JP2006090652A - 冷媒膨張装置 - Google Patents

冷媒膨張装置 Download PDF

Info

Publication number
JP2006090652A
JP2006090652A JP2004277480A JP2004277480A JP2006090652A JP 2006090652 A JP2006090652 A JP 2006090652A JP 2004277480 A JP2004277480 A JP 2004277480A JP 2004277480 A JP2004277480 A JP 2004277480A JP 2006090652 A JP2006090652 A JP 2006090652A
Authority
JP
Japan
Prior art keywords
valve port
refrigerant
pressure
shaft portion
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004277480A
Other languages
English (en)
Inventor
Shiyoui Shiyu
紹偉 朱
Tatsuo Inoue
龍夫 井上
Ryoichi Kudo
良一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004277480A priority Critical patent/JP2006090652A/ja
Publication of JP2006090652A publication Critical patent/JP2006090652A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【課題】往復可動体の摩耗、往復可動体を収容する可動室の内壁面の摩耗を抑制し長寿命化を図るのに有利な冷媒膨張装置を提供する。
【解決手段】冷媒膨張装置は、往復可動体31と、往復可動体31を移動させる駆動機構32とを備える。駆動機構32は、往復可動体31に延設された駆動シャフト部33と、駆動シャフト部33を弾性支持することにより往復可動体31を支持する懸架手段35とを備える。駆動機構32は、往復可動体31を軸長方向に沿って移動可能に弾性支持するとともに軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段35とを備える。
【選択図】 図4

Description

本発明はガスの膨張により低温を生成する冷媒膨張装置に関する。
従来より用いられている容積型冷媒膨張装置は、高圧ガスを流す高圧バルブと、低圧ガスを流す低圧バルブとをスプールによって切り替えるが、スプールの寿命が短いことが課題となっている。オイルでスプールを潤滑すると、スプールの寿命が長くなる。しかしオイルの使用は、オイルが不純物として冷媒に混入するため不利である。殊に、空気分離装置、ヘリウム液化装置、水素液化装置、石油ガス分離装置等において、オイルが不純物として混入するため不利である。更にオイルは冷媒膨張装置で発生する低温で固体化するため、潤滑が困難となる。この理由により、冷媒膨張装置は、スプール式の冷媒膨張装置から、タービンを回転させる方式の冷媒膨張装置に代用されつつある。しかしながらタービン式の冷媒膨張装置は、高い信頼性及び高い効率を有するが、必ずしも充分ではない。殊に、体積流量が小さいときには必ずしも充分ではない。またタービン式の冷媒膨張装置のサイズを小型化して対応しつつあるが、まだ充分ではない。
ピストンを有しないパルス管型の冷媒膨張装置の場合には、可動部品が少ないことから寿命の面では有利である。しかしながらピストン型の冷媒膨張装置の場合、又は、イナータンスピストン・パルス管型の冷媒膨張装置の場合には、ピストンの外壁面の摩耗、ピストンを嵌合するシリンダの内壁面の摩耗が課題であり、ピストンやシリンダの寿命は充分ではない。
特許文献1には、パルス管型の冷媒膨張装置が開示されている。このものでは、パルス管の高温端に3つのバルブが接続され、3つのバルブにはそれぞれバッファタンクが接続されている。またパルス管の低温端には、高圧ガスを出し入れするための2つのバルブが設けられている。上記したバルブは、バルブ体を回転させるロータリ式である。
特許文献2には、ロータリバルブをもつパルス管冷凍機が開示されている。ロータリバルブは、ロータと、ロータを保持する固定部とを備えている。
特許文献3には、高圧ガスの流入、低圧ガスの流出のために、弁口をもつ回転式のプラグボティをシリンダ内に収容したサーマル分離器が用いられている。また特許文献4には、冷却源として液体窒素タンクを用いる装置が開示されているが、冷媒膨張装置は用いられていないので、信頼性は増加しているが、液体窒素タンクへの液体窒素の補充が定期的に必要とされ、ランニングコストが高くなる。
米国特許5481878 特開2002−228289号公報 米国特許4383423 米国特許4668260
上記したようにスプールを搭載する冷媒膨張装置によれば、スプールの外壁面の摩耗、スプールを収容する可動室の内壁面の摩耗を低減させることにより、長寿命化を図る要請が強い。
上記した特許文献1によれば、各バルブは、バルブ体を回転させるロータリ式である。従ってこの冷媒膨張装置は、往復移動型のスプールを採用するものではない。更に、低摩擦化をねらった往復移動型のスプールを開示するものではない。
特許文献2によれば、ロータと、ロータを保持する固定部との間に存在する表面摩擦が大きいため、寿命は必ずしも充分ではない。更に、往復移動型のスプールを採用するものではない。
特許文献3によれば、シリンダの内周壁面とプラグボティの外周壁面との間の摩擦の影響があり、プラグボティの長寿命化には限界がある。また特許文献4によれば、冷媒膨張装置は用いられていないので、信頼性は増加しているが、液体窒素の補充が定期的に必要とされ、ランニングコストが高くなる。
本発明は上記した実情に鑑みてなされたものであり、スプール等の往復可動体の外壁面の摩耗、可動体を収容する可動室の内壁面の摩耗を抑制し、長寿命化を図るのに有利な冷媒膨張装置を提供することを課題とする。
(1)様相1に係る冷媒膨張装置は、高圧冷媒が流れる高圧通路の開閉と低圧冷媒が流れる低圧通路の開閉とを切り替える流路切替装置と、
前記流路切替装置により開放された前記高圧通路の高圧冷媒が流入され前記高圧冷媒を膨張させて低温を生成する膨張手段とを具備する冷媒膨張装置において、
前記流路切替装置は、
内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した高圧弁口、低圧弁口、冷媒弁口がそれぞれ形成されたボティと、
前記ボディの可動室に往復移動可能に設けられとともに前記高圧弁口と前記冷媒弁口とを連通する高圧連通路及び前記低圧弁口と前記冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
前記ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる駆動機構とを備えており、
前記駆動機構は、前記ボディに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えることを特徴とするものである。
(2)様相2に係る冷媒膨張装置は、高圧冷媒が流れる高圧通路の開閉と低圧冷媒が流れる低圧通路の開閉とを切り替えるとともに第1冷媒弁口をもつ第1流路切替装置と、
前記第1流路切替装置の前記第1冷媒弁口に低温端が接続されたパルス管と、
前記パルス管の高温端に接続された第2冷媒弁口とバッファタンク用弁口とをもつ第2流路切替装置と、
前記第2流路切替装置の前記バッファタンク用弁口に接続されたバッファタンクとを具備する冷媒膨張装置において、
前記第1流路切替装置及び前記第2流路切替装置のうちの少なくとも一方は、
内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した高圧弁口、低圧弁口、前記第1冷媒弁口又は前記第2冷媒弁口がそれぞれ形成されたボティと、
前記ボディの可動室に往復移動可能に設けられるとともに前記高圧弁口と前記第1冷媒弁口又は前記第2冷媒弁口とを連通する高圧連通路及び前記低圧弁口と前記第1冷媒弁口又は前記第2冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
前記ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる駆動機構とを備えており、
前記駆動機構は、前記ボディに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えることを特徴とするものである。
(3)様相3に係る冷媒膨張装置は、様相2において、前記第1流路切替装置は、
内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した第1高圧弁口、第1低圧弁口、前記第1冷媒弁口がそれぞれ形成された第1ボティと、
前記第1ボディの可動室に往復移動可能に設けられるとともに前記第1高圧弁口と前記第1冷媒弁口とを連通する高圧連通路及び前記第1低圧弁口と前記第1冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
前記第1ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる第1駆動機構とを備えており、
前記第1駆動機構は、前記第1ボティに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えており、
前記第2流路切替装置は、
内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した第2高圧弁口、第2低圧弁口、前記第2冷媒弁口がそれぞれ形成された第2ボティと、
前記第2ボディの可動室に移動可能に設けられるとともに前記第2高圧弁口と前記第2冷媒弁口とを連通する高圧連通路及び前記第2低圧弁口と前記第2冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
前記第2ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる第2駆動機構とを備えており、
前記第2駆動機構は、前記第2ボティに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えていることを特徴とするものである。
この場合、第1流路切替装置の第1ボディと第2流路切替装置の第2ボディとは一体化されていることが好ましい。これにより小型化に有利となる。また、第1駆動機構及び第2駆動機構は一体化されていることが好ましい。これにより小型化に有利となる。
(4)本発明によれば、往復可動体を軸長方向に沿って移動可能に支持する懸架手段は、往復可動体の軸長方向にはこれを弾性的に支持し、一方、軸長方向に垂直な面内方向に沿ってはこれを移動不能に固定支持する。これにより往復移動体は軸長方向に容易に移動できるものの、軸直角方向への移動は阻止される。
この結果、往復移動体の外壁面と可動室の内壁面との接触を非接触又は弱接触に設定しても、往復可動体の直動性が確保れさる。尚、弱接触とは、往復移動体の外壁面と可動室の内壁面とが一部接触する状態をいう。従って、往復可動体の外壁面と可動室の内壁面との間に往復可動体が往復できる程度の微小隙間を設けても、この隙間が過剰に偏ることなく良好に維持されるため、往復移動体の外壁面の摩耗、可動室の内壁面の摩耗は低減又は回避される。従って冷媒膨張装置の寿命が長くなる。
尚、本明細書において、『移動不能に』とは、『往復可動体が流路切替装置としての機能を確保できる程度に移動を規制するように』という意味であり、往復可動体が流路切替装置としての機能を確保できる範囲であれば、仮に往復可動体がその軸長方向に垂直な面内方向に沿って移動しても、上記『移動不能に』という概念に包含されるものとする。例えば、往復可動体とボディとの隙間が10ミクロンである場合、往復可動体の軸長方向に垂直な面内方向に沿って5ミクロン程度往復可動体が移動したとしても、依然として往復可動体とボティとの隙間が5ミクロンあり、非接触でのシールが実現できるため、この程度の移動は、本明細書における『移動不能に』という場合に該当する。また、往復可動体の軸直角方向への移動量がボディとの隙間以上であったとしても、往復可動体がボディに対して往復移動可能であり、かつ流路切替装置として機能する限りにおいては、本明細書における『移動不能に』という場合に該当する。
各様相に係る本発明によれば、往復移動体が移動するときであっても、往復可動体の外壁面と可動室の内壁面との間の微小隙間を良好に維持することができる。従って、往復可動体の外壁面と可動室の内壁面とを非接触又は弱接触に維持するのに有利である。故に、往復可動体の外壁面、可動室の内壁面の摩耗を抑制して長寿命化を図るのに有利である。
往復可動体の外壁面と可動室の内壁面との間には、往復可動体が往復移動できるように微小隙間が形成されている。この微小隙間の隙間幅は例えば0.002〜0.2ミリメートル、特に0.005〜0.1ミリメートルに設定されるが、これに限定されるものではない。懸架手段は、往復可動体又は駆動シャフト部をボディに弾性支持する。駆動シャフト部は、往復可動体と一体的に成形されていても良いし、別体の駆動シャフト部を往復可動体に一体的に連結させても良い。駆動シャフト部は、往復可動体と同軸的であることが好ましい。懸架手段は、往復可動体を軸長方向に沿って移動可能に弾性支持するとともに軸長方向に垂直な面内方向に沿って移動不能に固定支持する。従って、往復可動体の往復動作における直動性が確保され、微小隙間の隙間幅が過剰に偏ることなく良好に維持される。この結果、往復可動体の外壁面と可動室の内壁面とが非接触又は弱接触に設定した場合においても、過剰に往復可動体とボディが接触することはなく、長寿命化を図ることができる。
上記した懸架手段としては、往復可動体又は駆動シャフト部を弾性支持するバネ部材で形成することができる。バネ部材として、往復可動体又は駆動シャフト部の軸直角方向に沿って延設された円板形状をなすバネ本体と、バネ本体に延設された形成された複数の透孔とを備えている形態を例示できる。透孔はスリットが好ましい。スリットは螺旋形状又は円弧形状に延設されている形態を例示にできる。より好ましくは、外周形状が円板状をなすバネ本体と、バネ本体の外周近傍から螺旋状に中心に向かうスリットが複数個バネ本体の周方向に等間隔で形成された板バネを例示できる。係るバネにおいては、外周部をボディに固定し、中心部に駆動シャフト部を連結し、駆動シャフト部を板バネの軸長方向に駆動させることにより、板バネの捩れ動作を伴って駆動シャフト部が該軸長方向に移動可能となる。一方、板バネの剛性により駆動シャフト部は該軸長方向に直角な方向には移動不能となる。
またバネ部材としては、駆動シャフト部の軸直角方向に沿って延設された板状をなす中央板部と、中央板部の端に駆動シャフト部の軸長方向に沿って延設された端板部とを備えている形態を例示できる。この場合、全体として断面『コ』の字形状となり、駆動シャフト部を軸長方向に移動可能に弾性支持し、且つ、軸直角方向に移動不能に支持することができる。
懸架手段としては、往復可動体又は駆動シャフト部の軸長方向において、板状をなす複数のバネ部材を平行又はほぼ平行に並設して形成する形態を例示できる。駆動シャフト部を軸直角方向により確実に移動不能とするのに有利であり、駆動シャフト部及び往復可動体の姿勢が一層安定化される。この場合、複数のバネ部材を積層させた構造を採用できる。
懸架手段としては、往復可動体又は駆動シャフト部の軸長方向の一端側を弾性支持する第1懸架手段と、駆動シャフト部の軸長方向の他端側を弾性支持する第2懸架手段とを備えている形態を例示できる。この場合、往復可動体又は駆動シャフト部の姿勢が一層安定化される。
駆動シャフト部は、往復可動体の軸長方向の一端側に延設された第1駆動シャフト部と、往復可動体の軸長方向の他端側に延設された第2駆動シャフト部とを備えており、懸架手段は、第1駆動シャフト部を弾性支持する第1懸架手段と、第2駆動シャフト部を弾性支持する第2懸架手段とを備えている形態を例示できる。往復可動体又は駆動シャフト部の姿勢が一層安定化される。
本発明を具体化した実施例1を図1〜図7を参照して説明する。図1はパルス管搭載の冷媒膨張装置1の概念を示す。図1に示すように、冷媒膨張装置1は、冷媒の圧力を昇圧させるコンプレッサユニットで形成された圧縮装置2に接続されている。冷媒膨張装置1は、圧縮装置2で生成された高圧の冷媒が流れる高圧通路20に設けられた高圧弁口3aと低圧の冷媒が流れる低圧通路21に設けられた低圧弁口3bとをもつ第1流路切替装置3と、第1弁口41、第2弁口42、第3弁口43をもつ第2流路切替装置4と、第1流路切替装置3と第2流路切替装置4の間に設けられた低温生成要素として機能するパルス管5とを備える。
図2に示すように、パルス管5は縦方向に延設されており、低温側の連結チューブ51と、流路径が変化する低温側のチップ52と、低温側のディストリブュータ53と、高温側の連結チューブ54と、流路径が変化する高温側のチップ55と、高温側のディストリブュータ56とを有する。パルス管5の下部側の低温端5pは例えば50〜100K、特に77K程度となる。パルス管5の上部側の高温端5hは熱が放出されるため、例えば室温程度となる。
図2に示すように、第1流路切替装置3は、高圧通路20に繋がり高圧の冷媒が流れる高圧弁口3aと、低圧通路21に低圧の冷媒が流れる低圧弁口3bと、パルス管5の低温端5pに繋がる第1冷媒弁口としての弁口3pとを有する。
また図2に示すように第2流路切替装置4は、第1弁口41、第2弁口42、第3弁口43をもつ。更に第2流路切替装置4は、第1弁口41に第1連結チューブ44aを介して繋がる第1バッファタンク44と、第2弁口42に第2連結チューブ45aを介して繋がる第2バッファタンク45と、第3弁口43に第3連結チューブ46aを介して繋がる第3バッファタンク46と、パルス管5の高温端5hに繋がる第2冷媒弁口としての弁口47とを有する。高圧通路20の圧力をPHとし、低圧通路21の圧力をPLとし、第1バッファタンク44の圧力をM1とし、第2バッファタンク45を圧力をPM2とし、第3バッファタンク46の圧力をPM3とすると、PH>PM3>PM2>PM1>PLの関係とされている。
図3は、第1流路切替装置3及び第2流路切替装置4の作動を表すタイミングチャートを示す。図3において太線はパルス管5に連通している状態を示し、細線はパルス管5に非連通な状態を示す。図3に示すように、I行程では、弁口42が開放し、中圧の第2バッファタンク45はパルス管5の高温端5hに所定時間連通される。これにより中圧の第2バッファタンク45のガスはパルス管5の高温5hに流入し、パルス管5は中圧とされる。このI行程では、高圧弁口3a、低圧弁口3b、弁口41,43は閉じている。
その後、II行程を実施する。II行程では、弁口43が開放し、高圧の第3バッファタンク46はパルス管5の高温端5hに所定時間連通されるとともに、高圧弁口3aは開放してパルス管5の低温端5pに連通する。これによりパルス管5内は圧力は増圧されて高圧となる。このII行程では、弁口41,42、低圧弁口3bは閉鎖し、低圧の第1バッファタンク44,中圧の第2バッファタンク45はパルス管5に非連通とされている。
その後、III行程を実施する。III行程では、再び弁口42が開放し、中圧の第2バッファタンク45はパルス管5に所定時間連通され、パルス管5の圧力は減少して中圧となる。このときパルス管5内のガスは膨張し、低温が生成される。このIII行程では、弁口43,41が閉鎖し、高圧の第3バッファタンク46及び低圧の第1バッファタンク44はパルス管5に非連通とされるとともに、高圧弁口3a及び低圧弁口3bはパルス管5に非連通とされる。
次にIV行程では、弁口41が開放し、低圧の第1バッファタンク44はパルス管5に所定時間連通されるとともに、低圧弁口3bはパルス管5に連通する。このIV行程では、パルス管5の圧力は更に減少して低圧となる。このときパルス管5内のガスは更に膨張し、更なる低温が生成される。
上記したようにガスはパルス管5で膨張されての低温端5pで低温を生成する。パルス管5で低温となったガスは、第1流路切替装置3の低圧弁口3bから低圧通路21に向けて吐出される。このような膨張仕事により、パルス管5の高温側のディストリブュータ56付近、つまり高温端5h付近で、熱が放出される。高温が過剰であれば、パルス管5の高温端5h付近を冷却することが好ましい。第1バッファタンク44〜第3バッファタンク46は、パルス管5の低温端5pで膨張仕事を効率よく行うように、パルス管5の低温端5pのガス位相を調整するものである。
図4は第1流路切替装置3の内部を示す。図4に示すように、第1流路切替装置3は、第1ボティ30と、往復可動体として機能する第1スプール31と、第1駆動機構32とを備える。第1ボディ30は、可動室30rと、機械室30cとをもつ。第1ボディ30は、バルブボディ30vとモータボディ30mとを一体的に直列に結合して形成されている。摩耗を低減させるべく、第1スプール31の外周壁面と可動室30rの内周壁面との間には微小隙間(隙間幅は例えば0.005〜0.1ミリメートル)が形成されている。図4に示すように、ボディ30vは、中心線PAを1周するリング状の溝通路1111,1112,1113を有する。溝通路1111は高圧弁口3aに連通する。溝通路1113は低圧弁口3bに連通する。モータボディ30mの内周部には、径内方向に段状に膨出する着座部30xが形成されている。着座部30xは軸直角方向に沿った着座面30h、30iをもつ。
第1スプール31は金属で形成されており、第1ボディ30の可動室30rに軸長方向(矢印Y1,Y2方向)に沿って移動可能に設けられている。第1スプール31の内部には、互いに独立する溝通路1121,1122(図4では断面でH形状)が形成されている。第1スプール31の外周壁面と第1バルブボディ30vの内周壁面との間には、微小隙間(図6参照)が形成されている。
図4に示すように、第1駆動機構32は、第1ボディ30の機械室30cに設けられており、第1スプール31をこれの軸長方向に沿って移動させる。第1駆動機構32は、駆動シャフト部33と、駆動シャフト部33を移動させる駆動源34と、駆動シャフト部33を弾性支持して懸架させる懸架手段35とを備えている。駆動シャフト部33は、第1スプール31の一方の軸端側に一体的に延設されている。駆動源34は、駆動シャフト部33をこれの軸長方向つまり矢印Y1,Y2方向に移動させることにより、可動室30r内で第1スプール31をこれの軸長方向(矢印Y1,Y2方向)に移動させるものである。
駆動源34はリニアモータ方式であり、第1ボディ30に固定されたステータ34aをもつ。ステータ34aは、固定鉄芯と固定鉄芯に巻装された励磁巻線とを有する。励磁巻線に励磁電流が給電されると、駆動シャフト部33はこれの軸長方向に沿って移動することができる。第1スプール31が図示右方向(矢印Y1方向)に移動すると、高圧ガスが流れる高圧弁口3aが溝通路1121,1111,1112に連通し、ひいては弁口3p及びパルス管5に連通する。故に、高圧のガスは、高圧弁口3aから第1スプール31の溝通路1121,溝通路1112,弁口3pを介してパルス管5の低温端5pに供給される。
これに対して第1スプール31が図示左方向(矢印Y2方向)に移動すると、低圧弁口3bは溝通路1122、1113,1112に連通し、ひいては弁口3p及びパルス管5に連通する。故に、パルス管5の低温端5pにおける膨張仕事で低圧となったガスが弁口3p、第1スプール31の溝通路1122、溝通路1113を介して低圧弁口3bに戻る。
図4に示すように、懸架手段35はモータボディ30mの機械室30c内に設けられており、駆動シャフト部33をモータボディ30mの機械室30cに弾性支持する。懸架手段35は、駆動シャフト部33の軸長方向の一端側を弾性支持する第1懸架手段35Fと、駆動シャフト部33の軸長方向の他端側を弾性支持する第2懸架手段35Sとで形成されている。従って図4に示すように、駆動源34のステータ34aを挟むように、ステータ34aの両側に第1懸架手段35F及び第2懸架手段35Sが配置されている。即ち、第1スプール31は、これの一端において懸架手段35により弾性支持された『片持ち支持構造』とされている。
図4に示すように、第1懸架手段35Fは、駆動シャフト部33の軸長方向において互いに間隔を隔てて平行又はほぼ平行に並設された円板状をなす複数個(2個)のバネ部材6からなる。第2懸架手段35Sは、駆動シャフト部33の軸長方向において互いに間隔を隔てて平行又はほぼ平行に並設された複数個(2個)の円板状をなすバネ部材6からなる。
バネ部材6の外周部は、外側加圧体部65により第1ボディ30のモータボディ30mの内周部の着座部30xの互いに背向するリング状の着座面30h、30iに着座した状態で保持されている。
ここで、バネ部材6の中央域の保持について説明を加える。図4に示すように、駆動シャフト部33の外周側には筒体38が同軸的に嵌合されている。第1懸架手段35Fのバネ部材6は、筒体38の一方の端面38aと駆動シャフト部33の大径部33dの端面とで挟持されて位置決めされている。また、第2懸架手段35Sのバネ部材6は、筒体38の他方の端面38cに当接されて位置決めされている。バネ部材6の中央域は、内側加圧体部64により駆動シャフト部33に保持されている。内側加圧体部64と外側加圧体部65とは、バネ部材6の同じサイズの外径をもつリング状のスペーサ69を構成している。複数のバネ部材6はリング状のスペーサ69を介在させた状態で積層されている。隣設するバネ部材6間には、リング状のスペーサ69により空間6xが形成されている。空間6xは各バネ部材6の弾性変形性、独立性を確保するために有効である。
図5はバネ部材6を示す。バネ部材6は高い臨界歪みをもつ金属で形成されており、図5に示すように、外周部を有する薄肉の円板形状をなすバネ本体60と、バネ本体60の中心の回りに形成された透孔としての複数のスリット61とを備えている。スリット61は、バネ本体60の中央域に向かうにように渦巻き状に延設されている。バネ部材6が軸長方向に弾性変形するときには、バネ部材6の厚み方向つまりせん断方向の変形に基づく。バネ部材6が軸直角方向に弾性変形するときには、バネ部材6の径方向に沿った圧縮・引張断方向の変形に基づく。せん断方向のバネ定数は、圧縮・引張断方向のバネ定数に比較してはるかに小さい。従って、バネ部材6によれば、これの軸長方向のバネ定数が小さく設定されており、バネ部材6の軸長方向の動作は柔らかくされている。バネ部材6によれば、これの軸直角方向のバネ定数は、軸長方向のバネ定数よりも大きくされており、軸長方向に移動不能な程度に大きく設定されており、バネ部材6の軸直角方向の動作は軸長方向に比較して硬くされている。なお、スリット61は渦巻き状に限らず、バネ部材6の中心の回りに形成された同心円弧状のスリットとしても良い。
バネ部材6が軸長方向に弾性変形するときバネ本体60の中心線M1,M2が交差する中央域には、駆動シャフト部33が嵌合する円形状の取付孔62が形成されている。バネ本体60の外周部には、貫通状態の複数個の取付孔63が仮想線M3に沿って周方向に間隔を隔てて形成されている。取付孔63は、バネ部材6をモータボディ30mの内周部に径内方向に膨出している着座部30xに取り付けるためのものである。
バネ部材6は、駆動シャフト部33をその軸長方向に移動可能に弾性支持している。一方、その軸直角方向へは、移動不能に支持している。この結果、第1スプール31が往復移動するときであっても、第1スプール31の外周壁面と可動室30rの内周壁面との間の微小隙間の隙間幅(隙間幅は例えば0.005〜0.1ミリメートル)が過剰に偏ることなく良好に維持される。故に、第1スプール31の外周壁面と可動室30rの内周壁面とが非接触又は弱接触に維持される。故に、使用期間が長くなったとしても、第1スプール31の外周壁面の摩耗、第1可動室30rの内周壁面の摩耗は低減又は回避される。
本実施例によれば、図4に示すように、バネ部材6は、駆動シャフト部33の中心線を覆うように同軸的に且つ、駆動シャフト部33の軸直角方向に沿って配置されている。且つバネ部材6は第1スプール31の往復移動方向において複数個並設されている。これにより駆動シャフト部33の直動性をより向上させ得る。本実施例によれば、上記した微小隙間の隙間幅を過剰に偏らせることなくできるだけ均一に維持できるため、第1スプール31の外周壁面、第1可動室30rの内周壁面の異常摩耗が抑制される。更に上記した微小隙間の隙間幅をできるだけ均一に維持できるため、ガス漏れも低減又は回避され、『隙間シール構造』が良好に達成される。
ここで、ガスの漏れ量は微小隙間の隙間幅に基本的には比例するため、シール性を考慮すると、微小隙間の隙間幅は小さい方が好ましい。上記した隙間幅を越えると、ガス漏れ量が増加する。従って第1スプール31の外周壁面が摩耗したり、第1可動室30rの内周壁面が摩耗したりすると、上記した微小隙間の隙間幅が増加するため、上記した摩耗現象は『隙間シール構造』の寿命、ひいては第1流路切替装置3の寿命に大きな影響を与える。
図4に示すように、第1流路切替装置3のバルブボディ30vは、第1スプール31の先端面で形成された端空間36aに対面する透孔37aを有する。モータボディ30mは、駆動シャフト部33の先端面に対向する端空間36bに対面する透孔37bを有する。透孔37a,37b同士は図略の配管により接続されている。これは第1スプール31の両端に同じような力を作用させる。故に第1スプール31を中立位置に維持するのに有利となる。なお、図4において第1流路切替装置3のバルブボディ30vの端側は低温となる。モータボディ30mの端側はバルブボディ30vと同じような温度となる。
さて図7は第2流路切替装置4の内部を示す。第2流路切替装置4は第1流路切替装置3と基本的には同様な構成を有するため、共通の機能を有する部位には、なるべく共通の符号を付する。図7に示すように、第2流路切替装置4は、第2ボティ70と、往復可動体として機能する第2スプール71と、第2駆動機構72とを備える。第2ボディ70は、可動室30rと、機械室30cとをもつ。第2スプール71は、第2ボディ70の可動室30rに軸長方向に沿って移動可能に設けられている。第2スプール71の外周壁面と可動室30rの内周壁面との間には、微小隙間の隙間幅(例えば0.005〜0.1ミリメートル)が良好に維持されている。これによりガス漏れも低減又は回避される『隙間シール構造』が達成されている。更に、使用期間が長くなったとしても、第2スプール71の外周壁面の摩耗、第2スプール71が嵌合している可動室30rの内周壁面の摩耗を低減又は回避できる。従って第2流路切替装置4の寿命が長くなる。
図7に示すように、第2流路切替装置4の第2駆動機構72は、第2ボディ70の機械室30cに設けられており、第2スプール71をこれの軸長方向に沿って移動させる。第2流路切替装置4の第2駆動機構72は、第1流路切替装置3の場合と基本的には同様な構造を有しており、駆動シャフト部33と駆動源34と第2懸架手段35とを備えている。駆動シャフト部33は、第2スプール71の軸端側に一体的に延設されている。駆動源34は、駆動シャフト部33をこれの軸長方向つまり矢印Y1,Y2方向に移動させることにより、可動室30r内で第2スプール71をこれの軸長方向つまり矢印Y1,Y2方向に移動させるものである。駆動源34はリニアモータ方式であり、第2ボディ70に固定されたステータ34aをもつ。ステータ34aは、固定鉄芯と固定鉄芯に巻装された第2励磁巻線とを有する。励磁巻線に励磁電流が給電されると、駆動シャフト部33はこれの軸長方向つまり矢印Y1,Y2方向に沿って移動することができる。
図7に示すように、第2流路切替装置4の第2ボディ70は、バルブボディ30vとモータボディ30mとを結合して形成されている。バルブボディ30vは、端空間36aに対面する透孔37aを有する。モータボディ30mは、端空間36bに対面する透孔37bを有する。第2スプール71の両端における力の均衡のため、透孔37a,37b同士は図略の配管により接続されている。図7に示すように、バルブボディ30vには、中心線PBの回りを1周するリング形状の溝通路2111,2112,2113,2114が形成されている。更に、バルブボディ30vには、溝通路2111に連通する第1弁口41、溝通路2112に連通する第2弁口42、溝通路2114に連通する第3弁口43が形成されている。
図7は第2スプール71の中立位置を示す。図7から理解できるように、第2流路切替装置4については、第2スプール71が中立位置になると、パルス管5の高温端5hに繋がる弁口47は、溝通路2113,2122,第2弁口42、中圧の第2バッファタンク45に連通する。また、第2スプール71が左方向(矢印Y2方向)に移動すると、高温側のパルス管5、弁口47、溝通路2113、2123、2114,第3弁口43、高圧の第3バッファタンク46に連通する。また、第2スプール71が右方向(矢印Y1方向)に移動すると、高温側の弁口47、溝通路2113,2121,2111,第1弁口41、低圧の第1バッファタンク44に連通する。
図7に示すように、第2流路切替装置4の懸架手段35は第2ボディ70の機械室30cに設けられており、駆動シャフト部33を第2ボディ70の機械室30cに弾性支持する。懸架手段35は、駆動シャフト部33の軸長方向の一端側を弾性支持する複数個(2個)のバネ部材6で形成されている第1懸架手段35Fと、駆動シャフト部33の軸長方向の他端側を弾性支持する複数個(2個)のバネ部材6で形成されている第2懸架手段35Sとで形成されている。バネ部材6の内周部は、リング状の内側加圧体部64により駆動シャフト部33に保持されている。バネ部材6の外周部は、リング状の外側加圧体部65により第2ボディ70に保持されている。
第2流路切替装置4においても、バネ部材6は、駆動シャフト部33をその軸長方向に移動可能に弾性支持しているとともに、その軸直角方向に移動不能に支持している。この結果、第2スプール71が往復移動するときであっても、第2スプール71の外周壁面と可動室30rの内周壁面との間の微小隙間の隙間幅が過剰に偏ることなく良好に維持される。故に、第2スプール71の外周壁面と可動室30rの内周壁面とが非接触又は弱接触に維持される。従って、使用期間が長くなったとしても、第2スプール71の外周壁面の摩耗、可動室30rの内周壁面の摩耗は低減又は回避される。
図8は実施例2を示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。以下、相違する部分を中心として説明する。第1流路切替装置3の第1ボティ30のバルブボディ30vは低温側の弁口3pと、リング形状の溝通路1122とをもつ。往復可動体として機能する第1スプール31の内部に形成されている溝通路1122は、リング形状の溝通路1122aと,第1スプール31の中央孔1226に繋がるように半径方向に貫通する溝通路1122b,1122c,1122d,1122eとをもつ。この場合には、第1スプール31の半径方向に作用する力を均等化させ、第1スプール31の姿勢を安定化させるのに貢献できる。従って第1スプール31の摩耗を一層軽減させるのに有利となる。よって微小隙間は薄いため、線状に表現される。
図9は実施例3を示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。以下、相違する部分を中心として説明する。図9に示すように第1流路切替装置3の第1スプール31の外周部に溝通路1121,1122が形成されている。溝通路1121,1122は、溝深さh1,h2を有する浅い溝で形成されており、構造が単純化されている。本実施例においても第1スプール31は懸架手段により弾性支持されている。
図10は実施例4を示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。以下、相違する部分を中心として説明する。図10に示すように第1流路切替装置3について、駆動シャフト部33は、往復可動体として機能する第1スプール31と一体化されている。駆動シャフト部は第1スプール31の軸長方向の一端側に一体的に延設された一端シャフト部33fと、第1スプール31の軸長方向の他端側に一体的に延設された他端シャフト部33sとを備えている。懸架手段35は、一端シャフト部33fを弾性支持するバネ部材6からなる第1懸架手段35Fと、他端シャフト部33sを弾性支持するバネ部材6からなる第2懸架手段35Sとを備えている。
図10に示すように、第1流路切替装置3の第1ボディ30は、バルブボディ30vと、モータボディ30mと、スプリングボディ30sとを一体的に直列に結合して形成されている。前記した一端シャフト部33fはモータボディ30mに延設されているため、他端シャフト部33sよりも長さが長く設定されている。ボディ30は、一端シャフト部33fに対向する端空間36bに対面する透孔37bを有するとともに、他端シャフト部33sに対向する端空間36aに対面する透孔37aを有する。第1スプール31の両端における力の均衡のため、透孔37a,37b同士は図略の配管により接続されている。
本実施例によれば、図10に示すように、第1スプール31は、これの両軸端においてバネ部材6により弾性支持された『両持ち支持構造』とされている。このため第1スプール31の姿勢が安定する。故に、第1スプール31の外周壁面と第1可動室30rの内周壁面との間の微小隙間の隙間幅を、過剰に偏ることなく、第1スプール31の軸長方向においてできるだけ均一に確保するのに有利できる。故に、第1スプール31の外周壁面、第1可動室30rの内周壁面の摩耗低減に有利であり、長寿命化に一層貢献できる。本実施例は第1流路切替装置3に適用したものであるが、第2流路切替装置4に適用することもできる。
図11及び図12は実施例5示す。本実施例は実施例4と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。本実施例においても、図11に示すように、第1流路切替装置3の第1ボディ30は、バルブボディ30vと、モータボディ30mと、スプリングボディ30sとを一体的に結合して形成されている。図11に示すように、モータボディ30m、スプリングボディ30sには、リング形状をなす着座フランジ部39が駆動シャフト33の軸長方向に沿って突き出している。
図11に示すように、駆動シャフト部33は、第1スプール31の軸長方向の一端側に延設された一端シャフト部33fと、第1スプール31の軸長方向の他端側に延設された他端シャフト部33sとを備えている。図11に示すように、懸架手段35は、一端シャフト部33fを弾性支持する1個のバネ部材6Cと、他端シャフト部33sを弾性支持する1個のバネ部材6Cとを備えている。第1スプール31は、第1スプール31の両軸端においてバネ部材6Cにより『両持ち支持構造』とされている。この場合、第1スプール31の姿勢が安定するため、第1スプール31の外周壁面と可動室30rの内周壁面との間の微小隙間の隙間幅を過剰に偏らせることなくできるだけ均一に維持でき、第1スプール31の外周壁面と可動室30rの内周壁面とを非接触又は弱接触に維持するのに有利である。この結果、第1スプール31の外周壁面の摩耗、可動室30rの内周壁面の摩耗を低減又は回避できる。
図11に示すように、バネ部材6Cは、『コ』の字形状(チャンネル形状)をなしており、第1スプール31の軸直角方向に沿って延設された中央板部66と、第1スプール31の軸長方向に沿って延設され且つ中央板部66の両端に曲成部68を介して連設された2個の端板部67とをもつ。端板部67は曲成部68を介して中央板部66に対して約90度曲成されている。バネ部材6Cは曲成部68を介して弾性変形できる。中央板部66は、駆動シャフト部33に嵌合して取り付けられる取付孔62を有する。端板部67は螺子取付孔63を有する。螺子取付孔63に挿通された螺子63cにより、端板部67はモータボディ30mやスプリングボディ30sの着座フランジ部39に取り付けられている。一端シャフト部33fのバネ部材6Cと、他端シャフト部33sのバネ部材6Cとについては、端板部67が互いに対向するように配置されている。
ここで、バネ部材6Cは、駆動シャフト部33をその軸長方向に移動可能に弾性支持しているとともに、その軸直角方向に移動不能に支持している。これにより第1スプール31はこれの軸長方向に容易に移動できるものの、軸直角方向への移動は抑止される。この結果、第1スプール31の外周壁面と可動室30rの内周壁面との接触が非接触又は弱接触に設定される。更に、第1スプール31の外周壁面の摩耗、可動室30rの内周壁面の摩耗を低減又は回避できる。従って、第1スプール31の外周壁面と可動室30rの内周壁面との間に形成されている微小隙間の隙間幅(隙間幅は例えば0.005〜0.1ミリメートル)を、過剰に偏らせることなく、できるだけ均一に維持できる。よって微小隙間を介してのガス漏れも低減又は回避される。第1流路切替装置3の寿命も長くなる。なお本実施例は、第1流路切替装置3に適用したものであるが、第2流路切替装置4に適用することもできる。
なお図11に示すように一端シャフト部33f、他端シャフト部33sはそれぞれ1個のバネ部材6Cで弾性支持されているが、複数個のバネ部材6Cで弾性支持することにしても良い。
図13は実施例6を示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。本実施例においてよれば、図13に示すように、第1流路切替装置3及び第2流路切替装置4は一体化されている。この結果、第1流路切替装置3の第1ボディ30と第2流路切替装置4の第2ボディ70との間にモータボディ30mが位置している。第1ボディ30、第2流路切替装置4の第2ボディ70は、モータボディ30mを介して直列的に並設されて一体化されており、小型化に有利となる。第1流路切替装置3の第1スプール31と第2流路切替装置4の第2スプール71との間には、共通駆動機構を構成する共通の駆動シャフト部33が同軸的に設けられている。これにより小型化に有利となる。
図13に示すように、この駆動シャフト部33は、第1流路切替装置3及び第2流路切替装置4の双方に共用されており、第1流路切替装置3の第1スプール31と第2流路切替装置4の第2スプール71とを駆動させるものである。駆動シャフト部33は、第2スプール71の軸端中央から同軸的に延設された第1筒部33uと、第1筒部33uと別体をなし同軸的な円筒形状をなす第2筒部33vと、第1スプール31の軸端に接続された中央軸部33wとで形成されている。中央軸部33wは第2筒部33vの中央孔に嵌合するとともに、中央軸部33wの先端部は第1筒部33uの中央孔に嵌合している。
駆動シャフト部33は懸架手段35で弾性支持されて懸架されている。図13に示すように、懸架手段35は、駆動シャフト部33の一端側を弾性支持する複数のバネ部材6からなる第1懸架手段35Fと、駆動シャフト部33の一端側を弾性支持する複数のバネ部材6からなる第2懸架手段35Sとで形成されている。具体的には図13に示すように、第2スプール71の第1筒部33uの軸端面と第2筒部33vの軸端面とで、バネ部材6の中央域を挟持している。また、中央軸部33wの径大部の軸端面と第2筒部33vの軸端面とで、複数個のバネ部材6の中央域を挟持している。バネ部材6の外周部はモータボディ30mの着座部30xに着座されている。この結果、バネ部材6を備えた懸架手段35は、第1流路切替装置3と第2流路切替装置4との双方の中間域に配置されており、双方に共用されているため、部品点数の低減、小型化に貢献できる。
本実施例においても、バネ部材6は、駆動シャフト部33をその軸長方向に移動可能に弾性支持しているとともに、その軸直角方向に移動可能に支持している。これにより第1スプール31及び第2スプール71はこれの軸長方向に容易に移動できるものの、軸直角方向への移動は抑止される。この結果、第1スプール31の外周壁面と可動室30rの内周壁面との接触が非接触又は弱接触に設定される。更に、第1スプール31の外周壁面の摩耗、可動室30rの内周壁面の摩耗を低減又は回避できる。従って、第1スプール31の外周壁面と可動室30rの内周壁面との間に形成されている微小隙間の隙間幅を、過剰に偏らせることなく、できるだけ均一に維持できる。よって微小隙間を介してのガス漏れも低減又は回避され、かつ第1流路切替装置3の寿命も長くなる。
同様に、第2流路切替装置4についても、第2スプール71の外周壁面と可動室30rの内周壁面との接触が非接触又は弱接触に設定される。従って、第2スプール71の外周壁面と可動室30rの内周壁面との間に微小隙間が良好に維持されている。ガス漏れも低減又は回避される。更に、第2スプール71の外周壁面の摩耗、可動室30rの内周壁面の摩耗を低減又は回避できる。第2流路切替装置4の寿命も長くなる。また図13に示すように、パルス管5を形成するチューブ5wは90度に曲成された曲成部5kを有し、パルス管5は第1流路切替装置3の第1ボディ30及び第2流路切替装置4の第2ボディ70とほぼ平行に配置されているため、小型化に有利である。
本実施例で特徴的なことは、パルス管5を直流的に流れる作動ガスの動きを抑制する構造であるということである。すなわち、図13に示すように、第1流路切替装置3側の流路である流路Y1はリング状の溝X1に連通し、第2流路切替装置4側の流路である流路Y2はリング状の溝X2に連通しているが、これらの溝X1,X2は、互いに駆動部30mに近いところに形成されている。このように作動ガスを各スプールの駆動部30m側に近い所で連通することにより、第1スプール31側から中央の板バネ空間にリークする作動ガスと、第2スプール71側から中央の板バネ空間にリークする作動ガスとほぼ均等にすることができる。これにより、板バネ空間内での圧力勾配による流れは起こらなくなり、この空間を通って第2スプール71側から第1スプール31側に流れる作動ガスの流量を減少させることができる。パルス管5を直流的に流れる作動ガスは、この空間を通ることにより生じるが、この空間の流れを上記のように抑制することにより、直流ガス流れを抑制することができる。
図14は実施例7を示す。本実施例は実施例6と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。本実施例においても、第1流路切替装置3及び第2流路切替装置4は一体化されている。この結果、第1流路切替装置3の第1ボディ30と第2流路切替装置4の第2ボディ70との間にモータボディ30mが位置しており、これらは直列的に一体化されている。小型化に有利となる。第1流路切替装置3の第1スプール31と第2流路切替装置4の第2スプール71との間には、共通の駆動シャフト部33が同軸的に接続されている。駆動シャフト部33は、バネ部材6を備える懸架手段35により懸架されている。パルス管5を形成するチューブ5wには、蓄冷器57及びコールドヘッド58が配置されている。更に、ガス案内機能をもつディストリビュータ53、ディストリビュータ56が配置されている。
本実施例で特徴的なことは、蓄冷器57及びパルス管5を直流的に流れる作動ガスの動きを抑制する構造であるということである。すなわち、図14に示すように、第1流路切替装置3側の流路である流路Y1は溝X1に連通し、第2流路切替装置4側の流路である流路Y2は溝X2に連通しているが、これらの溝X1,X2は、互いに駆動部30mに近いところに形成されている。このように作動ガスを各スプールの駆動部30m側に近い所で連通することにより、第1スプール31側から中央の板バネ空間にリークする作動ガスと、第2スプール71側から中央の板バネ空間にリークする作動ガスとほぼ均等にすることができる。これにより、板バネ空間内での圧力勾配による流れは起こらなくなり、この空間を通って第2スプール71側から第1スプール31側に流れる作動ガスの流量を減少させることができる。パルス管5を直流的に流れる作動ガスは、この空間を通ることにより生じるが、この空間の流れを上記のように抑制することにより、直流ガス流れを抑制することができる。
図15は実施例8を示す。本実施例は実施例6と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。以下、相違する部分を中心として説明する。本実施例によれば第2流路切替装置4が設けられていない。第1流路切替装置3は、実施例1の場合と同様を構造を有しており、高圧弁口3aと、低圧弁口3bと、パルス管5の低温端5pに連通する弁口3pとを有する。第1流路切替装置3は高圧のガス、低圧のガスを切り替える機能を有する。パルス管5の高温端5hには連結チューブ44aを介してバッファタンク44Mが接続されている。連結チューブ44a内のガスは共鳴状態において速い速度で振動する。このシステムは最適な作動周波数を有する。連結チューブ44aには最適な長さと最適な内径が存在する。パルス管5での膨張仕事によりパルス管5の高温端5hは熱を帯びることがあるため、連結チューブ44aは水や気体により常温付近に冷却することが好ましい。本実施例は図2に示す実施例に比較して構造が簡単である。連結チューブ44a、バッファタンク44Mの内径をパルス管5と同一すれば、更に構造が単純化される、
図16は実施例9を示す。本実施例は実施例6と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。本実施例によれば第2流路切替装置4が設けられていない。図16に示すように、第1流路切替装置3は、実施例1の場合と同様を構造を有しており、高圧弁口3aと、低圧弁口3bと、パルス管5の低温端5pに連通する弁口3pとを有する。パルス管5の高温端5hには、往復可動体として機能するイナータンスピストン81を有する膨張シリンダで形成された膨張手段8が接続されている。バッファタンクの代わりに膨張手段8が設けられている。図16に示すように、膨張手段8は、シリンダ状のボディ80と、ボディ80内に嵌合されたイナータンスピストン81と、イナータンスピストン81を駆動させる駆動機構82とを備える。イナータンスピストン81の外周壁面とボティ80の内周壁面との間には、円滑作動性、摩耗の低減、隙間シール構造の実現を図るべく、微小隙間が形成されている。ボディ80は膨張空間83を有し、更にモータボディ80mを有する。駆動機構82は、ボディ78の機械室80cに設けられており、イナータンスピストン81をこれの軸長方向に沿って移動させるものであり、駆動シャフト部84と駆動源85と懸架手段86とを備えている。駆動シャフト部84はイナータンスピストン81の軸端側に一体的に同軸的に延設されている。駆動源85は、駆動シャフト部84をこれの軸長方向に移動させることにより、ボディ80内でイナータンスピストン81をこれの軸長方向に移動させるものである。駆動源85はリニアモータ方式であり、ボディ80に固定されたステータ80aをもつ。ステータ80aは、固定鉄芯と固定鉄芯に巻装された励磁巻線とを有する。イナータンスピストン81が右方向(矢印Y1方向)に移動すると、ボディ80内に膨張空間83が形成される。これに対してイナータンスピストン81が左方向(矢印Y2方向)に移動すると、膨張空間83内のガスは圧縮される。
図16に示すように、懸架手段86はモータボディ80mの機械室80cに設けられており、駆動シャフト部84をモータボディ80mの機械室80cに弾性支持する。懸架手段86は、イナータンスピストン81に接続された駆動シャフト部84の軸長方向の一端側を弾性支持する複数個(2個)並設されたバネ部材6からなる第1懸架手段35Fと、駆動シャフト部84の軸長方向の他端側を弾性支持する複数個(2個)並設されたバネ部材6からなる第2懸架手段35Sとで形成されている。よって駆動シャフト部84の両端はバネ部材6により両持ち支持されており、駆動シャフト部84の姿勢、ひいてはイナータンスピストン81の姿勢が安定化されている。バネ部材6の内周部は、リング状の内側加圧体部64により駆動シャフト部84に保持されている。バネ部材6の外周部は、リング状の外側加圧体部65によりボディ80に保持されている。駆動シャフト部84の軸長方向に沿ったバネ部材6は柔らかめとされ、駆動シャフト部84の軸直角方向(径方向)に沿ったバネ部材6は硬めとされている。
本実施例においても実施例1と同様に、バネ部材6は、駆動シャフト部84をその軸長方向に移動可能に弾性支持しているとともに、その軸直角方向に移動不能に支持している。これによりイナータンスピストン81はこれの軸長方向に容易に移動できるものの、軸直角方向への移動は抑止されている。この結果、イナータンスピストン81の外周壁面とボティ80の内周壁面との間に形成される微小隙間の隙間幅は過剰に偏ることなく良好に維持される。従って、イナータンスピストン81の外周壁面とシリンダ80sの内周壁面とは非接触又は弱接触とされている。なお、微小隙間の隙間幅は小さいため、ガス漏れを防止できる隙間シール構造を実現している。
図16に示すように、パルス管5の高温端5hは、ボティ80の孔80rを介してボディ80の膨張空間83に連通している。絞り要素として機能するオリフィス87がボディ80の壁に形成されている。オリフィス87の一端はボディ80内の膨張空間83に連通している。更にオリフィス87の他端は中間接続管88を介してモータボディ80mの作業室に接続されて連通している。オリフィス87の機能は膨張空間83での膨張仕事を熱に変えることである。中間接続管88は、ガス通路として機能するだけでなく、ガスを冷却する機能を果たす。
イナータンスピストン81が共鳴状態で動作すると、膨張仕事により力が生じる。これはオリフィス87により制御される。ボティ90の加熱を抑えるため、ボティ80の外面を冷却する冷却要素を設けることが好ましい。これにより中間接続管88が冷却される。
図17は実施例10を示す。本実施例は実施例6と基本的には同様の構成、作用効果を有する。共通する部位にはなるべく共通の符号を付する。以下、相違する部分を中心として説明する。図17に示すように、流路切替装置3は、実施例1の場合と同様に、弁口3pと、高圧弁口3aと、低圧弁口3bとを有する。弁口3pには、メインピストン91を有する膨張手段9が設けられている。膨張手段9は、ボディ90と、往復可動体として機能するメインピストン91と、メインピストン91を駆動させる駆動機構95とを有する。メインピストン91は、第1ピストン92及び第2ピストン92を有するとともに、第1ピストン92と第2ピストン93との間に駆動シャフト部94とを有する。ボディ90は、モータボディ90mと、膨張空間99を形成するとともに第1ピストン92を嵌合する膨張用の第1シリンダ90fと、圧縮空間96を形成するとともに第2ピストン93を嵌合する圧縮用の第2シリンダ90sで形成されている。第1ピストン92の外周壁面と第1シリンダ90fの内周壁面との間には、円滑作動性、摩耗の低減、隙間シール構造の実現を図るべく、微小隙間が形成されている。
懸架手段35は、メインピストン91に接続された駆動シャフト部94の軸長方向の一端側を弾性支持する複数個(2個)のバネ部材6からなる第1懸架手段35Fと、駆動シャフト部94の軸長方向の他端側を弾性支持する複数個(2個)のバネ部材6からなる第2懸架手段35Sとで形成されている。よって駆動シャフト部94の両端はバネ部材6により両持ち支持されており、駆動シャフト部94の姿勢、ひいては第1ピストン92と第2ピストン93の姿勢が安定化されている。バネ部材6の内周部は、リング状の内側加圧体部64により駆動シャフト部94に保持されている。バネ部材6の外周部は、リング状の外側加圧体部65によりモータボディ90mに保持されている。
本実施例においても、実施例1と同様に、バネ部材6は、駆動シャフト部94をその軸長方向に移動可能に弾性支持しているとともに、その軸直角方向に移動不能に支持している。これにより第1ピストン92及び第2ピストン93はこれの軸長方向に容易に移動できるものの、軸直角方向への移動は抑止されている。この結果、第1ピストン92の外周壁面と第1シリンダ90fの内周壁面との間には、微小隙間の隙間幅が過剰に偏ることなく良好に形成されている。従って、第1ピストン92の外周壁面と第1シリンダ90fの内周壁面とは非接触又は弱接触とされている。なお、微小隙間の隙間幅は小さいため、ガス漏れを防止できる隙間シール構造を実現している。
また第2ピストン93の外周壁面と第2シリンダ90sの内周壁面との間には、円滑作動性、摩耗の低減、隙間シール構造の実現を図るべく、微小隙間が形成されている。従って、第2ピストン93の外周壁面と第2シリンダ90sの内周壁面とは非接触又は弱接触とされている。微小隙間の隙間幅は小さいため、ガス漏れを防止できる隙間シール構造を実現している。
図17に示すように、第1ピストン92は軽量化のために中空室92cをもつ。第1シリンダ90fの膨張空間99は連結チューブ99xを介して第1流路切替装置3の弁口3pに連通している。図17に示すように、第2シリンダ90sの圧縮空間96はオリフィス97、第2シリンダ90sの通路90xを介してボディ90の機械室90cに連通する。
そして、高圧弁口3aから供給された高圧のガスが第1流路切替装置3の弁口3pを介して膨張手段9の膨張空間99に流れると、膨張空間99で膨張され、低圧とされ、低温を生成する。そして膨張空間99内の低圧のガスは、連結チューブ99xを介して第1流路切替装置3の低圧弁口3bから吐出される。これを実現するため、第1シリンダ90f内で第1ピストン92は往復移動する。よって、第2シリンダの圧縮空間96の容積が小さくなったり増加したりする。圧縮空間の機能は、膨張空間で膨張仕事をさせるためである。
なお、第1ピストン92が熱伝導性が良好な材料で形成されていれば、第1ピストン92の中空室は廃止しても良い。この中空室は真空でも良いし、詰め物をしても良い。第1シリンダ90fの加熱を防止するためには、第1シリンダ90fを水冷又は空冷することが出好ましい。ガスの膨張仕事に基づいて力が生じるが、オリフィスにより制御できる。
〔適用例〕
図18は適用例を示す。本例は空気中の窒素と酸素とを分離するための空気分離装置に適用したものである。411は、大気中から採った空気を所望の圧力(例えば6atm)に圧縮させるコンプレッサユニットである。コンプレッサユニット411は、空気を圧縮させる機能の他に、空気に含まれているオイル分、水分等の異物を除去する機能を有する。コンプレッサユニット411により圧縮された空気は流路421に沿って流れ、熱交換器412において、液相温度付近に冷却され、更に、コラム417の底部まで流れる。コラム417において、空気は窒素ガスと酸素ガスとに分離される。高圧の窒素ガスは、コラム417の上部から流出し、流路423に沿って流れる。
酸素ガスはコラム417の底部で液化される。液化された酸素は、コラム417の底部から延設された流路422に沿って流れ、熱交換器414、流量制御用のスロットルバルブ415を流れ、低圧の液体となり、更に低圧の液体となった酸素はボイラー416に至り、ボイラー416でガス化される。ガス化された酸素は流路424に沿って流れ、熱交換器414を介して冷媒膨張装置413に至り、冷媒膨張装置413で大気圧付近まで膨張され、更に、熱交換器412を介してコンプレッサユニット411に至る。なお418は液体窒素を収容する液体窒素タンクであり、コラム417に液体窒素を適宜補充できる。
一般的なシステムによれば、冷媒膨張装置1413としてタービン型の冷媒膨張装置が使用されている。しかしタービン型の冷媒膨張装置は小型の場合には、信頼性が必ずしも充分ではない。このため本適用例では、タービン型の冷媒膨張装置を廃止している。そして、上記した冷媒膨張装置1413として、上記した各実施例に係る冷媒膨張装置1を採用すれば、信頼性及び寿命が向上するため、空気中の窒素と酸素とを分離する空気分離装置のコスト低減を図り得る。
(その他)
実施例1によれば、スプール31を保持する駆動シャフト部33を複数のバネ部材6で弾性支持しているが、これに限らず、1個のバネ部材6により弾性支持させることにしても良い。その他、本発明は上記した且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更しつ実施できるものである。
本発明は空気から窒素を分離する空気分離装置、ヘリウム液化装置、水素液化装置多、石油ガス分離装置等に使用される冷媒膨張装置に利用できる。冷媒膨張装置は、高圧のガスを膨張させることにより低温低圧のガスを生成して冷凍を出力する。冷媒膨張装置としてはパルス管タイプのもの、ピストンタイプのものが例示される。冷媒膨張装置は体積流量率を変化させる幅が広いため、空気分離装置、ヘリウム液化装置、水素液化装置、石油ガス分離装置等に広く使用される。
実施例1に係る冷媒膨張装置の概念図である。 実施例1に係る冷媒膨張装置の構成図である。 実施例1に係り、冷媒膨張装置の作動を説明するタイミングチャートである。 実施例1に係り、第1流路切替装置の断面図である。 実施例1に係り、バネ部材の正面図である。 実施例1に係り、第1スプールの外周壁面と可動室の内周壁面との間の微小隙間付近の各拡大断面図である。 実施例1に係り、第2流路切替装置の断面図である。 実施例2に係り、第1流路切替装置の横断面図である。 実施例3に係り、第1流路切替装置の断面図である。 実施例4に係り、第1流路切替装置の断面図である。 実施例5に係り、第1流路切替装置の断面図である。 実施例5に係り、バネ部材の斜視図である。 実施例6に係り、第1流路切替装置の断面図である。 実施例7に係り、第1流路切替装置の断面図である。 実施例8に係り、第1流路切替装置にパルス管及びバッファタンクを取り付けた状態を示す冷媒膨張装置の断面図である。 実施例9に係り、第1流路切替装置にパルス管及び膨張シリンダを取り付けた状態を示す冷媒膨張装置の断面図である。 実施例10に係り、第1流路切替装置に膨張手段を取り付けた状態を示す冷媒膨張装置の断面図である。 適用例に係り、冷媒膨張装置をもつ空気分離装置を模式的に示すブロック図である。
符号の説明
図中、1は冷媒膨張装置、2は圧縮装置、20は高圧通路、21は低圧通路、3は第1流路切替装置、3aは高圧弁口、3bは低圧弁口、3pは弁口(第1冷媒弁口)30は第1ボディ、30rは可動室、31は第1スプール(往復可動体)、32は第1駆動機構、33は駆動シャフト部、35は懸架手段、35Fは第1懸架手段、35Sは第2懸架手段、34は駆動源、4は第2流路切替装置、41は第1弁口、42は第2弁口、43は第3弁口、44は第1バッファタンク、45は第2バッファタンク、46は第3バッファタンク、47は弁口(第2冷媒弁口)、5はパルス管、51は連結チューブ、54は連結チューブ、57は蓄冷器、6はバネ部材、60はバネ本体、61はスリット(透孔)、66は中央板部、67は端板部、70は第2ボディ、71は第2スプール(往復可動体)、72は第2駆動機構を示す。

Claims (12)

  1. 高圧冷媒が流れる高圧通路の開閉と低圧冷媒が流れる低圧通路の開閉とを切り替える流路切替装置と、
    前記流路切替装置により開放された前記高圧通路の高圧冷媒が流入され前記高圧冷媒を膨張させて低温を生成する膨張手段とを具備する冷媒膨張装置において、
    前記流路切替装置は、
    内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した高圧弁口、低圧弁口、冷媒弁口がそれぞれ形成されたボティと、
    前記ボディの可動室に往復移動可能に設けられとともに前記高圧弁口と前記冷媒弁口とを連通する高圧連通路及び前記低圧弁口と前記冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
    前記ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる駆動機構とを備えており、
    前記駆動機構は、前記ボディに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えることを特徴とする冷媒膨張装置。
  2. 請求項1において、前記駆動機構は、前記往復可動体に延設された駆動シャフト部を備え、前記懸架手段は、前記駆動シャフト部を前記ボディに弾性支持することにより前記往復可動体を弾性支持することを特徴とする冷媒膨張装置。
  3. 高圧冷媒が流れる高圧通路の開閉と低圧冷媒が流れる低圧通路の開閉とを切り替えるとともに第1冷媒弁口をもつ第1流路切替装置と、
    前記第1流路切替装置の前記第1冷媒弁口に低温端が接続されたパルス管と、
    前記パルス管の高温端に接続された第2冷媒弁口とバッファタンク用弁口とをもつ第2流路切替装置と、
    前記第2流路切替装置の前記バッファタンク用弁口に接続されたバッファタンクとを具備する冷媒膨張装置において、
    前記第1流路切替装置及び前記第2流路切替装置のうちの少なくとも一方は、
    内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した高圧弁口、低圧弁口、前記第1冷媒弁口又は前記第2冷媒弁口がそれぞれ形成されたボティと、
    前記ボディの可動室に往復移動可能に設けられるとともに前記高圧弁口と前記第1冷媒弁口又は前記第2冷媒弁口とを連通する高圧連通路及び前記低圧弁口と前記第1冷媒弁口又は前記第2冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
    前記ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる駆動機構とを備えており、
    前記駆動機構は、前記ボディに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えることを特徴とする冷媒膨張装置。
  4. 請求項3において、前記第1流路切替装置は、
    内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した第1高圧弁口、第1低圧弁口、前記第1冷媒弁口がそれぞれ形成された第1ボティと、
    前記第1ボディの可動室に往復移動可能に設けられるとともに前記第1高圧弁口と前記第1冷媒弁口とを連通する高圧連通路及び前記第1低圧弁口と前記第1冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
    前記第1ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる第1駆動機構とを備えており、
    前記第1駆動機構は、前記第1ボティに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えており、
    前記第2流路切替装置は、
    内壁面で区画された可動室をもつとともに外壁面から内壁面にかけて貫通した第2高圧弁口、第2低圧弁口、前記第2冷媒弁口がそれぞれ形成された第2ボティと、
    前記第2ボディの可動室に移動可能に設けられるとともに前記第2高圧弁口と前記第2冷媒弁口とを連通する高圧連通路及び前記第2低圧弁口と前記第2冷媒弁口とを連通する低圧連通路が内部に形成された往復可動体と、
    前記第2ボディに設けられ前記往復可動体をこれの軸長方向に沿って移動させる第2駆動機構とを備えており、
    前記第2駆動機構は、前記第2ボティに設けられ前記往復可動体を前記軸長方向に沿って移動可能に弾性支持するとともに前記軸長方向に垂直な面内方向に沿って移動不能に固定支持する懸架手段とを備えていることを特徴とする冷媒膨張装置。
  5. 請求項4において、前記第1流路切替装置の前記第1ボディと前記第2流路切替装置の前記第2ボディとは一体化されていることを特徴とする冷媒膨張装置。
  6. 請求項4又は請求項5において、前記第1駆動機構及び第2駆動機構は一体化されていることを特徴とする冷媒膨張装置。
  7. 請求項1〜請求項6のうちのいずれか一項おいて、前記懸架手段は前記往復可動体又は前記駆動シャフト部の軸直角方向に沿って延設された板状のバネ部材で形成されていることを特徴とする冷媒膨張装置。
  8. 請求項7おいて、前記バネ部材は、前記往復可動体又は前記駆動シャフト部の軸直角方向に沿って延設された円板形状をなすバネ本体と、前記バネ本体に形成された透孔とを備えていることを特徴とする冷媒膨張装置。
  9. 請求項7又は請求項8において、前記バネ部材は、前記駆動シャフト部の軸直角方向に沿って延設された板状をなす中央板部と、前記中央板部の端から前記駆動シャフト部の軸長方向に沿って延設された端板部とを備えていることを特徴とする冷媒膨張装置。
  10. 請求項1〜請求項9のうちのいずれか一項において、前記懸架手段は前記駆動シャフト部の軸長方向において、バネ部材を間隔を隔てて複数個併設することにより形成され、隣設する前記バネ部材間には空間が形成されていることを特徴とする冷媒膨張装置。
  11. 請求項1〜請求項10うちのいずれか一項において、前記懸架手段は、前記往復可動体又は前記駆動シャフト部の軸長方向の一端側を弾性支持する第1懸架手段と、前記往復可動体又は前記駆動シャフト部の軸長方向の他端側を弾性支持する第2懸架手段とを備えていることを特徴とする冷媒膨張装置。
  12. 請求項1〜請求項11のうちのいずれか一項において、前記駆動シャフト部は、前記往復可動体の軸長方向の一端側に延設された一端シャフト部と、前記往復可動体の軸長方向の他端側に延設された他端シャフト部とを備えており、且つ、
    前記懸架手段は、前記一端シャフト部を弾性支持する第1懸架手段と、前記他端シャフト部を弾性支持する第2懸架手段とを備えていることを特徴とする冷媒膨張装置。
JP2004277480A 2004-09-24 2004-09-24 冷媒膨張装置 Withdrawn JP2006090652A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277480A JP2006090652A (ja) 2004-09-24 2004-09-24 冷媒膨張装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277480A JP2006090652A (ja) 2004-09-24 2004-09-24 冷媒膨張装置

Publications (1)

Publication Number Publication Date
JP2006090652A true JP2006090652A (ja) 2006-04-06

Family

ID=36231808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277480A Withdrawn JP2006090652A (ja) 2004-09-24 2004-09-24 冷媒膨張装置

Country Status (1)

Country Link
JP (1) JP2006090652A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211911A1 (ja) * 2017-05-16 2018-11-22 住友重機械工業株式会社 冷凍機、及び進退部材の支持構造
CN116046174A (zh) * 2023-04-03 2023-05-02 临沂银笛机械制造有限公司 一种工业窑炉红外测温装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211911A1 (ja) * 2017-05-16 2018-11-22 住友重機械工業株式会社 冷凍機、及び進退部材の支持構造
JP2018194218A (ja) * 2017-05-16 2018-12-06 住友重機械工業株式会社 冷凍機、及び進退部材の支持構造
EP3627069A4 (en) * 2017-05-16 2020-11-04 Sumitomo Heavy Industries, Ltd. FREEZER AND SUPPORT STRUCTURE FOR EXTENSION / RETRACTION ELEMENT
CN116046174A (zh) * 2023-04-03 2023-05-02 临沂银笛机械制造有限公司 一种工业窑炉红外测温装置

Similar Documents

Publication Publication Date Title
JP3619965B1 (ja) スターリング機関
EP2402607B1 (en) Long life seal and alignment system for small cryocoolers
US20100046862A1 (en) Linear compressor and gas thrust bearing therefor
KR20130009840A (ko) 극저온냉동기
WO2011115201A1 (ja) ディスプレーサ及びその製造方法及び蓄冷器式冷凍機
JP2823705B2 (ja) 冷却ヘッド
JP2006090652A (ja) 冷媒膨張装置
US4553398A (en) Linear motor compressor with pressure stabilization ports for use in refrigeration systems
JP2008190727A (ja) リニアモータ圧縮機及びスターリング冷凍機
JP2008002452A (ja) リニア圧縮機
JP2007315644A (ja) パルスチューブ冷凍機
US10228164B2 (en) Stirling refrigerator
JP3574568B2 (ja) スターリングエンジン
JP4692829B2 (ja) パルス管型熱機関
JP7075816B2 (ja) 極低温冷凍機のロータリーバルブおよび極低温冷凍機
JP2004061031A (ja) パルス管冷凍機
JP2009052866A (ja) 蓄冷型冷凍機
US11530847B2 (en) Cryocooler and flow path switching mechanism of cryocooler
KR100296296B1 (ko) 선형액츄에이터
JP2003050058A (ja) スターリング機関
KR20110097070A (ko) 극저온 냉동기의 디스플레이서 밸브
JP6913039B2 (ja) パルス管冷凍機
JP3860137B2 (ja) スターリング機関およびその製造方法
JP3588748B2 (ja) 冷凍機用コールドヘッド
JP2005345011A (ja) スターリング機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090617