JP2006104495A - Copper alloy, manufacturing method therefor, and heat sink - Google Patents

Copper alloy, manufacturing method therefor, and heat sink Download PDF

Info

Publication number
JP2006104495A
JP2006104495A JP2004289234A JP2004289234A JP2006104495A JP 2006104495 A JP2006104495 A JP 2006104495A JP 2004289234 A JP2004289234 A JP 2004289234A JP 2004289234 A JP2004289234 A JP 2004289234A JP 2006104495 A JP2006104495 A JP 2006104495A
Authority
JP
Japan
Prior art keywords
less
copper alloy
mass
heat sink
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289234A
Other languages
Japanese (ja)
Other versions
JP4571471B2 (en
Inventor
Yasuo Inohana
康雄 猪鼻
Hisatoshi Araki
久寿 荒木
Hideki Endo
秀樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004289234A priority Critical patent/JP4571471B2/en
Publication of JP2006104495A publication Critical patent/JP2006104495A/en
Application granted granted Critical
Publication of JP4571471B2 publication Critical patent/JP4571471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy which is suitable for the heat sink of a semiconductor module, and has particularly a high effect of inhibiting the heat sink from deforming when the heat sink is jointed with a substrate through Pb-free solder. <P>SOLUTION: The copper alloy has a composition comprising, by mass, 3-15% Ni, 3% or less B, while controlling the ratio Ni/B to 7 or less, 3% or less of elments other than Cu, Ni and B in total, and the balance Cu; has a Cu matrix in which the concentration of Ni is controlled to 2.5 mass% or lower; and has properties including a heat conductivity of 260 W/m×K or higher, a thermal expansion coefficient of 16.6×10<SP>-6</SP>/K or lower, a 0.2% yield strength of 270 N/mm<SP>2</SP>or higher, and a heat resisting temperature of 270°C or higher. The method for manufacturing the alloy comprises the steps of: cold-rolling the alloy with a reduction rate of 10% or higher; annealing the cold-rolled material in a temperature range of 400 to 900°C, so that the material can cause age precipitation and have the concentration of Ni in the Cu matrix to 2.5 mass% or lower; and subsequently finish-rolling it with a reduction rate of 5 to 40%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Cu−Ni−B系銅合金およびその製造法、ならびに半導体素子を搭載する基板に接合される放熱板であって、上記Cu−Ni−B系銅合金を用いた放熱板に関するものである。   The present invention relates to a Cu-Ni-B-based copper alloy, a method for manufacturing the same, and a heat radiating plate joined to a substrate on which a semiconductor element is mounted, and relates to a heat radiating plate using the Cu-Ni-B-based copper alloy. It is.

半導体素子から発生する熱を効率よく放散させるための手段として、半導体素子を搭載する基板(以下「半導体素子基板」という)に熱伝導性の良い材料からなる「放熱板」を接合する手段が広く採用されている。   As a means for efficiently dissipating heat generated from a semiconductor element, there is a wide variety of means for joining a "heat sink" made of a material having good thermal conductivity to a substrate on which the semiconductor element is mounted (hereinafter referred to as "semiconductor element substrate"). It has been adopted.

図1に、半導体素子基板に放熱板を接合した半導体モジュールの構成例を模式的に示す。アルミナや窒化アルミニウムなどのセラミックスからなる基板5の表面には銅パターン4が形成されており、その反対側の面には銅板などからなる導体層6が形成されている。基板5と銅パターン4および導体層6が一体となって半導体素子基板3を構成している。半導体素子基板3の銅パターン4が形成された面には、例えばはんだ層2を介して半導体素子7が搭載されている。銅パターン4と半導体素子7の間には必要に応じてAlなどの導電材料からなるリード線8が取り付けられ、回路を構成する。一方、半導体素子基板3の導体層6が形成された面には、はんだ層2を介して放熱板1が取り付けられている。   FIG. 1 schematically shows a configuration example of a semiconductor module in which a heat sink is bonded to a semiconductor element substrate. A copper pattern 4 is formed on the surface of a substrate 5 made of a ceramic such as alumina or aluminum nitride, and a conductor layer 6 made of a copper plate or the like is formed on the opposite surface. The substrate 5, the copper pattern 4, and the conductor layer 6 are integrated to constitute the semiconductor element substrate 3. A semiconductor element 7 is mounted on the surface of the semiconductor element substrate 3 on which the copper pattern 4 is formed, for example, via a solder layer 2. A lead wire 8 made of a conductive material such as Al is attached between the copper pattern 4 and the semiconductor element 7 as necessary to constitute a circuit. On the other hand, the heat sink 1 is attached to the surface of the semiconductor element substrate 3 on which the conductor layer 6 is formed via the solder layer 2.

基板5は、半導体素子と同程度の小さい熱膨張係数を必要とすることから、一般的にはセラミックスで作られる。これに対し、放熱板1は直接半導体素子と接合されるものではないため半導体素子と同等の小さい熱膨張係数までは要求されず、むしろ熱伝導性のほうが優先されてきた。このため、従来、放熱板には熱伝導性の良好な銅板が主として使用されてきた。   Since the substrate 5 requires a coefficient of thermal expansion as small as that of a semiconductor element, it is generally made of ceramics. On the other hand, since the heat sink 1 is not directly joined to the semiconductor element, it is not required to have a small thermal expansion coefficient equivalent to that of the semiconductor element. Rather, thermal conductivity has been prioritized. For this reason, conventionally, a copper plate having good thermal conductivity has been mainly used as the heat radiating plate.

放熱板は半導体モジュールの補強材としての役割も有している。また、ヒートシンクに取り付けて使用される場合も多い。このため、放熱板は、半導体モジュールの組立過程や電気・電子機器としての使用中にできるだけ変形しないことが望まれる。変形しない「強さ」の指標としては0.2%耐力が採用できる。銅板は圧延後の状態で300N/mm2前後の0.2%耐力を示すものの、はんだ接合時の昇温で軟化して0.2%耐力が低下しやすい。このため銅板からなる放熱板には、半導体素子基板との熱膨張差に起因して「反り」が生じやすい。通常、この反り対策として、放熱板部品には予めプレスによりいわゆる「逆反り」を形成しておき、はんだ接合時に発生する反りができるだけ相殺されるようにしておく処置が採られる。しかし、この対策によっても、半導体素子の種類や配置などによって軽減できる反り量が変わってくるなど、いわゆる相性の問題もあり、安定的に反りを解消するための万全の対策とはなっていない。 The heat sink also has a role as a reinforcing member for the semiconductor module. Also, it is often used by attaching to a heat sink. For this reason, it is desirable that the heat sink is not deformed as much as possible during the assembly process of the semiconductor module or during use as an electric / electronic device. As an index of “strength” that does not deform, 0.2% proof stress can be adopted. Although the copper sheet shows a 0.2% proof stress of around 300 N / mm 2 in the state after rolling, it is softened by the temperature rise at the time of soldering, and the 0.2% proof stress tends to decrease. For this reason, a heat sink made of a copper plate is likely to be “warped” due to a difference in thermal expansion from the semiconductor element substrate. Usually, as a countermeasure against this warp, a measure is taken in which a so-called “reverse warp” is formed in advance on the heat radiating plate part by pressing so that the warp generated during soldering is offset as much as possible. However, even with this measure, there is a so-called compatibility problem such as the amount of warp that can be reduced depending on the type and arrangement of the semiconductor element, and it is not a complete measure for stably eliminating the warp.

そこで、本出願人は、0.2%耐力の向上およびその耐熱性(はんだ接合時の昇温で軟化しない抵抗力)を改善した合金として、Cu−Fe−P系、Cu−Co−P系、Cu−Fe−Co−P系、Cu−Fe−Ni−P系の銅合金を開発し、特許文献1に開示した。   Therefore, the present applicant has proposed a Cu-Fe-P system and a Cu-Co-P system as alloys that have improved 0.2% yield strength and improved heat resistance (resistance that does not soften due to an increase in temperature during soldering). , Cu-Fe-Co-P-based and Cu-Fe-Ni-P-based copper alloys have been developed and disclosed in Patent Document 1.

特開2003−68949号公報JP 2003-68949 A 特開平11−307701号公報Japanese Patent Laid-Open No. 11-307701 特開平10−8166号公報Japanese Patent Laid-Open No. 10-8166

特許文献1の銅合金を用いた放熱板では、はんだ接合直後の反りが軽減されるとともに、その後の経時過程で優れた形状回復効果が得られる。つまり、はんだ接合で一旦生じた反りは、常温放置によって自然に回復し、最終的にかなり高い平坦度が得られるのである。   In the heat sink using the copper alloy of Patent Document 1, warpage immediately after soldering is reduced, and an excellent shape recovery effect is obtained in the subsequent aging process. That is, the warp once generated by soldering is naturally recovered by being left at room temperature, and finally a fairly high flatness is obtained.

この形状回復は、凝固後のはんだ層に生じる常温クリープ現象に負うところが大きい。すなわち、はんだが凝固し常温まで降温する過程で、半導体素子基板と放熱板との熱膨張差に起因してはんだ層には応力が負荷される。放熱板が銅板の場合は、はんだ接合時の加熱により放熱板が軟化し、降温過程で生じるはんだ層と放熱板の間の拘束力は緩和されてしまう。このため、はんだ層の常温クリープはあまり進行せず、結果的に反りの回復も少ない。これに対し特許文献1の合金の場合は、はんだ接合時の加熱でほとんど軟化せず、常温までの降温したときには、はんだ層に大きな応力が負荷された状態となる。このため、はんだ層の常温クリープが進行し、放熱板の「反り形状」は大幅に回復する。   This shape recovery is largely affected by the normal temperature creep phenomenon that occurs in the solder layer after solidification. That is, stress is applied to the solder layer due to the difference in thermal expansion between the semiconductor element substrate and the heat radiating plate during the process of solidifying the solder and lowering the temperature to room temperature. When the heat radiating plate is a copper plate, the heat radiating plate is softened by heating at the time of soldering, and the restraining force between the solder layer and the heat radiating plate generated during the temperature lowering process is relaxed. For this reason, the normal temperature creep of the solder layer does not proceed so much, and as a result, there is little recovery of warpage. On the other hand, in the case of the alloy of Patent Document 1, the solder layer is hardly softened by heating at the time of soldering, and when the temperature is lowered to room temperature, a large stress is applied to the solder layer. For this reason, the room temperature creep of the solder layer proceeds, and the “warping shape” of the heat sink is greatly recovered.

一方、はんだ素材に目を向けると、近年、環境問題から、Pbを含有しない「Pbフリーはんだ」の使用ニーズが高まっている。Pbフリーはんだとしては、Sn−Cu系、Sn−Ag系、Sn−Ag−Cu系などが知られている。ところが、これらのPbフリーはんだを使用すると、特許文献1の合金でも放熱板の反りを十分に回復させることが難しいという問題が生じた。その主たる原因は、Pbフリーはんだの場合、常温クリープによるはんだ層の変形が起こりにくいことにある。   On the other hand, when looking at solder materials, in recent years, due to environmental problems, there is an increasing need for using “Pb-free solder” that does not contain Pb. As the Pb-free solder, Sn-Cu system, Sn-Ag system, Sn-Ag-Cu system and the like are known. However, when these Pb-free solders are used, there is a problem that even the alloy of Patent Document 1 has difficulty in sufficiently recovering the warp of the heat sink. The main cause is that in the case of Pb-free solder, deformation of the solder layer due to room temperature creep hardly occurs.

このため、Pbフリーはんだを用いた接合に対応するには、反りの回復量が小さくなる分、初期の逆反り量を大きくする必要がある。この場合、反りの絶対量が大きくなるため、はんだ付け後のはんだ層の平坦性が得られなかったり、はんだ付け作業が困難になったりすることがあった。   For this reason, in order to cope with joining using Pb-free solder, it is necessary to increase the initial amount of reverse warpage as the amount of warpage recovery decreases. In this case, since the absolute amount of warpage becomes large, the flatness of the solder layer after soldering may not be obtained, or the soldering operation may be difficult.

また自動車に使用される電子機器(特にエンジンルーム内に設置されるもの)などでは、頻繁に昇温・降温が繰り返され、使用時の温度も高くなりやすい。このため、昇温・降温時の放熱板と基板の熱膨張差により、はんだ層と基板の間に応力がかかり、はんだ層または基板にクラックが入る可能性がある。したがって、放熱板は使用中の温度変化で変形しにくいことが重要となる。特許文献1の合金はこの点についても更なる改善が望まれる。   In addition, in electronic devices used in automobiles (especially those installed in an engine room), the temperature is frequently raised and lowered, and the temperature during use tends to increase. For this reason, stress may be applied between the solder layer and the substrate due to a difference in thermal expansion between the heat sink and the substrate when the temperature is raised or lowered, and the solder layer or the substrate may crack. Therefore, it is important that the heat sink is not easily deformed by a temperature change during use. The alloy of Patent Document 1 is desired to be further improved in this respect.

本発明は、Pbフリーはんだを使用した場合でも放熱板の反りを軽減する効果が高く、また放熱板として使用されるときに温度変化による変形を低減する効果の高い銅合金を開発し提供しようというものである。   The present invention is intended to develop and provide a copper alloy that is highly effective in reducing warpage of the heat sink even when Pb-free solder is used, and that is highly effective in reducing deformation due to temperature changes when used as a heat sink. Is.

発明者らは種々検討の結果、特許文献1の合金よりも熱膨張係数を低減した合金を放熱板に使用すると、常温クリープを起こしにくいPbフリーはんだを使用した場合でも放熱板の反りを軽減できることを見出した。またこの場合、放熱板として使用される際の温度変化による変形も同時に軽減されることが判った。熱膨張係数の低い合金や複合材料は種々知られている。例えば特許文献2には圧粉体の成型、溶浸により製造されるCu−Mo複合基板が示されており、熱膨張係数は7〜8.5×10-6/Kと極めて低い。しかしこれは非常にコストが高く半導体モジュールの放熱板には適さない。特許文献3にはCu−Cr系合金が示され、半導体素子と同程度の熱膨張係数11.5〜12.8×10-6/Kを呈する。しかしこれは製造性が悪く、多量のCrを含有するためはんだ付け性も良好でない。これらは非常に熱膨張係数の低い材料であるが、半導体モジュールの放熱板においてPbフリーはんだ使用時の反りを軽減するには、そのような低熱膨張特性にしなくても効果は得られ、具体的には概ね16.6×10-6/K以下の熱膨張係数を有していればよいことが判った。ただし、熱伝導性が良好で、且つはんだ接合の昇温時における耐熱性(軟化に対する抵抗力)も良好な合金であることが必要である。 As a result of various studies, the inventors have been able to reduce the warpage of the heat sink even when Pb-free solder that hardly causes room temperature creep is used when an alloy having a lower thermal expansion coefficient than the alloy of Patent Document 1 is used for the heat sink. I found. In this case, it was also found that deformation due to temperature change when used as a heat sink is also reduced. Various alloys and composite materials having a low coefficient of thermal expansion are known. For example, Patent Document 2 discloses a Cu-Mo composite substrate manufactured by molding and infiltration of a green compact, and its thermal expansion coefficient is 7 to 8.5 × 10 −6 / K, which is extremely low. However, this is very expensive and is not suitable for a heat sink of a semiconductor module. Patent Document 3 discloses a Cu—Cr-based alloy, which exhibits a thermal expansion coefficient of 11.5 to 12.8 × 10 −6 / K, which is comparable to that of a semiconductor element. However, this is not manufacturable, and contains a large amount of Cr, so that the solderability is not good. These are materials with a very low coefficient of thermal expansion, but in order to reduce the warpage when using Pb-free solder in the heat sink of the semiconductor module, the effect can be obtained without using such low thermal expansion characteristics. It has been found that the thermal expansion coefficient should be approximately 16.6 × 10 −6 / K or less. However, it is necessary that the alloy has good heat conductivity and good heat resistance (resistance to softening) at the time of increasing the temperature of the solder joint.

発明者らは詳細な研究の結果、そのような合金としてCu−Ni−B系の銅合金を開発するに至った。
すなわち本発明では、質量%で、Ni:3〜15%、B:3%以下、Cu、Ni、Bを除く元素の合計:3%以下、残部Cu、かつNi/B≦7の組成、あるいは特に質量%で、Ni:3〜15%、B:3%以下、残部Cuと不可避的不純物からなり、かつNi/B≦7の組成をもち、特性に着目すると25℃での熱伝導率が260W/m・K以上、金属組織に着目するとCuマトリックス中のNi濃度が2.5質量%以下である銅合金を提供する。
なかでも、第二相の平均粒子径が25μm以下であるもの、0.2%耐力が270N/mm2以上であるもの、「冷間圧延→熱処理→5〜40%の仕上冷間圧延」の工程で得られる組織を有するもの、熱伝導率(W/m・K)とNi含有量(質量%)が下記式(1)を満たすもの、25〜300℃の平均熱膨張係数が16.6×10-6/K以下であるものが、それぞれ好ましい対象となる。
熱伝導率≧−13.5Ni+357 ……(1)
また、これらの銅合金の表面にNiめっき層を有する銅合金材料が提供される。
As a result of detailed studies, the inventors have developed a Cu—Ni—B based copper alloy as such an alloy.
That is, in the present invention, the composition of Ni: 3-15%, B: 3% or less, the total of elements excluding Cu, Ni, and B: 3% or less, the balance Cu, and Ni / B ≦ 7, or In particular, in terms of mass%, Ni: 3 to 15%, B: 3% or less, the balance being Cu and inevitable impurities, and having a composition of Ni / B ≦ 7. Focusing on the metal structure of 260 W / m · K or more, a copper alloy having a Ni concentration in the Cu matrix of 2.5% by mass or less is provided.
Among them, the average particle diameter of the second phase is 25 μm or less, the 0.2% proof stress is 270 N / mm 2 or more, “cold rolling → heat treatment → 5 to 40% finish cold rolling” One having a structure obtained in the process, one having thermal conductivity (W / m · K) and Ni content (% by mass) satisfying the following formula (1), and an average coefficient of thermal expansion of 25 to 300 ° C. of 16.6 Those having x10 −6 / K or less are preferable targets.
Thermal conductivity ≧ -13.5Ni + 357 (1)
Moreover, the copper alloy material which has a Ni plating layer on the surface of these copper alloys is provided.

「Ni/B≦7」のNi、Bの箇所、および式(1)のNiの箇所には、それぞれ質量%で表された当該元素含有量が代入される。「Cuマトリックス中のNi濃度」は、第二相等を除いたCuマトリックス部分だけを対象とした場合の当該部分のNi濃度(質量%)である。Cuマトリックス中のNi濃度は、例えばEPMAなどで第二相を含まないCuマトリックス部分のみにビームを絞って得られる元素分析値によって知ることができる。   The element content expressed in mass% is substituted for Ni and B in “Ni / B ≦ 7” and Ni in the formula (1), respectively. The “Ni concentration in the Cu matrix” is the Ni concentration (% by mass) in the portion where only the Cu matrix portion excluding the second phase or the like is targeted. The Ni concentration in the Cu matrix can be known from the elemental analysis value obtained by focusing the beam only on the portion of the Cu matrix not containing the second phase, such as EPMA.

このような銅合金の製造法として、上記の化学組成を有し、10%以上好ましくは30%以上の冷間圧延が施された冷間圧延材に、400〜900℃好ましくは500〜750℃の温度範囲で時効析出を伴う焼鈍を施してCuマトリックス中のNi濃度を2.5質量%以下好ましくは2.0質量%とし、次いで5〜40%の仕上圧延を行う、導電性を改善したCu−Ni−B系銅合金の製造法が提供される。   As a method for producing such a copper alloy, a cold rolled material having the above-described chemical composition and subjected to cold rolling of 10% or more, preferably 30% or more, is 400 to 900 ° C, preferably 500 to 750 ° C. The Ni concentration in the Cu matrix is set to 2.5% by mass or less, preferably 2.0% by mass, and then finish rolling is performed at 5 to 40% to improve conductivity. A method for producing a Cu-Ni-B based copper alloy is provided.

また本発明では、このような銅合金を素材とし、半導体素子基板にはんだを用いて接合された、放熱板を提供する。上記「はんだ」としては「Pbフリーはんだ」、特に、Sn−Ag系、Sn−Cu系、純Snを初めとするはんだが好適な対象となる。この放熱板は、パワー半導体モジュールの部材とすることができる。   The present invention also provides a heat dissipation plate made of such a copper alloy and bonded to a semiconductor element substrate using solder. As the “solder”, “Pb-free solder”, in particular, solder including Sn—Ag, Sn—Cu, and pure Sn is suitable. This heat sink can be used as a member of a power semiconductor module.

本発明のCu−Ni−B系の銅合金によれば、それを用いた半導体モジュール放熱板において、Pbフリーはんだで接合する際の変形が大幅に軽減され、また、その放熱板を電子機器に実装して使用する際には温度変化による放熱板の変形が抑制される。更に、この銅合金は圧粉体の成型、溶浸や真空中での溶解といった特殊な工程を必要とせず、溶解・鋳造、熱間圧延といった製造工程で製造でき、それを用いた放熱板の成形はプレス加工で行うことができるため、本発明の銅合金および放熱板は比較的安価に大量生産が可能である。したがって本発明は、半導体モジュールにおけるPbフリーはんだ化の推進を促して環境問題の改善に寄与するとともに、半導体モジュールの設計自由度の拡大や使用環境の拡大をもたらすものである。   According to the Cu-Ni-B-based copper alloy of the present invention, deformation at the time of joining with Pb-free solder in a semiconductor module heat sink using the Cu-Ni-B-based copper alloy is greatly reduced, and the heat sink is used for an electronic device. When mounted and used, deformation of the heat sink due to temperature change is suppressed. Furthermore, this copper alloy does not require special processes such as green compact molding, infiltration and melting in vacuum, and can be manufactured in manufacturing processes such as melting / casting and hot rolling. Since the molding can be performed by pressing, the copper alloy and the heat sink of the present invention can be mass-produced at a relatively low cost. Therefore, the present invention promotes the promotion of Pb-free soldering in the semiconductor module and contributes to the improvement of environmental problems, and also increases the degree of design freedom of the semiconductor module and the usage environment.

本発明では、Cu−Ni−B系の合金組成を採用する。前述のように、放熱板をPbフリーはんだで半導体素子基板に接合する際、および、そのようにして構成された半導体モジュールを自動車のエンジンルームなどの高温環境で使用する際、放熱板の変形を効果的に抑制するには、25〜300℃の平均熱膨張係数が概ね16.6×10-6/K以下の素材で放熱板を構成することが極めて有効である。加えて、半導体モジュールの放熱板用途では25℃の熱伝導率が260W/m・K以上であることが要求される。また、Pbフリーはんだを用いたはんだ接合時の昇温で軟化しないためには270℃以上の耐熱温度が必要である。特に300℃以上の耐熱温度を有すると種々のPbフリーはんだに幅広く対応する上で有利となる。さらに、放熱板として十分な強度を発揮するには常温での0.2%耐力が270N/mm2であることが望まれ、できれば300N/mm2以上、あるいは更に330N/mm2以上であることが好ましい。 In the present invention, a Cu—Ni—B alloy composition is employed. As described above, when the heat sink is bonded to the semiconductor element substrate with Pb-free solder, and when the semiconductor module thus configured is used in a high temperature environment such as an engine room of an automobile, the heat sink is deformed. In order to suppress effectively, it is very effective to comprise a heat sink with the raw material whose average thermal expansion coefficient of 25-300 degreeC is about 16.6 * 10 < -6 > / K or less. In addition, the heat conductivity at 25 ° C. is required to be 260 W / m · K or more for the heat sink application of the semiconductor module. Moreover, in order not to soften by the temperature rise at the time of soldering using Pb-free solder, a heat resistant temperature of 270 ° C. or higher is necessary. In particular, having a heat-resistant temperature of 300 ° C. or more is advantageous in supporting a wide variety of Pb-free solders. Furthermore, to exhibit a sufficient strength as a heat sink, it is desirable 0.2% proof stress at room temperature is 270N / mm 2, hopefully 300N / mm 2 or more, or is more 330N / mm 2 or more Is preferred.

Cu−Ni−B系合金を用いると16.6×10-6/K以下の熱膨張係数を得ることが可能であり、組成および組織のコントロールによって、260W/m・K以上の熱伝導率と、270℃以上あるいは300℃以上の耐熱温度、更に270N/mm2以上あるいは330N/mm2以上の0.2%耐力が実現できる。 When a Cu—Ni—B alloy is used, a thermal expansion coefficient of 16.6 × 10 −6 / K or less can be obtained, and a thermal conductivity of 260 W / m · K or more can be obtained by controlling the composition and structure. , 270 ° C. or higher, or 300 ° C. or more refractory temperature, further 270N / mm 2 or more, or 330N / mm 2 or more 0.2% proof stress can be realized.

Niは、Bと結合してNiとBの化合物を主体とする第二相(以下「Ni−B系の第二相」という)を形成し、これが耐熱性の向上、および熱伝導性の向上をもたらす。また、Ni量の増加に伴い熱膨張係数は小さくなる傾向を示す。Niのこれらの作用を十分に引き出すには3質量%以上のNi含有が必要である。4質量%以上とすることが好ましい。一方、Ni量が増加すると熱伝導率および冷間加工性が低下する傾向を示す。このためNi含有量の上限は15質量%とする。通常は概ね10質量%以下のNi含有量範囲で放熱板として良好な特性が確保できる。Ni含有量の特に好ましい範囲は4〜10質量%、更に好ましい範囲は4.5〜8質量%である。   Ni combines with B to form a second phase mainly composed of Ni and B (hereinafter referred to as “Ni-B second phase”), which improves heat resistance and heat conductivity. Bring. Further, the coefficient of thermal expansion tends to decrease as the Ni amount increases. In order to sufficiently bring out these effects of Ni, it is necessary to contain 3% by mass or more of Ni. It is preferable to set it as 4 mass% or more. On the other hand, when the Ni content increases, the thermal conductivity and cold workability tend to decrease. For this reason, the upper limit of Ni content shall be 15 mass%. Usually, good characteristics as a heat sink can be secured in a Ni content range of approximately 10% by mass or less. A particularly preferable range of the Ni content is 4 to 10% by mass, and a more preferable range is 4.5 to 8% by mass.

Bは、Ni−B系第二相の形成に必要である他、B単体として析出し熱膨張係数を低減する作用も有する。これらのBの作用は概ね0.4質量%以上のB含有で発揮されるが、本発明では所定の材料特性を得るためにNi/B比の制御が重要であり、後述のNi/B≦7の限定により下限が制限される。この下限を下回るB含有量だと、熱処理によりNi−B系の第二相を析出させることが難しくなり、所定の熱伝導率が得られない。B含有量が多すぎると上記作用は飽和するとともに、Bは高価なため全体の材料のコストアップ要因となり、また冷間加工性の低下を招く。このためB含有量は3質量%以下の範囲とする。B含有量の特に好ましい範囲は0.5〜2.0質量%、更に好ましい範囲は0.75〜1.8質量%である。   B is necessary for the formation of the Ni—B system second phase, and also has the effect of precipitating as B alone and reducing the thermal expansion coefficient. The action of these Bs is exhibited when the content of B is approximately 0.4% by mass or more. However, in the present invention, control of the Ni / B ratio is important in order to obtain predetermined material characteristics, and Ni / B ≦ described later. The lower limit is limited by the limitation of 7. When the B content is lower than this lower limit, it becomes difficult to precipitate a Ni-B second phase by heat treatment, and a predetermined thermal conductivity cannot be obtained. If the B content is too large, the above action is saturated, and since B is expensive, it causes an increase in the cost of the entire material and causes a decrease in cold workability. For this reason, B content shall be the range of 3 mass% or less. A particularly preferable range of the B content is 0.5 to 2.0% by mass, and a more preferable range is 0.75 to 1.8% by mass.

また、本発明では合金中のNi/B含有量比を7以下にする。この値が7を超えると、熱膨張係数の増大や熱伝導率の急激な低下を招きやすい。Ni/B比の特に好ましい範囲は2.5〜7であり、更に好ましい範囲は3〜6.5である。   In the present invention, the Ni / B content ratio in the alloy is set to 7 or less. If this value exceeds 7, it tends to cause an increase in thermal expansion coefficient and a rapid decrease in thermal conductivity. A particularly preferable range of the Ni / B ratio is 2.5 to 7, and a more preferable range is 3 to 6.5.

Ni、B、Cu以外には、本発明の目的を損なわない限り種々の元素を含有しても構わない。例えば、耐熱性や0.2%耐力を向上させる作用を有するSn、はんだとの密着性を向上させる作用のあるZnなどを添加することができる。ただし、Ni、B、Cuを除く他の元素(不純物を含む)の合計含有量は3質量%以下とする。1質量%以下とすることが好ましい。また、質量%で、Ni:3〜15%、B:3%以下、残部Cuおよび不可避的不純物からなる組成を採用することができる。   In addition to Ni, B, and Cu, various elements may be contained as long as the object of the present invention is not impaired. For example, Sn having an effect of improving heat resistance and 0.2% proof stress, Zn having an effect of improving adhesion to solder, and the like can be added. However, the total content of other elements (including impurities) excluding Ni, B, and Cu is 3% by mass or less. It is preferable to set it as 1 mass% or less. Moreover, the composition which consists of Ni: 3-15%, B: 3% or less, remainder Cu, and an unavoidable impurity by mass% is employable.

金属組織としては、熱伝導性を向上させるため、およびめっき密着性を向上させるために、Cuマトリックス中のNi濃度が2.5質量%以下に調整されていることが好ましい。2.0質量%以下であることが一層好ましい。マトリックス中に多量に固溶したNiは、熱伝導性を低下させるだけでなく、めっき時の前処理性を低下させ、めっき性、特にNiめっき性を低下させる。Cuマトリックス中のNi濃度の低減は、後述のように時効析出を十分に起こさせることによって実現可能となる。   As the metal structure, it is preferable that the Ni concentration in the Cu matrix is adjusted to 2.5% by mass or less in order to improve thermal conductivity and plating adhesion. It is still more preferable that it is 2.0 mass% or less. Ni dissolved in a large amount in the matrix not only lowers the thermal conductivity, but also lowers the pretreatment property at the time of plating and lowers the plating property, particularly the Ni plating property. The Ni concentration in the Cu matrix can be reduced by sufficiently causing aging precipitation as will be described later.

また第二相は、平均粒子径25μm以下であることが望ましい。第二相が粗大化しているものでは、途中の冷間圧延工程でエッジ割れが生じやすく、単に歩留りが低下するだけでなく、銅合金製品の品質劣化を招く恐れがある。また、第二相の平均粒子径が25μmを超えると機械的性質や耐熱性が低下しやすく、耐熱温度270℃以上および0.2%耐力270N/mm2以上を安定して実現する上で不利となる。第二相の平均粒径を5μm以下とすることが一層好ましい。 The second phase desirably has an average particle size of 25 μm or less. When the second phase is coarse, edge cracking is likely to occur during the cold rolling process, and not only the yield is lowered, but also the quality of the copper alloy product may be deteriorated. Further, when the average particle size of the second phase exceeds 25 μm, mechanical properties and heat resistance are liable to be lowered, which is disadvantageous in stably realizing a heat resistant temperature of 270 ° C. or higher and a 0.2% proof stress of 270 N / mm 2 or higher. It becomes. More preferably, the average particle size of the second phase is 5 μm or less.

本発明合金の理想的な金属組織は、例えば後述する「熱間圧延→冷間圧延→時効析出を伴う熱処理→5〜40%の仕上冷間圧延」の工程で得ることができる。つまり、このような工程を経て得られる、マトリックス中に第二相の分散した冷間加工組織によって、熱膨張係数、熱伝導率、耐熱温度、0.2%耐力を一挙に上記所望の値に改善することが可能になる。   An ideal metal structure of the alloy of the present invention can be obtained, for example, by a process of “hot rolling → cold rolling → heat treatment with aging precipitation → finish cold rolling of 5 to 40%” described later. That is, the thermal expansion coefficient, the thermal conductivity, the heat resistance temperature, and the 0.2% proof stress are all brought to the above desired values by the cold-worked structure in which the second phase is dispersed in the matrix obtained through such steps. It becomes possible to improve.

また、Ni含有量を低減するほど熱伝導率は高くなる傾向があるため、Ni、B含有量によって熱伝導率をコントロールすることができる。ただし、同じNi含有量レベルであっても、上述のように金属組織を適正化したものと、そうでないものとでは、熱伝導率に差が生じてくる。金属組織を適正化したものでは、Ni含有量に応じて、同一Ni含有量であっても下記式(1)に示すような高レベルの熱伝導率を呈するものとなり、放熱板用途において一層好適に使用できる。
熱伝導率≧−13.5Ni+357 ……(1)
ここで、熱伝導率の単位はW/m・K、Ni含有量は質量%である。
このような銅合金は、その優れた熱伝導率、低熱膨張係数、導電率、0.2%耐力、耐熱性等を生かし、接合する基板やチップが小型で、反り付けを行わないタイプの放熱板やリードフレームといった用途でも有効に利用することができる。
Further, since the thermal conductivity tends to increase as the Ni content decreases, the thermal conductivity can be controlled by the Ni and B contents. However, even at the same Ni content level, there is a difference in thermal conductivity between the metal structure optimized as described above and the non-metal structure. When the metal structure is optimized, depending on the Ni content, even if the Ni content is the same, it exhibits a high level of thermal conductivity as shown in the following formula (1). Can be used for
Thermal conductivity ≧ -13.5Ni + 357 (1)
Here, the unit of thermal conductivity is W / m · K, and the Ni content is mass%.
Such a copper alloy takes advantage of its excellent thermal conductivity, low thermal expansion coefficient, electrical conductivity, 0.2% proof stress, heat resistance, etc., and the bonded substrate and chip are small in size and do not warp. It can also be used effectively in applications such as plates and lead frames.

本発明の銅合金は、例えば以下のようにして製造することができる。
まず、溶製に際し、B原料としては、単体のBは高価であるため、Ni−B母合金を使用することが望ましい。ただし、Ni−B母合金は融点がCuよりも高く、溶湯温度が低い場合にはBが浮上して歩留りが悪くなる。一般的な大気雰囲気での溶解では1150℃以上、好ましくは1200〜1280℃程度に昇温してからNi−B母合金を添加するとよい。鋳造は造塊法で行うこともできるが、実操業では一般的な銅合金用の連続鋳造機を用いて行うことが望ましい。横型連鋳機、縦型連鋳機のどちらも使用可能である。ただし、固相線温度から400℃までの冷却を10分以内に行うことが好ましい。さらに望ましくは5分以内が好ましい。冷却速度が遅いと鋳片中の第二相が粗大化してしまい、後工程の冷間圧延時にエッジ割れを生じやすい。また、上記所望の特性を得る上でも不利となる。
The copper alloy of the present invention can be produced, for example, as follows.
First, at the time of melting, it is desirable to use a Ni-B master alloy as the B raw material because single B is expensive. However, the Ni-B master alloy has a melting point higher than Cu, and when the molten metal temperature is low, B rises and the yield deteriorates. In melting in a general air atmosphere, the temperature is raised to 1150 ° C. or higher, preferably about 1200 to 1280 ° C., and then the Ni—B master alloy is added. Casting can be carried out by an ingot-making method, but it is desirable to use a general continuous casting machine for copper alloys in actual operation. Both horizontal continuous casters and vertical continuous casters can be used. However, cooling from the solidus temperature to 400 ° C. is preferably performed within 10 minutes. More desirably, it is preferably within 5 minutes. If the cooling rate is slow, the second phase in the slab becomes coarse, and edge cracking is likely to occur during cold rolling in the subsequent process. Further, it is disadvantageous in obtaining the desired characteristics.

得られた鋳片は熱間圧延によって板厚を減じる。熱間圧延時の加熱温度は900℃以下とすることが望ましく、875℃以下が一層好ましい。
得られた熱延板は必要に応じて面削に供し、次いで「冷間圧延→熱処理」の工程を1回以上行う。この「冷間圧延→熱処理」の工程のうち、少なくとも1回は冷間圧延にて10%以上の冷間圧延率を確保する必要がある。例えば30〜95%の冷間圧延率とすることが好ましい。この冷間圧延と熱処理を組み合わせることによって析出を効率的に進めることができる。すなわち、Ni−Bの第二相やB単体の析出が促進され、Cuマトリックス中のNi濃度低減による熱伝導性やめっき性の向上、およびB単体の析出による熱膨張係数の低減が実現されるのである。
The obtained slab is reduced in thickness by hot rolling. The heating temperature during hot rolling is desirably 900 ° C. or lower, and more preferably 875 ° C. or lower.
The obtained hot-rolled sheet is subjected to chamfering as necessary, and then the process of “cold rolling → heat treatment” is performed once or more. Among the steps of “cold rolling → heat treatment”, it is necessary to secure a cold rolling rate of 10% or more by cold rolling at least once. For example, a cold rolling rate of 30 to 95% is preferable. Precipitation can be efficiently advanced by combining this cold rolling and heat treatment. That is, precipitation of Ni-B second phase and B simple substance is promoted, thermal conductivity and plating properties are improved by reducing Ni concentration in Cu matrix, and thermal expansion coefficient is reduced by precipitation of B simple substance. It is.

その冷間圧延後に行う熱処理(仕上冷間圧延前の熱処理)は、400〜900℃、好ましくは500〜750℃の温度で行う。この熱処理において、再結晶化とともに、時効析出を促進させることが重要である。この熱処理によって時効析出を進行させることでCuマトリックス中のNi濃度を2.5質量%以下、あるいは更に2.0質量%以下にコントロールする。これが前述のように、熱伝導率の向上に有効に機能するのである。Cuマトリックス中のNi濃度のコントロールは、Ni含有量に応じて熱処理温度と時間の組み合わせを適正化することによって実現できる。実際は種々のNi含有量の合金について予め適正条件範囲を求めておき、操業時にそのデータに基づいて熱処理温度・時間を設定すればよい。その熱処理時間は、Ni含有量レベルや加熱温度によって多少変動するが、概ね0.2〜100時間、好ましくは1〜20時間の範囲で設定すればよい。   The heat treatment performed after the cold rolling (heat treatment before finish cold rolling) is performed at a temperature of 400 to 900 ° C., preferably 500 to 750 ° C. In this heat treatment, it is important to promote aging precipitation together with recrystallization. By advancing aging precipitation by this heat treatment, the Ni concentration in the Cu matrix is controlled to 2.5% by mass or less, or even 2.0% by mass or less. As described above, this effectively functions to improve the thermal conductivity. Control of the Ni concentration in the Cu matrix can be realized by optimizing the combination of heat treatment temperature and time according to the Ni content. Actually, an appropriate condition range may be obtained in advance for alloys having various Ni contents, and the heat treatment temperature and time may be set based on the data during operation. The heat treatment time varies somewhat depending on the Ni content level and the heating temperature, but may be set in the range of about 0.2 to 100 hours, preferably 1 to 20 hours.

上記の熱処理(再結晶−時効熱処理)については、上記の条件で実施すれば所望の特性が得られるが、熱伝導率の向上を重視する場合や、ごく微細な第二相を析出させて更なる耐熱性の向上を意図する場合は、600〜800℃程度の高温で時効熱処理を行った後に、400〜500℃の低温で時効を行う「二段時効」を採用してもよい。
上記の圧延−熱処理の繰り返しについては、最終的な板厚に応じて圧延−熱処理を複数回行うことが可能である。
As for the above heat treatment (recrystallization-aging heat treatment), the desired characteristics can be obtained if it is carried out under the above-mentioned conditions. However, when the emphasis is on improving the thermal conductivity, a very fine second phase is precipitated. In order to improve the heat resistance, “two-stage aging” in which aging is performed at a low temperature of 400 to 500 ° C. after aging heat treatment at a high temperature of about 600 to 800 ° C. may be employed.
About repetition of said rolling-heat processing, it is possible to perform rolling-heat processing several times according to final board thickness.

次いで、仕上冷間圧延を行う。これにより、耐熱性を維持したまま、0.2%耐力を顕著に改善することができる。仕上冷間圧延率は少なくとも5%以上を確保する必要がある。ただし、仕上圧延率をあまり高くしすぎると耐熱温度が低下する。発明者らの検討によれば、仕上圧延は概ね40%以下の圧延率範囲で行うのが効果的である。8〜30%程度とすることが一層好ましい。   Next, finish cold rolling is performed. As a result, the 0.2% proof stress can be remarkably improved while maintaining the heat resistance. It is necessary to secure a finish cold rolling rate of at least 5%. However, if the finish rolling rate is too high, the heat-resistant temperature decreases. According to the study by the inventors, it is effective to perform finish rolling in a rolling rate range of approximately 40% or less. More preferably, it is about 8 to 30%.

その後、必要に応じて概ね300℃以下の範囲で低温焼鈍を行うことができる。例えば200〜300℃で5〜300分程度保持すればよい。この低温焼鈍によって、圧延による残留応力が解放され、放熱板のはんだ付け時の反り変化量を小さく抑えることが可能になる。   Thereafter, low-temperature annealing can be performed in a range of approximately 300 ° C. or less as necessary. For example, what is necessary is just to hold | maintain at 200-300 degreeC for about 5-300 minutes. By this low-temperature annealing, the residual stress due to rolling is released, and the amount of change in warpage during soldering of the heat sink can be kept small.

このようにして、例えば板厚0.5〜5mm程度に仕上げられた本発明の銅合金は、プレス工程で半導体モジュールの放熱板に成形加工される。このとき、前述の「逆反り」を付与することが望ましい。また、プレス後に、必要に応じてNiめっきを施す。Niめっきは、耐食性、はんだ付け性、はんだ耐候性等を改善する上で有効である。次いで、これをPbフリーはんだにより半導体素子基板に接合すれば、従来の銅または銅合金を用いた放熱板と比べ、はんだ接合後の反りを低減することができる。また、その半導体モジュールは、電子機器に実装されて使用された際、繰り返しの温度変化による変形が従来より軽減され、信頼性向上につながる。特に、半導体素子の発熱量が多いパワー半導体モジュールは、本発明の銅合金を用いた放熱板の好適な適用対象となる。   Thus, for example, the copper alloy of the present invention finished to a thickness of, for example, about 0.5 to 5 mm is formed into a heat radiating plate of a semiconductor module by a pressing process. At this time, it is desirable to give the above-mentioned “reverse warp”. Further, after pressing, Ni plating is performed as necessary. Ni plating is effective in improving corrosion resistance, solderability, solder weather resistance, and the like. Next, if this is joined to the semiconductor element substrate by Pb-free solder, the warp after solder joining can be reduced as compared with a conventional heat sink using copper or copper alloy. In addition, when the semiconductor module is mounted and used in an electronic device, deformation due to repeated temperature changes is reduced compared to the prior art, leading to improved reliability. In particular, a power semiconductor module having a large amount of heat generated from a semiconductor element is a suitable application target of a heat sink using the copper alloy of the present invention.

表1に示す種々の組成のCu−Ni−B系銅合金と、一部、Cu−Cr系銅合金およびCu−Fe−P系銅合金を溶製した。表中に記載した以外の元素は不可避的不純物である。原料には、Cu−Ni−B系合金の場合、Ni−18B母合金と、Cu−2B母合金、および無酸素銅スクラップを用いた。以下の工程Aにより、板厚3mmの板材に仕上げた。   A Cu—Ni—B based copper alloy having various compositions shown in Table 1 and a part of the Cu—Cr based copper alloy and a Cu—Fe—P based copper alloy were melted. Elements other than those listed in the table are inevitable impurities. In the case of a Cu—Ni—B alloy, Ni-18B master alloy, Cu-2B master alloy, and oxygen-free copper scrap were used as raw materials. A plate material having a plate thickness of 3 mm was finished by the following step A.

〔工程A〕
(a)溶解・鋳造: 高周波誘導炉を使用、大気雰囲気下、1220℃で金型に鋳造。ただしCu−Cr系合金は1350℃で鋳造。固相線温度から400℃までの冷却時間は5分以内。鋳塊寸法は35t×50w×200L(mm)。
(b)熱間圧延: 抽出温度875℃、板厚35mmから9mmまで圧延。
(c)面削: 表面の酸化スケールなどを除去、板厚約8.8mm。
(d)冷間圧延: 板厚3.4mmまで圧延、冷間圧延率約61%。
(e)焼鈍: 窒素雰囲気、700℃×4時間保持、炉冷(300℃までの冷却は約1時間)。ただし、Cu−Fe−P系合金は550℃×1時間保持。
(f)酸洗
(g)仕上冷間圧延: 板厚3.0mmまで圧延、仕上冷間圧延率12%。
[Process A]
(A) Melting / Casting: Using a high-frequency induction furnace, casting in a mold at 1220 ° C. in an air atmosphere. However, Cu-Cr alloy is cast at 1350 ° C. The cooling time from the solidus temperature to 400 ° C is within 5 minutes. The ingot size is 35t x 50w x 200L (mm).
(B) Hot rolling: Rolling from an extraction temperature of 875 ° C. and a plate thickness of 35 mm to 9 mm.
(C) Chamfering: The surface oxide scale is removed, and the plate thickness is about 8.8 mm.
(D) Cold rolling: Rolled to a thickness of 3.4 mm, cold rolling rate of about 61%.
(E) Annealing: Nitrogen atmosphere, 700 ° C. × 4 hours holding, furnace cooling (cooling to 300 ° C. is about 1 hour). However, the Cu-Fe-P alloy is held at 550 ° C for 1 hour.
(F) Pickling (g) Finish cold rolling: Rolled to a plate thickness of 3.0 mm, finish cold rolling rate of 12%.

得られた板厚3.0mmの板材を用いて、25℃の熱伝導率、25〜300℃の平均熱膨張係数を測定した。また、鋳造性、冷間加工性、はんだ付け性および第二相の平均粒径を調べた。ただし、はんだ付け性の試験には板厚3.0mmの板材をさらに0.9mmまで冷間圧延したものを使用した。試験材 試験方法・評価基準は以下のとおりである。   Using the obtained plate material having a thickness of 3.0 mm, the thermal conductivity at 25 ° C. and the average thermal expansion coefficient at 25 to 300 ° C. were measured. Further, castability, cold workability, solderability, and average particle size of the second phase were examined. However, in the solderability test, a plate material having a plate thickness of 3.0 mm was further cold-rolled to 0.9 mm. Test materials Test methods and evaluation criteria are as follows.

熱伝導率: レーザーフラシュ法により25℃の熱伝導率を測定し、260W/m・K以上を良好と判定した。
熱膨張係数: 熱膨張係数測定装置(リガクTMA8310)により、昇温速度5℃/minでの昇温過程における25〜300℃の平均熱膨張係数を求めた。その値が16.6×10-6/K以下を良好と判定した。
鋳造性: 鋳塊を、湯底から10mm、20mm、30mmの位置で3箇所切断し、研磨した切断面の目視観察によりブローホールが認められなかったものを○(良好)、認められたものを×(不良)と判定した。
冷間加工性: 前記工程Aの(c)で得られた面削済み熱延板の一部を用いて、圧延率50%の冷間圧延実験を行い、得られた冷延板のエッジに割れが認められないか、割れ長さが5mm未満と軽微で工程上問題ないと判断されるものを○(良好)、長さ5mm以上のエッジ割れが生じたものを×(不良)と判定した。
Thermal conductivity: The thermal conductivity at 25 ° C. was measured by a laser flash method, and 260 W / m · K or more was determined to be good.
Thermal expansion coefficient: An average thermal expansion coefficient of 25 to 300 ° C. in a temperature rising process at a temperature rising rate of 5 ° C./min was determined by a thermal expansion coefficient measuring device (Rigaku TMA8310). A value of 16.6 × 10 −6 / K or less was judged good.
Castability: The ingot was cut at three locations from the bottom of the bath at 10 mm, 20 mm, and 30 mm, and ○ (good) when the blowhole was not observed by visual observation of the polished cut surface. X (defect) was determined.
Cold workability: Using a part of the chamfered hot-rolled sheet obtained in the step A (c), a cold rolling experiment with a rolling rate of 50% was performed, and the obtained cold-rolled sheet was applied to the edge of the cold-rolled sheet. A crack was not recognized or the crack length was slightly less than 5 mm, and it was judged that there was no problem in the process, ○ (good), and one with an edge crack of 5 mm or more in length was judged as x (bad). .

はんだ付け性: 板厚3.0mmの試験材を更に冷間圧延して板厚0.9mmとし、厚さ0.9mm×幅16mm×長さ60mmの試験片を採取した。この試験片について、アセトンによる脱脂、酸洗を行った後、はんだ付け試験に供した。はんだ付け試験はJIS C0053に準拠し、フラックスにはロジン系弱活性フラックス(アルファメタルズ社製 RM5004)を使用し、260℃に保持したはんだ槽中(Sn−3.5Ag−0.8Cuはんだ合金)に浸漬した。浸漬に際しては、試験片をロードセルを介して吊り下げ、浸漬中にロードセルにかかる荷重を記録した。浸漬深さは8mm、浸漬速度は25mm/秒、保持時間は10秒とした。浸漬開始後、試験片の浮力によって荷重は減少していくが、時間経過とともに濡れが進むと荷重は増加に転じる。浸漬開始から、荷重が浸漬開始時の荷重に等しくなった時点までの経過時間をゼロクロスタイムという。はんだ付け性は、ゼロクロスタイムで判断し、ゼロクロスタイムが5秒以下のものを○(良好)、5秒を超えるものを×(不良)と判定した。   Solderability: A test material having a thickness of 3.0 mm was further cold-rolled to a thickness of 0.9 mm, and a test piece having a thickness of 0.9 mm, a width of 16 mm, and a length of 60 mm was collected. The test piece was degreased with acetone and pickled, and then subjected to a soldering test. The soldering test conforms to JIS C0053, and a rosin-based weakly active flux (RM5004 manufactured by Alpha Metals Co., Ltd.) is used as a flux in a solder bath maintained at 260 ° C. (Sn-3.5Ag-0.8Cu solder alloy). Soaked in. During the immersion, the test piece was suspended through the load cell, and the load applied to the load cell during the immersion was recorded. The immersion depth was 8 mm, the immersion speed was 25 mm / second, and the holding time was 10 seconds. After the start of immersion, the load decreases due to the buoyancy of the test piece, but the load starts to increase as wetting progresses over time. The elapsed time from the start of immersion until the load becomes equal to the load at the start of immersion is called zero cross time. Solderability was judged by the zero cross time, and those having a zero cross time of 5 seconds or less were judged as ◯ (good) and those over 5 seconds were judged as x (bad).

第二相の平均粒子径: 試料を樹脂に埋め、圧延方向と板厚方向に平行な断面について、400倍の光学顕微鏡写真を撮影し、各第二相について圧延方向の最大長さa、および板厚方向の最大長さbを測定し、(3/4)×a×bによって求まる値を第二相粒径とし、平均を求めた。ここで、第二相にはNi−B系第二相とB単体析出物が含まれる。第二相の平均粒子径が25μm以下のものを○(良好)、25μmを超えるものを×(不良)と判定した。
結果を表1に示す。
Average particle diameter of the second phase: The sample was buried in a resin, a 400-fold optical micrograph was taken of a cross section parallel to the rolling direction and the plate thickness direction, the maximum length a in the rolling direction for each second phase, and The maximum length b in the thickness direction was measured, and the value obtained by (3/4) × a × b was taken as the second phase particle size, and the average was obtained. Here, the second phase includes a Ni-B system second phase and a B simple substance precipitate. Those having an average particle size of 25 μm or less in the second phase were judged as “good” and those exceeding 25 μm were judged as “poor”.
The results are shown in Table 1.

Figure 2006104495
Figure 2006104495

表1から判るように、発明対象合金は熱伝導率260W/m・K以上、熱膨張係数16.6×10-6/K以下をクリアし、鋳造性、冷間加工性、はんだ付け性および第二相の平均粒径も良好であった。 As can be seen from Table 1, the alloy of the invention clears a thermal conductivity of 260 W / m · K or more and a thermal expansion coefficient of 16.6 × 10 −6 / K or less, castability, cold workability, solderability and The average particle size of the second phase was also good.

これに対し、比較合金No.6、7はNi/B比が7を超えて高いものであり、熱伝導率が低く、熱膨張係数が高かった。No.8はNi含有量が低すぎたため、熱膨張係数が高くなった。No.9はNiおよびBの含有量が高すぎ第二相の平均粒径が大きかったため、熱伝導率が悪く、冷間加工性にも劣った。No.10は多量のCrを含有するので鋳造性およびはんだ付け性が悪かった。No.11は特許文献1に開示されるCu−Fe−P系合金であり、熱膨張係数が高かった。   On the other hand, comparative alloys No. 6 and 7 had high Ni / B ratios exceeding 7, low thermal conductivity, and high thermal expansion coefficient. In No. 8, since the Ni content was too low, the thermal expansion coefficient was high. In No. 9, the Ni and B contents were too high, and the average particle size of the second phase was large, so the thermal conductivity was poor and the cold workability was also poor. Since No. 10 contained a large amount of Cr, its castability and solderability were poor. No. 11 is a Cu—Fe—P alloy disclosed in Patent Document 1, and has a high thermal expansion coefficient.

表1に示した発明対象合金と一部の比較合金について、前記工程Aの(b)以降を一部変更した製造法で板厚3.0mmの銅合金板を作製した。新たに採用した工程は以下のとおりである。なお、各工程とも下記に表示した以外の部分は工程Aと共通条件である。   About the invention subject alloy shown in Table 1 and some comparative alloys, a copper alloy plate having a plate thickness of 3.0 mm was manufactured by a manufacturing method in which the process A (b) and subsequent steps were partially changed. The newly adopted processes are as follows. In each process, the parts other than those shown below are the same conditions as in process A.

〔工程B〕
工程Aの(d)で板厚3.7mmまで冷間圧延、冷間圧延率約56%。(g)で板厚3.0mmまで冷間圧延、仕上冷間圧延率19%。
〔工程C〕
工程Aの(b)で板厚3.5mmまで熱間圧延。(d)を省略。
〔工程D〕
工程Aの(d)で板厚3.0mmまで冷間圧延。(e)以降を省略。
〔工程E〕
工程Aの(d)で板厚6.0mmまで冷間圧延、冷間圧延率約32%。(g)で板厚3.0mmまで冷間圧延、仕上冷間圧延率50%。
〔工程F〕
工程Aの(d)で板厚3.1mmまで冷間圧延、冷間圧延率約64%。(g)で板厚3.0mmまで冷間圧延、仕上冷間圧延率3%。
[Process B]
Cold rolling to 3.7 mm in step A (d), cold rolling rate of about 56%. In (g), cold rolling to a sheet thickness of 3.0 mm, finish cold rolling rate 19%.
[Process C]
Hot rolling to plate thickness of 3.5 mm in step A (b). (D) is omitted.
[Process D]
Cold rolling to plate thickness of 3.0 mm in step A (d). (E) Subsequent steps are omitted.
[Process E]
In step A (d), cold rolling to a sheet thickness of 6.0 mm, cold rolling rate of about 32%. In (g), cold rolling to a sheet thickness of 3.0 mm, finish cold rolling rate of 50%.
[Process F]
Cold rolling to 3.1 mm in step A (d), cold rolling rate of about 64%. In (g), cold rolling to a sheet thickness of 3.0 mm, finish cold rolling rate of 3%.

得られた板厚3.0mmの銅合金板について、Cuマトリックス中のNi濃度、熱伝導率、熱膨張係数、常温での0.2%耐力、耐熱温度を求めた。試験・評価方法は以下のとおりである。なお、熱伝導率、熱膨張係数の試験・評価方法については実施例1と共通である。   For the obtained copper alloy plate having a thickness of 3.0 mm, the Ni concentration in the Cu matrix, the thermal conductivity, the thermal expansion coefficient, the 0.2% proof stress at normal temperature, and the heat resistance temperature were determined. The test and evaluation methods are as follows. The test and evaluation methods for the thermal conductivity and the thermal expansion coefficient are the same as in Example 1.

Cuマトリックス中のNi濃度: EPMA(日本電子製の波長分散型EPMA JXA−8200)を用い、3000倍の倍率で試料のCuマトリックスの部分に選択的に電子ビームを照射し、第二相からの情報を拾わないように配慮してZAF法にて定量分析を行った。分析に際しては、加速電圧20kV、照射電流3.0×10-8Aとした。このNi濃度(質量%)が2.5%以下のものを良好と判定した。
常温での0.2%耐力: 圧延方向に平行方向のJIS 5号引張試験片を作製し、JIS Z2241に準拠した引張試験を行って、応力−歪曲線から0.2%耐力を求めた。この値が270N/mm2以上のものを良好と判定した。
耐熱温度: 銅合金板試料を種々の温度で窒素雰囲気中で0.5時間加熱保持したのち、炉外で放冷し、加熱後の試料についてビッカース硬さを測定した。その値が初期(加熱前)のビッカース硬さの80%以上を維持する最も高い加熱温度を耐熱温度とした。耐熱温度が270℃以上のものを良好と判定した。
結果を表2に示す。表2中、工程Aのものは実施例1で得られた銅合金板についての結果を表示してある。なお、前述した方法で組織観察を行ったところ、いずれの銅合金板も第二相の平均粒子径は25μm以下であった。
Ni concentration in the Cu matrix: Using EPMA (JEOL wavelength dispersion type EPMA JXA-8200), the Cu matrix portion of the sample was selectively irradiated with an electron beam at a magnification of 3000 times. Considering not to collect information, quantitative analysis was performed by the ZAF method. In the analysis, the acceleration voltage was 20 kV and the irradiation current was 3.0 × 10 −8 A. A Ni concentration (mass%) of 2.5% or less was judged good.
0.2% yield strength at normal temperature: A JIS No. 5 tensile test piece parallel to the rolling direction was prepared, and a tensile test based on JIS Z2241 was performed to obtain a 0.2% yield strength from a stress-strain curve. A value of 270 N / mm 2 or more was judged good.
Heat-resistant temperature: The copper alloy plate samples were heated and held at various temperatures in a nitrogen atmosphere for 0.5 hours, then allowed to cool outside the furnace, and the Vickers hardness of the heated samples was measured. The highest heating temperature at which the value maintains 80% or more of the initial (before heating) Vickers hardness was defined as the heat resistant temperature. A heat-resistant temperature of 270 ° C. or higher was judged as good.
The results are shown in Table 2. In Table 2, the result of the copper alloy plate obtained in Example 1 is displayed for the process A. When the structure was observed by the method described above, the average particle size of the second phase of any copper alloy plate was 25 μm or less.

Figure 2006104495
Figure 2006104495

表2から判るように、工程AまたはBによって製造された本発明例のものは、Cuマトリックス中のNi濃度が2質量%以下に低減され、熱伝導率、熱膨張係数、0.2%耐力、耐熱温度とも良好な結果が得られた。   As can be seen from Table 2, in the example of the present invention produced by the process A or B, the Ni concentration in the Cu matrix is reduced to 2% by mass or less, the thermal conductivity, the thermal expansion coefficient, and the 0.2% proof stress. Good results were obtained at both heat resistant temperatures.

これに対し、比較例No.7−1はNi/B比が10と高かったものであり、工程Aで製造してもCuマトリックス中のNi濃度が2.5質量%以下にならず、実施例1で示したように熱伝導率および熱膨張係数に劣った。No.3−3および4−2は中間での冷間圧延を省略したため、Cuマトリックス中のNi濃度が2.5質量%以下にならず、熱伝導率が低かった。No.2−2は仕上冷間圧延率が低すぎたため、0.2%耐力が低かった。No.3−4は中間工程での圧延−焼鈍を省略したためマトリックス中のNi濃度が高くなり、熱伝導率が低くなっている。また、冷間圧延率が高すぎたため耐熱温度が低く、大きなエッジ割れが発生した。また、冷延後の焼鈍および仕上冷間圧延を省略したため、Cuマトリックス中のNi濃度が2.5質量%以下にならず、熱伝導率が低く、かつ耐熱温度も低かった。No.3−5は仕上冷間圧延率が高すぎたため、耐熱温度が低下した。   On the other hand, Comparative Example No. 7-1 had a high Ni / B ratio of 10, and even if it was produced in Step A, the Ni concentration in the Cu matrix was not less than 2.5% by mass. As shown in Example 1, the thermal conductivity and thermal expansion coefficient were inferior. In Nos. 3-3 and 4-2, the intermediate cold rolling was omitted, so the Ni concentration in the Cu matrix was not less than 2.5% by mass and the thermal conductivity was low. No. 2-2 had a low 0.2% proof stress because the finish cold rolling rate was too low. In No. 3-4, since the rolling-annealing in the intermediate process was omitted, the Ni concentration in the matrix was high and the thermal conductivity was low. Moreover, since the cold rolling rate was too high, the heat resistant temperature was low, and a large edge crack occurred. In addition, since annealing after cold rolling and finish cold rolling were omitted, the Ni concentration in the Cu matrix was not less than 2.5% by mass, the thermal conductivity was low, and the heat resistant temperature was low. In No. 3-5, since the finish cold rolling rate was too high, the heat resistant temperature was lowered.

表1の発明対象合金と、表1、表2の一部の比較合金について、以下のようにして、めっき密着性試験を行った。
実施例1のはんだ付け試験と同様に、板厚0.9mmまで冷間圧延した板材から厚さ0.9mm×幅16mm×長さ70mmの試験片を採取し、長手方向の一方の端部付近に電線(リード線)を取り付け、その電線を取り付けた側の端部10mmをマスキングし、試験材とした。この試験材に前処理として2A×30秒の電解脱脂を施し、純水で洗浄し、次いで10%硫酸を用いて10秒の酸洗を行い、純水で洗浄した。その後、2A×120秒の通電によりNiめっきを行った。めっき浴はスルファミン酸Ni浴を用い、純Ni板を試験材の表面に対向するように設置して行った。試験材はマスキングしていない部分全体がめっき浴中に浸漬するようにした。
The plating adhesion test was performed on the subject alloy of Table 1 and some comparative alloys of Tables 1 and 2 as follows.
Similar to the soldering test of Example 1, a test piece having a thickness of 0.9 mm, a width of 16 mm, and a length of 70 mm was taken from a plate material cold-rolled to a thickness of 0.9 mm, and near one end in the longitudinal direction. An electric wire (lead wire) was attached to the end, and the end portion 10 mm on the side where the electric wire was attached was masked to obtain a test material. As a pretreatment, this test material was subjected to electrolytic degreasing for 2 A × 30 seconds, washed with pure water, then pickled for 10 seconds using 10% sulfuric acid, and washed with pure water. Thereafter, Ni plating was performed by energization of 2 A × 120 seconds. The plating bath was a sulfamic acid Ni bath, and a pure Ni plate was placed so as to face the surface of the test material. The whole of the test material that was not masked was immersed in the plating bath.

めっき後の試験片を大気中300℃×5分の加熱処理に供した後、試験材の底辺側(マスキングした方と反対側)の端部から10mmの位置について切断・樹脂埋めを行い、断面観察(光学顕微鏡300倍)を行った。その結果、母材とめっき層との間に空隙が観察されないものを○(良好)、観察されるものを×(不良)として、めっき密着性を評価した。
結果を表3に示す。なお、表3に示した各材料の板厚3mmまでの製造工程は表1、表2の板材の製造工程と同じである。
After subjecting the plated test piece to heat treatment at 300 ° C. for 5 minutes in the atmosphere, cutting and resin filling were performed at a position 10 mm from the end on the bottom side (opposite the masked side) of the test material. Observation (optical microscope 300 times) was performed. As a result, the plating adhesion was evaluated with ○ (good) indicating that no voids were observed between the base material and the plating layer, and X (defective) being observed.
The results are shown in Table 3. In addition, the manufacturing process to the board thickness of 3 mm of each material shown in Table 3 is the same as the manufacturing process of the board | plate material of Table 1 and Table 2.

Figure 2006104495
Figure 2006104495

表3から判るように、工程AまたはBで製造された本発明例のものは、Cuマトリックス中のNi濃度が2質量%以下に低減され、優れためっき密着性を呈した。
これに対し、Ni濃度が高くかつNi/B比も本発明範囲を外れる比較例7−1や、製造工程が適切でない比較例No.3−3は、マトリックス中のNi濃度が高く、めっき密着性に劣った。これは前処理性の低下によるものと考えられる。また、Crを多量に含む比較例No.10の合金では、断面観察からCr相の析出と考えられる第二相が観察され、その第二相とNiめっき層との界面には全て空隙が認められた。すなわち、めっき密着性が非常に悪いことが確認された。
As can be seen from Table 3, the Ni concentration in the Cu matrix of the example of the present invention produced in Step A or B was reduced to 2% by mass or less and exhibited excellent plating adhesion.
On the other hand, Comparative Example 7-1, which has a high Ni concentration and the Ni / B ratio is also outside the scope of the present invention, and Comparative Example No. 3-3 in which the manufacturing process is not appropriate, have a high Ni concentration in the matrix and are closely adhered to the plating. Inferior. This is thought to be due to a decrease in pretreatment. Further, in the alloy of Comparative Example No. 10 containing a large amount of Cr, a second phase, which is considered to be the precipitation of the Cr phase, is observed from the cross-sectional observation, and all the voids are recognized at the interface between the second phase and the Ni plating layer. It was. That is, it was confirmed that the plating adhesion was very poor.

放熱板をはんだで接合した半導体モジュールの構造を模式的に例示した断面図。Sectional drawing which illustrated typically the structure of the semiconductor module which joined the heat sink with the solder.

符号の説明Explanation of symbols

1 放熱板
2 はんだ層
3 半導体素子基板
4 銅パターン
5 基板
6 導体層
7 半導体素子
8 リード線
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Solder layer 3 Semiconductor element board | substrate 4 Copper pattern 5 Board | substrate 6 Conductor layer 7 Semiconductor element 8 Lead wire

Claims (15)

質量%で、Ni:3〜15%、B:3%以下、Cu、Ni、Bを除く元素の合計:3%以下、残部Cu、かつNi/B≦7の組成をもち、25℃での熱伝導率が260W/m・K以上の銅合金。   In mass%, Ni: 3 to 15%, B: 3% or less, total of elements excluding Cu, Ni, and B: 3% or less, balance Cu, and Ni / B ≦ 7 at 25 ° C. Copper alloy with a thermal conductivity of 260 W / m · K or higher. 質量%で、Ni:3〜15%、B:3%以下、Cu、Ni、Bを除く元素の合計:3%以下、残部Cu、かつNi/B≦7の組成をもち、Cuマトリックス中のNi濃度が2.5質量%以下の銅合金。   Ni: 3 to 15%, B: 3% or less, total of elements excluding Cu, Ni, and B: 3% or less, balance Cu, and Ni / B ≦ 7. A copper alloy having a Ni concentration of 2.5% by mass or less. 質量%で、Ni:3〜15%、B:3%以下、残部Cuと不可避的不純物からなり、かつNi/B≦7の組成をもち、25℃での熱伝導率が260W/m・K以上の銅合金。   In mass%, Ni: 3-15%, B: 3% or less, balance Cu and inevitable impurities, Ni / B ≦ 7, and thermal conductivity at 25 ° C. of 260 W / m · K More copper alloy. 質量%で、Ni:3〜15%、B:3%以下、残部Cuと不可避的不純物からなり、かつNi/B≦7の組成をもち、Cuマトリックス中のNi濃度が2.5質量%以下の銅合金。   In mass%, Ni: 3-15%, B: 3% or less, balance Cu and inevitable impurities, Ni / B ≦ 7, Ni concentration in Cu matrix is 2.5 mass% or less Copper alloy. 第二相の平均粒子径が25μm以下である請求項1〜4に記載の銅合金。   The average particle diameter of a 2nd phase is 25 micrometers or less, The copper alloy of Claims 1-4. 0.2%耐力が270N/mm2以上である請求項1〜4に記載の銅合金。 The copper alloy according to any one of claims 1 to 4, which has a 0.2% proof stress of 270 N / mm 2 or more. 「冷間圧延→熱処理→5〜40%の仕上冷間圧延」の工程で得られる組織を有する請求項1〜4に記載の銅合金。   The copper alloy according to claim 1, which has a structure obtained by a process of “cold rolling → heat treatment → finish cold rolling of 5 to 40%”. 熱伝導率(W/m・K)とNi含有量(質量%)が下記式(1)を満たす請求項1〜4に記載の銅合金。
熱伝導率≧−13.5Ni+357 ……(1)
The copper alloy according to claim 1, wherein the thermal conductivity (W / m · K) and the Ni content (mass%) satisfy the following formula (1).
Thermal conductivity ≧ -13.5Ni + 357 (1)
25〜300℃の平均熱膨張係数が16.6×10-6/K以下である請求項1〜4に記載の銅合金。 The copper alloy according to claim 1, wherein an average coefficient of thermal expansion at 25 to 300 ° C. is 16.6 × 10 −6 / K or less. 表面にNiめっき層を有する請求項1〜9のいずれかに記載の銅合金。   The copper alloy according to claim 1, which has a Ni plating layer on the surface. 質量%で、Ni:3〜15%、B:3%以下、Cu、Ni、Bを除く元素の合計:3%以下、残部Cu、かつNi/B≦7の組成を有し、10%以上の冷間圧延が施された冷間圧延材に、400〜900℃の温度範囲で時効析出を伴う焼鈍を施してCuマトリックス中のNi濃度を2.5質量%以下とし、次いで5〜40%の仕上圧延を行う、導電性を改善したCu−Ni−B系銅合金の製造法。   In mass%, Ni: 3 to 15%, B: 3% or less, total of elements excluding Cu, Ni, and B: 3% or less, balance Cu, and composition of Ni / B ≦ 7, 10% or more The cold-rolled material subjected to cold rolling is annealed with aging precipitation in the temperature range of 400 to 900 ° C. to make the Ni concentration in the Cu matrix not more than 2.5% by mass, and then 5 to 40%. A method for producing a Cu—Ni—B based copper alloy with improved conductivity, which is finish-rolled. 質量%で、Ni:3〜15%、B:3%以下、Cu、Ni、Bを除く元素の合計:3%以下、残部Cu、かつNi/B≦7の組成を有し、30%以上の冷間圧延が施された冷間圧延材に、500〜750℃の温度範囲で時効析出を伴う焼鈍を施してCuマトリックス中のNi濃度を2.0質量%以下とし、次いで5〜40%の仕上圧延を行う、導電性を改善したCu−Ni−B系銅合金の製造法。   Ni: 3 to 15%, B: 3% or less, total of elements excluding Cu, Ni, and B: 3% or less, balance Cu, and composition of Ni / B ≦ 7, 30% or more The cold-rolled material subjected to the cold rolling is annealed with aging precipitation in the temperature range of 500 to 750 ° C. so that the Ni concentration in the Cu matrix is 2.0 mass% or less, and then 5 to 40%. A method for producing a Cu—Ni—B based copper alloy with improved conductivity, which is finish-rolled. 請求項1〜10のいずれかに記載の銅合金を素材とし、半導体素子を搭載した基板にはんだを用いて接合された、放熱板。   A heat sink made of the copper alloy according to any one of claims 1 to 10 and bonded to a substrate on which a semiconductor element is mounted using solder. 前記はんだがPbフリーはんだである請求項13に記載の放熱板。   The heat sink according to claim 13, wherein the solder is Pb-free solder. 前記放熱板がパワー半導体モジュールの部材である請求項13または14に記載の放熱板。   The heat sink according to claim 13 or 14, wherein the heat sink is a member of a power semiconductor module.
JP2004289234A 2004-09-30 2004-09-30 Copper alloy, method for producing the same, and heat sink Expired - Fee Related JP4571471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289234A JP4571471B2 (en) 2004-09-30 2004-09-30 Copper alloy, method for producing the same, and heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289234A JP4571471B2 (en) 2004-09-30 2004-09-30 Copper alloy, method for producing the same, and heat sink

Publications (2)

Publication Number Publication Date
JP2006104495A true JP2006104495A (en) 2006-04-20
JP4571471B2 JP4571471B2 (en) 2010-10-27

Family

ID=36374571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289234A Expired - Fee Related JP4571471B2 (en) 2004-09-30 2004-09-30 Copper alloy, method for producing the same, and heat sink

Country Status (1)

Country Link
JP (1) JP4571471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118533A (en) * 2008-11-13 2010-05-27 Toshiba Corp Semiconductor device, and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117625A (en) * 1977-03-24 1978-10-14 Toshiba Corp Copper alloy products and manufacture thereof
JPS61213334A (en) * 1985-03-15 1986-09-22 Fukuda Kinzoku Hakufun Kogyo Kk Wear resistant copper bearing alloy
JPS6256546A (en) * 1985-09-06 1987-03-12 Dowa Mining Co Ltd Softening resistant copper alloy having superior electric conductivity
JPS62127440A (en) * 1985-11-27 1987-06-09 Dowa Mining Co Ltd Copper-base alloy for terminal and connector
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH10256443A (en) * 1997-03-12 1998-09-25 Dowa Mining Co Ltd Heat sink body for power module
JP2004331993A (en) * 2003-04-30 2004-11-25 Kiyohito Ishida Copper alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117625A (en) * 1977-03-24 1978-10-14 Toshiba Corp Copper alloy products and manufacture thereof
JPS61213334A (en) * 1985-03-15 1986-09-22 Fukuda Kinzoku Hakufun Kogyo Kk Wear resistant copper bearing alloy
JPS6256546A (en) * 1985-09-06 1987-03-12 Dowa Mining Co Ltd Softening resistant copper alloy having superior electric conductivity
JPS62127440A (en) * 1985-11-27 1987-06-09 Dowa Mining Co Ltd Copper-base alloy for terminal and connector
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH10256443A (en) * 1997-03-12 1998-09-25 Dowa Mining Co Ltd Heat sink body for power module
JP2004331993A (en) * 2003-04-30 2004-11-25 Kiyohito Ishida Copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118533A (en) * 2008-11-13 2010-05-27 Toshiba Corp Semiconductor device, and method of manufacturing the same

Also Published As

Publication number Publication date
JP4571471B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP5700834B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
KR101979532B1 (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP2008127606A (en) High-strength copper alloy sheet having oxide film superior in adhesiveness
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
KR101979531B1 (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
WO2018062255A1 (en) Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component
JP6732840B2 (en) Copper alloy plate for vapor chamber
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
JP4431741B2 (en) Method for producing copper alloy
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP2009013499A (en) Copper alloy for connector
JP4571471B2 (en) Copper alloy, method for producing the same, and heat sink
JP2002194461A (en) Copper alloy for lead frame and its production method
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JPH11323463A (en) Copper alloy for electrical and electronic parts
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees