JP2006121324A - A/d変換器、電池パック、電子機器および電圧測定方法 - Google Patents

A/d変換器、電池パック、電子機器および電圧測定方法 Download PDF

Info

Publication number
JP2006121324A
JP2006121324A JP2004305954A JP2004305954A JP2006121324A JP 2006121324 A JP2006121324 A JP 2006121324A JP 2004305954 A JP2004305954 A JP 2004305954A JP 2004305954 A JP2004305954 A JP 2004305954A JP 2006121324 A JP2006121324 A JP 2006121324A
Authority
JP
Japan
Prior art keywords
voltage
circuit
digital value
converter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004305954A
Other languages
English (en)
Other versions
JP4641173B2 (ja
Inventor
Kazuyoshi Arimura
一義 有村
Atsushi Hayakawa
敦史 早川
Hidekiyo Ozawa
秀清 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004305954A priority Critical patent/JP4641173B2/ja
Priority to TW093140515A priority patent/TWI277304B/zh
Priority to US11/023,593 priority patent/US7012558B1/en
Priority to KR1020050008728A priority patent/KR100689003B1/ko
Publication of JP2006121324A publication Critical patent/JP2006121324A/ja
Application granted granted Critical
Publication of JP4641173B2 publication Critical patent/JP4641173B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/186Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedforward mode, i.e. by determining the range to be selected directly from the input signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】 A/D変換回路の出力ビット数を増加させることなく、簡易な回路構成で最小解像度での精度とダイナミックレンジの拡大とを両立させる。
【解決手段】 増幅回路は、第1外部入力電圧と第2外部入力電圧に対応する電圧との電圧差を増幅して出力する。A/D変換回路は、増幅回路の出力電圧を基準電圧との比較によりディジタル値に変換して出力する。バイアス回路は、増幅回路の出力電圧に応じて、第2外部入力電圧と第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを選択して第2外部入力電圧に対応する電圧として出力する。第1記憶回路は、バイアス電圧の実測値を予め記憶し、第2外部入力電圧に対応する電圧が第2外部入力電圧にバイアス電圧を加えた電圧であるときに、記憶している実測値をA/D変換回路からのディジタル値より大きいビット数のディジタル値として出力する。
【選択図】 図2

Description

本発明は、A/D変換器、電池パック、電子機器および電圧測定方法に関し、特に、電流測定を目的として、電流路に直列に挿入された抵抗素子の両端の電圧差をA/D変換器を用いて測定する技術に関する。
携帯型の電子機器(ノートパソコンや電子手帳など)は、ACアダプタ等を介して商用電源で動作している場合には、動作中に電力供給が遮断されることはない。一方、携帯型の電子機器は、電池で稼働している場合には、電池残量が無くなり、動作中に電力供給が遮断されると、処理中のデータが消滅する恐れがある。このため、通常、携帯型の電子機器には、電池残量を管理するための電池残量管理システムが搭載されている。
電池残量を管理(予測)するためには、電池から流出する電流(放電電流)あるいは電池に流入する電流(充電電流)の電流値を測定する必要がある。電流測定方法としては、電流路に直列に挿入された抵抗素子の両端の電圧差を測定し、測定結果と抵抗素子の抵抗値と用いて電流路の電流値を算出する方法が一般的である。電池残量管理システムでは、電流路の電流値を測定するために、抵抗素子の両端の電圧差を測定するためのA/D変換器と、A/D変換器からのディジタル値(A/D変換結果)に基づいて電流路の電流値を算出するマイクロコントローラ(マイコン)とが用いられている。
また、特許文献1には、A/D変換の対象となる入力信号に含まれる直流ノイズを除去するために、A/D変換回路の前段に差増増幅器を設け、差増増幅器の非反転入力端子に入力信号を印可するとともに、差増増幅器の反転入力端子にバイアス電圧を印可することで、A/D変換回路のオーバーフローを防止する技術が開示されている。
特開平6−90914号公報
携帯型の電子機器では、消費電流は、電子機器の動作状態に応じて大きく変動する。例えば、電子機器がスタンバイ状態である場合、消費電流は、内部回路のリーク電流程度(1mA程度)でごく僅かである。これに対して、電子機器が最大負荷で動作している場合、消費電流は、10A程度になることもある。従って、このような場合には、電流測定回路は、1mA〜10Aの電流を測定可能でなければならず、10000倍のダイナミックレンジ(測定可能範囲)が必要である。1mA〜10Aの電流をディジタル値で表現するためには14ビットを要するため、電流測定回路には、14ビットA/D変換器が必要になる。
A/D変換器は、入力電圧と基準電圧との比に基づいて入力電圧をディジタル値に変換する。従って、14ビットA/D変換器では、ディジタル値Doは、入力電圧Viおよび基準電圧Vrを用いて、次式(1)で表される。
Do=(Vi/Vr)×16384 ・・・(1)
14ビットA/D変換器の最小解像度は、Vr/16384で表され、基準電圧Vrが5.0Vである場合300μVであり、基準電圧Vrが3.0Vである場合183μVである。このため、14ビットA/D変換器は、技術的に形成困難である。一方、10ビットA/D変換器の最小解像度は、基準電圧Vrが3.0Vであっても29.3mVであるため、10ビットA/D変換器は、比較的容易に形成できる。しかしながら、10ビットA/D変換器のダイナミックレンジ(変換可能範囲)は、1000倍程度でしかない。
また、仮に、14ビットA/D変換器が技術的に形成可能であるとして、電流路に1mAの電流が流れるときに、抵抗素子の両端に300μVの電圧差を発生させるため必要な抵抗素子の抵抗値は300mΩである。電流路に10Aの電流が流れるときに、300mΩの抵抗素子の両端に発生する電圧差は3.0Vであるが、そのときの電力損失は、30Wにもなってしまう。このため、電流路に直列に挿入される抵抗素子の抵抗値は十分に小さいものでなければならない。許容電力損失を考慮して、現実的に利用できる抵抗素子の抵抗値は、3〜5mΩが限界である。3〜5mAの抵抗素子の両端に発生する電圧差は、電流路に1mAの電流が流れたときには3〜5μVであり、電流路に10Aの電流が流れたときには30〜50mVである。このような微小な電圧をA/D変換器の入力電圧とすることは現実的ではないため、A/D変換器の前段に、抵抗素子の両端に発生する電圧差を増幅してA/D変換器に出力する増幅器が設けられる。
一般に、A/D変換器を比較的容易に形成するためには、最小解像度を3mV程度として形成することが望ましい。電流路に1mAの電流が流れたときに、3mΩの抵抗素子の両端に発生する電圧差は3μVであるため、増幅器の増幅率は、1000倍程度でなければならない。しかしながら、電流路に10Aの電流が流れたときに、3mΩの抵抗素子の両端に発生する電圧差は30mVであるため、増幅器の出力電圧は、300Vにもなってしまう。このように、A/D変換器のダイナミックレンジを拡大するためには、A/D変換器の出力ビット数(A/D変換で得られるディジタル値のビット数)を増加させる必要があるが、ビット数を増加させると、最小解像度での精度とA/D変換器のダイナミックレンジの拡大との両立が非常に困難である。
また、特許文献1では、直流ノイズに起因するA/D変換回路のオーバーフローを防止する観点からは、ダイナミックレンジが拡大されるように考えられるが、A/D変換で得られるディジタル値のビット数は増加していないため、結果としてダイナミックレンジの拡大は実現されていない。
本発明の目的は、A/D変換回路の出力ビット数を増加させることなく、簡易な回路構成で最小解像度での精度とダイナミックレンジの拡大とを両立させることを目的とする。
本発明の一形態では、A/D変換器の増幅回路は、第1外部入力電圧と第2外部入力電圧に対応する電圧との電圧差を増幅して出力する。A/D変換器のA/D変換回路は、増幅回路の出力電圧を基準電圧との比較によりディジタル値に変換して出力する。A/D変換器のバイアス回路は、増幅回路の出力電圧がA/D変換回路のA/D変換可能な範囲を外れることを防止するために、増幅回路の出力電圧に応じて、第2外部入力電圧と第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを選択して第2外部入力電圧に対応する電圧として出力する。A/D変換器の第1記憶回路は、バイアス電圧の実測値を予め記憶し、第2外部入力電圧に対応する電圧が第2外部入力電圧にバイアス電圧を加えた電圧であるときに、記憶している実測値をA/D変換回路からのディジタル値より大きいビット数のディジタル値として出力する。A/D変換器は、例えば、電流路に直列に挿入された抵抗素子の両端の電圧差を測定するために、A/D変換器からのディジタル値に基づいて電流路の電流値を算出する電流測定回路を有する電子機器、あるいは電流測定回路を有する電子機器の電池パックに搭載される。
このようなA/D変換器では、バイアス回路を設けることで、抵抗素子の両端の電圧差が大きく変動する場合、すなわち電流路の電流値が大きく変動する場合であっても、A/D変換時に、A/D変換回路の入力電圧(増幅回路の出力電圧)がA/D変換可能な範囲を外れることはない。また、電流測定回路は、A/D変換回路からのディジタル値と第1記憶回路からのディジタル値とを加算することで、バイアス回路による電圧シフト量を補正でき、抵抗素子の両端の電圧差を示すディジタル値を取得できる。このように、A/D変換回路の出力ビット数を増加させることなく、A/D変換器からのディジタル値の見かけ上のビット数を増加させることで、最小解像度での精度とダイナミックレンジの拡大との両立を実現できる。
本発明の前記一形態の好ましい例では、A/D変換器の第2記憶回路は、基準電圧の実測値を予め記憶し、記憶している実測値をディジタル値として出力する。例えば、A/D変換器の製造工程において、基準電圧を所定温度下で実測し、その実測値が第2記憶回路に記憶される。電流測定回路は、A/D変換時における基準電圧の電圧値に相当する基準電圧の実測値を取得できる。このため、電流測定回路は、A/D変換回路からのディジタル値を第2記憶回路からのディジタル値を用いて補正することで、基準電圧の精度に拘わらず増幅回路の出力電圧を正確に示すディジタル値を取得できる。この結果、電流測定回路は、A/D変換回路からのディジタル値を第2記憶回路からのディジタル値を用いて補正した後に、第1記憶回路からのディジタル値を加算することで、抵抗素子の両端の電圧差(電流路の電流値)を正確に示すディジタル値を取得できる。
本発明の前記一形態の好ましい例では、バイアス回路は、第2外部入力電圧に加えるバイアス電圧を、増幅回路の出力電圧に応じて、複数のバイアス電圧の中から選択する。第1記憶回路は、複数のバイアス電圧の実測値を予め記憶し、バイアス回路により選択されているバイアス電圧の実測値を選択してディジタル値として出力する。複数のバイアス電圧を設けることで、A/D変換器のダイナミックレンジを更に拡大できる。
本発明の前記一形態の好ましい例では、A/D変換器の測定電圧生成回路は、A/D変換器の周囲温度に対応して変動する温度測定用の測定電圧を生成する。A/D変換器の選択回路は、A/D変換回路の入力電圧として、測定電圧を選択して出力した後に、増幅回路の出力電圧を選択して出力する。A/D変換器の保持回路は、選択回路による測定電圧の選択に伴うA/D変換回路からのディジタル値を保持する。第1記憶回路は、A/D変換器の周囲温度毎に複数のバイアス電圧の実測値を予め記憶し、バイアス回路により選択されているバイアス電圧の実測値の中から保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力する。従って、第1記憶回路からのディジタル値は、A/D変換器の現在の周囲温度に対応するバイアス電圧の実測値を示している。このため、A/D変換器の周囲温度の変動に伴ってバイアス電圧が変動する場合でも、電流測定回路は、抵抗素子の両端の電圧差(電流路の電流値)を正確に示すディジタル値を常に取得できる。
本発明の前記一形態の好ましい例では、第2記憶回路は、A/D変換器の周囲温度毎に基準電圧の実測値を予め記憶し、保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力する。従って、第2記憶回路からのディジタル値は、A/D変換器の現在の周囲温度に対応する基準電圧の実測値を示している。このため、A/D変換器の周囲温度に伴って基準電圧が変動する場合でも、電流測定回路は、A/D変換回路の入力電圧(増幅回路の出力電圧)を正確に示すディジタル値を常に取得できる。
本発明の前記一形態の好ましい例では、A/D変換器の第3記憶回路は、基準電圧の規格値を予め記憶し、記憶している規格値をディジタル値として出力する。A/D変換器の補正回路は、第2および第3記憶回路からのディジタル値に基づいて、A/D変換回路からのディジタル値を、基準電圧の規格値を基準としたディジタル値に補正して出力する。A/D変換器の加算回路は、補正回路からのディジタル値と第1記憶回路からのディジタル値とを加算し、加算結果を出力する。これにより、電流測定回路において、A/D変換回路からのディジタル値を第2記憶回路からのディジタル値を用いて補正する処理、および補正後のディジタル値と第1記憶回路からのディジタル値とを加算する処理を不要にできる。このため、マイクロコントローラ等で構成される電流測定回路の制御プログラムを簡易化できる。
本発明の前記一形態の好ましい例では、A/D変換器の加算回路は、A/D変換回路からのディジタル値と前記第1記憶回路からのディジタル値とを加算し、加算結果を出力する。これにより、電流測定回路において、A/D変換回路からのディジタル値と第1記憶回路からのディジタル値とを加算する処理を不要にできる。このため、マイクロコントローラ等で構成される電流測定回路の制御プログラムを簡易化できる。
本発明では、A/D変換回路の出力ビット数を増加させることなく、A/D変換器からのディジタル値の見かけ上のビット数を増加させることで、最小解像度での精度とダイナミックレンジの拡大との両立を実現できる。
以下、図面を用いて本発明の実施形態を説明する。図1は、本発明の第1実施形態を示している。携帯型の電子機器(例えば、ノート型パーソナルコンピュータ)EDは、本体10、ACアダプタ20および電池パック30を有している。本体10は、充電器12、DC−DCコンバータ14、A/D変換器16、マイコン(マイクロコントローラ)18、抵抗Rs、ダイオードD1、D2を有している。ダイオードD1は、電池パック30から供給される電力がACアダプタ20側に供給されることを防止するための逆流防止回路である。ダイオードD2は、ACアダプタ20から供給される電力が電流パック30側に供給されることを防止するための逆流防止回路である。
充電器12は、マイコン18からの指示に従って、ACアダプタ20から供給される電力を利用して電池パック30を充電する。DC−DCコンバータ14は、ACアダプタ20または電池パック30から供給される電力を用いて、CPU等の内部回路(図示せず)が必要とする電圧を生成して出力する。抵抗Rsは、電池パック30からDC−DCコンバータ14に流れる電流あるいは充電器12から電池パック30に流れる電流を測定するための電流センス抵抗である。A/D変換器16は、抵抗Rsの両端の電圧差を測定するために設けられている。マイコン18(電流測定回路)は、A/D変換器16からのディジタル値に基づいて、電池パック30の電池残量を予測するための回路である。
ACアダプタ20は、商用電源を直流電圧に変換して本体10に電力を供給するための外部電源である。電池パック30は、ACアダプタ20からの電力が供給されないときに、本体10に電力を供給するための電源である。電池パック30は、複数の電池セル(例えば、リチウム二次電池)、過充電および過放電を防止するための保護回路やスイッチ回路(例えば、FET)を備えて構成されている。
図2は、図1のA/D変換器16を示している。図3および図4は、図2のA/D変換回路102の一例を示している。図5は、図2の制御回路108の一例を示している。A/D変換器16は、例えば、半導体集積回路チップとして構成され、増幅器100(増幅回路)、A/D変換回路102、バイアス回路104、電圧比較器106、制御回路108、ROM110(第1記憶回路)、ROM112(第2記憶回路)を有している。
増幅器100は、抵抗Rsの一端側(図の上側)の電圧V1(第1外部入力電圧)を非反転端子(+端子)で受けるとともに、バイアス回路104(セレクタ104a)の出力電圧Vbを反転入力端子(−端子)で受けている。増幅器100は、抵抗Rsの一端側の電圧V1とバイアス回路104の出力電圧Vbとの電圧差を増幅してA/D変換回路102および電圧比較器106に出力する。
A/D変換回路102は、制御回路108からの指示に従って、入力電圧Vi(増幅器100の出力電圧)を、基準電圧Vrとの比較により10ビットディジタル値Doに変換してマイコン18(図1)に出力する。A/D変換回路102は、例えば、図3に示すような周知の並列変換方式(フラッシュ変換方式)を採用して構成されている。なお、A/D変換回路102は、図4に示すような周知の逐次変換方式あるいはその他の変換方式を採用して構成されてもよい。
バイアス回路104は、抵抗Rsの他端側(図の下側)の電圧V2(第2外部入力電圧)に互いに異なるバイアス電圧を加えた電圧Vb1〜Vbnをそれぞれ生成するn個の電圧生成回路とセレクタ104aとで構成されている。セレクタ104aは、制御回路108から出力されるカウンタ値信号CNTに応じて、電圧V2および電圧Vb1〜Vbnのいずれかを選択して出力電圧Vbとして増幅器100に出力する。
電圧比較器106は、A/D変換回路102の入力電圧Vi(増幅器100の出力電圧)を基準電圧Vrと比較し、A/D変換回路102の入力電圧Viが基準電圧Vrより高いときに、出力信号OVFを低レベルから高レベルに遷移させる。すなわち、電圧比較器106の出力信号OVFの高レベルは、A/D変換回路102の入力電圧ViがA/D変換可能な範囲を外れていることを意味する。なお、後述するように、A/D変換回路102のA/D変換動作中に、電圧比較器106の出力信号OVFが高レベルになることはない。
制御回路108は、例えば、図5に示すように、変換制御回路108aおよびカウンタ108bを有している。変換制御回路108aは、マイコン18(図1)から出力される変換要求信号REQの活性化に応答して、A/D変換回路102に変換開始を指示する。また、変換制御回路108aは、電圧比較器106の出力信号OVFの低レベルから高レベルへの遷移(立ち上がりエッジ)に応答して、カウンタCNTにアップカウントを指示する。
カウンタ108bは、変換制御回路108aからの指示に従ってアップカウントを実施し、カウンタ値を示すカウンタ値信号CNTをROM110およびバイアス回路104に出力する。また、カウンタ108bは、例えば、変換要求信号REQの活性化に応答して初期化される。なお、バイアス回路104のセレクタ104aは、カウンタ値信号CNTが初期値を示すときに電圧V2を出力電圧Vbとして出力し、カウンタ値信号CNTが示す値が1増加する毎に、電圧Vb1〜Vbnを順次選択して出力電圧Vbとして出力する。
ROM110は、ヒューズやEEPROM等の不揮発性メモリであり、バイアス回路104におけるn個のバイアス電圧にそれぞれ対応するn個の14ビットディジタル値と、電圧V2に対応する全ビットが”0”の14ビットディジタル値とを予め記憶している。例えば、ROM110に記憶されている各ディジタル値は、対応するバイアス電圧の実測値に増幅器100の増幅率を乗じた値を示している。ROM110は、制御回路108のカウンタ108bから出力されるカウンタ値信号CNTが示す値に対応するディジタル値、すなわちバイアス回路104のセレクタ104aにより選択されている電圧Vb1〜Vbnに対応するディジタル値を選択してマイコン18(図1)に出力する。
ROM112は、ROM110と同様に、ヒューズやEEPROM等の不揮発性メモリであり、基準電圧Vrの実測値を示す10ビットディジタル値を予め記憶し、記憶しているディジタル値をマイコン18(図1)に出力する。なお、図示を省略するが、A/D変換器16は、例えば、基準電圧Vr、電圧Vb1〜Vbn、増幅器100の出力電圧Viをそれぞれモニタするためのモニタ用パッドと、ROM110、112にデータを書き込むためのライト用パッドおよびライト回路とを有している。A/D変換器16の製造工程におけるプローブ検査時に、モニタ用パッドを介して、所定温度下での基準電圧Vrの実測値および電圧Vb1〜Vbnの実測値(バイアス電圧の実測値に相当する)が取得され、ライト用パッドおよびライト回路を介して、ROM112にバイアス電圧毎に実測値と増幅器100の増幅率とを乗じた値が書き込まれるとともに、ROM112に基準電圧Vrの実測値が書き込まれている。なお、増幅器100の増幅率は、モニタ用パッドを介して取得された増幅器100の出力電圧Viの実測値に基づいて算出される。
ここで、A/D変換器16およびマイコン18の動作(電圧測定方法)について説明する。マイコン18が変換要求信号REQを活性化させると、制御回路108のカウンタ108bは初期化されるため、バイアス回路104のセレクタ104aは、抵抗Rsの他端側の電圧V2を選択して増幅器100に出力する。このとき、電圧比較器106の出力信号OVFが低レベルである場合、制御回路108の変換制御回路108aは、A/D変換回路102に変換開始を指示する。
一方、電圧比較器106の出力信号OVFが高レベルである場合、変換制御回路108aは、カウンタ108bにアップカウントを指示する。カウンタ108bがカウントアップを実施すると、セレクタ104aは、抵抗Rsの他端側の電圧V2にバイアス電圧を加えた電圧Vb1を選択して増幅器100に出力する。このような動作が電圧比較器106の出力信号OVFが高レベルから低レベルに遷移するまで繰り返された後に、変換制御回路108aは、A/D変換回路102に変換開始を指示する。これにより、A/D変換回路102は、A/D変換を開始し、A/D変換が終了するとその旨を変換制御回路108aに通知するとともに、ディジタル値Do(A/D変換結果)をマイコン18に出力する。変換制御回路108aは、A/D変換回路102からの変換終了通知を受けると、変換終了信号ENDを活性化させる。
マイコン18は、変換完了信号ENDの活性化に応答して、A/D変換回路102からのディジタル値Do(A/D変換結果)をROM112からのディジタル値(基準電圧Vrの実測値)を用いて補正する。例えば、基準電圧Vrの規格値が5.0V、A/D変換回路102の入力電圧Viの電圧値が1.25V、A/D変換時における基準電圧Vrの電圧値が4.9Vである場合、A/D変換回路102からのディジタル値Doを求めると、261である。また、ROM112から出力されるディジタル値(基準電圧Vrの実測値)は、4.9Vを示す1003である。従って、マイコン18は、A/D変換回路102からのディジタル値Do(261)を、基準電圧Vrの規格値(1024)と実測値(1003)との比に基づいて補正することで、入力電圧Vi(1.25V)を正確に示すディジタル値(256)を取得する。
この後、マイコン18は、補正したディジタル値とROM110からのディジタル値(バイアス回路104により選択されているバイアス電圧の実測値に増幅器100の増幅率を乗じた値)とを加算することで、抵抗Rsの両端の電圧差を求める。マイコン18は、求めた電圧差と抵抗Rsの抵抗値とに基づいて、抵抗Rsに流れる電流値を求め、これを積算することで電池パック30の電池残量を予測する。
以上、第1実施形態では、バイアス回路104を設けることで、抵抗Rsの両端の電圧差が大きく変動する場合であっても、A/D変換時に、A/D変換回路102の入力電圧Vi(増幅器100の出力電圧)がA/D変換可能な範囲を外れることはない。また、マイコン18は、A/D変換時における基準電圧Vrの電圧値に相当する基準電圧Vrの実測値を取得できる。このため、マイコン18は、A/D変換回路102からのディジタル値をROM112からのディジタル値を用いて補正することで、基準電圧Vrの精度に拘わらず増幅器100の出力電圧を正確に示すディジタル値を取得できる。
さらに、マイコン18は、補正後のディジタル値とROM110からのディジタル値とを加算することで、バイアス回路104による電圧シフト量を補正でき、抵抗Rsの両端の電圧差を示すディジタル値を取得できる。このように、A/D変換回路102の出力ビット数を増加させることなく、A/D変換器16からのディジタル値の見かけ上のビット数を増加させることで、最小解像度での精度とダイナミックレンジの拡大との両立を実現できる。
図6は、本発明の第2実施形態を示している。第2実施形態を説明するにあたって、第1実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。A/D変換器26は、例えば、第1実施形態(図2)のA/D変換器16と同様に、半導体集積回路チップとして構成され、ノートパソコンの本体に搭載されている。
A/D変換器26は、第1実施形態のA/D変換器16からROM112を取り除き、加算器200を加えて構成されている。加算器200は、制御回路108から出力される変換終了信号ENDの活性化に応答して、A/D変換回路102から出力される10ビットディジタル値DoとROM110から出力される14ビットディジタル値とを加算して、加算結果を14ビットディジタル値としてマイコン18(図1)に出力する。基準電圧Vrの電圧値が規格値で安定している場合、A/D変換回路102から出力されるディジタル値Doは、A/D変換回路102の入力電圧Vi(増幅器100の出力電圧)を正確に示している。従って、基準電圧Vrの実測値を示すディジタル値を出力するROM112が設けられていなくても、マイコン18は、A/D変換回路102の入力電圧Viを正確に示すディジタル値を常に取得できる。
以上、第2実施形態でも、第1実施形態と同様の効果が得られる。さらに、加算器200をA/D変換器26の内部に設けることで、マイコン18において、A/D変換回路102からのディジタル値とROM110からのディジタル値とを加算する処理を不要にできる。このため、マイコン18の制御プログラムの簡易化に寄与できる。
図7は、本発明の第3実施形態を示している。第3実施形態を説明するにあたって、第1実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。A/D変換器36は、例えば、第1実施形態(図2)のA/D変換器16と同様に、半導体集積回路チップとして構成され、ノートパソコンの本体に搭載されている。A/D変換器36は、第1実施形態のA/D変換器16に、ROM300(第3記憶回路)、演算器302(補正回路)および加算器304(加算回路)を加えて構成されている。
ROM300は、ROM110、112と同様に、ヒューズやEEPROM等の不揮発性メモリであり、基準電圧Vrの規格値を示す10ビットのディジタル値を予め記憶し、記憶しているディジタル値を演算器302に出力する。例えば、A/D変換器36の製造工程におけるプローブ検査時に、ROM110へのデータ書き込み、およびROM112へのデータ書き込みに加えて、ROM300への基準電圧Vrの規格値の書き込みが実施されている。
演算器302は、ROM112からのディジタル値とROM300からのディジタル値とに基づいて、A/D変換回路104からのディジタル値を、基準電圧Vrの規格値を基準としたディジタル値に補正して出力する。補正後のディジタル値Do’は、基準電圧Vrの実測値X1および規格値X2を用いて、次式(2)で表されるため、演算器302は、乗算回路および除算回路を用いて容易に構成できる。
Do’=(X2/X1)×Do ・・・(2)
加算器304は、演算器302からのディジタル値とROM300からのディジタル値とを加算し、加算結果を14ビットのディジタル値としてマイコンに出力する。
以上、第3実施形態でも、第1実施形態と同様の効果が得られる。さらに、ROM300演算器302および加算器304をA/D変換器36の内部に設けることで、マイコン18において、A/D変換回路102からのディジタル値をROM112からのディジタル値を用いて補正する処理、および補正後のディジタル値とROM110からのディジタル値とを加算する処理を不要にできる。このため、マイコン18の制御プログラムの簡易化に寄与できる。
図8は、本発明の第4実施形態を示している。第4実施形態を説明するにあたって、第1実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。A/D変換器46は、例えば、第1実施形態(図2)のA/D変換器16と同様に、半導体集積回路チップとして構成され、ノートパソコンの本体に搭載されている。A/D変換器46は、増幅器100、A/D変換回路102、バイアス回路104、電圧比較器106、セレクタ400(選択回路)、制御回路402、レジスタ404(保持回路)、ROM406(第1記憶回路)、ROM408(第2記憶回路)、外付けの高精度抵抗RおよびサーミスタTh(測定電圧生成回路)を有している。
高精度抵抗RおよびサーミスタThは、基準電圧Vrの供給線と接地線との間に直列に接続されている。高精度抵抗RとサーミスタThとの接続ノードの電圧が、測定電圧Vmとしてセレクタに出力される。高精度抵抗Rは、温度非依存性を有している。すなわち、高精度抵抗Rの抵抗値は、A/D変換器46の周囲温度に拘わらずほぼ一定である。サーミスタThは、温度依存性を有している。すなわち、サーミスタThの抵抗値は、A/D変換器46の周囲温度に対応して変化する。従って、測定電圧Vmは、サーミスタThの温度特性に応じて変動し、すなわちA/D変換器46の周囲温度に対応して変動する。このような測定電圧Vmは、次式(3)で表される。
Vm={Th/(R+Th)}×Vr ・・・(3)
セレクタ400は、制御回路402からの指示に従って、測定電圧Vmまたは増幅器100の出力電圧Vaのいずれかを選択し、選択した方をA/D変換回路102の入力電圧Viとして出力する。制御回路402は、マイコン18から出力される変換要求信号REQの活性化に応答してセレクタ400に測定電圧Vmの選択を指示した後、セレクタ400に増幅器100の出力電圧Vaの選択を指示する。また、制御回路402は、セレクタ400への選択指示に合わせて、A/D変換回路102にA/D変換開始を指示する。制御回路402のその他の動作は、第1実施形態の制御回路108と同一である。
レジスタ404は、A/D変換回路102による測定電圧VmのA/D変換の実施毎に、A/D変換回路102から出力されるディジタル値Doを取り込む。測定電圧VmのA/D変換に伴うディジタル値Do(レジスタ404のレジスタ値)は、次式(4)で表される。高精度抵抗Rの抵抗値は定数であると考えてよいため、測定電圧VmのA/D変換に伴うディジタル値Doは、サーミスタThの抵抗値、すなわちA/D変換器46の周囲温度のみに依存する。従って、測定電圧VmのA/D変換に伴うディジタル値Doは、A/D変換器46の周囲温度を示す温度情報として利用することができる。
Do={Th/(R+Th)}×1024 ・・・(4)
ROM406は、ヒューズやEEPROMの不揮発性メモリであり、A/D変換器46の周囲温度毎に、バイアス回路104におけるn個のバイアス電圧にそれぞれ対応するn個の14ビットディジタル値と、電圧V2に対応する全ビットが”0”の14ビットディジタル値を予め記憶している。例えば、ROM406に記憶されている各ディジタル値は、対応するバイアス電圧の実測値に増幅器100の増幅率を乗じた値を示している。ROM406は、制御回路108のカウンタ108bから出力されるカウンタ値信号CNTが示す値に対応するディジタル値、すなわちバイアス回路104のセレクタ104aにより選択されている電圧Vb1〜Vbnに対応するディジタル値の中から、レジスタ404のレジスタ値が示す温度に対応するディジタル値を選択してマイコン18に出力する。
ROM408は、ROM406と同様に、ヒューズやEEPROM等の不揮発性メモリであり、A/D変換器46の周囲温度毎に基準電圧Vrの実測値を示す10ビットディジタル値を予め記憶している。ROM408は、レジスタ404のレジスタ値が示す温度に対応するディジタル値を選択してマイコン18に出力する。なお、図示を省略するが、A/D変換器46は、第1実施形態のA/D変換器16と同様に、例えば、基準電圧Vr、電圧Vb1〜Vbn、増幅器100の出力電圧Vaをそれぞれモニタするためのモニタ用パッドと、ROM406、408にデータを書き込むためのライト用パッドおよびライト回路とを有している。A/D変換器46の製造工程におけるプローブ検査時に、モニタ用パッドを介して、温度条件を変えながら基準電圧Vrの実測値および電圧Vb1〜Vbnの実測値(バイアス電圧の実測値に相当する)が取得され、ライト用パッドおよびライト回路を介して、ROM406に周囲温度に対応してバイアス電圧毎に実測値と増幅器100の増幅率とを乗じた値が書き込まれるとともに、ROM112に周囲温度に対応して基準電圧Vrの実測値が書き込まれている。なお、増幅器100の増幅率は、モニタ用パッドを介して取得された増幅器100の出力電圧Vaの実測値に基づいて算出される。
以上、第4実施形態でも、第1実施形態と同様の効果が得られる。さらに、ROM406、408からのディジタル値は、共にA/D変換器46の現在の周囲温度に対応した値を示しているため、A/D変換器46の周囲温度の変動に伴って基準電圧Vおよびバイアス電圧が変動する場合でも、マイコン18は、抵抗Rsの両端の電圧差を正確に示すディジタル値を常に取得できる。
図9は、本発明の第5実施形態を示している。第5実施形態を説明するにあたって、第1、第2および第4実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。A/D変換器56は、例えば、第1実施形態(図2)のA/D変換器16と同様に、半導体集積回路チップとして構成され、ノートパソコンの本体に搭載されている。A/D変換器56は、第4実施形態(図8)のA/D変換器46からROM408を取り除き、第2実施形態(図6)の加算器200を加えて構成されている。以上、第5実施形態でも、第1、第2および第4実施形態と同様の効果が得られる。
図10は、本発明の第6実施形態を示している。第6実施形態を説明するにあたって、第1、第3および第4実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。A/D変換器66は、例えば、第1実施形態(図2)のA/D変換器16と同様に、半導体集積回路チップとして構成され、ノートパソコンの本体に搭載されている。A/D変換器66は、第4実施形態(図8)のA/D変換器46に、第3実施形態(図7)のROM300、演算器302および加算器304を加えて構成されている。以上、第6実施形態でも、第1、第3および第4実施形態と同様の効果が得られる。
図11は、本発明の第7実施形態を示している。第7実施形態を説明するにあたって、第1実施形態で説明した要素と同一の要素については、同一の符号を付し、詳細な説明を省略する。携帯型の電子機器(例えば、ノート型パーソナルコンピュータ)EDaは、本体10a、ACアダプタ20、電池パック30aを備えて構成されている。本体10aは、第1実施形態(図1)の本体10から抵抗RsおよびA/D変換器16を取り除いて構成されている。電池パック30aは、第1実施形態の電池パック30に抵抗RsおよびA/D変換器16を加えて構成されている。以上、第7実施形態でも、第1実施形態と同様の効果が得られる。
なお、第7実施形態では、電池パック30aが第1実施形態のA/D変換器16を備えて構成された例について述べた。しかしながら、本発明はかかる実施形態に限定されるものではない。例えば、電池パック30aは、A/D変換器16に代えて第2〜第6実施形態のA/D変換器26、36、46、56、66のいずれかを備えて構成されてもよい。
以上実施形態において説明した発明を整理して、付記として開示する。
(付記1)
第1外部入力電圧と第2外部入力電圧に対応する電圧との電圧差を増幅して出力する増幅回路と、
前記増幅回路の出力電圧を基準電圧との比較によりディジタル値に変換して出力するA/D変換回路と、
前記増幅回路の出力電圧が前記A/D変換回路のA/D変換可能な範囲を外れることを防止するために、前記増幅回路の出力電圧に応じて、前記第2外部入力電圧と前記第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを選択して前記第2外部入力電圧に対応する電圧として出力するバイアス回路と、
前記バイアス電圧の実測値を予め記憶し、前記第2外部入力電圧に対応する電圧が前記第2外部入力電圧にバイアス電圧を加えた電圧であるときに、記憶している実測値を前記A/D変換回路からのディジタル値より大きいビット数のディジタル値として出力する第1記憶回路とを備えていることを特徴とするA/D変換器。
(付記2)
付記1記載のA/D変換器において、
前記基準電圧の実測値を予め記憶し、記憶している実測値をディジタル値として出力する第2記憶回路を備えていることを特徴とするA/D変換器。
(付記3)
付記1記載のA/D変換器において、
前記バイアス回路は、前記第2外部入力電圧に加えるバイアス電圧を、前記増幅回路の出力電圧に応じて、複数のバイアス電圧の中から選択し、
前記第1記憶回路は、前記複数のバイアス電圧の実測値を予め記憶し、前記バイアス回路により選択されているバイアス電圧の実測値を選択してディジタル値として出力することを特徴とするA/D変換器。
(付記4)
付記3記載のA/D変換器において、
A/D変換器の周囲温度に対応して変動する温度測定用の測定電圧を生成する測定電圧生成回路と、
前記A/D変換回路の入力電圧として、前記測定電圧を選択して出力した後に、前記増幅回路の出力電圧を選択して出力する選択回路と、
前記選択回路による前記測定電圧の選択に伴う前記A/D変換回路からのディジタル値を保持する保持回路とを備え、
前記第1記憶回路は、A/D変換器の周囲温度毎に前記複数のバイアス電圧の実測値を予め記憶し、前記バイアス回路により選択されているバイアス電圧の実測値の中から前記保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力することを特徴とするA/D変換器。
(付記5)
付記4記載のA/D変換器において、
A/D変換器の周囲温度毎に前記基準電圧の実測値を予め記憶し、前記保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力する第2記憶回路を備えていることを特徴とするA/D変換器。
(付記6)
付記2または付記5記載のA/D変換器において、
前記基準電圧の規格値を予め記憶し、記憶している規格値をディジタル値として出力する第3記憶回路と、
前記第2および第3記憶回路からのディジタル値に基づいて、前記A/D変換回路からのディジタル値を、前記基準電圧の規格値を基準としたディジタル値に補正して出力する補正回路と、
前記補正回路からのディジタル値と前記第1記憶回路からのディジタル値とを加算し、加算結果を出力する加算回路とを備えていることを特徴とするA/D変換器。
(付記7)
付記1または付記4記載のA/D変換器において、
前記A/D変換回路からのディジタル値と前記第1記憶回路からのディジタル値とを加算し、加算結果を出力する加算回路を備えていることを特徴とするA/D変換器。
(付記8)
電流路に直列に挿入された抵抗素子の両端に発生する第1および第2外部入力電圧の電圧差を測定するために設けられる付記1〜7のいずれかに記載のA/D変換器を備えていることを特徴とする電池パック。
(付記9)
電流路に直列に挿入された抵抗素子の両端に発生する第1および第2外部入力電圧の電圧差を測定するために設けられる付記1〜7のいずれかに記載のA/D変換器と、
前記A/D変換器からのディジタル値に基づいて、前記電流路の電流値を算出する電流測定回路とを備えていることを特徴とする電子機器。
(付記10)
付記8記載の電池パックと、
前記電池パックのA/D変換器からのディジタル値に基づいて、前記電流路の電流値を算出する電流測定回路とを備えていることを特徴とする電子機器。
(付記11)
電流路に直列に挿入された抵抗素子の一端に発生する第1外部入力電圧と、前記抵抗素子の他端に発生する第2外部入力電圧に対応する電圧との電圧差を増幅し、
増幅した電圧をA/D変換し、
増幅した電圧がA/D変換可能な範囲を外れることを防止するために、増幅した電圧に応じて、前記第2外部入力電圧と前記第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを、前記第2外部入力電圧に対応する電圧として選択し、
前記第2外部入力電圧に対応する電圧が前記第2外部入力電圧にバイアス電圧を加えた電圧であるときに、予め記憶している前記バイアス電圧の実測値をA/D変換で得られるディジタル値より大きいビット数のディジタル値として出力し、
前記A/D変換で得られるディジタル値と前記バイアス電圧の実測値を示すディジタル値とに基づいて、前記抵抗素子の両端の電圧差を求めることを特徴とする電圧測定方法。
以上、本発明について詳細に説明してきたが、前述実施形態およびその変形例は発明の一例に過ぎず、本発明はこれらに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。
本発明の第1実施形態を示すブロック図である。 図1のA/D変換器を示すブロック図である。 図2のA/D変換回路の一例を示すブロック図である。 図2のA/D変換回路の別の例を示すブロック図である。 図2の制御回路の一例を示すブロック図である。 本発明の第2実施形態を示すブロック図である。 本発明の第3実施形態を示すブロック図である。 本発明の第4実施形態を示すブロック図である。 本発明の第5実施形態を示すブロック図である。 本発明の第6実施形態を示すブロック図である。 本発明の第7実施形態を示すブロック図である。
符号の説明
10、10a 本体
12 充電器
14 DC−DCコンバータ
16、26、36、46、56、66 A/D変換器
18 マイコン
20 ACアダプタ
30、30a 電池パック
100 増幅筒和
102 A/D変換回路
104 バイアス回路
104a、400 セレクタ
106電圧比較器
108、402 制御回路
108a 変換制御回路
108b カウンタ
110、112、300、406、408 ROM
200、304 加算器
302 演算器
404 レジスタ
ED、EDa 電子機器(ノートパソコン)
R 高精度抵抗
Rs 抵抗
Th サーミスタ
Vr 基準電圧
Vm 測定電圧

Claims (10)

  1. 第1外部入力電圧と第2外部入力電圧に対応する電圧との電圧差を増幅して出力する増幅回路と、
    前記増幅回路の出力電圧を基準電圧との比較によりディジタル値に変換して出力するA/D変換回路と、
    前記増幅回路の出力電圧が前記A/D変換回路のA/D変換可能な範囲を外れることを防止するために、前記増幅回路の出力電圧に応じて、前記第2外部入力電圧と前記第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを選択して前記第2外部入力電圧に対応する電圧として出力するバイアス回路と、
    前記バイアス電圧の実測値を予め記憶し、前記第2外部入力電圧に対応する電圧が前記第2外部入力電圧にバイアス電圧を加えた電圧であるときに、記憶している実測値を前記A/D変換回路からのディジタル値より大きいビット数のディジタル値として出力する第1記憶回路とを備えていることを特徴とするA/D変換器。
  2. 請求項1記載のA/D変換器において、
    前記基準電圧の実測値を予め記憶し、記憶している実測値をディジタル値として出力する第2記憶回路を備えていることを特徴とするA/D変換器。
  3. 請求項1記載のA/D変換器において、
    前記バイアス回路は、前記第2外部入力電圧に加えるバイアス電圧を、前記増幅回路の出力電圧に応じて、複数のバイアス電圧の中から選択し、
    前記第1記憶回路は、前記複数のバイアス電圧の実測値を予め記憶し、前記バイアス回路により選択されているバイアス電圧の実測値を選択してディジタル値として出力することを特徴とするA/D変換器。
  4. 請求項3記載のA/D変換器において、
    A/D変換器の周囲温度に対応して変動する温度測定用の測定電圧を生成する測定電圧生成回路と、
    前記A/D変換回路の入力電圧として、前記測定電圧を選択して出力した後に、前記増幅回路の出力電圧を選択して出力する選択回路と、
    前記選択回路による前記測定電圧の選択に伴う前記A/D変換回路からのディジタル値を保持する保持回路とを備え、
    前記第1記憶回路は、A/D変換器の周囲温度毎に前記複数のバイアス電圧の実測値を予め記憶し、前記バイアス回路により選択されているバイアス電圧の実測値の中から前記保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力することを特徴とするA/D変換器。
  5. 請求項4記載のA/D変換器において、
    A/D変換器の周囲温度毎に前記基準電圧の実測値を予め記憶し、前記保持回路が保持しているディジタル値に対応する実測値を選択してディジタル値として出力する第2記憶回路を備えていることを特徴とするA/D変換器。
  6. 請求項2または請求項5記載のA/D変換器において、
    前記基準電圧の規格値を予め記憶し、記憶している規格値をディジタル値として出力する第3記憶回路と、
    前記第2および第3記憶回路からのディジタル値に基づいて、前記A/D変換回路からのディジタル値を、前記基準電圧の規格値を基準としたディジタル値に補正して出力する補正回路と、
    前記補正回路からのディジタル値と前記第1記憶回路からのディジタル値とを加算し、加算結果を出力する加算回路とを備えていることを特徴とするA/D変換器。
  7. 請求項1または請求項4記載のA/D変換器において、
    前記A/D変換回路からのディジタル値と前記第1記憶回路からのディジタル値とを加算し、加算結果を出力する加算回路を備えていることを特徴とするA/D変換器。
  8. 電流路に直列に挿入された抵抗素子の両端に発生する第1および第2外部入力電圧の電圧差を測定するために設けられる請求項1〜7のいずれかに記載のA/D変換器を備えていることを特徴とする電池パック。
  9. 電流路に直列に挿入された抵抗素子の両端に発生する第1および第2外部入力電圧の電圧差を測定するために設けられる請求項1〜7のいずれかに記載のA/D変換器と、
    前記A/D変換器からのディジタル値に基づいて、前記電流路の電流値を算出する電流測定回路とを備えていることを特徴とする電子機器。
  10. 電流路に直列に挿入された抵抗素子の一端に発生する第1外部入力電圧と、前記抵抗素子の他端に発生する第2外部入力電圧に対応する電圧との電圧差を増幅し、
    増幅した電圧をA/D変換し、
    増幅した電圧がA/D変換可能な範囲を外れることを防止するために、増幅した電圧に応じて、前記第2外部入力電圧と前記第2外部入力電圧にバイアス電圧を加えた電圧とのいずれかを、前記第2外部入力電圧に対応する電圧として選択し、
    前記第2外部入力電圧に対応する電圧が前記第2外部入力電圧にバイアス電圧を加えた電圧であるときに、予め記憶している前記バイアス電圧の実測値をA/D変換で得られるディジタル値より大きいビット数のディジタル値として出力し、
    前記A/D変換で得られるディジタル値と前記バイアス電圧の実測値を示すディジタル値とに基づいて、前記抵抗素子の両端の電圧差を求めることを特徴とする電圧測定方法。
JP2004305954A 2004-10-20 2004-10-20 A/d変換器、電池パック、電子機器および電圧測定方法 Expired - Fee Related JP4641173B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004305954A JP4641173B2 (ja) 2004-10-20 2004-10-20 A/d変換器、電池パック、電子機器および電圧測定方法
TW093140515A TWI277304B (en) 2004-10-20 2004-12-24 A/D converter, battery pack, electronics device and method of voltage measurement
US11/023,593 US7012558B1 (en) 2004-10-20 2004-12-29 A/D converter, battery pack, electronics device and method of voltage measurement
KR1020050008728A KR100689003B1 (ko) 2004-10-20 2005-01-31 A/d 변환기, 전지 팩, 전자 기기 및 전압 측정 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305954A JP4641173B2 (ja) 2004-10-20 2004-10-20 A/d変換器、電池パック、電子機器および電圧測定方法

Publications (2)

Publication Number Publication Date
JP2006121324A true JP2006121324A (ja) 2006-05-11
JP4641173B2 JP4641173B2 (ja) 2011-03-02

Family

ID=35998795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305954A Expired - Fee Related JP4641173B2 (ja) 2004-10-20 2004-10-20 A/d変換器、電池パック、電子機器および電圧測定方法

Country Status (4)

Country Link
US (1) US7012558B1 (ja)
JP (1) JP4641173B2 (ja)
KR (1) KR100689003B1 (ja)
TW (1) TWI277304B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161068A1 (ja) * 2012-04-27 2015-12-21 日立オートモティブシステムズ株式会社 電池監視装置および電池システム監視装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316158B1 (en) 2007-03-12 2012-11-20 Cypress Semiconductor Corporation Configuration of programmable device using a DMA controller
US9189055B2 (en) * 2012-07-17 2015-11-17 Mediatek Inc. Method for performing power consumption management, and associated apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587919A (ja) * 1981-07-06 1983-01-17 Yamato Scale Co Ltd A/d変換器
JPS62200824A (ja) * 1986-02-28 1987-09-04 Yamatake Honeywell Co Ltd A/d変換回路
JPH0690914A (ja) * 1992-05-11 1994-04-05 Nec Corp 心電図解析装置
JPH08330962A (ja) * 1995-05-30 1996-12-13 Ebara Corp アナログ/デジタル変換方法
JPH11344545A (ja) * 1998-06-03 1999-12-14 Fuji Film Celltec Kk バッテリーパックの電流測定方法及び装置
JP2002184470A (ja) * 2000-12-11 2002-06-28 Fuji Electric Co Ltd 充放電電流測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008907A (ko) * 1995-07-25 1997-02-24 가네꼬 히사시 A/d 변환기에서 최적 다이나믹 레인지를 유지하기 위한 a/d 변환기의 기준 레벨 조정 회로 및 방법
EP0866562A1 (fr) * 1997-03-18 1998-09-23 Koninklijke Philips Electronics N.V. Dispositif de conversion analogique/numérique muni d'un agencement de calibration de gain.
US6442213B1 (en) * 1997-04-22 2002-08-27 Silicon Laboratories Inc. Digital isolation system with hybrid circuit in ADC calibration loop
US6002355A (en) * 1997-06-26 1999-12-14 Cirrus Logic, Inc. Synchronously pumped substrate analog-to-digital converter (ADC) system and methods
US6400220B1 (en) * 2000-11-20 2002-06-04 Macronix International Co., Ltd. Autotracking feedback circuit and high speed A/D converter using same
US6614373B1 (en) * 2000-11-29 2003-09-02 Raytheon Company Method and system for sampling a signal using analog-to-digital converters
US6667707B2 (en) * 2002-05-02 2003-12-23 Analog Devices, Inc. Analog-to-digital converter with the ability to asynchronously sample signals without bias or reference voltage power consumption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587919A (ja) * 1981-07-06 1983-01-17 Yamato Scale Co Ltd A/d変換器
JPS62200824A (ja) * 1986-02-28 1987-09-04 Yamatake Honeywell Co Ltd A/d変換回路
JPH0690914A (ja) * 1992-05-11 1994-04-05 Nec Corp 心電図解析装置
JPH08330962A (ja) * 1995-05-30 1996-12-13 Ebara Corp アナログ/デジタル変換方法
JPH11344545A (ja) * 1998-06-03 1999-12-14 Fuji Film Celltec Kk バッテリーパックの電流測定方法及び装置
JP2002184470A (ja) * 2000-12-11 2002-06-28 Fuji Electric Co Ltd 充放電電流測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161068A1 (ja) * 2012-04-27 2015-12-21 日立オートモティブシステムズ株式会社 電池監視装置および電池システム監視装置

Also Published As

Publication number Publication date
TWI277304B (en) 2007-03-21
KR20060035553A (ko) 2006-04-26
TW200614681A (en) 2006-05-01
JP4641173B2 (ja) 2011-03-02
KR100689003B1 (ko) 2007-03-08
US7012558B1 (en) 2006-03-14

Similar Documents

Publication Publication Date Title
JP4137496B2 (ja) 残量予測方法
JP5561916B2 (ja) 電池状態監視装置
US7531989B2 (en) Battery fuel gauge circuit
JP6219687B2 (ja) 半導体装置、電池パック及び携帯端末
JP2009031220A (ja) 電池状態検知方法及び電池状態検知装置
TWI388870B (zh) 測量電池之剩餘電荷的方法及單晶片系統
JP6157088B2 (ja) 電池制御ic及びその制御方法
JP5980509B2 (ja) 電池残量測定システム及び電池残量測定方法
JP4764971B2 (ja) 電池の残量計測装置
TWI528043B (zh) 電池之電量狀態及健康狀態的估測電路
JP4846755B2 (ja) 携帯型電子機器
JP6928228B2 (ja) 電池監視回路
KR100689003B1 (ko) A/d 변환기, 전지 팩, 전자 기기 및 전압 측정 방법
JP2005312239A (ja) 二次電池の充電方法および電池パック
CN112782593B (zh) 电池初始荷电状态的获取方法及装置
JP2005315730A (ja) 二次電池の残容量率算出方法および電池パック
US10320039B2 (en) Semiconductor device, battery monitoring system, and method of monitoring battery
JP4868081B2 (ja) 電池状態検知方法及び電池状態検知装置
JP2020016582A (ja) 半導体装置、およびバッテリの残量の検出方法
JP2010014651A (ja) 電圧測定装置及び記憶装置及び電圧測定方法
KR100630055B1 (ko) 이동통신단말기의 배터리 사용 가능 시간 표시장치 및 방법
TWI522789B (zh) 電子裝置以及電量偵測方法
KR101283800B1 (ko) 전압방식 배터리 잔량 측정 장치 및 방법과 그를 포함하는휴대용 전자기기
Trathnigg et al. A runtime energy monitoring system for wireless sensor networks
JP2004191241A (ja) 電流検出装置及び残量検出システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees