などの「標識構造」を探し出し、わかっている標識構造間距離または任意の標識構造についてわかっているサイズに基づいて較正を行うこともできる。
画像基準モジュール114、準備モジュール116、位置特定モジュール118および計算モジュール120は通常、その画像の解釈、IMT測定値の抽出などを行う。これらのモジュールの操作については、以下でさらに詳しく説明する。
画質モジュール122は、その画像に対して、または画像内で選択された対象領域に対して動作し、ノイズを除去するか他の方法を用いてその画像を改良する。例えば、画質モジュール122は、ローパス・フィルタを適用して、その画像からノイズを除去しても、縁部を強調表示するためにエッジ検出またはエンボス・フィルタを用いてもよい。典型的な頚動脈超音波画像では、複数の組織層が水平方向74に平行に延在している。したがって、垂直方向フィルタを、実質的に水平な方向74または組織層間の境界に平行な方向に適用して、バイアス方向のノイズを減らし、異なる組織層間の境界を示し得る縁部データの喪失を防止することができる。
画質モジュール122は利用者に、画像にノイズがありすぎて使えない場合にそれを知らせることもできる。例えば、画質モジュールは、その画質を示すダイアル・インジケータ、数値、色分けしたインジケータなどのゲージを、モニタ42に表示することができる。実施形態によっては、画質モジュール122で、ルーメン78を表す画像部分に値をまず特定して、画質を評価してもよい。ルーメン78は実質的に同じ濃度の血液で充満しているため、そのルーメンの高品質画像は実質的に一定の画素強度となるはずである。したがって、画質モジュール122は、ルーメン内の画素強度の標準偏差を、画像のノイズ量に対するインジケータとして計算および表示することができる。
画質モジュール122は、以下で説明するように、位置特定モジュール118と同様にルーメン78の位置を特定することができる。画質モジュール122は、近位壁86および遠位壁88の双方でルーメン/内膜境界を見つけた後、この2つの境界間の領域を検査して、ルーメン画素強度の標準偏差を算出することができる。別法として、画質モジュール122は、ルーメン/内膜境界近傍の一縁部を含む所定寸法の領域を評価してもよい。
画質モジュール122で品質評価に使用可能なもう1つの基準は、測定領域内、言い換えれば、IMTを測定する画像部分内の画素強度を示すヒストグラムである。別法として、その測定領域を囲む領域を含む、測定領域より広い領域を用いて、ヒストグラムを計算してもよい。ヒストグラムの形態は通常、その画質に応じて異なる。画質モジュール122は、高品質画像から生成されたヒストグラムの画像を格納しておき、これを、解析中の画像のヒストグラムと併せて出力デバイス24に表示することができる。
そこで、特定画像から得られた測定値が信頼できるものであるかどうかを決定するために「良好な」ヒストグラムを識別できるように、操作者を訓練しておくこともできる。画質モジュールは同様に、中間程度の画質および低画質ヒストグラムの画像も同様に格納および表示可能である。別法として、画質モジュール122が、任意のヒストグラムを格納されている画像の高画質、中間画質および/または低画質ヒストグラムと自動的に比較し、その類似性をランク付けする。これを、パターン・マッチング技術などにより行ってもよい。
報告モジュール124は、計算結果をフォーマットにし、それをモニタ42、プリンタ44、ハード・ドライブ46などの出力デバイス24に送信する。画像処理アプリケーション110も、アーカイブされたデータを格納、編成および検索するために、データベース・エンジン128を有するデータベース126内に結果を格納する、またはそのデータベース126から情報を検索することができる。データベース126は、本発明をなすすべてのモジュールと同様に、同じノード11上、サーバ54、または他のノード52a〜52d上に物理的に配置することが可能であり、ネットワーク30を介してノード11と通信可能なものである。データベース・エンジン128は、当技術分野で既知である、適したデータベース化を行うものであればいずれでもよい。
データベース126はさまざまな記録129を格納可能である。その記録129の例として、患者の記録130がある。患者の記録130として、患者の年齢、体重、リスク因子、心血管疾患、以前のIMT測定値、および他の関連医療情報を格納可能である。診断データ131は、患者が心血管疾患にかかる危険性に対する統計学的分析をサポートするデータを提供することができる。例えば、診断データ131の例として、IMT測定値および/または他の危険因子を患者が冠動脈疾患にかかる危険性に結びつけた研究結果などが挙げられる。
測定記録132に、測定処理自体に関する情報を含めることができる。例えば、解析された超音波画像への参照事項または画像自体を含めることができる。測定記録132には、その測定処理へのあらゆる入力、測定を行った操作者名、画像の解析に用いたアルゴリズム、使用したさまざまなパラメータ値、測定を行った日時、超音波機械のデータ、誤差原因値などを含めてもよい。
IMTデータベース133は、後に生成される超音波画像の解釈に用いるIMT測定値をアーカイブすることができるものである。IMTデータベース133は、以前の測定値記録134を含め、各記録134にそれぞれがインデックスIMT135を具備することができる。インデックスIMT135を、記録134の特徴付けに用いるIMT値にすることができる。例えば、頚動脈の一部に沿ったIMT測定値を、個別頚動脈の標準化地点におけるIMTを基準に格納することができる。したがって、インデックスIMT135を、その標準化地点におけるIMTとすることができる。別法として、測定部分に沿った全IMT測定値の平均を、インデックスIMT135として用いてもよい。IMT測定値136には、頚動脈の長手方向に沿ったさまざまな地点で測定されたIMT測定値を含めることができる。IMT測定値136を、1枚の超音波画像のものとしても、複数の超音波画像からの測定値の平均としてもよい。実施形態によって、IMT測定値136を、動脈の一部に沿って測定したIMT測定値の多項式カーブ・フィッティングとすることができる。
メモリ・デバイス14に、他のアプリケーション137だけでなく、操作システム138を含めてもよい。操作システム138には、ノード11を含むさまざまなコンポーネントを制御するため、実行可能なデータ構造(例えばプログラミング)および操作可能なデータ構造(例えば情報)を具備することができる。また、図2および図5に例示したアーキテクチャは例示のみを目的としており、本発明の根本を逸脱することなく、アーキテクチャは他にもさまざまに可能であることを理解されたい。例えば、ノード11を単に、メモリ・デバイス14およびプロセッサ12を少なくとも有する超音波システム62にしてもよい。したがって、画像処理アプリケーション110および/またはデータベース126を、超音波システム62に内蔵することができる。超音波システム62にはまた、超音波画像および計算結果を表示するため、モニタ42、またはLCDやLEDなどの他のグラフィック・ディスプレイを含めることができる。
図6を参照すると、頚動脈の基本的特徴の位置を特定する処理は、例示したステップを含むことができる。こうしたステップをこうした順序で含むことは例示のみを目的としたものであり、本発明の根本を逸脱することなく、ステップの組み合わせおよび順序は他にも可能であることを理解されたい。
この処理は、較正モジュール112と共に上述した操作を行うため、画像較正ステップ140を含むことができる。準備ステップ142で、解析すべき近位壁86または遠位壁88の一部を表す画像領域を識別することができる。基準設定ステップ143では、その画像に基づいて、後の計算に用いる閾値または他の基準値を計算することができる。
位置特定処理144では、動脈壁86、88を形成しているさまざまな組織層を識別することができる。組織の層と層との間の境界を位置特定することも可能である。したがって、この位置特定処理に、外膜84の位置を識別して対応データを確立する外膜データ位置特定処理146を含めることができる。ルーメン・データ位置特定処理148では、ルーメン内のデータ曲線を確立することができる。中膜データ位置特定ステップ150では、中膜に対応する動脈壁部分を識別し、対応データを確立することができる。ルーメン/内膜境界位置特定処理152では、ルーメン/内膜境界を求めるため、ルーメン・データと中膜データとの間を検査する。中膜/外膜境界位置特定ステップ154では、中膜/外膜境界を求めるため、中膜データと外膜データとの間を検査する。
図7を参照すると、複数のモジュールが、プロセッサ12を動作させるように実行可能で、かつプログラムされており、これらをメモリ・デバイス14内に格納することができる。準備ステップ142は、準備モジュール116により実施可能であり、この準備モジュール116は、入カモジュール160、オートメーション・モジュール162、再構成モジュール164、および適合モジュール166を含むことができる。
図8を参照すると、入カモジュール160を設けて、測定領域172の中心となる画像地点170を利用者が選択できるようにすることができる。その測定領域に含まれる画素列のIMTを測定し、すべての列の測定値を平均する、または他の方法で組み合わせて、最終的なIMT測定値および他の情報を得ることができる。別法として、IMTを長手方向にカーブ・フィッティングさせてもよい。したがって、測定領域172の高さ174を、少なくともルーメン78の一部、内膜80の一部、中膜82の一部、および外膜84の一部を含むように選択することができる。
入カモジュール160を設けて、利用者が、測定領域172の幅176を特定できるようにすることができる。別法として、入カモジュール160が、単に所定値を用いてもよい。例えば、適切な値の一例が5mmである。この値は、大半の症例における頚動脈の直径とほぼ同じである。幅176を自動的に見つけられるようにするか、自動的にまたは利用者により限定されるようにするか、利用者に特定されるようにするかどうかを、その画質に基づいて選択してもよい。画像にノイズがある、またはコントラストが不十分であれば、幅176を広くして、誤差を平均させることができる。幅が自動的に選択される実施形態では、入カモジュール160が、画質モジュール122が計算した画質のインジケータに基づいて、その幅を選択することができる。同様に、操作者を訓練して、画質モジュール122が出力した画質インジケータに基づいて幅176を手動で調節できるようにしてもよい。実施形態によっては、マウス・クリックやキーストロークなどの利用者の入カに応答して、入カモジュールが、幅176を徐々に増加または低下させることができる。
入カモジュール160はまた、どちらの壁86、88が地点170に最も近いかを決定することにより、どちらの壁86、88を測定すべきかを決定することができる。これは、各壁86、88で、よく見分けのつく外膜84を見つけて、地点170への近接度を比べることにより実施可能である。別法として、入カモジュール160が、外膜84で最高の(または平均値が最高、中間値が最高の)強度を有するために望ましい高コントラストとなっている可能性のより高い壁86、88を選択してもよい。
地点170を、サンプリング領域178の中心とすることもできる。サンプリング領域178で区切られる画素を用いて、画素強度のヒストグラムを生成する。このヒストグラムは、具体的閾値を決定して画質を評価するために他のモジュールで使用されるものである。ルーメン78および外膜84がそれぞれ画像内の最低強度領域および最高強度領域を表し、ヒストグラムの分析に適切となるため、サンプリング領域178の高さ180は通常、ルーメン78および外膜84の双方の一部を含むように選択する。幅182は、画素強度を適切に抽出できるように選択することができる。実施形態によって、幅182は単に、測定領域の幅172と同じである。高さ180を、測定領域172の幅176の半分から約4分の1にすると適切であることがわかっている。
自動化またはオートメーション・モジュール162は、測定領域172および/またはサンプリング領域178の位置を自動的に特定することができる。オートメーション・モジュール162は、これをさまざまな手段で実行することができ、例えば、単に、領域172を画像の中心に水平に配置してもよい。領域172の垂直方向中心を、画像の中心にて垂直方向画素列で最も明るい画素の位置に設定してもよい。こうした最も明るい画素は、最も高く、したがって最も良好なコントラストを有する壁の外膜84に相当する。別法として、オートメーション・モジュール162は、ルーメンの画素強度に相当する特定の閾値を下回る強度または平均強度を有して隣り合っている多数の画素の中心画素列を検査することにより、ルーメン78の位置を特定することができる。次に、この画素グループの側部は、高い確率でルーメン/内膜境界に近接しているため、その1つの側部を、測定領域172の中心として選択することができる。自動化モジュール162はまた、測定領域172およびサンプリング領域178のサイズおよび位置を、画像に写る可能性のあるマーク72a〜72fを除くように調節することができる。自動化モジュール162により、利用者が選択した測定領域172およびサンプリング領域178をこのマーク72a〜72fを避けるように調節することもできる。
再度図7を参照すると、再構成モジュール164は、地点170の位置や、領域172、178に対して利用者が特定したすべての寸法など、関連する利用者からの入力をデータベース126に格納することができる。再構成モジュール164はまた、測定した画像を特異に識別するシグネチャを格納することができ、画像自体を格納することも可能である。再構成モジュール164はさらに、組織層の位置特定に用いたアルゴリズムやノイズをなくすために用いた方法などの他の入力も格納可能である。
再構成モジュール164は、この情報を、測定データ132としてデータベース126内に、またはノード11のハード・ドライブ46内になど、あらゆるアクセス可能な格納場所に格納することができる。その後、再構成モジュール164は、この情報を検索し手」使用し、IMT測定値およびその構成処理を再現することができる。再構成モジュール164によりさらに、利用者は、以前の測定値を再現する前に、入力値を調節することができる。したがって、個々の入力値の変更が測定結果に与える影響を容易に検討することができる。
入力値を検索してIMT測定値を再現できる機能を、画像処理アプリケーション110を使用できるように操作者を訓練するために生かすことができる。この機能により、熟練者は、操作者が特定した測定パラメータを再吟味して、フィードバックを提供することができる。操作者が特定した入力値は、一定期間にわたり格納され、操作者が特定する測定パラメータにおける傾向や変化の割り出しに使用され、最終的に、操作者の熟練度を確認および保証するという効果を与えられるものである。
適合モジュール(adapting module)166は、入力や解析結果を引き続く画像に適合させて、計算時間を短縮することができる。これは、いずれの所与画像に前後する画像も互いに類似している一連の画像を含む超音波画像のビデオ・クリップ内でIMT値を追跡するのに特に有益である。複数枚の画像が類似していることを考えると、必要となる入力および解析結果は通常、連続画像間で大きく変わることはない。
例えば、適合モジュール166は、利用者が選択した領域172、178を次の画像に適合させることができる。以下で説明する他の計算結果も、この適合モジュール166により格納され、再利用されることができる。例えば、角度100と外膜、中膜およびルーメン・データとの位置から、組織層間の境界の位置を、おおよそではあるが、それでも使用できるほどに正確な推定値を出すことができる。この適合モジュール166はまた、前のサンプリング領域178に対するヒストグラムの分析から得た基準値または閾値をすぐ次の画像測定に使用することもできる。
図9を参照すると、適合モジュール166はさらに、画像内の変化を調整するため、入力値、データ、および他の計算結果を適合させることができる。例えば、適合モジュール166動脈自体の移動やトランスジューサ64の移動により発生する連続画像間の頚動脈のずれにしたがって、領域172の位置を移動させることができる。すなわち、適合モジュール166は、連続画像の同じ領域内に対象物を再位置合わせするため、その画像の位置を再調整することができる。
領域172、178の位置を適合させることにより、領域172、178を手動で選択する、または領域172、178を自動的に算出するのにかかる時間を短縮するなど、さまざまな利点が得られる。計算時間を短縮すれば、頚動脈内の組織層の位置をリアルタイムで追跡する機能を促進することができる。領域172、178の計算にかかる時間を短縮することにより、画像処理アプリケーション110は、フレームを落としたり逃したりすることなく、より早いフレーム・レートでビデオ画像を測定することができる。
したがって、適合モジュール166は、自動的に、または人の補助や介入をある程度借りながら、適合処理186を実施することができる。解析ステップ188は通常、他のモジュールにより実施される。しかし、これが適合処理186の第1のステップである。第1の画像の解析188に、後の計算に用いる基準値の計算、画像内ルーメン、外膜およびルーメン・データの識別に用いる基準値の計算、この両方に用いる基準値の計算を含めることができる。解析ステップ188には、組織層間の境界の位置特定を含めてもよい。
第1の画像を解析した後、解析結果を第2の画像に適用するステップ190に、第1の画像内で位置特定されたものと同じルーメン、外膜、または中膜データの1つまたは複数を第2の画像の解析に用いることを含めることができる。第1の画像の結果を第2の画像に適用するステップ190に、単に、第1の画像で使用した結果と同様に修正せずに結果を用いることを含めてもよい。例えば、第1の画像に対して計算されたデータを、修正することなく第2の画像に用いることができる。別法として、適用ステップ190を、おおよその推定値(想像)としてその結果を用いることとし、その推定値を、後の測定処理時に正確なものとして修正してもよい。
例えば、外膜84は通常、頚動脈の最も明るい部分として超音波画像に現れる。したがって、外膜の位置特定に、最大強度(輝度)領域を見つけることを必ず含めることができる。外膜84の位置を第1の画像内で特定した後、第2の画像内では、第1の画像で外膜のあった位置周辺の狭い領域に限定して外膜を探すことができる。したがって、第1の画像内の外膜84が、第1の画像内の外膜84とほぼ同じ位置にあると仮定すれば、第2の画像内で外膜84を探す場が縮小される。整合は、自動的にまたは人の補助により、2枚の画像内の外膜84を位置合わせすることに基づいて行うことができる。
入力を第2の画像に適用するステップ192に、第2の画像との比較による第1の画像の解析を目的として、または直接第2の画像での使用を目的として、手動でまたは自動的に提供された入力を用いることを含めることができる。第1の画像の解析に対する入力を、以下で説明するように、適合ステップ194用に適合モジュール166が行う計算結果としてもよい。したがって、例えば、利用者が第1の画像用に選択した地点170を、第2の画像に使用することができる。同様に、測定領域172またはサンプリング領域178について、利用者が選択した、または自動的に決定されたいずれの高さ174、180や幅176、182も、新たな画像の解析、または第2の画像との比較に使用することができる。
入力を第2の画像に適合させるステップ194に、第2の画像が第1の画像とどのように異なるかを決定することを含めることができる。この決定を行う方法の1つは、外膜84の位置を特定し、第1および第2の画像の双方で確認できる不規則部分の位置および/または方向に注目することである。外膜データで表すことのできる、外膜上の1つまたは複数のポイントの位置、方向、またはこれら双方を比較することにより、適合モジュール166は、その画像内で頚動脈がどのように回転または並進したかを算出することができる。このような地点は、頚動脈が拡張部90にて直線状から拡張した形態に遷移する箇所で生じる可能性がある。何らかの並進および/または回転があれば、それを、測定領域172およびサンプリング領域178を特定するために利用者が選択した地点170に適用することができる。この回転および/または並進は、自動的に決定されたすべての領域172、178に適用可能である。
主に図6〜図9を参照しながら図10を参照すると、画像基準化ステップ143では、特定画像を特徴付ける値を、後にその画像の解析時に使用するため、算出することができる。例えば、画像基準化モジュール114は、サンプリング領域178内の画素強度のヒストグラム200を生成することができる。画像基準化モジュールはまた、ルーメン78、中膜82、および外膜84に対応する画像内領域の位置特定を容易にするため、ヒストグラム200上の外膜、中膜、およびルーメンの閾値を計算することができる。
例えば、ルーメンの閾値202を、画素強度の適した百分位数(例えば、第10百分位数)になるように選択することができる。無論、画像の特徴に応じて、他の値を選択することも可能である。別法として、ルーメンの閾値202を、サンプリング領域178内に含まれる画素強度の絶対範囲に基づいて選択することができる。実施形態によっては、ルーメンの閾値202を、ヒストグラム200内に見られる最小強度204および最大強度206に基づいて算出することも可能である。例えば、ルーメンの閾値202を、画素強度の最大差異に対する適した割合として算出することができる。これには、以下の式が有効であることがわかっている。
ルーメン閾値=最小強度+(割合)×(最大強度−最小強度)
上記の割合を0.05〜0.25とするとよく機能し、その値を約0.1〜約0.2とすると、日常的にうまく使用できている。
外膜の閾値208を、強度によりランク付けされる画素の固定百分位数(例えば、第9百分位数)にハード・コードすることができる。選択する実際の百分位数は、その画質およびその画像の外膜部分に含まれる実際の画素強度に応じて、適した数値であればいずれでもよい。別法として、外膜の閾値208を、最大強度206と等しくすることができる。外膜は超音波画像内で最も明るい画素帯として現れることが多いため、こうした選択が可能となる。実施形態によっては、外膜の閾値208を、強度の最大差異に対する一定割合分だけ、最高強度を下回るように選択することも可能である。その割合として、画素強度範囲の上から5〜25パーセントまたは他の百分比を使用することが可能であり、上から10パーセントが、日常的に適した閾値として機能している。
中膜の閾値210を、最小強度204および最大強度206に基づいて算出することができる。例えば、中膜の閾値を、次の式にしたがって算出することができる。
中膜閾値=最小強度+0.25×(最小強度+最大強度)
これは事実上、強度全体範囲の25パーセント目となっている。
無論、中膜の閾値210として、その画質および中膜82に対応する画像部分に含まれる実際の画素強度に応じて、他の値も可能である。実施形態によっては、中膜閾値210を、外膜閾値208と等しくすることができる。実施形態によっては、中膜の閾値210を、ルーメン閾値202と外膜閾値208との間にある、ヒストグラム200上の局部的最小値に対応する強度にすることも可能である。
画像基準化モジュール114は、利用者が手動で閾値202、208、210を特定できるように、入力を受信および処理することができる。例えば、画像基準化モジュール114により、利用者は、手動でルーメン78内の画素領域を選択することができる。すると、この領域に含まれる画素の平均強度または最大強度が、ルーメン閾値202として使用される。利用者は、必要に応じて、最大強度、最小強度または平均強度を用いる同様の方式で、外膜閾値208および中膜閾値210に適した値を決定することができる。
実施形態によっては、画像基準化モジュール114は、ヒストグラム200を表示して、利用者に、ヒストグラムの画素のどの部分がルーメン、中膜または外膜に相当するかについて報告された見解に基づいて閾値を選択させることができる。画像基準化モジュール114はまた、特定の閾値202、208、210を下回る、または上回る画素を強調表示したヒストグラム200と頚動脈超音波画像とを同時に表示することができる。画像基準化モジュール114により、操作者は、ルーメン閾値202を変更して、強調表示された画素領域がどのように変化するかを観察することができる。
図11を参照すると、閾値202、208、210が決定されると、位置特定モジュール118は、画素の垂直列を解析して、ルーメン78、内膜80、中膜82、外膜84、ルーメン/内膜境界、中膜/外膜境界、または、これらすべての組み合わせなど、あらゆる組み合わせの位置を特定することができる。位置特定モジュール118は、画像内にある頚動脈の方向に応じて、水平また他の角度で方向付けられた画素ラインを解析することができる。位置特定モジュール118は通常、組織層間の境界に実質的に垂直に延在する画素ラインを解析する。
グラフ218は、1画素列内に含まれる画素強度とその位置との関係を示すグラフ例であり、水平軸220は位置を、垂直軸222は画素強度を表している。グラフ218の左端から見て、グラフ218のいくつかの重要部分は、ルーメン閾値202を下回る部分となり得るルーメン部分224と、ルーメン部分224と内膜最大値部分228との間で最も大きい強度勾配に相当し得るルーメン/内膜境界226と、内膜に相当する局部的最大値である内膜最大値部分228と、中膜閾値210を下回るグラフ部分に相当し得る中膜部分230と、中膜部分230内で通常局部的最小値となる中膜の暗い画素部分231と、中膜の暗い画素231と外膜最大値部分236との間で最も大きい強度勾配に、またはこの近傍に位置する中膜/外膜境界234と、測定領域172内で通常最も高い強度の画素である外膜最大値部分236とである。グラフ218は、理想化したまたは典型的な画像を表しており、これにノイズや不十分なコントラストが加われば、画素列のグラフは異なるものになることを理解されたい。
図12を参照すると、位置特定処理144に、位置特定データを含めて、組織層間の境界を検査する場を減らすことができる。一実施形態において、位置特定モジュールは、ルーメン/内膜境界244を高い確率で定めているルーメン・データ240および中膜データ242を識別することができる。中膜データ242および外膜データ246を、高い確率で中膜/外膜境界248を定めているように選択することができる。実施形態によって、位置特定処理144は、中膜データ242の位置を特定せず、ルーメン/内膜境界244および中膜/外膜境界248を求めて、ルーメン・データ240と外膜データ246との間を検査する場合がある。
位置特定処理144を設けることにより、操作者は手動で、データ240、242、246、もしくは境界244、248の1つまたはすべてを特定することができる。手動でラインを特定する方法のいずれを用いて、境界244、248またはデータ240、242、246を特定してもよい。例えば、操作者は、マウス36などの入力デバイス22を用いて、超音波画像のグラフィック・ディスプレイ上に境界244、248またはデータ240、242、246をトレースすることができる。利用者が一連の地点をクリックすると、その地点が自動的につなげられて曲線を形成するため、こうして境界244、248またはデータ240、242、246が確定されるようにしてもよい。別法として、操作者が、ラインの両端点を確定してから制御点を確定して、そのラインの歪み程度による曲率および地点を定めてもよい(すなわち、ベジエ曲線)。さらに別の実施形態では、測定領域172の縁部を、ルーメン・データ240または外膜データ246として機能させてもよい。図13を参照すると、外膜データ位置特定処理146に、最初の外膜画素位置を特定するステップ252を含めることができる。この最初の外膜画素は、利用者が選択した地点170を中心とする画素列内で見つけることができる。他の適した手法として、測定領域の最も左寄りまたは右寄りの画素列を検査すること、自動処理で選択された領域の中心にある列を選択することなどが挙げられる。外膜84は通常、画像で最も明るい部分であるため、外膜84位置を指し示すものとして、絶対最大強度画素を検査してもよい。
別法として、最初の外膜画素位置特定ステップ252に、利用者に最初の外膜画素を手動で選択するように促すことを含めてもよい。さらに別の代替手法は、それぞれの強度が外膜閾値208を超えている最小数の隣接画素について調べて、そのうちの1つを外膜画素としてマークする(例えば、標識を付ける、識別する、指定する)ことである。この画素を用いて、外膜データ246をフィッティングする。
外膜位置特定処理146にはまた、隣接外膜画素の位置特定ステップ254を含めることができる。位置特定モジュール118は、最初の外膜画素の隣の画素列から始めて列から列へと進みながら、測定領域172の残りの部分に含まれている隣接外膜画素について検査することができる。隣接外膜画素の位置を、最初の外膜画素の場合と同様に特定することができる。特定の実施形態において、1つの列から隣接する列へと移動する以外にもさまざまな順序で外膜画素を見つけることができる。画像が明確かつ正確であることを条件にして、サンプリング、断続的な位置特定、全体の最大値、左から右へ、右から左へなどによってもすべて、起動点を得られる。
まだ図13を参照しながら図14を参照すると、外膜位置特定処理146は、制約ステップ256および外挿ステップ258を含めることにより、ノイズおよび不十分なコントラストを補償することができる。制約ステップ256では、外膜画素を調べる場を、隣接列に含まれる外膜画素の垂直位置を中心とする領域、または他の方法でこれに整合された狭い領域に限定することができる。
例えば、隣接列の画素から、一連のグラフ260a〜260eが得られる。グラフ260aは、解析した第1の列を表している。したがって、このグラフに強度の最大値部分があるため、その最大値部分262aが見つけられると、外膜画素としてマークされる。制約ステップ256では、グラフ260b内の最大値部分262bに対する検査を、最大値部分262aの位置を中心とする領域、または他の方法でこれに整合された領域264に限定することができる。この範囲から外側へ漏れる最大値部分は、高い確率でノイズの結果であるため、拾わなくてよい。というのも、血管は平滑だからである。外膜が径方向にそれることはない。したがって、はじき出された最大値部分は、外膜データ246のいずれのカーブ・フィッティングからも除外してよい。
外挿ステップ258に、最大値部分262a〜262eの少なくとも2つを通る傾き268を有するライン266を識別すること含めることができる。したがって、ライン266に対して限定された領域270に限定して、他の最大値部分を調べることができる。例示したグラフの場合、グラフ260cの最大値部分262cは、領域270内にないため、無視してもよい。場合によって、この外挿ステップに、最大値部分262a〜262eが領域264、270内に入っていない複数のグラフ260a〜260eを無視することを含めてもよい。
例示したように、グラフ260eの最大値部分262eは領域270内にあるが、グラフ260dの最大値部分262dが、領域270の外側にある場合もある。このように無視できる列の数を、利用者が調節する、または画質に基づいて自動的に計算することができる。画質が不十分な場合、適切な(相応にクリアな)画素列をさらに求めて、外挿ステップ258をより積極的に行うことが可能である。実施形態によって、ライン266の確定に用いる最大値部分262a〜262eを、良好な高コントラストを有する列内の最大値部分に限定してもよい。
再度図13を参照すると、カーブ・フィッティング・ステップ272では、その画素列内に位置特定された外膜画素に対するカーブ・フィッティングである外膜データ246を確定することができる。カーブ・フィッティングは通常、外膜84を平滑にし、本来外膜84を表していないノイズを補償するために行われる。一実施形態において、カーブ・フィッティング・ステップ272に、測定領域をそれより狭い区分(片)に分割して、片から片へとそれぞれにカーブ・フィッティングを行うことを含めることができる。二次多項式、シヌソイドまたは他の三角関数、指数関数などの関数を選択して、各区分にフィッティングを行うことができる。区分のサイズは、外膜画素路が連続する、単調である、曲率が一度である(例えば、区分内に「S」字型がない)、または導関数の連続性があるように選択することができる。区分幅を0.5〜2mmにすると、適切な精度、関数の連続性、計算の速度をうまくバランスさせられることがわかっている。
他の実施形態も可能である。例えば、上記より幅の広い区分を、3次多項式による補間と併せて用いて、外膜画素路に変曲点(「S」字形状)または導関数の連続性を入れやすくしてもよい。しかし、3次多項式による補間を用いると、計算が複雑になり、時間がかかる。別の代替法は、非常に狭い区分にして線形補間法を用いることである。この場合、計算は簡単になり、関数の連続性は得られるが、第1の導関数の連続性がない。
実施形態によっては、カーブ・フィッティングした区分を互いに重なり合わせることができる。これにより、カーブ・フィッティングした各区分が実質的に同じ傾きを有するという利点に、区分が接合地点で接合するということを加えられる。この手法では、数多くの画素を2回解析する必要があるため、計算が複雑になりかねないが、この手法では、各区分の計算は比較的簡単になる。
図15を参照すると、ルーメン・データ位置特定処理148では、ルーメン78に対応する画像部分を識別して、ルーメン・データ240を確定することができる。ルーメン・データ位置特定処理148に、低強度領域の位置特定ステップ280を含めることができる。このステップに、ルーメン閾値202を下回る特定数の隣接画素を1画素列内に見つけることを含めることができる。低強度画素の帯を見つける検査は通常、外膜84から開始され、ルーメン78の中心へと進められる。4画素分の幅を有する領域が適切であることがわかっている。別法として、ステップ280に、平均強度がルーメン閾値202を下回る隣接画素群を検査することを含めてもよい。
低強度領域の位置を特定したら、次のステップを、検証ステップ282とすることができる。場合によって、内膜/中膜領域内の暗い領域が十分広く、ルーメン閾値202を下回る4画素が入る場合がある。したがって、その領域が本当にルーメン78内であることを確認して、低強度領域を検証することができる。大きい強度勾配があれば、それは通常ルーメン/内膜境界226であるため、検証方法の1つは、その低強度領域が大きい強度勾配に隣接していることを確認することである。低強度領域の検証に必要な強度勾配への近接度は、さまざまである。
例えば、検証に、任意に、大きい強度勾配に低強度領域が密着していることを必要条件とすることができる。別法として、低強度領域が高い強度勾配から特定数の画素(例えば、距離)内にあればよいという場合もある。その低強度領域が無効である可能性が高い場合、ルーメン・データ位置特定処理148を、第1の繰り返し時に見つけられた無効な低強度領域の位置から開始して外膜84から遠ざかる方向へ移動させながら、反復して行うことができる。
ルーメン・データ位置特定処理148にはまた、補償ステップ284を含めることができる。場合によって、超音波イメージングに限度があるため、強度勾配をキャプチャできず、画像の複数領域のコントラストが不十分なままとなる場合もあることから、低強度領域がルーメン/内膜境界224に近接していることを証明するのが難しい可能性がある。そこで、補償ステップ284に、コントラストの不十分な領域に境界を外挿する、補間する、または両方を行うことにより、コントラストの不足分を補償する方法を含めてもよい。したがって、検証ステップ282に、補間または外挿された境界への低強度領域の近接度を検証することを含める場合もある。
カーブ・フィッティング・ステップ286では、見つけた低強度領域をルーメン・データ240に組み入れることができる。実施形態によって、その低強度領域の各列で見つけられた第1の画素を含む路をカーブ・フィッティングして、ルーメン・データ240を確定する。ルーメンの位置特定に強度の平均値を用いる実施形態では、平均をとった画素群の中心に位置する(寸法として)画素を用いて、ルーメン・データ240をカーブ・フィッティングすることができる。カーブ・フィッティング・ステップ286では、外膜データ位置特定処理146と合わせて、上述した方式で画素路をカーブ・フィッティングすることができる。
図16は、任意の低コントラスト補償ステップ284を実施する1方法を例示したものである。このステップは、識別ステップ288と、制約ステップ290と、ブリッジング・ステップ292と、検証ステップ294とを含む。識別ステップ288では、高い画質として現れる測定領域172の部分を識別することができる。識別ステップ288には、コントラストがそれぞれ比較的高い少なくとも3〜5画素列の幅を有する水平領域を識別することを含めることができる。幅を前後する水平領域も、画像の性質および品質に基づいて選択可能である。実施形態によって、列内で最も大きい、または十分に大きい強度勾配を探して、コントラストの程度を決定してもよい。「高コントラスト」として画素列を定めるのに十分な勾配の値を、画像の特徴に基づいて、ハード・コードする、利用者が選択する、自動的に選択されるようにする、これらを併用して決定する、またはこれらすべてで決定することができる。実施形態によっては、必要な強度勾配を、サンプリング領域178で見つけられた最大強度勾配の特定比率としてもよい。
識別ステップ288にはまた、水平領域に含まれる各列の大きな強度勾配が、その列内のほぼ同じ位置で生じ、所定の画素数以上に互いにはずれてはいないことを検証することを含めることができる。したがって、例えば、1つの画素列内で高い強度勾配が70番目の画素の位置にあった場合、識別ステップ288に、隣の列の高い強度勾配が、70番目〜80番目の間のどこかで生じていることを検証することを含めることができる。この範囲内に高い強度勾配がなかった列は、この高強度画素の水平領域から除外して、画質を高め、勾配または境界位置を外挿および補間することができる。実施形態によっては、ほぼ同じ垂直方向位置にて高い強度勾配が生じている隣接列による特定幅の領域のみを、高コントラスト領域として扱う。
制約ステップ290では、ルーメン/内膜境界226の位置、さらに大雑把に言えば、高コントラストではないあらゆる境界または特徴の位置を識別して見ることができる。この実施方式の1つは、検査する領域を制約することである。したがって、制約ステップ290では、1つの高コントラスト領域の大きな強度勾配から第2の高コントラスト領域の大きな強度勾配へと引かれた線上に中心をおく領域に限定して調べることにより、高コントラスト領域にはさまれた低コントラスト領域内における最大勾配を調べることができる。
制約ステップ290にはまた、境界を定めるために異なる値の使用を含めることができる。この場合、コントラストの高い領域では、比較的大きな値を用いて、どの勾配が境界を表しているかを識別、限定、または特定することができる。制約ステップ290に、比較的コントラストの低い領域において最大強度勾配を決定し、この小さい方の値の一定百分比を用いて、境界を表すのにどの勾配が十分に大きいかを定めることを含めることができる。同様に、制約ステップ290に、制約された領域内で一定の最小値を上回る、最も急峻な勾配を探すことを含めてもよい。
ブリッジング・ステップ292に、低コントラスト領域内の境界または勾配位置を、その両側にある比較的コントラストの高い方の領域内の境界または他の強度勾配の位置に基づいて、補間することを含めることができる。任意に、実施形態によっては、高コントラスト領域の位置に基づいて、境界または勾配の位置を、片側の低コントラスト領域に外挿することができる。
検証ステップ294では、高コントラスト領域が、比較的コントラストの低い領域への補間および外挿を調整するのに適切であることを検証することができる。検証ステップ294には、コントラストの「高い」領域内の列数をコントラストの「低い」領域内の列数と比較することを含めることができる。低コントラスト領域内の画素列の方が高コントラスト領域の画素列より多かった場合、外挿および補間により精度を上げることはできない可能性がある。
図17を参照すると、代替実施形態において、ルーメン・データ位置特定処理148は、並進ステップ300および並進検証ステップ302を含む。図18を参照すると、並進ステップ300に、外膜データ246をルーメン78の中心に向けて並進させることを含めることができる。並進検証ステップ302では、並進した路内にある画素すべての強度を平均することができる。その平均値、中央値、または全画素に関する何らかの数値が、ルーメン閾値202または他の最小値を下回る強度に匹敵する場合、並進検証ステップ302に、並進させた外膜データ246をルーメン・データ240として確定することを含めることができる。別法として、並進検証ステップ302に、データを並進させた位置にあった画素すべての強度がルーメン閾値202または他の最小値を下回る場合にのみ、並進させた外膜データ246をルーメン・データ240としてマークすることを含めることができる。別法として、並進させた外膜データ246を単に、他のカーブ・フィッティング処理の起動点とする、または、ルーメン・データ240に関する検査を制約する領域に対する中心、縁部、もしくは他の整合地点とすることも可能である。例えば、図15の方法を用いて、制約した検査領域内でルーメン・データ240について検査することができる。
図19を参照すると、中膜データ位置特定処理150に、位置特定ステップ308およびカーブ・フィッティング・ステップ310を含めることができる。位置特定ステップ308では、中膜の暗い画素路を識別することができる。この画素路は、後に中膜データ242を得るために適合されるものである。カーブ・フィッティング・ステップ310では、中膜の暗い画素路をカーブ・フィッティングさせて、すでに説明した本発明による他のカーブ・フィッティング・ステップと同様に中膜データ242を得ることができる。実施形態によっては、中膜データ位置特定処理150を省き、検査場の限定に中膜データ242を用いるすべての場合で、ルーメン・データ240を用いることができる。さらに別の実施形態では、ルーメン・データ240を省き、外膜84単独で、組織層間の境界に対する検査を制約することができる。例えば、中膜/外膜境界に対する検査を、単純に外膜データ246から開始し、ルーメン78に向けて移動させることができる。
図20を参照すると、位置特定処理312は、中膜の暗い画素路位置特定ステップ308に関する1方法を例示したものである。処理312は、測定領域172内の画素列で実施することができる処理である。処理312を、外膜データ246に位置する、または外膜データ246近傍に位置する画素を調べることにより開始することができる。画素強度を決定したら(314)、処理312では、その画素が、局部的最小値部分であるかどうかを決定する(316)。そうであれば、処理312では、その画素強度が中膜閾値210を下回っているかどうかを決定する(318)。そうであれば、その画素を中膜の暗い画素としてマークまたは指定し(320)、処理312を別の画素列について継続する。
その画素が局部的最小値部分でない場合、処理312では、その画素が、外膜84から所定距離内に位置するかどうかを決定する(322)。この距離として適切な値は、外膜84からルーメン78までの距離の約半分〜3分の2である可能性がある。外膜データ246およびルーメン・データ240を用いて、その間の距離を決定するために、外膜84およびルーメン78の位置を特定することができる。その画素が外膜84からその特定距離内にない場合、処理312は、次の画素列へ進む(323)。実施形態によっては、ここで外膜84から離れて移動しながら、処理312を繰り返す。画素がルーメン78から特定距離だけ離れていた場合、これを中膜の暗い画素としてマークし(324)、処理312を残りの画素列について実行する。
強度の最小値が中膜閾値210を下回っていない場合、処理312では、その画素から外膜84までの距離がステップ322と同じ所定値以上であるかどうかを決定する(326)。その値以上であった場合、対応画素を中膜の暗い画素としてマークし(328)、処理312を残りの列すべてについて実行する。所定値を下回っていた場合、処理312は、次の画素列へ進む(329)。通常、外膜84へ向けて移動しながら、処理312を繰り返す。
図21は、中膜データ位置特定処理150について別の実施形態を例示している。最小値位置特定ステップ330では、外膜84とルーメン78との間で、各画素列における局部的強度の最小値部分を探すことができる。実施形態によっては、最小値位置特定ステップ330で、外膜データ246とルーメン・データ240との間で、局部的最小値部分を探すことができる。最小値位置特定ステップ330では、外膜データ246から開始してルーメン・データ240に向けて移動しながら、最小値部分を探すことができる。コントラストが不十分な画素列では、最小値位置特定ステップ330に、検証済みの最小値部分の位置に基づいて、中膜を表す局部的最小値部分の推定位置を、コントラストが不十分な1画素列または複数の画素列の両側または片側に外挿または補間することを含めることができる。実際の有効な局部的最小値部分ではなく、このように外挿または補間により決定された局部的最小値部分の推定位置を、列内の中膜の暗い画素位置として後に用いることができる。
最小値部分が見つけられたら、検証ステップ332は、その最小値部分が中膜82内に位置しているであろうことを検証することができる。その最小値部分を、これが中膜閾値210を下回っていることを確認することにより、検証することができる(332)。また、比較的暗い中膜82は、比較的明るい外膜84に隣接しており、その間に強度勾配があることから、その最小値部分を、これが最小値部分と外膜データ246との間にある高い強度勾配に隣接していること確認することにより検証してもよい(332)。検証ステップ332に、有効な最小値部分を、中膜データ242の確定に用いる中膜の暗い画素としてマークすることを含めることができる。不適切な最小値部分が見つかった場合、処理150を、その不適切な最小値部分の位置から開始してルーメン78に向けて移動させながら、繰り返すことができる。
検証ステップ332にはまた、最小値部分の位置を精査することを含めることができる。検証ステップ332では、外膜84から特定距離内にあるこの最小値部分のみが、中膜データ242の計算に用いる中膜の暗い画素としてマークされていることを確認することができる。その特定距離として機能する値は、外膜84からルーメン78までの距離の約半分〜3分の2である可能性がある。中膜閾値210を下回る最小値部分がない、最小値部分が大きな強度勾配に近接している、またはこの両方である場合、検証ステップ332に、外膜から特定距離にある画素を、中膜データ242の計算(カーブ・フィッティング)に用いる中膜の暗い画素としてマークすることを含めることができる。
図21をまだ参照しながら図22を参照すると、画像の領域全体にわたり各画素列内で垂直方向に位置する中膜の暗い画素338をカーブ・フィッティングすることを含むカーブ・フィッティング・ステップ334では、一時的中膜データ336を確定することができる。カーブ・フィッティング・ステップ334では、上述したいずれのカーブ・フィッティング方法も、他のデータまたは他の適した方法と併せて用いることができる。
調整ステップ340では、中膜データ242の計算に用いる中膜の暗い画素338の位置を変更することができる。例えば、各中膜の暗い画素338を調べて、これが一時的中膜データ338と外膜データ246との間に位置しているかどうか見ることができる。中膜82が外膜84内に侵入することは実際にはない。一時的中膜データ338と外膜データ246との間にある中膜の暗い画素を、一時的中膜データ336にある地点または画素まで移動させる、または一時的中膜データ336にある地点または画素に置き換えることができる。カーブ・フィッティング・ステップ342では、中膜データ242を、修正した1組の中膜の暗い画素338にカーブ・フィッティングさせることができる。このカーブ・フィッティング・ステップ342では、上述したいずれのカーブ・フィッティング方法も、他のデータまたは他の適した方法と併せて用いることができる。別法として、一時的中膜データ338自体を中膜データ242としてもよい。
図23は、ルーメン/内膜境界位置特定処理152を例示したものである。画定ステップ346では、検査する場を画定することができる(346)。例えば、一実施形態において、検査する場は、ルーメン・データ240と中膜データ242との間の領域に限定される。検査場画定ステップ346に、ルーメン・データ240とルーメン・データ240から中膜データ242へ向けて検査して見つかった第1の局部的最大値部分との間の領域のみを検査することを含めることができる。実施形態によっては、局部的最大値部分の強度が中膜閾値210を上回らなければならない場合がある。実施形態によって、検査場画定ステップ346に、ルーメン・データ240および/または中膜データ242の位置を手動でまたは自動的に調整することを含めることができる。例えば、利用者がルーメン・データ240のグラフ表示をクリックし、これを垂直方向に別の位置まで並進させて、フィッティングまたは一致の具合を見られるようにしてもよい。さらに別の実施形態では、検査する場を、外膜データ246とルーメン内に位置する測定領域172の縁部との間の領域として画定してもよい(346)。
実施形態によっては、操作者が、ほぼルーメン/内膜境界244上にある1地点または複数の地点を選択できるようにしてもよい。検査場画定ステップ346に、操作者が選択したポイントまたは、操作者が選択したポイント間で補間されたラインを中心とする狭い領域のみを検査することを含めることができる。別法として、操作者またはソフトウェアが、検査領域の一境界を画定するために、ルーメン78内の1地点または一連の地点を選択または特定できるようにしてもよい。
位置画定ステップ348では、正の最大強度勾配を求めて、ルーメン・データ240または、測定領域172の縁部などの制限境界から開始して、中膜データ242に向けて検査することができる。中膜データ242の位置が確定されていない実施形態では、位置特定ステップ348で、正の最大強度勾配を求めて、ルーメン・データ240または他の境界から外膜データ246に向けて検査することができる。検証ステップ350では、勾配がルーメン/内膜境界244を表しているであろうことを検証することができる。実施形態によっては、位置特定ステップ348に、外膜データ246または中膜閾値210を上回る局部的最大値部分からルーメン・データ240または中膜データ242に向けて開始する場合、負の最大強度勾配を求めて検査することを含めることも可能である。実施形態によって、検証ステップ350に、勾配を画定している画素がルーメン閾値202などの特定閾値を下回っている場合、その勾配を拒否することを含めることができる。
画定ステップ346、位置特定ステップ348および検証ステップ350を、最大(最も急峻な)有効強度勾配が見つかるまで、繰り返すことができる。したがって、検査場画定ステップ346に、まだ調べられていない画素列に検査の場を限定することを含めることができる。例えば、検査場画定ステップ346に、検査する領域を無効な勾配と中膜データ242または中膜閾値210を上回る第1の局部的最大値部分との間の領域に限定することを含めることができる。
任意の特定ステップ352により、操作者は、1つまたは複数の地点にあるルーメン/内膜境界244のおよその位置を手動で特定することができる。任意の補償ステップ284では、上述したように、比較的コントラストの高い領域内で見つけられたルーメン/内膜境界244の部分に基づいて、ルーメン/内膜境界244の位置を比較的コントラストの低い領域内に外挿または補間することができる。補償ステップ284では、操作者が特定した地点と高コントラスト領域との間で外挿または補間することができる。
図24は、中膜/外膜境界位置特定処理154の一実施形態を例示したものである。画定ステップ358では、検査する場を画定することができる。例えば、一実施形態において、検査する場は、中膜データ242と外膜データ246との間にある画素列部分に限定される。別法として、検査する場を、ルーメン・データ240と外膜データ246との間にある領域に限定することもできる。さらに別の実施形態では、検査する場を、外膜データ246と、ルーメン内に位置する測定領域172の縁部との間の領域として画定することができる(358)。実施形態によっては、検査場画定ステップ358にはまた、中膜データ242、外膜データ246、またはこれら双方を手動でまたは自動的に並進させることを含めることができる。さらに別の実施形態において、検査する場を、中膜データ242と外膜閾値208または他の最小値を上回る対応強度を有する局部的最大値部分との間の領域に限定することもできる。
位置特定ステップ360では、検査場内で最大である正の勾配を識別することができる。位置特定ステップ360に、中膜データ242、または測定領域172の縁部やルーメン・データ240などの境界から開始して外膜データ246に向かって移動しながら、各画素を調べることを含めることができる。検証ステップ362では、強度勾配が高い確率で中膜/外膜境界248であることを検証することができる。この検証ステップ362に、勾配を画定している画素が中膜閾値210などの特定値を下回っている場合、その勾配を拒否することを含めることができる。
検証ステップ362で、ある勾配が拒否された場合、画定ステップ358、位置特定ステップ360および検証ステップ362を、最大有効強度勾配が見つかるまで繰り返して実施し、次に大きな強度勾配を見つけて検証することができる。したがって、画定ステップ358に、中膜データ242または他の境界と無効な強度勾配の位置との間の領域に検査の場を限定することを含めることができる。任意に、位置画定ステップ364により、操作者は、中膜/外膜境界248のおよその位置を1つまたは複数の地点に手動で特定することができる。補償ステップ284では、上述したように、コントラストの高い領域内で見つけられた中膜/外膜境界248の部分および/または操作者が中膜/外膜境界248に沿って特定した地点に基づいて、中膜/外膜境界248の位置をコントラストの低い領域内に外挿または補間することができる。
図25を参照すると、計算モジュール120では、ルーメン/内膜境界244と中膜/外膜境界248との間の距離に基づいて、IMT値を計算することができる。実施形態によっては、計算モジュール120で、各画素列に対するルーメン/内膜境界244と中膜/外膜境界248との間の距離を計算し、それらを一緒に平均して、最終的な値を得ることができる。計算モジュール120ではまた、較正モジュール112により計算された較正率に基づいて、算出されたIMT値をその実際の実環境値に変換することができる。
実施形態によっては、計算モジュール120は、中膜/外膜境界258にあるスパイクまたは他の傾き不連続部を除去する(フィルタをかける)ことができる。例えば、計算モジュール120で、高さが幅の特定倍となっているスパイクを探すことができる。例として、基部幅の3倍の高さを有するスパイクを識別することができる。こうしたスパイクを形成している中膜/外膜境界248の部分を、スパイク両側の境界位置の平均値と置き換えることができる。計算モジュール120は同様に、ルーメン/内膜境界244からスパイクを除去することができる。
計算モジュール120は、中膜/外膜境界248、ルーメン/内膜境界244、またはこの双方をカーブ・フィッティングすることができる。実施形態によっては、計算モジュール120は、明らかに誤差のあるデータがカーブ・フィッティング結果に影響を及ぼさないようにスパイクを境界244、248から除去した後、境界244、248をカーブ・フィッティングする。
計算モジュール120に、傾き補償モジュール370を含めることができる。傾き補償モジュール370は、水平方向74に対する頚動脈の角度100についてIMT測定値を調節することができるものである。例えば、実施形態によっては、傾き補償モジュール370が、IMT測定値に角度100のコサインを掛け合わせることができる。角度100は、各画素列について、ルーメン/内膜境界244、中膜/外膜境界248、またはルーメン/内膜境界244と中膜/外膜境界248との中間地点にある画素ラインにラインをフィッティングすることにより算出できる。角度100を、水平方向74に相対するラインの角度と同じに設定することができる。別法として、角度100を、ルーメン・データ240、中膜データ242および/または外膜データ248の1つまたはこれらの組み合わせにフィッティングしたラインを用いて、計算することも可能である。実施形態によっては、角度100を、ルーメン・データ240、中膜データ242、外膜データ240、ルーメン/内膜境界244または中膜外膜境界248を含む最も左寄りおよび最も右寄りの地点を結んだラインに基づいて計算することができる。別法として、操作者が、傾き補償モジュール370が後に角度100の画定に使用できる2地点を選択してもよい。
計算モジュール120にはまた、IMT厚さが漸減した場合に、それが測定値に与え得る影響を計算に入れるため、IMT測定値を調整する漸減補償モジュール(taper compensating module)372を含めることができる。この種の変動をなくす1つの方法は、漸減の影響のない領域におけるIMTを測定することである。例えば、拡張部分90から10mm〜20mm離れて位置する区分98のIMTは通常、あまり漸減しない。
漸減補償モジュール372は、拡張部90を検査することにより、分岐部の位置を特定することができる。一実施形態において、漸減補償モジュール372は、外膜84の実質的に線形である部分に直線をフィッティングする。次に漸減補償モジュール372は、そのライン上に位置する画素の強度を調べながら、突出部を分岐部に向けて外挿することができる。このライン上にある画素が安定してルーメン閾値202を下回る強度を有する場合、このラインはルーメン78内へと延びる。ラインが最初に低強度画素にぶつかる位置が、拡張部90と分岐部のおよその位置とにほぼ匹敵する。無論、拡張部90の位置特定にはさまざまな方法を用いることができる。
図25をまだ参照しながら図26を参照すると、漸減補償モジュール372は、漸減補償処理374を実行することができる。漸減補償処理374には、IMTデータベース133を生成するステップ376を含めることができる。図27を参照すると、IMTデータベース133の生成ステップ376には、さまざまな小区分378にて頚動脈のIMTを測定し、各小区分の平均IMTをその位置と共に記録することを含めることができる。実施形態によっては、さまざまな小区分のIMTをカーブ・フィッティングし、そのカーブ・フィッティングの多項式または他の数学的記述を記録することができる。小区分378は通常、拡張部90近傍における漸減の影響を含めるため、区分94にも98にも、または区分94、98の一部に設けられる。小区分378の幅を、漸減程度に相関させることができ、漸減程度が大きい領域では小区分を細く区切る。IMTデータベース133は通常、数多くの患者からの測定値を含む。
これまでの研究から、漸減程度は主に平均IMTに応じて変化することがわかっている。平均IMTが小さい動脈ほど、平均IMTが大きい動脈より漸減量が少ない。したがって、IMTデータベース生成ステップ376に、拡張部90から標準化した距離だけ離れた地点のIMTに基づいて、超音波画像からとられた各一連の測定値にインデックスすることを含めることができる。例えば、拡張部90から10mm〜20mm離れて延在する区分98では、画像からのIMT測定値が実質的に一定であるため、ここを拡張部90から15mm離れた地点でのIMTでインデックスすることができる。別法として、その15mm地点を中心とする領域、またはこれに近接する領域の平均IMTを用いてインデックスすることもできる。
さらに、標準化した地点において類似したIMTを有する複数の患者に関するIMT測定値を、一緒に平均して、後で使用できるようにその平均値を格納し、その標準化地点での平均IMTでインデックスすることができる。通常、一人の患者に関する、拡張部90から特定距離に位置する小区分378のIMT測定値は、別の患者の超音波画像で同じ距離にある小区分378のIMTと平均される。
図26および図27をまだ参照しながら図28を参照すると、正規化因子計算ステップ380に、IMTデータベース133から、1本または複数本の頚動脈でとられ、同じ地点で目下の超音波画像と実質的に同じIMT厚さを有するIMT測定値136を検索することを含めることができる。したがって、例えば、目下の超音波画像で、拡張部90から15mmの地点におけるIMTが0.27mmであれば、正規化因子計算ステップ380に、対応地点においてIMTが0.27mmである動脈に対するIMT測定値136を検索することを含めることができる。別法として、標準化地点において、その地点における目下の動脈のIMTを制限するIMT値を有する複数の動脈の記録測定値について、IMT測定値136を検索してもよい。
正規化因子を、小区分378について格納されているIMT測定値136または測定値136に基づいて、計算することができる(380)。例えば、小区分378aは、IMT382を有し、地点384にあるとする。小区分378bは、IMT386を有し、地点388にあるとする。地点388を、実質的にすべてのIMT測定値136の正規化に用いた、拡張部90から標準化した距離になるように選択することができる。正規化因子を、小区分378aについて、IMT386をIMT382で割って商を出すことにより計算することができる。同様に、各小区分378について、IMT386をIMTで割って商を出して、各小区分378に対する正規化因子を計算することができる(380)。
再度図26を参照すると、正規化因子適用ステップ390に、正規化因子に目下の超音波画像に含まれる対応小区分378のIMTを掛け合わせることを含めることができる。したがって、例えば、目下の画像内で拡張部90から7mmの距離の地点を中心とする小区分378に、拡張部90から7mmの距離で計算された正規化因子が掛け合わせられる。同様に、図29に示したように、グラフ392内の各小区分378におけるIMTは、グラフ394の標準化地点388における、ほぼ等量のIMTに変換される。そこで各小区分378の正規化済みIMTを平均すると、報告可能な最終値を得ることができる。
正規化因子を適用するためには、さまざまな代替手法が可能である。例えば、目下の超音波画像を小区分378に分割せず、各画素列のIMTに正規化因子を適用してもよい。画素列の水平方向位置を制限する位置を中心とする小区分378について計算した正規化因子間の補間値を用いて、1本の画素列のIMTを正規化することができる。別法として、正規化因子を、検索したIMT測定値136内の各画素列について計算することができる。さらに別の実施形態において、格納されているIMT測定値136の数学的記述を用いて、各画素列の位置における正規化因子を計算することができる。
再度図25を参照すると、計算モジュール120にはまた、データ整理編集モジュール398および診断モジュール400を含めることができる。データ整理編集モジュール398は、IMT測定値および他のデータをコンパイルし、統計学的に解析して、診断データ131に到達することができる。診断モジュール400は、患者のIMTを患者が心血管疾患にかかる危険性に関連付けるために、診断データ131を検索することができる。
上述からわかるように、超音波画像診断装置、コンピュータ断層撮像装置、磁気共鳴イメージング装置などのイメージング・デバイスは、人の身体の解剖学的形状の微詳細を正確にキャプチャすることができる。イメージング・デバイスを測定技術と併用することにより、動脈壁に関連する「プラーク」などの組織構造アスペクトの組織濃度を決定することができる(プラークは、異常に厚みを増した動脈壁部分の局部面積として定義されている)。
例えば、頚動脈壁の組織濃度を決定すると望ましい場合がある。頚動脈にプラークがあると、これが、脈管系全体にアテローム動脈硬化症があること、およびその程度をよく示すものであることがわかっている。
組織構造アスペクトの濃度は、その性質に応じて変化する可能性がある。その組織構造に、関連する濃度から決定できる特徴など、特異な特徴があることを知っていると、これが、状態の診断に有用となる、かつ/または他に有益となることが多い。例えば、プラークは、高濃度となり、著しく石灰化する場合がある、軟らかく、石灰化しない場合がある、または間のどこにでも生じ得る。軟らかく、石灰化しない方のプラークは通常、破裂/剥離して閉塞や血餅を生じやすいため、危険度がより高いプラークである。したがって、こうした軟らかいプラークがあると決定することも、その濃度を決定することも極めて重要である。超音波の他にも、CATスキャンなど、石灰化したプラークの存在を非侵襲式に決定する技術はあるが、こうした技術では、石灰化していないプラークを見つけるのに苦労することがよくある。超音波技術では、高濃度で石灰化したプラークも、それより軟らかい、石灰化していないプラークも検出することができる。本発明の実施形態は、超音波デバイスまたは他の適したイメージング・デバイスから入手可能な画像などの画像を用いて、頚動脈および/またはその分枝にあるプラークの位置を特定し、その濃度を特徴付ける。
超音波デバイスなどで得られる画像などのデジタル画像は、その中の各位置で組織濃度を表す、デジタル・サンプリングした値の行列で構成されていることが多い。こうしたサンプリングした値は、画素値、または単に画素と言われる。画素強度が明るいほど、濃度の高い組織に対応している。本発明の一実施形態による、頚動脈内のプラーク濃度測定を目的とする測定処理は、画素強度を、そのデジタル画像内の相対位置と共に用いて、プラークのサイズ、位置、および/または濃度を決定する。
図30は、本発明の一実施形態による、組織構造アスペクト濃度情報を提供するシステムを示している。例示した実施形態において、超音波イメージング・デバイス3001は、頚動脈の画像など、対象組織構造を含む画像をキャプチャし、通信媒体3002を介して、その画像をプラーク濃度測定機構3003に提供する。例えば、プラーク濃度測定機構3003に、本明細書内に記載した操作を規定する命令の制御下にて動作可能な汎用コンピュータ(例えば、パーソナル・コンピュータ)システムを含めることができる。別法として、プラーク濃度測定機構3003を、本明細書内に記載した操作を規定する命令の制御下にて動作可能なプロセッサおよび/または1つまたは複数の特定用途向けIC(ASIC)を含むことができるデバイスなどのイメージング・デバイス3001と一体化させることができる。通信媒体3002に、ネットワーク・リンク(例えば、広域ネットワーク(WAN)、首都圏ネットワーク(MAN)、ローカル・エリア・ネットワーク(LAN)、公衆交換電話網(PSTN)、インターネット、イントラネット、エキストラネット、ケーブル伝送システム、および/またはこれと同様のもの)、パラレル・データ・リンク(例えば、セントロニクス・パラレル・インターフェイス、IEEE1284パラレル・インターフェイス、IEEE488パラレル・インターフェイス、スカジー(SCSI)パラレル・インターフェイス、PCIパラレル・バス、および/またはこれと同様のもの)、シリアル・データ・リンク(例えば、RS232シリアル・インターフェイス、RS422シリアル・インターフェイス、ユニバーサル・シリアル・バス(USB)インターフェイス、IEEE1394シリアル・インターフェイスおよび/またはこれと同様のもの)を含むことができる例など、デジタルまたはアナログ・インターフェイスを含めることができる。
プラーク濃度測定機構3003は、超音波画像内で頚動脈などの組織構造内にあるプラーク領域を識別し、その濃度を決定する。例えば、プラーク濃度測定機構3003は、上述したようにデータを確定して、プラーク領域を識別することができる。さらに別法として、利用者の入力を用いて、プラークの領域、プラークの境界、プラークの中心などを識別することができる。好適な一実施形態のプラーク濃度測定機構3003は、プラーク領域を識別した後、プラーク領域内の画素強度を解析して、プラークの濃度を決定する。例えば、プラーク濃度測定機構3003は、画像全体またはその一部の強度を正規化してから、プラーク領域と関連する平均または中間画素強度ちを使用することができる。さらに、または別法として、プラーク濃度測定機構3003は、異なる層、他の組織構造に近接する領域などのプラーク領域の異なる部分を解析して、そこに関連する濃度を決定することができる。したがって、識別されたプラーク領域に対して、いくつかのプラーク濃度を決定することができる。プラーク濃度測定機構3003はさらに、また別法として、プラーク領域のサイズ、プラーク領域の厚さ、他の組織構造アスペクトまたは組織構造自体と比較したプラーク領域の相対サイズ(例えば、百分比)、他の組織構造アスペクトまたは組織構造自体に対するプラーク領域の相対位置、および/またはこれに類似のものなどの関連情報を決定することができる。
例示した実施形態のプラーク濃度測定機構3003は、上述したプラーク濃度情報をプラーク濃度報告書作成プログラム3004に提供する。プラーク濃度報告書作成プログラム3004は、本明細書に記載した操作を規定する命令の制御下にて動作可能な汎用コンピュータ(例えば、パーソナル・コンピュータ)システムを含むことができる。別法として、プラーク濃度報告書作成プログラム3004を、本明細書内に記載した操作を規定する命令の制御下にて動作可能なプロセッサおよび/または1つまたは複数のASICを含むことができるデバイスなどのイメージング・デバイス3001と一体化させることができる。好適な一実施形態のプラーク濃度報告書作成プログラム3004は、組織構造の状態を診断または他のことに有用な形態でプラーク濃度情報を出力する。例えば、プラーク濃度報告書作成プログラム3004は、プラークの濃度値、厚さ、サイズ、位置などを、プラーク濃度値、厚さ、サイズ、位置などのデータベースと比較して、患者の相対的状態を報告することができる。さらに、または別法として、プラーク濃度報告書作成プログラム3004は、プラークの成長側小、プラークの石灰化速度などの傾向を決定するために、プラークの濃度値、厚さ、サイズ、位置などを、特定個人に関連する経歴情報と比較することができる。
プラーク濃度報告書作成プログラム3004により生成される上記情報のいずれかまたはすべてを、いくつかのフォーマットのいずれかで、さまざまな媒体を用いながら、利用者または操作者に報告することができる。例えば、プラーク濃度報告書作成プログラム3004は、その情報をリアルタイムまたはほぼリアルタイムで、プラーク濃度表示デバイス3005上に表示することができる。プラーク濃度表示デバイス3005の例として、表示モニタ(例えば、陰極線管(CRT)、液晶表示装置(LCD)、プラズマ表示など)が挙げられ、これを超音波イメージング・デバイス3001の一部としても、別個としてもよい。プラーク濃度報告書作成プログラム3004は、その情報をプラーク濃度印刷デバイス3007にハード・コピーとして出力することができる。印刷デバイス3007の例として、プリンタ(例えば、ドット・マトリクス・プリンタ、レーザプリンタ、ページ・プリンタ、インクジェット・プリンタなど)が挙げられ、これを通信媒体3006を介してプラーク濃度報告書作成プログラム3004に連結する。通信媒体3006には、通信媒体3002に対して上述した例などのいくつかの通信媒体のいずれかを含むことができる。プラーク濃度報告書作成プログラム3004が上記情報を利用者または操作者に報告することに加えて、またはこの代替として、この情報を1つまたは複数のデータベースに格納する、かつ/または、本発明の実施形態による1つまたは複数のシステムに転送してもよい。
以上、組織構造アスペクト濃度情報システムの実施形態について説明したが、ここで、一実施形態による組織構造アスペクト濃度情報システムの操作の流れ図を記載した図31を参照する。この例示した実施形態のステップ3101において、患者は、解析すべき組織構造を有しており、その構造は、例示した実施形態では頚動脈として示されている。ステップ3102において、超音波イメージング・デバイスを使用して、その頚動脈のデジタル画像をキャプチャする。その後、ステップ3103にて、その頚動脈のデジタル画像が、本発明のプラーク濃度測定装置に提供される。
ステップ3103内で、プラーク濃度測定装置は、超音波画像に含まれる、対象である頚動脈または他の組織構造のアスペクト(例示した実施形態ではプラーク)の位置を特定するように動作する。この位置特定にはいくつかの方法がある。1つの手順は、操作者にプラークの境界をトレースさせることである。これは、プラークに対する自動化された縁部決定がないため、最も単純な実施手順である。プラークの位置を特定する別の方法は、操作者に、頚動脈壁に含まれる対象領域内で1地点または複数の地点を特定させることである。次に、その地点から、プラークの境界が決定されるまで、アルゴリズムが外向きに検査することができる。例えば、一実施形態は、指定された地点からあらゆる方向に最大強度勾配を探すことにより、識別された地点からのプラーク境界を決定する。プラークの位置を特定する別の方法は、操作者に、プラークの一部である各画素が指定される領域に完全に包囲されていることを確認しながら、プラーク周囲を取り囲む領域または路を特定させることである。するとアルゴリズムが、この境界から内向きに検査し、最大強度勾配を探すことにより、プラーク境界を求める。
プラークの位置が特定され、その外側境界が決定されたら、ステップ3103において、いくつかの濃度特性を、プラーク濃度測定装置により計算することができる。その特性の例として、平均濃度、ピーク濃度、濃度範囲(最大濃度から最小濃度を差し引いた範囲)、合計プラーク面積、最も濃度の高い領域の面積、濃度のヒストグラム、濃度標準偏差または分散、およびこれに限定するものではないが濃度重心が挙げられる。
超音波画像を構成する強度値は相対的な強度値であることを理解されたい。したがって、実際の画素強度値を、組織濃度に変化させるために、その感度を高くしたり低くしたり調節することができる。選択された画像ゲイン設定に応じて、同じ画像に対してでさえ、画素強度を劇的に変更することができる。このため、操作者に影響される画素強度を、所与のプラークについて収集された濃度情報を正規化することにより、できるだけ正規化することが重要である。これは、患者間で比較的安定した濃度を有する標識構造でわかっている組織濃度に応じて変化する調整係数で、収集された各濃度値を修正することにより実施される。濃度のわかっている標識構造の1つがルーメンである。ルーメンの濃度を測定することは、動脈内を流れる血液の濃度を測定することである。血液濃度は、患者間で比較的安定していると推定される。ルーメンの濃度がわかれば、画像で見られる組織濃度の下限がわかる。組織濃度の上限として使用されるもう1つの標識構造は、外膜である。外膜は、頚動脈の画像内で最も濃度の高い組織となる傾向がある。この濃度も、患者間で比較的安定している。プラーク濃度をルーメン濃度から外膜濃度までで正規化することにより、操作者が調節し、組織濃度の読取り値に直接影響するゲイン係数を正規化することができる。
上記2つの既知組織濃度を正規化する1つの手順は単に、線形スケーリングおよびオフセットである。例えば、ルーメン平均濃度が10、外膜平均濃度が170と仮定すると、値が77であるプラーク濃度を正規化するには、ルーメン濃度から外膜濃度までの範囲で百分位数濃度を決定することができる。これを以下の式で行う。
正規化した組織濃度=(77−10)/(170−10)=0.419=41.9%
ルーメン濃度から外膜濃度までの百分位数として正規化した組織濃度を特定することは、1つの選択肢にすぎない。他にも数多くの正規化報告用方法がある。例えば、一実施形態では、内膜/中膜濃度から外膜濃度までの百分比を使用することができる。
上述した処理の1つまたは複数などの正規化処理を用いることにより、器具のゲイン設定とは独立した範囲でプラーク濃度を特定する。ステップ3104において、プラーク濃度測定装置により決定されたプラーク濃度データが、プラーク濃度報告処理に送られる。このプラーク濃度報告処理では、プラーク濃度情報が、ステップ3106にてプラーク濃度報告を表示する、かつ/またはステップ3107にてプラーク濃度報告を印刷するなど、いくつかのフォーマットのいずれかで出力される。
上記プラーク濃度報告では、利用者がすぐに理解して解釈できるフォーマットでプラーク濃度情報を提供することができる。例えば、本発明の一実施形態は、所与プラークの方さによる重症度を示す数字1〜5を出力して、そのプラークを特徴付ける。この5つの数字を、危険度レベルに対応する濃度の5段階に相関させる。この段階は、例えば、多数の人からプラーク濃度値を事象(心臓発作、脳卒中など)履歴と組み合わせて収集して決定することができる。
プラーク濃度を使用する別の実施形態において、正規化したプラーク値のデータベースを生成することにより、プラーク濃度に基づいた重症度分類をして、そのプラークを特徴付けることができる。このデータベースに、多数の多種多様な人から得た数多くのプラーク濃度を事象の出現と組み合わせて入れることにより、スクリーニング用に、個人からのプラーク濃度測定値と併せてこのデータベースを使用することができる。
以上、本発明およびその利点を詳細に説明してきたが、請求の範囲に定められている本発明を逸脱することなく、さまざまな変更、置き換えおよび修正を本明細書に加えられることを理解されたい。さらに、本願の範囲は、明細書内に記載した処理、機械、製造法、物質の組成、手段、方法およびステップに対する具体的実施形態に限定されるものではない。本開示内容から容易に理解できるように、本明細書内に記載した対応実施形態と実質的に同じ機能を行う、または実質的に同じ結果を得られる、現存の、または今後開発される処理、機械、製造法、物質の組成、手段、方法またはステップを用いることが可能である。したがって、請求の範囲には、その範囲内に含まれる、こうした処理、機械、製造法、物質の組成、手段、方法またはステップが含まれるものとする。
本発明による使用に適した汎用コンピュータを示す概略図である。 頚動脈に対する超音波画像の形成および解析に適したシステムを示す配置図である。 総頚動脈に対する超音波画像の一例である。 総頚動脈に対する超音波画像のいくつかの特徴を示す簡易図である。 本発明による、超音波画像の解析に適した計算システムおよびデータ構造を示す概略ブロック図である。 本発明による、動脈に対する超音波画像のいくつかの特徴の位置特定に適した処理を示す工程系統図である。 本発明によるモジュール準備の実施に適したデータ構造を示す概略ブロック図である。 本発明による、動脈壁に対する超音波画像上に重ね合わされた測定領域およびサンプリング領域を示す配置図である。 本発明による適合処理を示す工程系統図である。 本発明によりマークした閾値の位置と共に、サンプリング領域に含まれる画素の強度を示すヒストグラムである。 本発明による、画素列の位置に対する画素強度を示すグラフである。 本発明による、ルーメン・データ、中膜データおよび外膜データを互いに重ね合わせた、頚動脈超音波画像の一部を示す簡易図である。 本発明による外膜位置特定処理を示す工程系統図である。 画素列について記憶位置に対する画素強度を表す一連のグラフであり、複数本のラインは、本発明による、ノイズおよび不十分なコントラストの補償に用いた処理を示す。 本発明によるルーメン位置特定処理を示す工程系統図である。 本発明による、低コントラストの補償に用いる処理を示す工程系統図である。 本発明によるルーメン位置特定代替処理を示す工程系統図である。 総頚動脈に対する超音波画像を示す簡易図であり、複数本のラインは、本発明による、ルーメン・データを見つけるために外膜データを適合させる処理を示す。 本発明による中膜データ位置特定処理を示す工程系統図である。 本発明による、1画素列内に含まれる中膜の暗い画素位置を特定する処理を表すフロー・チャートである。 本発明による代替中膜データ位置特定処理を表す工程系統図である。 中膜データを見つけるために最小限の記憶位置を調整する処理を示すグラフ表示である。 本発明によるルーメン/内膜境界位置特定処理を示す工程系統図である。 本発明による中膜/外膜境界位置特定処理を示す工程系統図である。 本発明による計算モジュールの実施に適したデータ構造を示す概略ブロック図である。 本発明による漸減補償処理を示す工程系統図である。 測定領域に沿ってとったIMT測定値を表すグラフである。 本発明による、正規化因子の計算に用いるIMT測定値の一部を例示するグラフである。 本発明による、頚動脈の一部に沿ったIMT厚さの正規化を例示するグラフである。 本発明の一実施形態による、組織構造アスペクトに関する濃度情報の測定に用いるシステムを示すブロック図である。 本発明の一実施形態による、組織構造アスペクトに関する濃度情報の測定を示す流れ図である。
符号の説明
10 装置
12 プロセッサ
14 メモリ・デバイス
16 不揮発性記憶デバイス
18 読出し専用メモリ
20 ランダムアクセス・メモリ
22 入カデバイス
24 出力デバイス
26 ネットワーク・カード
28 ポート
30 ネットワーク
32 バス
34 キーボード
36 マウス
38 タッチ・スクリーン
39 電話(線)
40 スキャナ
41 ハード・ドライブ
44 プリンタ
46 ハード・ドライブ
48 ルータ
50 ネットワーク
52 ノード
54 サーバ
60 ディレクトリ・サービス・ノード
62 超音波システム
64 トランスジューサ
65 頚動脈
66 患者
72a〜72e 較正マーク
72f 時刻表示
74 水平方向
76 垂直方向
78 ルーメン
80 内膜
82 中膜
84 外膜
86 近位壁
88 遠位壁
90 拡張部
92 IMT
94 区分
96 IMT
98 区分
100 角度
110 画像処理アプリケーション
112 較正モジュール
114 画像基準化モジュール
116 準備モジュール
118 位置特定モジュール
120 計算モジュール
122 画質モジュール
124 報告モジュール
126 データベース
128 データベース・エンジン
129 記録
130 患者の記録
131 診断データ
132 測定記録
133 IMTデータベース
134 測定値記録
135 インデックスIMT
136 IMT測定値
137 アプリケーション
138 操作システム
140 画像較正ステップ
142 画像準備ステップ
143 基準設定ステップ
144 位置特定処理
146 外膜データ位置特定処理
148 ルーメン・データ位置特定処理
150 中膜データ位置特定処理
152 ルーメン/内膜境界位置特定処理
154 中膜/外膜境界位置特定処理
160 入カモジュール
162 オートメーション・モジュール
164 再構成モジュール
166 適合モジュール
170 画像内地点
172 測定領域
176 幅
178 サンプリング領域
180 高さ
182 測定領域
186 適合処理
188 解析ステップ
190 適用ステップ
192 適用ステップ
194 適合ステップ
200 ヒストグラム
202 ルーメンの閾値
204 最小強度
206 最大強度
208 外膜の閾値
218 グラフ
210 中膜閾値
220 水平軸
222 垂直軸
224 ルーメン部分
226 ルーメン/内膜境界
228 内膜最大値部分
230 中膜部分
231 中膜の暗い画素部分
234中膜/外膜境界
236 外膜最大値部分
240 ルーメン・データ
242 中膜データ
244 ルーメン/内膜境界
246 外膜データ
248 中膜/外膜境界
252 最初の外膜画素位置特定ステップ
254 隣接外膜画素の位置特定ステップ
256 制約ステップ
258 外挿ステップ
260a〜260e グラフ
262a〜262e 最大値部分
264 領域
266 ライン
268 傾き
270 領域
272 カーブ・フィッティング・ステップ
280 低強度領域の位置特定ステップ
282 検証ステップ
284 補償ステップ
286 カーブ・フィッティング・ステップ
288 識別ステップ
290 制約ステップ
292 ブリッジング・ステップ
294 検証ステップ
300 並進ステップ
302 並進検証ステップ
308 位置特定ステップ
310 カーブ・フィッティング・ステップ
312 位置特定処理
314 画素強度決定
316 画素は局部的最小値部分であるか
318 強度は中膜閾値を下回っているか
320 中膜の暗い画素としてマーク
322 外膜から所定距離内に位置するか
323 次の画素列へ進む
324 中膜の暗い画素としてマーク
326 画素は外膜から所定距離内にあるか
328 画素を中膜の暗い画素としてマーク
329 次の画素列へ進む
330 最小値部分位置特定ステップ
332 検証ステップ
334 カーブ・フィッティング・ステップ
336 一時的中膜データ
338 中膜の暗い画素
340 調整ステップ
342 カーブ・フィッティング・ステップ
346 検査場画定ステップ
348 位置特定ステップ
350 検証ステップ
352 任意の特定ステップ
358 検査場画定ステップ
360 位置特定ステップ
362 検証ステップ
364 境界地点特定ステップ
370 傾き補償モジュール
372 漸減補償モジュール
374 漸減補償処理
376 IMTデータベース生成ステップ
378 小区分
378a 小区分
380 正規化因子計算ステップ
382 IMT
384 地点
386 IMT
388 標準化地点
390 正規化因子適用ステップ
392 グラフ
394 グラフ
398 データ整理編集モジュール
400 診断モジュール
3001 超音波イメージング・デバイス
3002 通信媒体
3003 プラーク濃度測定機構
3004 プラーク濃度報告書作成プログラム
3005 プラーク濃度表示デバイス
3006 通信媒体
3007 印刷デバイス

Claims (54)

  1. 画像に含まれる組織構造のアスペクトを特徴付ける方法であって、
    前記組織構造の前記アスペクトを識別するために、前記画像を解析するステップと、
    前記画像の強度情報を正規化するステップと、
    前記正規化された強度情報を用いて、前記アスペクトに対する濃度情報を決定するステップと、
    前記濃度情報を用いて、前記アスペクトを特徴付けるステップと、
    を含む方法。
  2. 前記画像解析ステップが、前記画像内の強度勾配を解析することを含む、請求項1に記載の方法。
  3. 前記画像解析ステップが、画像強度情報を用いてデータを識別することを含む、請求項1に記載の方法。
  4. 前記画像解析ステップが、画像強度情報を用いて組織境界を識別することを含む、請求項1に記載の方法。
  5. 前記正規化ステップが、
    画像内に含まれ、画像間で比較的安定した濃度を有する1つまたは複数の標識構造の既知の濃度に応じて変化する調整因子を適用すること
    を含む、請求項1に記載の方法。
  6. 前記1つまたは複数の標識構造が、血管のルーメンを含む、請求項5に記載の方法。
  7. 前記1つまたは複数の標識構造が、血管の外膜を含む、請求項5に記載の方法。
  8. 前記濃度情報決定ステップが、
    平均濃度を得るため、前記アスペクトとして識別された面積内における前記画像の平均強度を決定すること
    を含む、請求項1に記載の方法。
  9. 前記濃度情報決定ステップが、
    ピーク濃度を得るため、前記アスペクトとして識別された面積内における前記画像のピーク強度を決定すること
    を含む、請求項1に記載の方法。
  10. 前記濃度情報決定ステップが、
    濃度範囲を得るため、前記アスペクトとして識別された面積内の最大強度から前記アスペクトとして識別された面積内の最小強度を差し引いた値を決定すること
    を含む、請求項1に記載の方法。
  11. 前記濃度情報決定ステップが、
    濃度のヒストグラムを得るため、前記アスペクトとして識別された面積内の強度に対する強度ヒストグラムを決定すること
    を含む、請求項1に記載の方法。
  12. 前記濃度情報決定ステップが、
    濃度分散を得るため、前記アスペクトとして識別された面積内の強度の標準偏差を決定すること
    を含む、請求項1に記載の方法。
  13. 前記濃度情報決定ステップが、
    濃度重心を得るため、前記アスペクトとして識別された面積内の強度の重心を決定すること
    を含む、請求項1に記載の方法。
  14. 前記濃度情報決定ステップが、
    最も濃度の高い領域を得るため、前記アスペクトとして識別された面積内で最も強度の高い領域を決定すること
    を含む、請求項1に記載の方法。
  15. 前記アスペクト特徴付けステップが、
    前記組織構造に関する状態を決定するため、濃度値を濃度値のデータベースと比較すること
    を含む、請求項1に記載の方法。
  16. 前記アスペクト特徴付けステップが、
    前記組織構造の相対的状態を決定するため、前記アスペクトの厚さ、前記アスペクトのサイズ、および前記アスペクトの位置の少なくとも1つをデータベースと比較すること
    を含む、請求項1に記載の方法。
  17. 前記アスペクト特徴付けステップが、
    前記組織構造が身体の一部である患者の状態変化を決定するため、前記患者に関する濃度値データベースに濃度値を比較すること
    を含む、請求項1に記載の方法。
  18. 前記患者の状態変化が、プラークの石灰化速度を含む、請求項1に記載の方法。
  19. 前記組織構造が血管を含む、請求項1に記載の方法。
  20. 前記組織構造が頚動脈を含む、請求項1に記載の方法。
  21. 前記アスペクトがプラークを含む、請求項1に記載の方法。
  22. 前記アスペクトの全面積を決定するステップをさらに含み、前記アスペクト特徴付けステップがさらに、前記全面積に関する情報を用いる、請求項1に記載の方法。
  23. 前記組織構造の別のアスペクトに対する前記アスペクトの相対位置を決定するステップをさらに含み、前記アスペクト特徴付けステップがさらに、前記相対位置に関する情報を用いる、請求項1に記載の方法。
  24. 画像に含まれる組織構造のアスペクトを特徴付ける方法であって、
    前記組織構造の前記アスペクトを識別するために、前記画像を解析するステップと、
    前記画像に関連する前記強度情報を用いて、前記アスペクトに関する濃度情報を決定するステップと、
    前記濃度情報を用いて前記アスペクトを特徴付けることにより、前記組織構造の前記アスペクトに関連する状態の重症度に関する情報を提供するステップと、
    を含む方法。
  25. 前記画像の強度情報を正規化するステップをさらに含み、前記正規化された強度情報が、前記濃度情報ステップに用いられる、請求項24に記載の方法。
  26. 前記正規化ステップが、
    前記画像内で識別された特徴を、そうした特徴について正規化された強度と比較すること
    を含む、請求項25に記載の方法。
  27. 前記正規化ステップが、
    前記画像内に含まれ、画像間で比較的安定した濃度を有する1つまたは複数の標識構造の既知の濃度に応じて変化する調整因子を適用すること
    を含む、請求項25に記載の方法。
  28. 前記濃度情報決定ステップが、
    平均濃度を得るため、前記アスペクトとして識別された面積内における前記画像の平均強度を決定すること
    を含む、請求項24に記載の方法。
  29. 前記濃度情報決定ステップが、
    ピーク濃度を得るため、前記アスペクトとして識別された面積内における前記画像のピーク強度を決定すること
    を含む、請求項24に記載の方法。
  30. 前記濃度情報決定ステップが、
    濃度範囲を得るため、前記アスペクトとして識別された面積内の最大強度から前記アスペクトとして識別された面積内の最小強度を差し引いた値を決定すること
    を含む、請求項24に記載の方法。
  31. 前記濃度情報決定ステップが、
    濃度のヒストグラムを得るため、前記アスペクトとして識別された面積内の強度に対する強度ヒストグラムを決定すること
    を含む、請求項24に記載の方法。
  32. 前記濃度情報決定ステップが、
    濃度分散を得るため、前記アスペクトとして識別された面積内の強度の標準偏差を決定すること
    を含む、請求項24に記載の方法。
  33. 前記濃度情報決定ステップが、
    濃度重心を得るため、前記アスペクトとして識別された面積内の強度の重心を決定すること
    を含む、請求項24に記載の方法。
  34. 前記濃度情報決定ステップが、
    最も濃度の高い領域を得るため、前記アスペクトとして識別された面積内で最も強度の高い領域を決定すること
    を含む、請求項24に記載の方法。
  35. 前記濃度情報が、前記組織構造の前記アスペクトの硬さに関する情報を含む、請求項24に記載の方法。
  36. 前記硬さが、前記組織構造の前記アスペクトの石灰化に関連する、請求項35に記載の方法。
  37. 前記アスペクト特徴付けステップが、
    同様の組織構造アスペクトのデータベースを参照すること
    を含む、請求項24に記載の方法。
  38. 前記アスペクト特徴付けステップが、
    前記状態の重症度に関する情報を提供するため、経歴情報を参照すること
    を含む、請求項24に記載の方法。
  39. 前記画像解析ステップが、
    前記画像内の強度勾配を解析すること
    を含む請求項24に記載の方法。
  40. 前記画像解析ステップが、
    画像強度情報を用いてデータを識別すること
    を含む、請求項24に記載の方法。
  41. 前記画像解析ステップが、
    画像強度情報を用いて組織境界を識別すること
    を含む、請求項24に記載の方法。
  42. 画像に含まれる組織構造のアスペクトを特徴付けるシステムであって、
    前記画像のデジタル表示の入力を受け付けるプロセッサ搭載システムであって、前記画像の前記デジタル表示の強度情報を正規化するように動作する回路と、前記画像の前記デジタル表示に含まれる前記組織構造の前記アスペクトを識別するように動作する回路と、前記正規化した強度情報を用いて、前記組織構造の前記アスペクトに関する濃度情報を決定するように動作する回路と、前記濃度情報の関数として前記組織構造の前記アスペクトを特徴付けるように動作する回路とを具備するシステム
    を含むシステム。
  43. 利用者に前記濃度情報を出力するディスプレイをさらに含む、請求項42に記載のシステム。
  44. 前記濃度情報をハード・コピー報告書として出力するプリンタをさらに含む、請求項42に記載のシステム。
  45. 前記組織構造の前記アスペクトが、プラークの面積を含む、請求項42に記載のシステム。
  46. 前記プラークが、硬さの関数として特徴付けられる、請求項45に記載のシステム。
  47. 前記組織構造が血管を含む、請求項42に記載のシステム。
  48. 前記組織構造が頚動脈を含む、請求項42に記載のシステム。
  49. 前記濃度情報が、前記組織構造の前記アスペクトの硬さを示す、請求項42に記載のシステム。
  50. 前記組織構造の前記アスペクトの特徴付けにより、前記組織構造の前記アスペクトに関連する状態の重症度に対する情報が得られる、請求項42に記載のシステム。
  51. 前記前記組織構造の前記アスペクトの特徴付けが、前記組織構造の前記アスペクトに関連するリスク・レベルに対応している、請求項42に記載のシステム。
  52. 複数の個人に関連する組織構造アスペクトに関する正規化された強度情報のデータベースをさらに含む、請求項42に記載のシステム。
  53. 前記データベースがさらに、前記組織構造アスペクトに関連する事象履歴を具備する、請求項52に記載のシステム。
  54. 前記組織構造アスペクトについて正規化された強度情報が、正規化されたプラーク値である、請求項52に記載のシステム。
JP2005314576A 2004-10-28 2005-10-28 超音波血管測定装置および方法 Active JP5805357B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/975,616 US7727153B2 (en) 2003-04-07 2004-10-28 Ultrasonic blood vessel measurement apparatus and method
US10/975616 2004-10-28

Publications (2)

Publication Number Publication Date
JP2006122686A true JP2006122686A (ja) 2006-05-18
JP5805357B2 JP5805357B2 (ja) 2015-11-04

Family

ID=35530841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314576A Active JP5805357B2 (ja) 2004-10-28 2005-10-28 超音波血管測定装置および方法

Country Status (7)

Country Link
US (1) US7727153B2 (ja)
EP (1) EP1653410B1 (ja)
JP (1) JP5805357B2 (ja)
CN (1) CN1765330B (ja)
AU (1) AU2005225119A1 (ja)
HK (1) HK1089639A1 (ja)
NZ (1) NZ542968A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044441A1 (en) * 2006-10-10 2008-04-17 Hitachi Medical Corporation Medical image diagnostic apparatus, medical image measuring method, and medical image measuring program
JP2008113904A (ja) * 2006-11-06 2008-05-22 Terumo Corp 超音波診断装置および情報処理方法
JP2008168016A (ja) * 2007-01-15 2008-07-24 Fujifilm Corp 超音波診断装置、imt計測方法及びimt計測プログラム
JP2008194364A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp 超音波診断装置、データ計測方法及びデータ計測プログラム
JP2010259527A (ja) * 2009-04-30 2010-11-18 Aloka Co Ltd 超音波診断装置
WO2011013693A1 (ja) * 2009-07-30 2011-02-03 株式会社 日立メディコ 超音波診断装置とその関心領域設定方法
JP2014104246A (ja) * 2012-11-29 2014-06-09 Ge Medical Systems Global Technology Co Llc 計測装置及びその制御プログラム
KR101624846B1 (ko) 2009-07-16 2016-05-27 가부시키가이샤 유넥스 초음파 혈관 검사장치
JP2020010726A (ja) * 2018-06-25 2020-01-23 ベイ ラブズ インク. ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
US11497451B2 (en) 2018-06-25 2022-11-15 Caption Health, Inc. Video clip selector for medical imaging and diagnosis

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249643A1 (de) * 2002-10-24 2004-05-13 Siemens Ag Verfahren zur Unterstützung der Diagnose und/oder Therapie einer krankhaften Veränderung eines Blutgefäßes und hierzu hergerichtete Datenverarbeitungseinrichtung
US6835177B2 (en) * 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7727153B2 (en) 2003-04-07 2010-06-01 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7090640B2 (en) * 2003-11-12 2006-08-15 Q-Vision System and method for automatic determination of a region of interest within an image
JP4758355B2 (ja) * 2003-12-22 2011-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者の体内に医療用機器を案内するためのシステム
US20050273009A1 (en) * 2004-06-02 2005-12-08 Harald Deischinger Method and apparatus for co-display of inverse mode ultrasound images and histogram information
JP5014132B2 (ja) * 2005-07-20 2012-08-29 パナソニック株式会社 超音波診断装置
US20070160275A1 (en) * 2006-01-11 2007-07-12 Shashidhar Sathyanarayana Medical image retrieval
US7876935B2 (en) * 2006-01-30 2011-01-25 Protedyne Corporation Sample processing apparatus with a vision system
US8626263B2 (en) * 2006-04-13 2014-01-07 General Electric Company Methods and apparatus for relative perfusion and/or viability
US20070242863A1 (en) * 2006-04-13 2007-10-18 Bernice Eland Hoppel Methods and Apparatus for Contouring at Least One Vessel
ES2524303T3 (es) 2006-05-08 2014-12-05 C.R. Bard, Inc. Interfaz de usuario y métodos para un dispositivo de presentación ecográfica
CN101505664B (zh) * 2006-08-21 2011-08-31 国立大学法人东北大学 超声波诊断装置
GB2456487A (en) * 2007-01-09 2009-07-22 Sony Uk Ltd Image processing using RGB local mean and mapping of candidate colour components onto a possible dynamic range
EP1959391A1 (de) * 2007-02-13 2008-08-20 BrainLAB AG Bestimmung des dreidimensionalen Verlaufs des Randes einer anatomischen Struktur
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US20090287110A1 (en) * 2008-05-14 2009-11-19 Searete Llc Circulatory monitoring systems and methods
US20100036268A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090281412A1 (en) * 2007-12-18 2009-11-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods for detecting occlusions in a biological subject
US8280484B2 (en) * 2007-12-18 2012-10-02 The Invention Science Fund I, Llc System, devices, and methods for detecting occlusions in a biological subject
US20090281413A1 (en) * 2007-12-18 2009-11-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods for detecting occlusions in a biological subject
US20090287076A1 (en) * 2007-12-18 2009-11-19 Boyden Edward S System, devices, and methods for detecting occlusions in a biological subject
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20100036269A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20100036209A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287093A1 (en) * 2008-05-15 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9672471B2 (en) * 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US20090292222A1 (en) * 2008-05-14 2009-11-26 Searete Llc Circulatory monitoring systems and methods
DE102008017819B3 (de) * 2008-04-08 2009-12-03 Siemens Aktiengesellschaft Magnetresonanzanlage und Verfahren zum Betrieb einer Magnetresonanzanlage
FR2933521B1 (fr) * 2008-07-04 2010-10-01 Theraclion Methode de tracage du contour vraisemblable d'un element anatomique sur une image de coupe.
US8254724B2 (en) * 2008-11-06 2012-08-28 Bausch & Lomb Incorporated Method and apparatus for making and processing aberration measurements
EP2347391B1 (en) 2008-11-17 2013-12-18 Koninklijke Philips N.V. Visualization and quantization of newly formed vasculature
KR101150005B1 (ko) * 2008-11-19 2012-06-01 삼성메디슨 주식회사 Imt 측정 영역 설정 방법 및 초음파 장치
WO2010135653A1 (en) * 2009-05-22 2010-11-25 Imacor Inc. Tee-assisted cardiac resynchronization therapy with mechanical activation mapping
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US20110002518A1 (en) * 2009-07-01 2011-01-06 General Electric Company Method and system for processing ultrasound data
IN2012DN03065A (ja) * 2009-09-11 2015-07-31 Straxcorp Pty Ltd
JP5713550B2 (ja) * 2009-09-30 2015-05-07 キヤノン株式会社 被検体情報処理装置
EP2484289B1 (en) * 2009-09-30 2021-12-01 Terumo Kabushiki Kaisha Diagnostic imaging apparatus and program for controlling same
US20110150309A1 (en) * 2009-11-27 2011-06-23 University Health Network Method and system for managing imaging data, and associated devices and compounds
CN102078202A (zh) * 2009-11-30 2011-06-01 Ge医疗系统环球技术有限公司 用于识别动脉静脉的方法及超声成像设备
CN102113900B (zh) 2010-01-05 2015-07-15 深圳迈瑞生物医疗电子股份有限公司 彩色血流动态帧相关方法和装置
CN102695457B (zh) * 2010-02-10 2014-12-31 柯尼卡美能达株式会社 超声波诊断装置及测量内中膜的厚度的方法
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
WO2012063204A1 (en) * 2010-11-12 2012-05-18 Koninklijke Philips Electronics N.V. Identifying individual sub-regions of the cardiovascular system for calcium scoring
EP2661228B1 (en) * 2011-01-05 2014-12-24 Koninklijke Philips N.V. Device and method for determining actual tissue layer boundaries of a body
JP6032008B2 (ja) * 2011-01-31 2016-11-24 コニカミノルタ株式会社 超音波診断装置
CN102332161B (zh) * 2011-09-13 2013-06-19 中国科学院深圳先进技术研究院 基于图像的血管内中膜厚度自动提取方法及系统
JP5972569B2 (ja) * 2011-12-26 2016-08-17 東芝メディカルシステムズ株式会社 超音波診断装置、超音波画像処置装置、医用画像診断装置及び超音波画像処理プログラム
US9211110B2 (en) 2013-03-15 2015-12-15 The Regents Of The University Of Michigan Lung ventillation measurements using ultrasound
WO2014194167A1 (en) * 2013-05-31 2014-12-04 University Of Washington Through Its Center For Commercialization Surgery pathway guidance and boundary system
US8995739B2 (en) * 2013-08-21 2015-03-31 Seiko Epson Corporation Ultrasound image object boundary localization by intensity histogram classification using relationships among boundaries
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
JP6150922B1 (ja) * 2016-04-13 2017-06-21 株式会社日立製作所 超音波診断装置
US11020563B2 (en) 2016-07-14 2021-06-01 C. R. Bard, Inc. Automated catheter-to-vessel size comparison tool and related methods
GB201703575D0 (en) * 2017-03-06 2017-04-19 Thinksono Ltd Blood vessel obstruction diagnosis method, apparatus & system
US11246550B2 (en) * 2017-06-16 2022-02-15 Volpara Health Technologies Limited Method for detection and quantification of arterial calcification
JP6831919B2 (ja) * 2017-08-23 2021-02-17 富士フイルム株式会社 音響波診断装置および音響波診断装置の制御方法
EP3749215A4 (en) * 2018-02-07 2021-12-01 Atherosys, Inc. DEVICE AND METHOD FOR CONTROLLING THE ULTRASONIC RECORDING OF THE PERIPHERAL ARTERIES IN THE TRANSVERSAL PLANE
EP3543791A1 (en) 2018-03-23 2019-09-25 ASML Netherlands B.V. Method of metrology and associated apparatuses
WO2019212992A1 (en) * 2018-04-30 2019-11-07 Atherosys, Inc. Method and apparatus for the automatic detection of atheromas in peripheral arteries
CN110575198B (zh) * 2018-06-08 2022-07-01 佳能医疗系统株式会社 解析装置及解析方法
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN109846465B (zh) * 2019-04-01 2021-09-28 数坤(北京)网络科技股份有限公司 一种基于亮度分析的血管钙化误报检测方法
CA3152545A1 (en) 2019-09-20 2021-03-25 Bard Access Systems, Inc. Automatic vessel detection tools and methods
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
CN111833348B (zh) * 2020-08-10 2023-07-14 上海工程技术大学 一种基于图像处理的血管沉积物自动检测方法
WO2022051657A1 (en) 2020-09-03 2022-03-10 Bard Access Systems, Inc. Portable ultrasound systems and methods
US11925505B2 (en) 2020-09-25 2024-03-12 Bard Access Systems, Inc. Minimum catheter length tool
CN114052794B (zh) * 2021-10-13 2022-09-13 山东大学 一种基于多模态信息的颈动脉超声报告生成系统
CN114533201A (zh) * 2022-01-05 2022-05-27 华中科技大学同济医学院附属协和医院 一种新型的体外波碎血凝块辅助设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57550A (en) * 1980-06-03 1982-01-05 Fujitsu Ltd Identification systm for specimen
JPH03228749A (ja) * 1990-02-05 1991-10-09 Toshiba Corp 超音波診断装置
JPH11318896A (ja) * 1998-05-18 1999-11-24 Masao Ito 血管膜厚測定装置及び動脈硬化診断装置
JP2001509043A (ja) * 1996-11-29 2001-07-10 インペリアル カレッジ オブ サイエンス,テクノロジー アンド メディスン 超音波走査
JP2001238884A (ja) * 2000-02-29 2001-09-04 Toshiba Corp 超音波診断装置及び超音波による組織性状の定量解析方法
WO2002100249A2 (en) * 2001-06-13 2002-12-19 Cardiovascular Innovations, Inc. Apparatus and method for ultrasonically identifying vulnerable plaque
WO2004002367A1 (fr) * 2002-06-27 2004-01-08 Microport Medical (Shanghai) Co., Ltd. Stent eluant des medicaments
JP2004049925A (ja) * 2002-07-23 2004-02-19 Medison Co Ltd 臓器認識装置及びその方法
JP2004329550A (ja) * 2003-05-07 2004-11-25 Terumo Corp 超音波診断装置
WO2005034759A1 (ja) 2003-10-09 2005-04-21 Juridical Foundation Osaka Industrial Promotion Organization 管腔壁組織性状評価装置、画像処理装置、画像処理方法、及びコンピュータプログラム
JP2007502676A (ja) * 2003-08-21 2007-02-15 アイシェム コーポレイション 血管プラーク検出および分析のための自動化方法およびシステム

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821731A (en) * 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4945478A (en) * 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
FR2662813B1 (fr) * 1990-05-29 1992-08-14 Traitement Synthese Image Procede d'acquisition d'images d'echographie.
US5203337A (en) 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
JP3144849B2 (ja) 1991-09-30 2001-03-12 株式会社東芝 循環器用診断装置
US5332968A (en) * 1992-04-21 1994-07-26 University Of South Florida Magnetic resonance imaging color composites
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
FR2697638B1 (fr) 1992-11-02 1994-12-23 Asulab Sa Appareil de mesure par ultrasons minimisant le nombre de valeurs numériques traitées par les moyens de traitement.
JP3453415B2 (ja) 1992-12-22 2003-10-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波エコーグラフィによる動脈の弾力性測定装置及び方法
JPH09508815A (ja) * 1993-11-29 1997-09-09 アーチ ディヴェロプメント コーポレイション 乳房x線写真における、改良された、コンピュータによる、腫瘤の発見および分類のための自動的方法およびシステム
US5363850A (en) 1994-01-26 1994-11-15 Cardiovascular Imaging Systems, Inc. Method for recognition and reduction of blood speckle in blood vessel imaging system
JPH07287557A (ja) 1994-03-22 1995-10-31 Topcon Corp 医用画像処理装置
US5570430A (en) * 1994-05-31 1996-10-29 University Of Washington Method for determining the contour of an in vivo organ using multiple image frames of the organ
DE19524880C2 (de) 1994-07-15 2000-09-21 Agilent Technologies Inc Endokardiale Echtzeit-Ultraschallverschiebungsanzeige
US5544656A (en) 1994-12-02 1996-08-13 The Regents Of The University Of California Method and apparatus for myocardial wall measurement
JPH10504225A (ja) * 1995-06-07 1998-04-28 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. デジタル画像定量化のための自動化された方法
JP3679512B2 (ja) * 1996-07-05 2005-08-03 キヤノン株式会社 画像抽出装置および方法
US6909797B2 (en) * 1996-07-10 2005-06-21 R2 Technology, Inc. Density nodule detection in 3-D digital images
US5724973A (en) 1996-08-29 1998-03-10 Diasonics Ultrasound, Inc. Method and apparatus for automated vascular diameter determination
US5669382A (en) 1996-11-19 1997-09-23 General Electric Company System for measuring myocardium in cardiac images
US5800356A (en) 1997-05-29 1998-09-01 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging system with doppler assisted tracking of tissue motion
US5952577A (en) 1997-07-21 1999-09-14 Sonotron Ltd. Ultrasonic imaging system
US6301498B1 (en) 1998-04-17 2001-10-09 Cornell Research Foundation, Inc. Method of determining carotid artery stenosis using X-ray imagery
DE19831625A1 (de) * 1998-07-15 2000-01-20 Lemfoerder Metallwaren Ag Verfahren zum Bohren von zumindest zwei Bohrungen im Zwei-Schritt-Takt
US6346124B1 (en) 1998-08-25 2002-02-12 University Of Florida Autonomous boundary detection system for echocardiographic images
US6048313A (en) 1998-09-17 2000-04-11 Stonger; Kelly A. Method and apparatus for fractal-based enhancement of ultrasound imaging
US6048314A (en) 1998-09-18 2000-04-11 Hewlett-Packard Company Automated measurement and analysis of patient anatomy based on image recognition
US6993170B2 (en) 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
US6381350B1 (en) * 1999-07-02 2002-04-30 The Cleveland Clinic Foundation Intravascular ultrasonic analysis using active contour method and system
US6200268B1 (en) * 1999-09-10 2001-03-13 The Cleveland Clinic Foundation Vascular plaque characterization
US6264609B1 (en) 1999-09-15 2001-07-24 Wake Forest University Ultrasound apparatus and method for tissue characterization
US6443894B1 (en) 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US6584216B1 (en) * 1999-11-23 2003-06-24 The Trustees Of The University Of Pennsylvania Method for standardizing the MR image intensity scale
US6354999B1 (en) 2000-01-14 2002-03-12 Florence Medical Ltd. System and method for detecting, localizing, and characterizing occlusions and aneurysms in a vessel
US6508766B2 (en) 2000-01-20 2003-01-21 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus
US6503202B1 (en) 2000-06-29 2003-01-07 Acuson Corp. Medical diagnostic ultrasound system and method for flow analysis
US6450964B1 (en) 2000-09-05 2002-09-17 Advanced Cardiovascular Systems, Inc. Imaging apparatus and method
US20020115931A1 (en) 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6842638B1 (en) * 2001-11-13 2005-01-11 Koninklijke Philips Electronics N.V. Angiography method and apparatus
AU2002348241A1 (en) 2001-11-24 2003-06-10 Image Analysis, Inc. Automatic detection and quantification of coronary and aortic calcium
US6817982B2 (en) 2002-04-19 2004-11-16 Sonosite, Inc. Method, apparatus, and product for accurately determining the intima-media thickness of a blood vessel
US6996262B2 (en) * 2002-05-20 2006-02-07 General Electric Company Method and apparatus of scoring an arterial obstruction
US6730035B2 (en) 2002-06-05 2004-05-04 Wisconsin Alumni Research Foundation Ultrasonic apparatus and method for providing quantitative indication of risk of coronary heart disease
US7359554B2 (en) * 2002-08-26 2008-04-15 Cleveland Clinic Foundation System and method for identifying a vascular border
US7074188B2 (en) * 2002-08-26 2006-07-11 The Cleveland Clinic Foundation System and method of characterizing vascular tissue
US6835177B2 (en) 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7927278B2 (en) 2002-12-13 2011-04-19 California Institute Of Technology Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing
US7074187B2 (en) * 2002-12-13 2006-07-11 Selzer Robert H System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures
US7175597B2 (en) * 2003-02-03 2007-02-13 Cleveland Clinic Foundation Non-invasive tissue characterization system and method
US7022073B2 (en) * 2003-04-02 2006-04-04 Siemens Medical Solutions Usa, Inc. Border detection for medical imaging
US7727153B2 (en) 2003-04-07 2010-06-01 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7090640B2 (en) * 2003-11-12 2006-08-15 Q-Vision System and method for automatic determination of a region of interest within an image
US7215802B2 (en) * 2004-03-04 2007-05-08 The Cleveland Clinic Foundation System and method for vascular border detection
US7397935B2 (en) * 2004-05-10 2008-07-08 Mediguide Ltd. Method for segmentation of IVUS image sequences

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57550A (en) * 1980-06-03 1982-01-05 Fujitsu Ltd Identification systm for specimen
JPH03228749A (ja) * 1990-02-05 1991-10-09 Toshiba Corp 超音波診断装置
JP2001509043A (ja) * 1996-11-29 2001-07-10 インペリアル カレッジ オブ サイエンス,テクノロジー アンド メディスン 超音波走査
JPH11318896A (ja) * 1998-05-18 1999-11-24 Masao Ito 血管膜厚測定装置及び動脈硬化診断装置
JP2001238884A (ja) * 2000-02-29 2001-09-04 Toshiba Corp 超音波診断装置及び超音波による組織性状の定量解析方法
WO2002100249A2 (en) * 2001-06-13 2002-12-19 Cardiovascular Innovations, Inc. Apparatus and method for ultrasonically identifying vulnerable plaque
WO2004002367A1 (fr) * 2002-06-27 2004-01-08 Microport Medical (Shanghai) Co., Ltd. Stent eluant des medicaments
JP2004049925A (ja) * 2002-07-23 2004-02-19 Medison Co Ltd 臓器認識装置及びその方法
JP2004329550A (ja) * 2003-05-07 2004-11-25 Terumo Corp 超音波診断装置
JP2007502676A (ja) * 2003-08-21 2007-02-15 アイシェム コーポレイション 血管プラーク検出および分析のための自動化方法およびシステム
WO2005034759A1 (ja) 2003-10-09 2005-04-21 Juridical Foundation Osaka Industrial Promotion Organization 管腔壁組織性状評価装置、画像処理装置、画像処理方法、及びコンピュータプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSNC200900823007; 藤井崇史: '冠動脈プラークの超音波組織性状評価' 医学のあゆみ 第204巻第2号, 200301, 第134〜136頁, (株)医歯薬出版 *
CSNC200901600015; '特別講演3 血管内エコー法(IVUS)の現状' 日本超音波医学会 第67回研究発表会 講演抄録集 Vol.23 Supplement I, 199606, 第10頁, (社)日本超音波医学会 *
CSNC200901719030; 山口徹: '血管内エコー・ドプラー法の臨床的意義' 月刊新医療 第24巻第8号, 199708, 第126〜130頁, (株)エム・イー振興協会 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008044441A1 (ja) * 2006-10-10 2010-02-04 株式会社日立メディコ 医用画像診断装置、医用画像計測方法、医用画像計測プログラム
WO2008044441A1 (en) * 2006-10-10 2008-04-17 Hitachi Medical Corporation Medical image diagnostic apparatus, medical image measuring method, and medical image measuring program
JP4934143B2 (ja) * 2006-10-10 2012-05-16 株式会社日立メディコ 医用画像診断装置、医用画像計測方法
JP2008113904A (ja) * 2006-11-06 2008-05-22 Terumo Corp 超音波診断装置および情報処理方法
JP2008168016A (ja) * 2007-01-15 2008-07-24 Fujifilm Corp 超音波診断装置、imt計測方法及びimt計測プログラム
JP2008194364A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp 超音波診断装置、データ計測方法及びデータ計測プログラム
JP2010259527A (ja) * 2009-04-30 2010-11-18 Aloka Co Ltd 超音波診断装置
KR101624846B1 (ko) 2009-07-16 2016-05-27 가부시키가이샤 유넥스 초음파 혈관 검사장치
WO2011013693A1 (ja) * 2009-07-30 2011-02-03 株式会社 日立メディコ 超音波診断装置とその関心領域設定方法
JP5735914B2 (ja) * 2009-07-30 2015-06-17 株式会社日立メディコ 超音波診断装置とその関心領域設定方法
JP2014104246A (ja) * 2012-11-29 2014-06-09 Ge Medical Systems Global Technology Co Llc 計測装置及びその制御プログラム
JP2020010726A (ja) * 2018-06-25 2020-01-23 ベイ ラブズ インク. ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
JP7100884B2 (ja) 2018-06-25 2022-07-14 キャプション ヘルス インコーポレイテッド ビデオクリップ画像の画質に基づく医療用画像ビデオクリップの計測における信頼度決定
US11497451B2 (en) 2018-06-25 2022-11-15 Caption Health, Inc. Video clip selector for medical imaging and diagnosis

Also Published As

Publication number Publication date
CN1765330B (zh) 2013-01-02
EP1653410A1 (en) 2006-05-03
US20050096528A1 (en) 2005-05-05
JP5805357B2 (ja) 2015-11-04
CN1765330A (zh) 2006-05-03
EP1653410B1 (en) 2017-04-12
NZ542968A (en) 2006-12-22
US7727153B2 (en) 2010-06-01
AU2005225119A1 (en) 2006-05-18
HK1089639A1 (en) 2006-12-08

Similar Documents

Publication Publication Date Title
JP5805357B2 (ja) 超音波血管測定装置および方法
EP1677681B1 (en) Ultrasonic blood vessel measurement apparatus and method
US20220233081A1 (en) System and method for instant and automatic border detection
Chen et al. Development of a quantitative intracranial vascular features extraction tool on 3 D MRA using semiautomated open‐curve active contour vessel tracing
JP2889568B1 (ja) 血管膜厚測定装置及び動脈硬化診断装置
US6817982B2 (en) Method, apparatus, and product for accurately determining the intima-media thickness of a blood vessel
US7970196B2 (en) Automatic detection and quantification of plaque in the coronary arteries of subjects from CT scans
Sonka et al. Segmentation of intravascular ultrasound images: A knowledge-based approach
US8977339B1 (en) Method for assessing stenosis severity through stenosis mapping
JP7023715B2 (ja) 血管内のステントストラットカバレッジを決定するためのシステムの作動方法及びステント留置された領域を検出するための血管内画像化システムのプログラム可能なプロセッサベースのコンピュータ装置
US7596401B2 (en) Method for expanding the domain of imaging software in a diagnostic work-up
JP5015513B2 (ja) 解剖学的構造の計測のための一体型超音波デバイス
US8805043B1 (en) System and method for creating and using intelligent databases for assisting in intima-media thickness (IMT)
CN112587170A (zh) 基于双模成像的血管内斑块负荷检测方法、系统及终端
Santhiyakumari et al. Non-invasive evaluation of carotid artery wall thickness using improved dynamic programming technique
Bartoli et al. Model-based analysis of flow-mediated dilation and intima-media thickness
Hernàndez-Sabaté et al. Approaching artery rigid dynamics in IVUS
US20240127435A1 (en) System and method for detecting and quantifying a plaque/stenosis in a vascular ultrasound scan data
de Boer et al. Quantitative assessment of carotid ultrasound diameter measurements in the operating room: a comparable analysis of long-axis versus rotated and tilted orientation
Molinari et al. Carotid IMT variability (IMTV): its design and validation in symptomatic vs. asymptomatic 142 Italian population
Sanz et al. Development of Software for Three-Dimensional Reconstruction and Automatic Quantification of Intravascular Ultrasound (IVUS). Initial Experience

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110524

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110624

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120308

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130603

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250