JP2006046779A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2006046779A
JP2006046779A JP2004227662A JP2004227662A JP2006046779A JP 2006046779 A JP2006046779 A JP 2006046779A JP 2004227662 A JP2004227662 A JP 2004227662A JP 2004227662 A JP2004227662 A JP 2004227662A JP 2006046779 A JP2006046779 A JP 2006046779A
Authority
JP
Japan
Prior art keywords
refrigerant
heat source
heat exchanger
source side
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004227662A
Other languages
English (en)
Other versions
JP3861891B2 (ja
Inventor
Masahiro Honda
雅裕 本田
Yasushi Hori
靖史 堀
Shigeaki Umeyama
恵昭 梅山
Keiji Ishida
圭司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004227662A priority Critical patent/JP3861891B2/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to PCT/JP2005/013814 priority patent/WO2006013769A1/ja
Priority to CNB2005800025578A priority patent/CN100472149C/zh
Priority to EP05767222.2A priority patent/EP1775527B1/en
Priority to ES05767222.2T priority patent/ES2465643T3/es
Priority to US10/586,582 priority patent/US7607317B2/en
Priority to AU2005268315A priority patent/AU2005268315B2/en
Publication of JP2006046779A publication Critical patent/JP2006046779A/ja
Application granted granted Critical
Publication of JP3861891B2 publication Critical patent/JP3861891B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】 冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含み、熱源側熱交換器と利用側熱交換器とが個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を熱源側膨張弁によって制御する際の制御幅を拡大する。
【解決手段】 空気調和装置1は、熱源側熱交換器23を蒸発器として機能させて運転している際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、熱源側熱交換器23を凝縮器として機能させる運転に切り換え、熱源側膨張弁24を閉止することで、第1油戻し回路101を介して熱源側熱交換器23内に溜まった冷凍機油を熱源側熱交換器23の下部から圧縮機構21の吸入側に戻す。
【選択図】 図1

Description

本発明は、空気調和装置、特に、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置に関する。
従来より、冷媒の蒸発器として冷媒が下側から流入して上側から流出するように構成された熱交換器を有する蒸気圧縮式の冷媒回路を備えた冷凍装置がある(例えば、特許文献1参照。)。この冷凍装置においては、蒸発器内に冷凍機油が溜まり込むのを防ぐため、冷媒よりも比重が小さいために2層に分離して冷媒の液面の上に浮いた状態で溜まった冷凍機油を冷媒の液面付近から抜き出して圧縮機の吸入側に戻すようにしている。
また、蒸気圧縮式の冷媒回路を備えた冷凍装置の一例として、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な蒸気圧縮式の冷媒回路を備えた冷暖同時運転が可能な空気調和装置がある(例えば、特許文献2参照。)。このような空気調和装置においては、複数の熱源側熱交換器が設けられるとともに、各熱源側熱交換器に流入する冷媒の流量を調節することができるように膨張弁が設けられている。そして、この空気調和装置において、例えば、暖房運転時や冷暖同時運転時等のように、熱源側熱交換器を蒸発器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、膨張弁の開度を小さくすることによって蒸発能力を小さくする制御を行い、さらに、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行っている。
また、上述の空気調和装置においては、例えば、冷房運転時や冷暖同時運転時に熱源側熱交換器を凝縮器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、熱源側熱交換器に接続された膨張弁の開度を小さくすることによって熱源側熱交換器内に溜まる液冷媒の量を増やして実質的な伝熱面積を減少させることで凝縮能力を小さくする制御を行っている。しかし、膨張弁の開度を小さくする制御を行うと、膨張弁の下流側(具体的には、膨張弁と利用側熱交換器との間)の冷媒圧力が低下する傾向となって安定せず、熱源側熱交換器の凝縮能力を小さくする制御を安定的に行うことができないという問題があった。これに対して、圧縮機で圧縮された高圧のガス冷媒を、膨張弁において減圧されて利用側熱交換器に送られる冷媒に合流させる加圧回路を設けることによって、膨張弁の下流側の冷媒圧力を高くする制御が提案されている(例えば、特許文献3参照。)。
特開昭63−204074号公報 特開平3−260561号公報 特開平3−129259号公報
上述の空気調和装置において、冷媒の蒸発器として機能する場合に冷媒が下側から流入して上側から流出するように構成されたプレート熱交換器等の熱交換器を熱源側熱交換器として使用する場合がある。この場合には、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐため、熱源側熱交換器内の冷媒の液面を一定以上のレベルになるように維持する必要がある。しかし、利用側熱交換器における空調負荷が非常に小さくなる場合等のように、熱源側熱交換器を蒸発能力の小さい蒸発器として機能させる場合においては、膨張弁の開度を小さくすることによって熱源側熱交換器を流れる冷媒量を減少させようとしても、熱源側熱交換器内の冷媒の液面の制約から膨張弁の開度をあまり小さくすることができないため、膨張弁の開度調節のみでは十分に蒸発能力を制御できず、結果的に、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。これに対して、蒸発能力を相殺するための熱源側熱交換器を設けることなく、液面の低下を許容しつつ熱源側熱交換器を蒸発能力の小さい蒸発器として機能させることができるようにするために、熱源側熱交換器を蒸発器として機能させて運転している際に、一時的に、熱源側熱交換器を凝縮器として機能させるように切り換えて冷媒が熱源側熱交換器の上側から下側に向かって流れるようにすることで、熱源側熱交換器に冷凍機油が溜まり込むのを防ぐ運転(油回収運転)を行うことも考えられるが、暖房運転(すなわち、凝縮器として機能)中の利用側熱交換器を一時的に冷房運転(すなわち、蒸発器として機能)に切り換えることになってしまうため、室内の快適性を損なうおそれがある。
また、上述の空気調和装置において、冷媒回路に加圧回路を設けることによって、熱源側熱交換器を冷媒の凝縮器として機能させる場合に、膨張弁において減圧されて利用側熱交換器に送られる冷媒に圧縮機で圧縮された高圧のガス冷媒を合流させるようにすると、膨張弁から利用側熱交換器に送られる冷媒が気液二相流になり、しかも、膨張弁の開度を小さくなる程、加圧回路から高圧のガス冷媒が合流された後の冷媒のガス分率が大きくなり、複数の利用側熱交換器間で偏流が生じてしまうため、結果的に、膨張弁の開度を十分に小さくすることができないという問題が生じている。この結果、熱源側熱交換器を冷媒の蒸発器として機能させる場合と同様に、複数の熱源側熱交換器を設けて、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁を閉止して凝縮器として機能する熱源側熱交換器の台数を減らすことによって凝縮能力を小さくしたり、複数の熱源側熱交換器の一部を蒸発器として機能させることにより凝縮器として機能する熱源側熱交換器の凝縮能力と相殺して凝縮能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で蒸発される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。
本発明の課題は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することにある。
第1の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁とを含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能である。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器において凝縮され膨張弁を通過した後に、利用側熱交換器に送られる。この冷媒は、利用側熱交換器において蒸発された後に、圧縮機構に吸入される。また、暖房運転等を行う場合のように熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、利用側熱交換器において凝縮され膨張弁を通過した後に、熱源側熱交換器に送られる。この冷媒は、熱源側熱交換器において蒸発された後に、圧縮機構に吸入される。ここで、熱源側熱交換器を蒸発器として機能させる運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側熱交換器を凝縮器として機能させる切り換えを行うにもかかわらず、利用側熱交換器を蒸発器に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第2の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁と、熱源側熱交換器を圧縮機構から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構と、圧縮機構の吐出側と熱源側切換機構との間に接続されており圧縮機構から吐出される冷媒を熱源側切換機構に流入する前に分岐することが可能な高圧ガス冷媒管と、利用側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構と、利用側熱交換器において蒸発される冷媒を圧縮機構の吸入側に送る低圧ガス冷媒管とを含んでいる。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように、熱源側切換機構を凝縮運転切換状態にすることにより熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器に送られて熱源側熱交換器において凝縮される。そして、この冷媒は、膨張弁を通過した後に液冷媒管を通じて利用側熱交換器に送られる。そして、この冷媒は、利用側切換機構を冷房運転切換状態にすることにより冷媒の蒸発器として機能する利用側熱交換器において蒸発された後に、低圧ガス冷媒管を通じて圧縮機構に吸入される。また、暖房運転等を行う場合のように、熱源側切換機構を蒸発運転切換状態にすることにより熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、高圧ガス冷媒管を通じて、利用側切換機構を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器に送られて凝縮されて液冷媒管に送られる。そして、この冷媒は、膨張弁を通過した後に熱源側熱交換器において蒸発され、圧縮機構に吸入される。ここで、熱源側切換機構を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側切換機構を凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構を蒸発運転切換状態に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第3の発明にかかる空気調和装置は、第1又は第2の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管から冷媒を分岐して圧縮機構の吸入側に送ることが可能な第2バイパス回路が設けられている。
この空気調和装置では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明にかかる空気調和装置は、第3の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管を流れる冷媒を溜めるレシーバがさらに設けられている。第2バイパス回路は、レシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられている。
この空気調和装置では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明にかかる空気調和装置は、第1〜第4の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、熱源側熱交換器内を流れる冷媒の流量制御とは関係なく一定量供給される水を熱源として使用している。
この空気調和装置では、熱源側熱交換器内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器における蒸発能力を制御することができない。しかし、この空気調和装置においては、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明にかかる空気調和装置は、第1〜第5の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、プレート式熱交換器である。
この空気調和装置では、熱源側熱交換器として多数の流路が形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器の各流路に冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置においては、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の発明では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第2の発明では、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第3の発明では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明では、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明では、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明する。
(1)空気調和装置の構成
図1は、本発明にかかる一実施形態の空気調和装置1の概略の冷媒回路図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の冷暖房に使用される装置である。
空気調和装置1は、主として、1台の熱源ユニット2と、複数(本実施形態では、3台)の利用ユニット3、4、5と、各利用ユニット3、4、5に接続される接続ユニット6、7、8と、接続ユニット6、7、8を介して熱源ユニット2と利用ユニット3、4、5とを接続する冷媒連絡配管9、10、11とを備えており、例えば、ある空調空間については冷房運転を行いつつ他の空調空間については暖房運転を行う等のように、利用ユニット3、4、5が設置される屋内の空調空間の要求に応じて、冷暖同時運転が可能になるように構成されている。すなわち、本実施形態の空気調和装置1の蒸気圧縮式の冷媒回路12は、熱源ユニット2と、利用ユニット3、4、5と、接続ユニット6、7、8と、冷媒連絡配管9、10、11とが接続されることによって構成されている。
<利用ユニット>
利用ユニット3、4、5は、ビル等の屋内の天井に埋め込みや吊り下げ等、又は、屋内の壁面に壁掛け等により設置されている。利用ユニット3、4、5は、冷媒連絡配管9、10、11及び接続ユニット6、7、8を介して熱源ユニット2に接続されており、冷媒回路12の一部を構成している。
次に、利用ユニット3、4、5の構成について説明する。尚、利用ユニット3と利用ユニット4、5とは同様の構成であるため、ここでは、利用ユニット3の構成のみ説明し、利用ユニット4、5の構成については、それぞれ、利用ユニット3の各部を示す30番台の符号の代わりに40番台又は50番台の符号を付して、各部の説明を省略する。
利用ユニット3は、主として、冷媒回路12の一部を構成しており、利用側冷媒回路12a(利用ユニット4、5では、それぞれ、利用側冷媒回路12b、12c)を備えている。この利用側冷媒回路12aは、主として、利用側膨張弁31と、利用側熱交換器32とを備えている。本実施形態において、利用側膨張弁31は、利用側冷媒回路12a内を流れる冷媒の流量の調節等を行うために、利用側熱交換器32の液側に接続された電動膨張弁である。本実施形態において、利用側熱交換器32は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷媒と屋内空気との熱交換を行うための機器である。本実施形態において、利用ユニット3は、ユニット内に屋内空気を吸入して、熱交換した後に、供給空気として屋内に供給するための送風ファン(図示せず)を備えており、屋内空気と利用側熱交換器32を流れる冷媒とを熱交換させることが可能である。
また、利用ユニット3には、各種のセンサが設けられている。利用側熱交換器32の液側には液冷媒の温度を検出する液側温度センサ33が設けられており、利用側熱交換器32のガス側にはガス冷媒の温度を検出するガス側温度センサ34が設けられている。さらに、利用ユニット3には、ユニット内に吸入される屋内空気の温度を検出するRA吸入温度センサ35が設けられている。また、利用ユニット3は、利用ユニット3を構成する各部の動作を制御する利用側制御部36を備えている。そして、利用側制御部36は、利用ユニット3の制御を行うために設けられたマイクロコンピュータやメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2との間で制御信号等のやりとりを行うことができるようになっている。
<熱源ユニット>
熱源ユニット2は、ビル等の屋上等に設置されており、冷媒連絡配管9、10、11を介して利用ユニット3、4、5に接続されており、利用ユニット3、4、5の間で冷媒回路12を構成している。
次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、冷媒回路12の一部を構成しており、熱源側冷媒回路12dを備えている。この熱源側冷媒回路10dは、主として、圧縮機構21と、第1切換機構22と、熱源側熱交換器23と、
熱源側膨張弁24と、レシーバ25と、第2切換機構26と、液側閉鎖弁27と、高圧ガス側閉鎖弁28と、低圧ガス側閉鎖弁29と、第1油戻し回路101と、第1バイパス回路102と、加圧回路111と、冷却器121と、冷却回路122とを備えている。
圧縮機構21は、主として、圧縮機21aと、圧縮機21aの吐出側に接続された油分離器21bと、油分離器21bと圧縮機21aの吸入管21cとを接続する第2油戻し回路21dとを有している。圧縮機21aは、本実施形態において、インバータ制御により運転容量を可変することが可能な容積式圧縮機である。油分離器21bは、圧縮機21aにおいて圧縮されて吐出された高圧のガス冷媒に同伴する冷凍機油を分離する容器である。第2油戻し回路21dは、油分離器21bにおいて分離された冷凍機油を圧縮機21aに戻すための回路である。第2油戻し回路21dは、主として、油分離器21bと圧縮機21aの吸入管21cとを接続する油戻し管21eと、油戻し管21eに接続された油分離器21bにおいて分離された高圧の冷凍機油を減圧するキャピラリチューブ21fとを有している。キャピラリチューブ21fは、油分離器21bにおいて分離された高圧の冷凍機油を圧縮機21aの吸入側の冷媒圧力まで減圧する細管である。本実施形態において、圧縮機構21は、圧縮機が圧縮機21aの1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよい。
第1切換機構22は、熱源側熱交換器23を凝縮器として機能させる際(以下、凝縮運転切換状態とする)には圧縮機構21の吐出側と熱源側熱交換器23のガス側とを接続し、熱源側熱交換器23を蒸発器として機能させる際(以下、蒸発運転切換状態とする)には圧縮機構21の吸入側と熱源側熱交換器23のガス側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート22aは圧縮機構21の吐出側に接続されており、その第2ポート22bは熱源側熱交換器23のガス側に接続されており、その第3ポート22cは圧縮機構21の吸入側に接続されており、第4ポート22dはキャピラリチューブ91を介して圧縮機構21の吸入側に接続されている。そして、第1切換機構22は、上述のように、第1ポート22aと第2ポート22bとを接続するとともに、第3ポート22cと第4ポート22dとを接続(凝縮運転切換状態に対応、図1の第1切換機構22の実線を参照)したり、第2ポート22bと第3ポート22cとを接続するとともに、第1ポート22aと第4ポート22dとを接続(蒸発運転切換状態に対応、図1の第1切換機構22の破線を参照)する切り換えを行うことが可能である。
熱源側熱交換器23は、冷媒の蒸発器及び冷媒の凝縮器として機能させることが可能な熱交換器であり、本実施形態において、水を熱源として冷媒と熱交換するプレート熱交換器である。熱源側熱交換器23は、そのガス側が第1切換機構22の第2ポート22bに接続され、その液側が熱源側膨張弁24に接続されている。熱源側熱交換器23は、図2に示されるように、プレス加工等によって成形された複数のプレート部材23aをパッキン(図示せず)を介して重ね合わせることにより、各プレート部材23a間に上下方向に延びる複数の流路23b、23cが形成され、これらの複数の流路23b、23c内を冷媒と水とが交互に流れる(具体的には、冷媒が流路23b内を流れて、水が流路23c内を流れる、図2の矢印A及びB参照)ことによって熱交換を行うことができるように構成されている。そして、複数の流路23bは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられたガス側ノズル23d及び液側ノズル23eに接続されている。このガス側ノズル23dは第1切換機構22に接続されており、液側ノズル23eは熱源側膨張弁24に接続されている。これにより、冷媒は、熱源側熱交換器23が蒸発器として機能する場合には、液側ノズル23e(すなわち、下側)から流入してガス側ノズル23d(すなわち、上側)から流出し、熱源側熱交換器23が凝縮器として機能する場合には、ガス側ノズル23d(すなわち、上側)から流入して液側ノズル23e(すなわち、下側)から流出することになる(図2の矢印A参照)。また、複数の流路23cは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられた水入口ノズル23f及び水出口ノズル23gに接続されている。また、熱源としての水は、本実施形態において、空気調和装置1の外部に設置された冷水塔設備やボイラー設備からの水配管(図示せず)を通じて熱源側熱交換器23の水入口ノズル23fから供給水CWSとして流入し、冷媒と熱交換を行った後に、水出口ノズル23gから流出して冷水塔設備やボイラー設備に排出水CWRとして戻されるようになっている。ここで、冷水塔設備やボイラー設備から供給される水は、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給されている。
熱源側膨張弁24は、本実施形態において、液冷媒連絡配管9を介して熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒の流量の調節等を行うことが可能な電動膨張弁であり、熱源側熱交換器23の液側に接続されている。
レシーバ25は、熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒を一時的に溜めるための容器である。レシーバ25は、本実施形態において、熱源側膨張弁24と冷却器121との間に接続されている。
第2切換機構26は、熱源ユニット2を冷暖同時機用の熱源ユニットとして使用する場合であって高圧のガス冷媒を利用側冷媒回路12a、12b、12cに送る際(以下、暖房負荷要求運転状態とする)には、圧縮機構21の吐出側と高圧ガス側閉鎖弁28とを接続し、熱源ユニット2を冷暖切替機用の熱源ユニットとして使用する場合であって冷房運転を行う際には、高圧ガス側閉鎖弁28と圧縮機構21の吸入側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート26aは圧縮機構21の吐出側に接続されており、その第2ポート26bはキャピラリチューブ92を介して圧縮機構21の吸入側に接続されており、その第3ポート26cは圧縮機構21の吸入側に接続されており、その第4ポート26dは高圧ガス側閉鎖弁28に接続されている。そして、第2切換機構26は、上述のように、第1ポート26aと第2ポート26bとを接続するとともに、第3ポート26cと第4ポート26dとを接続(冷暖切替時冷房運転状態に対応、図1の第2切換機構26の実線を参照)したり、第2ポート26bと第3ポート26cとを接続するとともに、第1ポート26aと第4ポート26dとを接続(暖房負荷要求運転状態に対応、図1の第2切換機構26の破線を参照)する切り換えを行うことが可能である。
液側閉鎖弁27、高圧ガス側閉鎖弁28及び低圧ガス側閉鎖弁29は、外部の機器・配管(具体的には、冷媒連絡配管9、10及び11)との接続口に設けられた弁である。液側閉鎖弁27は、冷却器121に接続されている。高圧ガス側閉鎖弁28は、第2切換機構26の第4ポート26dに接続されている。低圧ガス側閉鎖弁29は、圧縮機構21の吸入側に接続されている。
第1油戻し回路101は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続するように設けられている。第1油戻し回路101は、主として、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続する油戻し管101aと、油戻し管101aに接続された開閉弁101bと、逆止弁101cと、キャピラリチューブ101dとを有している。油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられており、本実施形態においては、図3に示されるように、熱源側熱交換器23の下部に設けられた液側ノズル23eの管内を通じて熱源側熱交換器23の冷媒が流れる流路23b内まで延びる配管である。ここで、熱源側熱交換器23には、複数の流路23b間を連通させるために、各プレート部材23aに連通孔23hが設けられている(複数の流路23c間も同様)。このため、油戻し管101aは、複数の流路23bを貫通するように設けられていてもよい(図3の破線で示される油戻し管101a参照)。尚、油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられていればよいため、熱源側熱交換器23の液側ノズル23eや熱源側熱交換器23と熱源側膨張弁24とを接続する配管に設けられていてもよい。また、油戻し管101aの他端は、本実施形態において、圧縮機構21の吸入側に接続されている。開閉弁101bは、本実施形態において、必要に応じて第1油戻し回路101を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。逆止弁101cは、冷媒及び冷凍機油が熱源側熱交換器23の下部から圧縮機構21の吸入側に向かって油戻し管101a内を流れることをのみを許容する弁である。キャピラリチューブ101dは、熱源側熱交換器23の下部から抜き出された冷媒及び冷凍機油を圧縮機構21の吸入側の冷媒圧力まで減圧する細管である。
第1バイパス回路102は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられている。第1バイパス回路102は、主として、圧縮機構21から吐出側と圧縮機構21の吸入側とを接続するバイパス管102aと、バイパス管102aに接続された開閉弁102bとを有している。バイパス管102aは、本実施形態においては、図1に示されるように、一端が油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに接続されており、他端が圧縮機構21の吸入側に接続されており、油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに設けられたキャピラリチューブ21fをバイパスするように設けられている。このため、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21から吐出される冷媒は、油分離器21b及び油戻し管21eを通じて第1バイパス回路102に流入し、圧縮機構21の吸入側に戻されることになる。尚、バイパス管102aは、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられていればよいため、例えば、油分離器21bの上流側や下流側の位置から圧縮機構21の吸入側に冷媒を流すことができるように設けられていてもよい。開閉弁102bは、本実施形態において、必要に応じて第1バイパス回路102を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。
加圧回路111は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、圧縮機構21において圧縮された高圧のガス冷媒を、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧された後に利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる回路である。加圧回路111は、主として、圧縮機構21の吐出側と熱源側膨張弁24の下流側(すなわち、熱源側膨張弁24と液側閉鎖弁27との間)とを接続する加圧管111aと、加圧管111aに接続された開閉弁111bと、逆止弁111cと、キャピラリチューブ111dとを有している。加圧管111aは、本実施形態において、一端が圧縮機構21の油分離器21bの出口と第1及び第2切換機構22、26の第1ポート22a、26aとの間に接続されている。また、加圧管111aの他端は、本実施形態において、熱源側膨張弁24とレシーバ25との間に接続されている。開閉弁111bは、本実施形態において、必要に応じて加圧回路111を使用できるようにするために接続されており、冷媒の流通及び遮断が可能な電磁弁である。逆止弁111cは、冷媒が圧縮機構21の吐出側から熱源側膨張弁24の下流側に向かって加圧管111a内を流れることをのみを許容する弁である。キャピラリチューブ111dは、圧縮機構21の吐出側から抜き出された冷媒を熱源側膨張弁24の下流側の冷媒圧力まで減圧する細管である。
冷却器121は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23において凝縮された後に、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却する熱交換器である。冷却器121は、本実施形態において、レシーバ25と液側閉鎖弁27との間に接続されている。言い換えれば、加圧回路111は、加圧管111aが熱源側膨張弁24と冷却器121との間に接続されて、高圧のガス冷媒が熱源側膨張弁24において減圧された冷媒に合流するように接続されている。冷却器121としては、例えば、2重管式の熱交換器を用いることが可能である。
冷却回路122は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を熱源側冷媒回路12dから分岐させて冷却器121に導入し、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却した後、圧縮機構21の吸入側に戻すように熱源側冷媒回路12dに接続された回路である。冷却回路122は、主として、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を冷却器121に導入する導入管122aと、導入管122aに接続された冷却回路側膨張弁122bと、冷却器121を通過した冷媒を圧縮機構21の吸入側に戻す導出管122cとを有している。導入管122aは、本実施形態において、一端がレシーバ25と冷却器121との間との間に接続されている。また、導入管122aの他端は、本実施形態において、冷却器121の冷却回路122側の入口に接続されている。冷却回路側膨張弁122bは、本実施形態において、必要に応じて冷却回路122を使用できるようにするために接続されており、冷却回路122を流れる冷媒の流量を調節することが可能な電動膨張弁である。導出管122cは、本実施形態において、一端が冷却器121の冷却回路122側の出口に接続されている。また、導出管122cは、本実施形態において、他端が圧縮機構21の吸入側に接続されている。
また、熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2は、圧縮機構21の吸入圧力を検出する吸入圧力センサ93と、圧縮機構21の吐出圧力を検出する吐出圧力センサ94と、圧縮機構21の吐出側の冷媒の吐出温度を検出する吐出温度センサ95と、冷却回路122の導出管122cを流れる冷媒の温度を検出する冷却回路出口温度センサ96とが設けられている。また、熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源側制御部97を備えている。そして、熱源側制御部97は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3、4、5の利用側制御部36、46、56との間で制御信号等のやりとりを行うことができるようになっている。
<接続ユニット>
接続ユニット6、7、8は、ビル等の屋内に利用ユニット3、4、5とともに設置されている。接続ユニット6、7、8は、冷媒連絡配管9、10、11とともに、利用ユニット3、4、5と熱源ユニット2との間に介在しており、冷媒回路12の一部を構成している。
次に、接続ユニット6、7、8の構成について説明する。尚、接続ユニット6と接続ユニット7、8とは同様の構成であるため、ここでは、接続ユニット6の構成のみ説明し、接続ユニット7、8の構成については、それぞれ、接続ユニット6の各部を示す60番台の符号の代わりに70番台又は80番台の符号を付して、各部の説明を省略する。
接続ユニット6は、主として、主として、冷媒回路12の一部を構成しており、接続側冷媒回路12e(接続ユニット7、8では、それぞれ、接続側冷媒回路12f、12g)を備えている。この接続側冷媒回路12eは、主として、液接続管61と、ガス接続管62と、高圧ガス開閉弁66と、低圧ガス開閉弁67とを有している。本実施形態において、液接続管61は、液冷媒連絡配管9と利用側冷媒回路12aの利用側膨張弁31とを接続している。ガス接続管62は、高圧ガス冷媒連絡配管10に接続された高圧ガス接続管63と、低圧ガス冷媒連絡配管11に接続された低圧ガス接続管64と、高圧ガス接続管63と低圧ガス接続管64とを合流させる合流ガス接続管65とを有している。合流ガス接続管65は、利用側冷媒回路12aの利用側熱交換器32のガス側に接続されている。そして、高圧ガス開閉弁66は、本実施形態において、高圧ガス接続管63に接続されており、冷媒の流通及び遮断が可能な電磁弁である。低圧ガス開閉弁67は、本実施形態において、低圧ガス接続管64に接続されており、冷媒の流通及び遮断が可能な電磁弁である。これにより、接続ユニット6は、利用ユニット3が冷房運転を行う際(以下、冷房運転切換状態とする)には、高圧ガス開閉弁66を閉止し、かつ、低圧ガス開閉弁67を開けた状態にして、液冷媒連絡配管9を通じて液接続管61に流入する冷媒を利用側冷媒回路12aの利用側膨張弁31に送り、利用側膨張弁31で減圧され利用側熱交換器32において蒸発された後に、合流ガス接続管65及び低圧ガス接続管64を通じて低圧ガス冷媒連絡配管11に戻すように機能することができる。また、接続ユニット6は、利用ユニット3が暖房運転を行う際(以下、暖房運転切換状態とする)には、低圧ガス開閉弁67を閉止し、かつ、高圧ガス開閉弁66を開けた状態にして、高圧ガス冷媒連絡配管10を通じて高圧ガス接続管63及び合流ガス接続管65に流入する冷媒を利用側冷媒回路12aの利用側熱交換器32のガス側に送り、利用側熱交換器32において凝縮され利用側膨張弁31で減圧された後に、液接続管61を通じて液冷媒連絡配管9に戻すように機能することができる。また、接続ユニット6は、接続ユニット6を構成する各部の動作を制御する接続側制御部68を備えている。そして、接続側制御部68は、接続ユニット6の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3の利用側制御部36との間で制御信号等のやりとりを行うことができるようになっている。
以上のように、利用側冷媒回路12a、12b、12cと、熱源側冷媒回路12dと、冷媒連絡配管9、10、11と、接続側冷媒回路12e、12f、12gとが接続されて、空気調和装置1の冷媒回路12が構成されている。つまり、この冷媒回路12は、圧縮機構21と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23と、利用側熱交換器32、42、52と、熱源側熱交換器23と利用側熱交換器32、42、52とを接続する液冷媒連絡配管9を含む液冷媒管と、液冷媒管に設けられる熱源側膨張弁24と、熱源側熱交換器23を圧縮機構21から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器23を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構としての第1切換機構22と、圧縮機構21の吐出側と第1切換機構22との間に接続されており圧縮機構21から吐出される冷媒を第1切換機構22に流入する前に分岐することが可能な高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管と、利用側熱交換器32、42、52を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器32、42、52を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)と、利用側熱交換器32、42、52において蒸発される冷媒を圧縮機構21の吸入側に送る低圧ガス冷媒連絡配管11を含む低圧ガス冷媒管とを備えており、熱源側熱交換器23と利用側熱交換器32、42、52とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能になっている。これにより、本実施形態の空気調和装置1では、例えば、利用ユニット3、4が冷房運転を行いつつ、利用ユニット5が暖房運転を行う等の、いわゆる、冷暖同時運転を行うことが可能になっている。
そして、本実施形態の空気調和装置1では、後述のように、熱源側熱交換器23を蒸発器として機能させる運転をしている際に、第1油戻し回路101及び第1バイパス回路102を用いて油回収運転を行うことで、熱源側熱交換器23内に冷凍器油が溜まり込むのを防ぐことができるようになっているため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の蒸発能力の制御幅を得ることができるようになっている。また、空気調和装置1では、後述のように、熱源側熱交換器23を凝縮器として機能させる際に、加圧回路111及び冷却器121を用いることによって、熱源側熱交換器23の凝縮能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の凝縮能力の制御幅を得ることができるようになっている。これにより、本実施形態の空気調和装置1では、従来の空気調和装置において、複数台設けられていた熱源側熱交換器の単一化が実現されている。
(2)空気調和装置の動作
次に、本実施形態の空気調和装置1の動作について説明する。
本実施形態の空気調和装置1の運転モードは、各利用ユニット3、4、5の空調負荷に応じて、利用ユニット3、4、5の全て暖房運転を行う暖房運転モードと、利用ユニット3、4、5の全てが冷房運転を行う冷房運転モードと、利用ユニット3、4、5の一部が冷房運転を行いつつ他の利用ユニットが暖房運転を行う冷暖房同時運転モードとに分けることができる。また、冷暖同時運転モードについては、利用ユニット3、4、5全体の空調負荷により、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している場合(蒸発運転切換状態)と、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している場合(凝縮運転切換状態)とに運転モードを分けることができる。
以下、空気調和装置1の4つの運転モードにおける動作について説明する。
<暖房運転モード>
利用ユニット3、4、5の全てを暖房運転する際、空気調和装置1の冷媒回路12は、図4に示されるように構成される(冷媒の流れについては、図4の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を蒸発運転切換状態(図4の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図4の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット3、4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6、7、8においては、低圧ガス開閉弁67、77、87を閉止するとともに高圧ガス開閉弁66、76、86を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過冷却度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、3つに分岐されて、各接続ユニット6、7、8の高圧ガス接続管63、73、83に送られる。接続ユニット6、7、8の高圧ガス接続管63、73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁66、76、86及び合流ガス接続管65、75、85を通じて、利用ユニット3、4、5の利用側熱交換器32、42、52に送られる。
そして、利用側熱交換器32、42、52に送られた高圧のガス冷媒は、利用ユニット3、4、5の利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器32、42、52において凝縮された冷媒は、利用側膨張弁31、41、51を通過した後、接続ユニット6、7、8の液接続管61、71、81に送られる。
そして、液接続管61、71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じて、レシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、暖房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の暖房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の暖房負荷(すなわち、利用側熱交換器32、42、52の凝縮負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の蒸発量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内における冷媒の液面が低下することになる。すると、本実施形態の熱源側熱交換器23のように、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱交換器(図2及び図3参照)では、蒸発された冷媒とともに冷凍機油が同伴して排出されにくくなり、冷凍機油の溜まり込みが生じやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられている。そして、この空気調和装置1では、第1切換機構22を蒸発運転切換状態にして運転している際に、図5に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図5の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図4に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、第2切換機構26に送られていた高圧のガス冷媒は、第2切換機構26から高圧ガス冷媒連絡配管10、接続ユニット6、7、8、利用ユニット3、4、5及び液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されるため、第1バイパス回路102を通じて圧縮機構21の吸入側に送られることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図5参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図4参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。例えば、油回収運転を行う条件として、第1切換機構22が蒸発運転切換状態であることに加えて、熱源側膨張弁24が所定開度以下であることを加えることができる。この所定開度は、熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態となる熱源側膨張弁24の開度を実験的に見い出し、この実験的に見い出された開度に基づいて決定される。
<冷房運転モード>
利用ユニット3、4、5の全てを冷房運転する際、空気調和装置1の冷媒回路12は、図6に示されるように構成される(冷媒の流れについては、図6の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図6の第1切換機構22の実線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7、8においては、高圧ガス開閉弁66、76、86を閉止するとともに低圧ガス開閉弁67、77、87を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を蒸発器として機能させるとともに、利用ユニット3、4、5の利用側熱交換器32、42、52と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過熱度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
そして、液冷媒連絡配管9に送られた冷媒は、3つに分岐されて、各接続ユニット6、7、8の液接続管61、71、81に送られる。そして、接続ユニット6、7、8の液接続管61、71、81に送られた冷媒は、利用ユニット3、4、5の利用側膨張弁31、41、51に送られる。
そして、利用側膨張弁31、41、51に送られた冷媒は、利用側膨張弁31、41、51によって減圧された後、利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7、8の合流ガス接続管65、75、85に送られる。
そして、合流ガス接続管65、75、85に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77、87及び低圧ガス接続管64、74、84を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られて合流した低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の冷房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の冷房負荷(すなわち、利用側熱交換器32、42、52の蒸発負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の凝縮量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内に溜まる液冷媒の量が増加して実質的な伝熱面積を減少することで凝縮能力が小さくなる。しかし、熱源側膨張弁24の開度を小さくする制御を行うと、熱源側膨張弁24の下流側(具体的には、熱源側膨張弁24と利用側冷媒回路12a、12b、12cとの間)の冷媒圧力が低下する傾向となって安定せず、熱源側冷媒回路12dの凝縮能力を小さくする制御を安定的に行うことが困難になる傾向にある。
これに対して、本実施形態の空気調和装置1では、圧縮機構21で圧縮され吐出された高圧のガス冷媒を、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる加圧回路111を設けている。そして、この加圧回路111の開閉弁111bは、冷房運転モードの場合(すなわち、第1切換機構22が凝縮運転切換状態になっている場合)に、開けられており、加圧管111aを通じて圧縮機構21の吐出側から熱源側膨張弁24の下流側に合流させることができるようになっている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くすることができるようになっている。しかし、加圧回路111を通じて高圧のガス冷媒を熱源側膨張弁24の下流側に合流させるだけでは、高圧のガス冷媒が合流されることにより、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、液冷媒連絡配管9から各利用側冷媒回路12a、12b、12cに冷媒を分岐する際に、利用側冷媒回路12a、12b、12c間で偏流が生じてしまう。
これに対して、本実施形態の空気調和装置1では、冷却器121を熱源側膨張弁24の下流側にさらに設けている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。また、本実施形態の空気調和装置1においては、加圧管111aは、熱源側膨張弁24とレシーバ25との間に接続されているため、熱源側膨張弁24の下流側の冷媒に高圧のガス冷媒が合流し、高圧のガス冷媒が合流されて温度が高くなった冷媒を冷却器121によって冷却するようになっている。このため、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。しかも、本実施形態の空気調和装置1においては、冷却回路122が設けられており、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧し、この冷媒を冷却器121の冷却源として使用しているため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。このため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になっている。そして、冷却回路122の冷却回路側膨張弁122bは、例えば、冷却器121の過熱度(冷却回路122の導出管122cに設けられた冷却回路出口温度センサ96によって検出される冷媒温度より演算)に基づいて開度調節する等、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の流量や温度に応じて開度調節されている。
<冷暖同時運転モード(蒸発負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3を冷房運転し、かつ、利用ユニット4、5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している際(蒸発運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図7に示されるように構成される(冷媒の流れについては、図7の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態(図7の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図7の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6においては、高圧ガス開閉弁66を閉止するとともに低圧ガス開閉弁67を開けることによって、利用ユニット3の利用側熱交換器32を蒸発器として機能させるとともに、利用ユニット3の利用側熱交換器32と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3においては、利用側膨張弁31は、例えば、利用側熱交換器32の過熱度(具体的には、液側温度センサ33で検出される冷媒温度とガス側温度センサ34で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット7、8においては、低圧ガス開閉弁77、87を閉止するとともに高圧ガス開閉弁76、86を開けることによって、利用ユニット4、5の利用側熱交換器42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット4、5においては、利用側膨張弁41、51は、例えば、利用側熱交換器42、52の過冷却度(具体的には、液側温度センサ43、53で検出される冷媒温度とガス側温度センサ44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、2つに分岐されて、各接続ユニット7、8の高圧ガス接続管73、83に送られる。接続ユニット7、8の高圧ガス接続管73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁76、86及び合流ガス接続管75、85を通じて利用ユニット4、5の利用側熱交換器42、52に送られる。
そして、利用側熱交換器42、52に送られた高圧のガス冷媒は、利用ユニット4、5の利用側熱交換器42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器42、52において凝縮された冷媒は、利用側膨張弁41、51を通過した後、接続ユニット7、8の液接続管71、81に送られる。
そして、液接続管71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒の一部は、接続ユニット6の液接続管61に送られる。そして、接続ユニット6の液接続管61に送られた冷媒は、利用ユニット3の利用側膨張弁31に送られる。
そして、利用側膨張弁31に送られた冷媒は、利用側膨張弁31によって減圧された後、利用側熱交換器32において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6の合流ガス接続管65に送られる。
そして、合流ガス接続管65に送られた低圧のガス冷媒は、低圧ガス開閉弁67及び低圧ガス接続管64を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。
一方、液冷媒連絡配管9から接続ユニット6及び利用ユニット3に送られる冷媒を除いた残りの冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じてレシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(蒸発負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、蒸発負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の暖房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3の冷房負荷と、利用ユニット4、5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の蒸発負荷を非常に小さくしなければならないため、上述の暖房運転モードよりも、熱源側熱交換器23内に冷凍機油が溜まり込みやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられているため、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している際に、図8に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図8の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図7に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、接続ユニット6,7、8及び液冷媒連絡配管9を介して暖房運転を行っている利用ユニット4、5から冷房運転を行っている利用ユニット3への冷媒の流れは確保されるが、液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図8参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図7参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を全て冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。
<冷暖同時運転モード(凝縮負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3、4を冷房運転し、かつ、利用ユニット5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している際(凝縮運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図9に示されるように構成される(冷媒の流れについては、図9の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図9の第1切換機構22の実線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図9の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7においては、高圧ガス開閉弁66、76を閉止するとともに低圧ガス開閉弁67、77を開けることによって、利用ユニット3、4の利用側熱交換器32、42を蒸発器として機能させるとともに、利用ユニット3、4の利用側熱交換器32、42と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4においては、利用側膨張弁31、41は、例えば、利用側熱交換器32、42の過熱度(具体的には、液側温度センサ33、43で検出される冷媒温度とガス側温度センサ34、44で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット8においては、低圧ガス開閉弁87を閉止するとともに高圧ガス開閉弁86を開けることによって、利用ユニット5の利用側熱交換器52を凝縮器として機能させるようにしている。利用ユニット5においては、利用側膨張弁51は、例えば、利用側熱交換器52の過冷却度(具体的には、液側温度センサ53で検出される冷媒温度とガス側温度センサ54で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22及び第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
一方、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、接続ユニット8の高圧ガス接続管83に送られる。接続ユニット8の高圧ガス接続管83に送られた高圧のガス冷媒は、高圧ガス開閉弁86及び合流ガス接続管85を通じて利用ユニット5の利用側熱交換器52に送られる。
そして、利用側熱交換器52に送られた高圧のガス冷媒は、利用ユニット5の利用側熱交換器52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器52において凝縮された冷媒は、利用側膨張弁51を通過した後、接続ユニット8の液接続管81に送られる。
そして、液接続管81に送られた冷媒は、液冷媒連絡配管9に送られて、第1切換機構22、熱源側熱交換器23、熱源側膨張弁24、レシーバ25、冷却器121及び液側閉鎖弁27を通じて液冷媒連絡配管9に送られた冷媒に合流される。
そして、この液冷媒連絡配管9を流れる冷媒は、2つに分岐されて、各接続ユニット6、7の液接続管61、71に送られる。そして、接続ユニット6、7の液接続管61、71に送られた冷媒は、利用ユニット3、4の利用側膨張弁31、41に送られる。
そして、利用側膨張弁31、41に送られた冷媒は、利用側膨張弁31、41によって減圧された後、利用側熱交換器32、42において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7の合流ガス接続管65、75に送られる。
そして、合流ガス接続管65、75に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77及び低圧ガス接続管64、74を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(凝縮負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、凝縮負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の冷房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3、4の冷房負荷と、利用ユニット5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の凝縮負荷を非常に小さくしなければならない。
しかし、本実施形態の空気調和装置1では、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12bに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12bにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。
(3)空気調和装置の特徴
本実施形態の空気調和装置1には、以下のような特徴がある。
(A)
本実施形態の空気調和装置1は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23を含んでおり、熱源側熱交換器23と利用側熱交換器32、42、52とが、熱源側切換機構としての第1切換機構22及び利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)によって、それぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路12を備えている。このため、第1切換機構22を蒸発運転切換状態にすることにより熱源側熱交換器23を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構21から吐出された冷媒は、高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管を通じて、接続ユニット6、7、8を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器32、42、52に送られて凝縮されて液冷媒連絡配管9を含む液冷媒管に送られる。そして、この冷媒は、熱源側膨張弁24を通過した後に熱源側熱交換器23において蒸発され、圧縮機構21に吸入される。ここで、第1切換機構22を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器23内を流れるため、利用側熱交換器32、42、52における空調負荷に応じて熱源側膨張弁24の開度を小さくして熱源側熱交換器23の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器23内に溜まり込むことになる。
しかし、この空気調和装置1は、第1バイパス回路102と、第1油戻し回路101とを備えているため、第1切換機構22を蒸発運転切換状態にして運転している際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態に切り換え、熱源側膨張弁24を閉止することによって、圧縮機構21から吐出される冷媒を熱源側熱交換器23に流入させて、第1油戻し回路101を介して熱源側熱交換器23内に溜まった冷凍機油を圧縮機構21の吸入側に戻す油回収運転を行うことができる。このような油戻回収運転を行うことによって、第1切換機構22を凝縮運転切換状態に切り換えるのにもかかわらず、接続ユニット6、7、8を蒸発運転切換状態に切り換えて冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置1では、利用側熱交換器32、42、52の空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器23内における冷媒の液面が低下しても、熱源側熱交換器23内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(B)
本実施形態の空気調和装置1では、熱源側熱交換器23として多数の流路23bが形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器23内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器23の各流路23bに冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置1においては、熱源側熱交換器23内に溜まった冷凍機油を、熱源側熱交換器23の上側から流入した冷媒とともに熱源側熱交換器23の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、第1油戻し回路101の設置が容易である。
(C)
本実施形態の空気調和装置1では、凝縮器として機能する熱源側熱交換器23において凝縮された冷媒が熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる際に、加圧回路111から高圧のガス冷媒が合流して加圧されて、熱源側膨張弁24の下流側の冷媒圧力が高くなる。ここで、従来の空気調和装置のように高圧のガス冷媒が合流させるだけでは、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、結果的に、熱源側膨張弁24の開度を十分に小さくすることができないが、空気調和装置1においては、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになる。
これにより、空気調和装置1では、複数の利用側冷媒回路12a、12b、12cの空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の凝縮能力を小さくする制御を行うとともに加圧回路111によって高圧のガス冷媒を合流させて加圧する制御を行っても、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくて済むようになるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を凝縮器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の凝縮能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の凝縮能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して複数の利用側冷媒回路全体の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(D)
本実施形態の空気調和装置1では、加圧回路111が熱源側膨張弁24と冷却器121との間に高圧のガス冷媒が合流するように接続されているため、高圧のガス冷媒が合流されて冷媒の温度が高くなった冷媒を冷却器121によって冷却することになる。これにより、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。
また、空気調和装置1では、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧したものを冷却器121の冷却源として使用しているため、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。これにより、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になる。
(E)
本実施形態の空気調和装置1では、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器23における蒸発能力を制御することができない。しかし、この空気調和装置1においては、熱源側膨張弁24によって熱源側熱交換器23の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器23の蒸発能力を制御する際の制御幅を確保することができる。
(4)変形例1
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅を拡大するために、第1油戻し回路101と第1バイパス回路102とを設けるようにしているが、上述のように、油回収運転時においては、熱源側膨張弁24を閉止しているため、液冷媒連絡配管9から熱源側熱交換器23に向かう冷媒の流れが停止してしまい、わずかな時間であるが、利用ユニット3、4、5のうち暖房運転を行っている利用ユニットの暖房運転が停止(暖房運転モードにおける利用ユニット3、4、5、図5参照)したり、又は、暖房能力が低下(冷暖同時運転モード(蒸発負荷)における利用ユニット4、5、図8参照)することになる。このため、本変形例の空気調和装置1では、図10に示されるように、利用側熱交換器32、42、52と熱源側熱交換器23とを接続する液冷媒管から冷媒を分岐して圧縮機構21の吸入側(具体的には、圧縮機構21の吸入側に接続された冷却回路122の導出管122c)に送ることが可能な第2バイパス回路103が設けられている。この第2バイパス回路103は、主として、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置と圧縮機構21の吸入側とを接続するバイパス管103aと、バイパス管103aに接続された開閉弁103bとを有している。バイパス管103aは、本実施形態においては、図10に示されるように、レシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けられている。このため、油回収運転時に開閉弁103bを開けると、レシーバ25の上部に溜まったガス状態の冷媒が優先的に圧縮機構21の吸入側に送られることになる。尚、バイパス管103aは、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置から圧縮機構21の吸入側に冷媒を送ることかできればよいため、例えば、レシーバ25ではなく、液冷媒管に直接接続されていてもよいが、圧縮機構21の吸入側に液状態の冷媒を送るのをできるだけ防ぐために、本実施形態のように、レシーバ25の上部に接続するのが望ましい。
このように、第2バイパス回路103を設けることによって、油回収運転中においても、暖房運転を行っている利用ユニットの利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。しかも、本実施形態のように、第2バイパス回路103をレシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けることによって、圧縮機構21の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
(5)変形例2
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅と、熱源側膨張弁24による熱源側熱交換器23の凝縮能力の制御の制御幅との両方を拡大するために、第1油戻し回路101、第1バイパス回路102、加圧回路111、冷却器121及び冷却回路122(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けるようにしているが、例えば、熱源側熱交換器23の凝縮能力の制御の制御幅は確保されているが、熱源側熱交換器23の蒸発能力の制御の制御幅のみを拡大することが必要な場合には、図11に示されるように、第1油戻し回路101及び第1バイパス回路102だけ(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けて、加圧回路111、冷却器121及び冷却回路122を省略してもよい。
(6)変形例3
上述の空気調和装置1においては、第1切換機構22及び第2切換機構26として四路切換弁を使用しているが、これに限定されず、例えば、図12に示されるように、第1切換機構22及び第2切換機構26として三方弁を使用してもよい。
本発明を利用すれば、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することができる。
本発明にかかる一実施形態の空気調和装置の概略の冷媒回路図である。 熱源側熱交換器の全体の概略構造を示す図である。 図2のC部分の拡大図であって、熱源側熱交換器の下部の概略構造を示す図である。 空気調和装置の暖房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の暖房運転モードにおける油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(凝縮負荷)における動作を説明する概略の冷媒回路図である。 変形例1にかかる空気調和装置の概略の冷媒回路図である。 変形例2にかかる空気調和装置の概略の冷媒回路図である。 変形例3にかかる空気調和装置の概略の冷媒回路図である。
符号の説明
1 空気調和装置
12 冷媒回路
21 圧縮機構
22 第1切換機構(熱源側切換機構)
23 熱源側熱交換器
24 熱源側膨張弁(膨張弁)
32、42、52 利用側熱交換器
66、76、86 高圧ガス開閉弁(利用側切換機構)
76、77、87 低圧ガス開閉弁(利用側切換機構)
101 第1油戻し回路(油戻し回路)
102 第1バイパス回路
103 第2バイパス回路
本発明は、空気調和装置、特に、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置に関する。
従来より、冷媒の蒸発器として冷媒が下側から流入して上側から流出するように構成された熱交換器を有する蒸気圧縮式の冷媒回路を備えた冷凍装置がある(例えば、特許文献1参照。)。この冷凍装置においては、蒸発器内に冷凍機油が溜まり込むのを防ぐため、冷媒よりも比重が小さいために2層に分離して冷媒の液面の上に浮いた状態で溜まった冷凍機油を冷媒の液面付近から抜き出して圧縮機の吸入側に戻すようにしている。
また、蒸気圧縮式の冷媒回路を備えた冷凍装置の一例として、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な蒸気圧縮式の冷媒回路を備えた冷暖同時運転が可能な空気調和装置がある(例えば、特許文献2参照。)。このような空気調和装置においては、複数の熱源側熱交換器が設けられるとともに、各熱源側熱交換器に流入する冷媒の流量を調節することができるように膨張弁が設けられている。そして、この空気調和装置において、例えば、暖房運転時や冷暖同時運転時等のように、熱源側熱交換器を蒸発器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、膨張弁の開度を小さくすることによって蒸発能力を小さくする制御を行い、さらに、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行っている。
また、上述の空気調和装置においては、例えば、冷房運転時や冷暖同時運転時に熱源側熱交換器を凝縮器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、熱源側熱交換器に接続された膨張弁の開度を小さくすることによって熱源側熱交換器内に溜まる液冷媒の量を増やして実質的な伝熱面積を減少させることで凝縮能力を小さくする制御を行っている。しかし、膨張弁の開度を小さくする制御を行うと、膨張弁の下流側(具体的には、膨張弁と利用側熱交換器との間)の冷媒圧力が低下する傾向となって安定せず、熱源側熱交換器の凝縮能力を小さくする制御を安定的に行うことができないという問題があった。これに対して、圧縮機で圧縮された高圧のガス冷媒を、膨張弁において減圧されて利用側熱交換器に送られる冷媒に合流させる加圧回路を設けることによって、膨張弁の下流側の冷媒圧力を高くする制御が提案されている(例えば、特許文献3参照。)。
特開昭63−204074号公報 特開平3−260561号公報 特開平3−129259号公報
上述の空気調和装置において、冷媒の蒸発器として機能する場合に冷媒が下側から流入して上側から流出するように構成されたプレート熱交換器等の熱交換器を熱源側熱交換器として使用する場合がある。この場合には、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐため、熱源側熱交換器内の冷媒の液面を一定以上のレベルになるように維持する必要がある。しかし、利用側熱交換器における空調負荷が非常に小さくなる場合等のように、熱源側熱交換器を蒸発能力の小さい蒸発器として機能させる場合においては、膨張弁の開度を小さくすることによって熱源側熱交換器を流れる冷媒量を減少させようとしても、熱源側熱交換器内の冷媒の液面の制約から膨張弁の開度をあまり小さくすることができないため、膨張弁の開度調節のみでは十分に蒸発能力を制御できず、結果的に、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。これに対して、蒸発能力を相殺するための熱源側熱交換器を設けることなく、液面の低下を許容しつつ熱源側熱交換器を蒸発能力の小さい蒸発器として機能させることができるようにするために、熱源側熱交換器を蒸発器として機能させて運転している際に、一時的に、熱源側熱交換器を凝縮器として機能させるように切り換えて冷媒が熱源側熱交換器の上側から下側に向かって流れるようにすることで、熱源側熱交換器に冷凍機油が溜まり込むのを防ぐ運転(油回収運転)を行うことも考えられるが、暖房運転(すなわち、凝縮器として機能)中の利用側熱交換器を一時的に冷房運転(すなわち、蒸発器として機能)に切り換えることになってしまうため、室内の快適性を損なうおそれがある。
また、上述の空気調和装置において、冷媒回路に加圧回路を設けることによって、熱源側熱交換器を冷媒の凝縮器として機能させる場合に、膨張弁において減圧されて利用側熱交換器に送られる冷媒に圧縮機で圧縮された高圧のガス冷媒を合流させるようにすると、膨張弁から利用側熱交換器に送られる冷媒が気液二相流になり、しかも、膨張弁の開度を小さくなる程、加圧回路から高圧のガス冷媒が合流された後の冷媒のガス分率が大きくなり、複数の利用側熱交換器間で偏流が生じてしまうため、結果的に、膨張弁の開度を十分に小さくすることができないという問題が生じている。この結果、熱源側熱交換器を冷媒の蒸発器として機能させる場合と同様に、複数の熱源側熱交換器を設けて、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁を閉止して凝縮器として機能する熱源側熱交換器の台数を減らすことによって凝縮能力を小さくしたり、複数の熱源側熱交換器の一部を蒸発器として機能させることにより凝縮器として機能する熱源側熱交換器の凝縮能力と相殺して凝縮能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で蒸発される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。
本発明の課題は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することにある。
第1の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁とを含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能である。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器において凝縮され膨張弁を通過した後に、利用側熱交換器に送られる。この冷媒は、利用側熱交換器において蒸発された後に、圧縮機構に吸入される。また、暖房運転等を行う場合のように熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、利用側熱交換器において凝縮され膨張弁を通過した後に、熱源側熱交換器に送られる。この冷媒は、熱源側熱交換器において蒸発された後に、圧縮機構に吸入される。ここで、熱源側熱交換器を蒸発器として機能させる運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側熱交換器を凝縮器として機能させる切り換えを行うにもかかわらず、利用側熱交換器を蒸発器に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第2の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁と、熱源側熱交換器を圧縮機構から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構と、圧縮機構の吐出側と熱源側切換機構との間に接続されており圧縮機構から吐出される冷媒を熱源側切換機構に流入する前に分岐することが可能な高圧ガス冷媒管と、利用側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構と、利用側熱交換器において蒸発される冷媒を圧縮機構の吸入側に送る低圧ガス冷媒管とを含んでいる。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように、熱源側切換機構を凝縮運転切換状態にすることにより熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器に送られて熱源側熱交換器において凝縮される。そして、この冷媒は、膨張弁を通過した後に液冷媒管を通じて利用側熱交換器に送られる。そして、この冷媒は、利用側切換機構を冷房運転切換状態にすることにより冷媒の蒸発器として機能する利用側熱交換器において蒸発された後に、低圧ガス冷媒管を通じて圧縮機構に吸入される。また、暖房運転等を行う場合のように、熱源側切換機構を蒸発運転切換状態にすることにより熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、高圧ガス冷媒管を通じて、利用側切換機構を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器に送られて凝縮されて液冷媒管に送られる。そして、この冷媒は、膨張弁を通過した後に熱源側熱交換器において蒸発され、圧縮機構に吸入される。ここで、熱源側切換機構を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側切換機構を凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構を蒸発運転切換状態に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第3の発明にかかる空気調和装置は、第1又は第2の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管から冷媒を分岐して圧縮機構の吸入側に送ることが可能な第2バイパス回路が設けられている。
この空気調和装置では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明にかかる空気調和装置は、第3の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管を流れる冷媒を溜めるレシーバがさらに設けられている。第2バイパス回路は、レシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられている。
この空気調和装置では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明にかかる空気調和装置は、第1〜第4の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、熱源側熱交換器内を流れる冷媒の流量制御とは関係なく一定量供給される水を熱源として使用している。
この空気調和装置では、熱源側熱交換器内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器における蒸発能力を制御することができない。しかし、この空気調和装置においては、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明にかかる空気調和装置は、第1〜第5の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、プレート式熱交換器である。
この空気調和装置では、熱源側熱交換器として多数の流路が形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器の各流路に冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置においては、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
第7の発明にかかる空気調和装置は、冷媒回路と油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器とを含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側熱交換器を蒸発器として機能させて運転している際に、熱源側熱交換器を凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側熱交換器を凝縮器として機能させる切り換えを行うにもかかわらず、利用側熱交換器を蒸発器に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
第8の発明にかかる空気調和装置は、第7の発明にかかる空気調和装置において、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能な第1バイパス回路をさらに備えている。そして、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスする。
この空気調和装置では、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスしているため、圧縮機構の吸入圧力を確保することができる。しかも、油戻し回路を通じて圧縮機構の吸入側に戻される冷凍機油を、第1バイパス回路を介してバイパスされる高圧のガス冷媒に混合することになるため、圧縮機構における液圧縮を防ぐことができる。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の発明では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第2の発明では、熱源側切換機構を蒸発運転切換状態にして運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第3の発明では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明では、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明では、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
第7の発明では、熱源側熱交換器を蒸発器として機能させて運転している際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
第8の発明では、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスしているため、圧縮機構の吸入圧力を確保するとともに圧縮機構における液圧縮を防ぐことができる。
以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明する。
(1)空気調和装置の構成
図1は、本発明にかかる一実施形態の空気調和装置1の概略の冷媒回路図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の冷暖房に使用される装置である。
空気調和装置1は、主として、1台の熱源ユニット2と、複数(本実施形態では、3台)の利用ユニット3、4、5と、各利用ユニット3、4、5に接続される接続ユニット6、7、8と、接続ユニット6、7、8を介して熱源ユニット2と利用ユニット3、4、5とを接続する冷媒連絡配管9、10、11とを備えており、例えば、ある空調空間については冷房運転を行いつつ他の空調空間については暖房運転を行う等のように、利用ユニット3、4、5が設置される屋内の空調空間の要求に応じて、冷暖同時運転が可能になるように構成されている。すなわち、本実施形態の空気調和装置1の蒸気圧縮式の冷媒回路12は、熱源ユニット2と、利用ユニット3、4、5と、接続ユニット6、7、8と、冷媒連絡配管9、10、11とが接続されることによって構成されている。
<利用ユニット>
利用ユニット3、4、5は、ビル等の屋内の天井に埋め込みや吊り下げ等、又は、屋内の壁面に壁掛け等により設置されている。利用ユニット3、4、5は、冷媒連絡配管9、10、11及び接続ユニット6、7、8を介して熱源ユニット2に接続されており、冷媒回路12の一部を構成している。
次に、利用ユニット3、4、5の構成について説明する。尚、利用ユニット3と利用ユニット4、5とは同様の構成であるため、ここでは、利用ユニット3の構成のみ説明し、利用ユニット4、5の構成については、それぞれ、利用ユニット3の各部を示す30番台の符号の代わりに40番台又は50番台の符号を付して、各部の説明を省略する。
利用ユニット3は、主として、冷媒回路12の一部を構成しており、利用側冷媒回路12a(利用ユニット4、5では、それぞれ、利用側冷媒回路12b、12c)を備えている。この利用側冷媒回路12aは、主として、利用側膨張弁31と、利用側熱交換器32とを備えている。本実施形態において、利用側膨張弁31は、利用側冷媒回路12a内を流れる冷媒の流量の調節等を行うために、利用側熱交換器32の液側に接続された電動膨張弁である。本実施形態において、利用側熱交換器32は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷媒と屋内空気との熱交換を行うための機器である。本実施形態において、利用ユニット3は、ユニット内に屋内空気を吸入して、熱交換した後に、供給空気として屋内に供給するための送風ファン(図示せず)を備えており、屋内空気と利用側熱交換器32を流れる冷媒とを熱交換させることが可能である。
また、利用ユニット3には、各種のセンサが設けられている。利用側熱交換器32の液側には液冷媒の温度を検出する液側温度センサ33が設けられており、利用側熱交換器32のガス側にはガス冷媒の温度を検出するガス側温度センサ34が設けられている。さらに、利用ユニット3には、ユニット内に吸入される屋内空気の温度を検出するRA吸入温度センサ35が設けられている。また、利用ユニット3は、利用ユニット3を構成する各部の動作を制御する利用側制御部36を備えている。そして、利用側制御部36は、利用ユニット3の制御を行うために設けられたマイクロコンピュータやメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2との間で制御信号等のやりとりを行うことができるようになっている。
<熱源ユニット>
熱源ユニット2は、ビル等の屋上等に設置されており、冷媒連絡配管9、10、11を介して利用ユニット3、4、5に接続されており、利用ユニット3、4、5の間で冷媒回路12を構成している。
次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、冷媒回路12の一部を構成しており、熱源側冷媒回路12dを備えている。この熱源側冷媒回路10dは、主として、圧縮機構21と、第1切換機構22と、熱源側熱交換器23と、
熱源側膨張弁24と、レシーバ25と、第2切換機構26と、液側閉鎖弁27と、高圧ガス側閉鎖弁28と、低圧ガス側閉鎖弁29と、第1油戻し回路101と、第1バイパス回路102と、加圧回路111と、冷却器121と、冷却回路122とを備えている。
圧縮機構21は、主として、圧縮機21aと、圧縮機21aの吐出側に接続された油分離器21bと、油分離器21bと圧縮機21aの吸入管21cとを接続する第2油戻し回路21dとを有している。圧縮機21aは、本実施形態において、インバータ制御により運転容量を可変することが可能な容積式圧縮機である。油分離器21bは、圧縮機21aにおいて圧縮されて吐出された高圧のガス冷媒に同伴する冷凍機油を分離する容器である。第2油戻し回路21dは、油分離器21bにおいて分離された冷凍機油を圧縮機21aに戻すための回路である。第2油戻し回路21dは、主として、油分離器21bと圧縮機21aの吸入管21cとを接続する油戻し管21eと、油戻し管21eに接続された油分離器21bにおいて分離された高圧の冷凍機油を減圧するキャピラリチューブ21fとを有している。キャピラリチューブ21fは、油分離器21bにおいて分離された高圧の冷凍機油を圧縮機21aの吸入側の冷媒圧力まで減圧する細管である。本実施形態において、圧縮機構21は、圧縮機が圧縮機21aの1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよい。
第1切換機構22は、熱源側熱交換器23を凝縮器として機能させる際(以下、凝縮運転切換状態とする)には圧縮機構21の吐出側と熱源側熱交換器23のガス側とを接続し、熱源側熱交換器23を蒸発器として機能させる際(以下、蒸発運転切換状態とする)には圧縮機構21の吸入側と熱源側熱交換器23のガス側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート22aは圧縮機構21の吐出側に接続されており、その第2ポート22bは熱源側熱交換器23のガス側に接続されており、その第3ポート22cは圧縮機構21の吸入側に接続されており、第4ポート22dはキャピラリチューブ91を介して圧縮機構21の吸入側に接続されている。そして、第1切換機構22は、上述のように、第1ポート22aと第2ポート22bとを接続するとともに、第3ポート22cと第4ポート22dとを接続(凝縮運転切換状態に対応、図1の第1切換機構22の実線を参照)したり、第2ポート22bと第3ポート22cとを接続するとともに、第1ポート22aと第4ポート22dとを接続(蒸発運転切換状態に対応、図1の第1切換機構22の破線を参照)する切り換えを行うことが可能である。
熱源側熱交換器23は、冷媒の蒸発器及び冷媒の凝縮器として機能させることが可能な熱交換器であり、本実施形態において、水を熱源として冷媒と熱交換するプレート熱交換器である。熱源側熱交換器23は、そのガス側が第1切換機構22の第2ポート22bに接続され、その液側が熱源側膨張弁24に接続されている。熱源側熱交換器23は、図2に示されるように、プレス加工等によって成形された複数のプレート部材23aをパッキン(図示せず)を介して重ね合わせることにより、各プレート部材23a間に上下方向に延びる複数の流路23b、23cが形成され、これらの複数の流路23b、23c内を冷媒と水とが交互に流れる(具体的には、冷媒が流路23b内を流れて、水が流路23c内を流れる、図2の矢印A及びB参照)ことによって熱交換を行うことができるように構成されている。そして、複数の流路23bは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられたガス側ノズル23d及び液側ノズル23eに接続されている。このガス側ノズル23dは第1切換機構22に接続されており、液側ノズル23eは熱源側膨張弁24に接続されている。これにより、冷媒は、熱源側熱交換器23が蒸発器として機能する場合には、液側ノズル23e(すなわち、下側)から流入してガス側ノズル23d(すなわち、上側)から流出し、熱源側熱交換器23が凝縮器として機能する場合には、ガス側ノズル23d(すなわち、上側)から流入して液側ノズル23e(すなわち、下側)から流出することになる(図2の矢印A参照)。また、複数の流路23cは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられた水入口ノズル23f及び水出口ノズル23gに接続されている。また、熱源としての水は、本実施形態において、空気調和装置1の外部に設置された冷水塔設備やボイラー設備からの水配管(図示せず)を通じて熱源側熱交換器23の水入口ノズル23fから供給水CWSとして流入し、冷媒と熱交換を行った後に、水出口ノズル23gから流出して冷水塔設備やボイラー設備に排出水CWRとして戻されるようになっている。ここで、冷水塔設備やボイラー設備から供給される水は、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給されている。
熱源側膨張弁24は、本実施形態において、液冷媒連絡配管9を介して熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒の流量の調節等を行うことが可能な電動膨張弁であり、熱源側熱交換器23の液側に接続されている。
レシーバ25は、熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒を一時的に溜めるための容器である。レシーバ25は、本実施形態において、熱源側膨張弁24と冷却器121との間に接続されている。
第2切換機構26は、熱源ユニット2を冷暖同時機用の熱源ユニットとして使用する場合であって高圧のガス冷媒を利用側冷媒回路12a、12b、12cに送る際(以下、暖房負荷要求運転状態とする)には、圧縮機構21の吐出側と高圧ガス側閉鎖弁28とを接続し、熱源ユニット2を冷暖切替機用の熱源ユニットとして使用する場合であって冷房運転を行う際には、高圧ガス側閉鎖弁28と圧縮機構21の吸入側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート26aは圧縮機構21の吐出側に接続されており、その第2ポート26bはキャピラリチューブ92を介して圧縮機構21の吸入側に接続されており、その第3ポート26cは圧縮機構21の吸入側に接続されており、その第4ポート26dは高圧ガス側閉鎖弁28に接続されている。そして、第2切換機構26は、上述のように、第1ポート26aと第2ポート26bとを接続するとともに、第3ポート26cと第4ポート26dとを接続(冷暖切替時冷房運転状態に対応、図1の第2切換機構26の実線を参照)したり、第2ポート26bと第3ポート26cとを接続するとともに、第1ポート26aと第4ポート26dとを接続(暖房負荷要求運転状態に対応、図1の第2切換機構26の破線を参照)する切り換えを行うことが可能である。
液側閉鎖弁27、高圧ガス側閉鎖弁28及び低圧ガス側閉鎖弁29は、外部の機器・配管(具体的には、冷媒連絡配管9、10及び11)との接続口に設けられた弁である。液側閉鎖弁27は、冷却器121に接続されている。高圧ガス側閉鎖弁28は、第2切換機構26の第4ポート26dに接続されている。低圧ガス側閉鎖弁29は、圧縮機構21の吸入側に接続されている。
第1油戻し回路101は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続するように設けられている。第1油戻し回路101は、主として、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続する油戻し管101aと、油戻し管101aに接続された開閉弁101bと、逆止弁101cと、キャピラリチューブ101dとを有している。油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられており、本実施形態においては、図3に示されるように、熱源側熱交換器23の下部に設けられた液側ノズル23eの管内を通じて熱源側熱交換器23の冷媒が流れる流路23b内まで延びる配管である。ここで、熱源側熱交換器23には、複数の流路23b間を連通させるために、各プレート部材23aに連通孔23hが設けられている(複数の流路23c間も同様)。このため、油戻し管101aは、複数の流路23bを貫通するように設けられていてもよい(図3の破線で示される油戻し管101a参照)。尚、油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられていればよいため、熱源側熱交換器23の液側ノズル23eや熱源側熱交換器23と熱源側膨張弁24とを接続する配管に設けられていてもよい。また、油戻し管101aの他端は、本実施形態において、圧縮機構21の吸入側に接続されている。開閉弁101bは、本実施形態において、必要に応じて第1油戻し回路101を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。逆止弁101cは、冷媒及び冷凍機油が熱源側熱交換器23の下部から圧縮機構21の吸入側に向かって油戻し管101a内を流れることをのみを許容する弁である。キャピラリチューブ101dは、熱源側熱交換器23の下部から抜き出された冷媒及び冷凍機油を圧縮機構21の吸入側の冷媒圧力まで減圧する細管である。
第1バイパス回路102は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられている。第1バイパス回路102は、主として、圧縮機構21から吐出側と圧縮機構21の吸入側とを接続するバイパス管102aと、バイパス管102aに接続された開閉弁102bとを有している。バイパス管102aは、本実施形態においては、図1に示されるように、一端が油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに接続されており、他端が圧縮機構21の吸入側に接続されており、油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに設けられたキャピラリチューブ21fをバイパスするように設けられている。このため、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21から吐出される冷媒は、油分離器21b及び油戻し管21eを通じて第1バイパス回路102に流入し、圧縮機構21の吸入側に戻されることになる。尚、バイパス管102aは、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられていればよいため、例えば、油分離器21bの上流側や下流側の位置から圧縮機構21の吸入側に冷媒を流すことができるように設けられていてもよい。開閉弁102bは、本実施形態において、必要に応じて第1バイパス回路102を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。
加圧回路111は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、圧縮機構21において圧縮された高圧のガス冷媒を、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧された後に利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる回路である。加圧回路111は、主として、圧縮機構21の吐出側と熱源側膨張弁24の下流側(すなわち、熱源側膨張弁24と液側閉鎖弁27との間)とを接続する加圧管111aと、加圧管111aに接続された開閉弁111bと、逆止弁111cと、キャピラリチューブ111dとを有している。加圧管111aは、本実施形態において、一端が圧縮機構21の油分離器21bの出口と第1及び第2切換機構22、26の第1ポート22a、26aとの間に接続されている。また、加圧管111aの他端は、本実施形態において、熱源側膨張弁24とレシーバ25との間に接続されている。開閉弁111bは、本実施形態において、必要に応じて加圧回路111を使用できるようにするために接続されており、冷媒の流通及び遮断が可能な電磁弁である。逆止弁111cは、冷媒が圧縮機構21の吐出側から熱源側膨張弁24の下流側に向かって加圧管111a内を流れることをのみを許容する弁である。キャピラリチューブ111dは、圧縮機構21の吐出側から抜き出された冷媒を熱源側膨張弁24の下流側の冷媒圧力まで減圧する細管である。
冷却器121は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23において凝縮された後に、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却する熱交換器である。冷却器121は、本実施形態において、レシーバ25と液側閉鎖弁27との間に接続されている。言い換えれば、加圧回路111は、加圧管111aが熱源側膨張弁24と冷却器121との間に接続されて、高圧のガス冷媒が熱源側膨張弁24において減圧された冷媒に合流するように接続されている。冷却器121としては、例えば、2重管式の熱交換器を用いることが可能である。
冷却回路122は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を熱源側冷媒回路12dから分岐させて冷却器121に導入し、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却した後、圧縮機構21の吸入側に戻すように熱源側冷媒回路12dに接続された回路である。冷却回路122は、主として、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を冷却器121に導入する導入管122aと、導入管122aに接続された冷却回路側膨張弁122bと、冷却器121を通過した冷媒を圧縮機構21の吸入側に戻す導出管122cとを有している。導入管122aは、本実施形態において、一端がレシーバ25と冷却器121との間との間に接続されている。また、導入管122aの他端は、本実施形態において、冷却器121の冷却回路122側の入口に接続されている。冷却回路側膨張弁122bは、本実施形態において、必要に応じて冷却回路122を使用できるようにするために接続されており、冷却回路122を流れる冷媒の流量を調節することが可能な電動膨張弁である。導出管122cは、本実施形態において、一端が冷却器121の冷却回路122側の出口に接続されている。また、導出管122cは、本実施形態において、他端が圧縮機構21の吸入側に接続されている。
また、熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2は、圧縮機構21の吸入圧力を検出する吸入圧力センサ93と、圧縮機構21の吐出圧力を検出する吐出圧力センサ94と、圧縮機構21の吐出側の冷媒の吐出温度を検出する吐出温度センサ95と、冷却回路122の導出管122cを流れる冷媒の温度を検出する冷却回路出口温度センサ96とが設けられている。また、熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源側制御部97を備えている。そして、熱源側制御部97は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3、4、5の利用側制御部36、46、56との間で制御信号等のやりとりを行うことができるようになっている。
<接続ユニット>
接続ユニット6、7、8は、ビル等の屋内に利用ユニット3、4、5とともに設置されている。接続ユニット6、7、8は、冷媒連絡配管9、10、11とともに、利用ユニット3、4、5と熱源ユニット2との間に介在しており、冷媒回路12の一部を構成している。
次に、接続ユニット6、7、8の構成について説明する。尚、接続ユニット6と接続ユニット7、8とは同様の構成であるため、ここでは、接続ユニット6の構成のみ説明し、接続ユニット7、8の構成については、それぞれ、接続ユニット6の各部を示す60番台の符号の代わりに70番台又は80番台の符号を付して、各部の説明を省略する。
接続ユニット6は、主として、主として、冷媒回路12の一部を構成しており、接続側冷媒回路12e(接続ユニット7、8では、それぞれ、接続側冷媒回路12f、12g)を備えている。この接続側冷媒回路12eは、主として、液接続管61と、ガス接続管62と、高圧ガス開閉弁66と、低圧ガス開閉弁67とを有している。本実施形態において、液接続管61は、液冷媒連絡配管9と利用側冷媒回路12aの利用側膨張弁31とを接続している。ガス接続管62は、高圧ガス冷媒連絡配管10に接続された高圧ガス接続管63と、低圧ガス冷媒連絡配管11に接続された低圧ガス接続管64と、高圧ガス接続管63と低圧ガス接続管64とを合流させる合流ガス接続管65とを有している。合流ガス接続管65は、利用側冷媒回路12aの利用側熱交換器32のガス側に接続されている。そして、高圧ガス開閉弁66は、本実施形態において、高圧ガス接続管63に接続されており、冷媒の流通及び遮断が可能な電磁弁である。低圧ガス開閉弁67は、本実施形態において、低圧ガス接続管64に接続されており、冷媒の流通及び遮断が可能な電磁弁である。これにより、接続ユニット6は、利用ユニット3が冷房運転を行う際(以下、冷房運転切換状態とする)には、高圧ガス開閉弁66を閉止し、かつ、低圧ガス開閉弁67を開けた状態にして、液冷媒連絡配管9を通じて液接続管61に流入する冷媒を利用側冷媒回路12aの利用側膨張弁31に送り、利用側膨張弁31で減圧され利用側熱交換器32において蒸発された後に、合流ガス接続管65及び低圧ガス接続管64を通じて低圧ガス冷媒連絡配管11に戻すように機能することができる。また、接続ユニット6は、利用ユニット3が暖房運転を行う際(以下、暖房運転切換状態とする)には、低圧ガス開閉弁67を閉止し、かつ、高圧ガス開閉弁66を開けた状態にして、高圧ガス冷媒連絡配管10を通じて高圧ガス接続管63及び合流ガス接続管65に流入する冷媒を利用側冷媒回路12aの利用側熱交換器32のガス側に送り、利用側熱交換器32において凝縮され利用側膨張弁31で減圧された後に、液接続管61を通じて液冷媒連絡配管9に戻すように機能することができる。また、接続ユニット6は、接続ユニット6を構成する各部の動作を制御する接続側制御部68を備えている。そして、接続側制御部68は、接続ユニット6の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3の利用側制御部36との間で制御信号等のやりとりを行うことができるようになっている。
以上のように、利用側冷媒回路12a、12b、12cと、熱源側冷媒回路12dと、冷媒連絡配管9、10、11と、接続側冷媒回路12e、12f、12gとが接続されて、空気調和装置1の冷媒回路12が構成されている。つまり、この冷媒回路12は、圧縮機構21と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23と、利用側熱交換器32、42、52と、熱源側熱交換器23と利用側熱交換器32、42、52とを接続する液冷媒連絡配管9を含む液冷媒管と、液冷媒管に設けられる熱源側膨張弁24と、熱源側熱交換器23を圧縮機構21から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器23を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構としての第1切換機構22と、圧縮機構21の吐出側と第1切換機構22との間に接続されており圧縮機構21から吐出される冷媒を第1切換機構22に流入する前に分岐することが可能な高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管と、利用側熱交換器32、42、52を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器32、42、52を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)と、利用側熱交換器32、42、52において蒸発される冷媒を圧縮機構21の吸入側に送る低圧ガス冷媒連絡配管11を含む低圧ガス冷媒管とを備えており、熱源側熱交換器23と利用側熱交換器32、42、52とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能になっている。これにより、本実施形態の空気調和装置1では、例えば、利用ユニット3、4が冷房運転を行いつつ、利用ユニット5が暖房運転を行う等の、いわゆる、冷暖同時運転を行うことが可能になっている。
そして、本実施形態の空気調和装置1では、後述のように、熱源側熱交換器23を蒸発器として機能させる運転をしている際に、第1油戻し回路101及び第1バイパス回路102を用いて油回収運転を行うことで、熱源側熱交換器23内に冷凍器油が溜まり込むのを防ぐことができるようになっているため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の蒸発能力の制御幅を得ることができるようになっている。また、空気調和装置1では、後述のように、熱源側熱交換器23を凝縮器として機能させる際に、加圧回路111及び冷却器121を用いることによって、熱源側熱交換器23の凝縮能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の凝縮能力の制御幅を得ることができるようになっている。これにより、本実施形態の空気調和装置1では、従来の空気調和装置において、複数台設けられていた熱源側熱交換器の単一化が実現されている。
(2)空気調和装置の動作
次に、本実施形態の空気調和装置1の動作について説明する。
本実施形態の空気調和装置1の運転モードは、各利用ユニット3、4、5の空調負荷に応じて、利用ユニット3、4、5の全て暖房運転を行う暖房運転モードと、利用ユニット3、4、5の全てが冷房運転を行う冷房運転モードと、利用ユニット3、4、5の一部が冷房運転を行いつつ他の利用ユニットが暖房運転を行う冷暖房同時運転モードとに分けることができる。また、冷暖同時運転モードについては、利用ユニット3、4、5全体の空調負荷により、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している場合(蒸発運転切換状態)と、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している場合(凝縮運転切換状態)とに運転モードを分けることができる。
以下、空気調和装置1の4つの運転モードにおける動作について説明する。
<暖房運転モード>
利用ユニット3、4、5の全てを暖房運転する際、空気調和装置1の冷媒回路12は、図4に示されるように構成される(冷媒の流れについては、図4の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を蒸発運転切換状態(図4の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図4の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット3、4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6、7、8においては、低圧ガス開閉弁67、77、87を閉止するとともに高圧ガス開閉弁66、76、86を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過冷却度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、3つに分岐されて、各接続ユニット6、7、8の高圧ガス接続管63、73、83に送られる。接続ユニット6、7、8の高圧ガス接続管63、73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁66、76、86及び合流ガス接続管65、75、85を通じて、利用ユニット3、4、5の利用側熱交換器32、42、52に送られる。
そして、利用側熱交換器32、42、52に送られた高圧のガス冷媒は、利用ユニット3、4、5の利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器32、42、52において凝縮された冷媒は、利用側膨張弁31、41、51を通過した後、接続ユニット6、7、8の液接続管61、71、81に送られる。
そして、液接続管61、71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じて、レシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、暖房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の暖房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の暖房負荷(すなわち、利用側熱交換器32、42、52の凝縮負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の蒸発量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内における冷媒の液面が低下することになる。すると、本実施形態の熱源側熱交換器23のように、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱交換器(図2及び図3参照)では、蒸発された冷媒とともに冷凍機油が同伴して排出されにくくなり、冷凍機油の溜まり込みが生じやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられている。そして、この空気調和装置1では、第1切換機構22を蒸発運転切換状態にして運転している際に、図5に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図5の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図4に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、第2切換機構26に送られていた高圧のガス冷媒は、第2切換機構26から高圧ガス冷媒連絡配管10、接続ユニット6、7、8、利用ユニット3、4、5及び液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されるため、第1バイパス回路102を通じて圧縮機構21の吸入側に送られることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図5参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図4参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。例えば、油回収運転を行う条件として、第1切換機構22が蒸発運転切換状態であることに加えて、熱源側膨張弁24が所定開度以下であることを加えることができる。この所定開度は、熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態となる熱源側膨張弁24の開度を実験的に見い出し、この実験的に見い出された開度に基づいて決定される。
<冷房運転モード>
利用ユニット3、4、5の全てを冷房運転する際、空気調和装置1の冷媒回路12は、図6に示されるように構成される(冷媒の流れについては、図6の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図6の第1切換機構22の実線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7、8においては、高圧ガス開閉弁66、76、86を閉止するとともに低圧ガス開閉弁67、77、87を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を蒸発器として機能させるとともに、利用ユニット3、4、5の利用側熱交換器32、42、52と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過熱度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
そして、液冷媒連絡配管9に送られた冷媒は、3つに分岐されて、各接続ユニット6、7、8の液接続管61、71、81に送られる。そして、接続ユニット6、7、8の液接続管61、71、81に送られた冷媒は、利用ユニット3、4、5の利用側膨張弁31、41、51に送られる。
そして、利用側膨張弁31、41、51に送られた冷媒は、利用側膨張弁31、41、51によって減圧された後、利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7、8の合流ガス接続管65、75、85に送られる。
そして、合流ガス接続管65、75、85に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77、87及び低圧ガス接続管64、74、84を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られて合流した低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の冷房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の冷房負荷(すなわち、利用側熱交換器32、42、52の蒸発負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の凝縮量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内に溜まる液冷媒の量が増加して実質的な伝熱面積を減少することで凝縮能力が小さくなる。しかし、熱源側膨張弁24の開度を小さくする制御を行うと、熱源側膨張弁24の下流側(具体的には、熱源側膨張弁24と利用側冷媒回路12a、12b、12cとの間)の冷媒圧力が低下する傾向となって安定せず、熱源側冷媒回路12dの凝縮能力を小さくする制御を安定的に行うことが困難になる傾向にある。
これに対して、本実施形態の空気調和装置1では、圧縮機構21で圧縮され吐出された高圧のガス冷媒を、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる加圧回路111を設けている。そして、この加圧回路111の開閉弁111bは、冷房運転モードの場合(すなわち、第1切換機構22が凝縮運転切換状態になっている場合)に、開けられており、加圧管111aを通じて圧縮機構21の吐出側から熱源側膨張弁24の下流側に合流させることができるようになっている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くすることができるようになっている。しかし、加圧回路111を通じて高圧のガス冷媒を熱源側膨張弁24の下流側に合流させるだけでは、高圧のガス冷媒が合流されることにより、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、液冷媒連絡配管9から各利用側冷媒回路12a、12b、12cに冷媒を分岐する際に、利用側冷媒回路12a、12b、12c間で偏流が生じてしまう。
これに対して、本実施形態の空気調和装置1では、冷却器121を熱源側膨張弁24の下流側にさらに設けている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。また、本実施形態の空気調和装置1においては、加圧管111aは、熱源側膨張弁24とレシーバ25との間に接続されているため、熱源側膨張弁24の下流側の冷媒に高圧のガス冷媒が合流し、高圧のガス冷媒が合流されて温度が高くなった冷媒を冷却器121によって冷却するようになっている。このため、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。しかも、本実施形態の空気調和装置1においては、冷却回路122が設けられており、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧し、この冷媒を冷却器121の冷却源として使用しているため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。このため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になっている。そして、冷却回路122の冷却回路側膨張弁122bは、例えば、冷却器121の過熱度(冷却回路122の導出管122cに設けられた冷却回路出口温度センサ96によって検出される冷媒温度より演算)に基づいて開度調節する等、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の流量や温度に応じて開度調節されている。
<冷暖同時運転モード(蒸発負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3を冷房運転し、かつ、利用ユニット4、5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している際(蒸発運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図7に示されるように構成される(冷媒の流れについては、図7の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態(図7の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図7の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6においては、高圧ガス開閉弁66を閉止するとともに低圧ガス開閉弁67を開けることによって、利用ユニット3の利用側熱交換器32を蒸発器として機能させるとともに、利用ユニット3の利用側熱交換器32と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3においては、利用側膨張弁31は、例えば、利用側熱交換器32の過熱度(具体的には、液側温度センサ33で検出される冷媒温度とガス側温度センサ34で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット7、8においては、低圧ガス開閉弁77、87を閉止するとともに高圧ガス開閉弁76、86を開けることによって、利用ユニット4、5の利用側熱交換器42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット4、5においては、利用側膨張弁41、51は、例えば、利用側熱交換器42、52の過冷却度(具体的には、液側温度センサ43、53で検出される冷媒温度とガス側温度センサ44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、2つに分岐されて、各接続ユニット7、8の高圧ガス接続管73、83に送られる。接続ユニット7、8の高圧ガス接続管73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁76、86及び合流ガス接続管75、85を通じて利用ユニット4、5の利用側熱交換器42、52に送られる。
そして、利用側熱交換器42、52に送られた高圧のガス冷媒は、利用ユニット4、5の利用側熱交換器42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器42、52において凝縮された冷媒は、利用側膨張弁41、51を通過した後、接続ユニット7、8の液接続管71、81に送られる。
そして、液接続管71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒の一部は、接続ユニット6の液接続管61に送られる。そして、接続ユニット6の液接続管61に送られた冷媒は、利用ユニット3の利用側膨張弁31に送られる。
そして、利用側膨張弁31に送られた冷媒は、利用側膨張弁31によって減圧された後、利用側熱交換器32において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6の合流ガス接続管65に送られる。
そして、合流ガス接続管65に送られた低圧のガス冷媒は、低圧ガス開閉弁67及び低圧ガス接続管64を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。
一方、液冷媒連絡配管9から接続ユニット6及び利用ユニット3に送られる冷媒を除いた残りの冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じてレシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(蒸発負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、蒸発負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の暖房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3の冷房負荷と、利用ユニット4、5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の蒸発負荷を非常に小さくしなければならないため、上述の暖房運転モードよりも、熱源側熱交換器23内に冷凍機油が溜まり込みやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられているため、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している際に、図8に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図8の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図7に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、接続ユニット6,7、8及び液冷媒連絡配管9を介して暖房運転を行っている利用ユニット4、5から冷房運転を行っている利用ユニット3への冷媒の流れは確保されるが、液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図8参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図7参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を全て冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。
<冷暖同時運転モード(凝縮負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3、4を冷房運転し、かつ、利用ユニット5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している際(凝縮運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図9に示されるように構成される(冷媒の流れについては、図9の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図9の第1切換機構22の実線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図9の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7においては、高圧ガス開閉弁66、76を閉止するとともに低圧ガス開閉弁67、77を開けることによって、利用ユニット3、4の利用側熱交換器32、42を蒸発器として機能させるとともに、利用ユニット3、4の利用側熱交換器32、42と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4においては、利用側膨張弁31、41は、例えば、利用側熱交換器32、42の過熱度(具体的には、液側温度センサ33、43で検出される冷媒温度とガス側温度センサ34、44で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット8においては、低圧ガス開閉弁87を閉止するとともに高圧ガス開閉弁86を開けることによって、利用ユニット5の利用側熱交換器52を凝縮器として機能させるようにしている。利用ユニット5においては、利用側膨張弁51は、例えば、利用側熱交換器52の過冷却度(具体的には、液側温度センサ53で検出される冷媒温度とガス側温度センサ54で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22及び第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
一方、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、接続ユニット8の高圧ガス接続管83に送られる。接続ユニット8の高圧ガス接続管83に送られた高圧のガス冷媒は、高圧ガス開閉弁86及び合流ガス接続管85を通じて利用ユニット5の利用側熱交換器52に送られる。
そして、利用側熱交換器52に送られた高圧のガス冷媒は、利用ユニット5の利用側熱交換器52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器52において凝縮された冷媒は、利用側膨張弁51を通過した後、接続ユニット8の液接続管81に送られる。
そして、液接続管81に送られた冷媒は、液冷媒連絡配管9に送られて、第1切換機構22、熱源側熱交換器23、熱源側膨張弁24、レシーバ25、冷却器121及び液側閉鎖弁27を通じて液冷媒連絡配管9に送られた冷媒に合流される。
そして、この液冷媒連絡配管9を流れる冷媒は、2つに分岐されて、各接続ユニット6、7の液接続管61、71に送られる。そして、接続ユニット6、7の液接続管61、71に送られた冷媒は、利用ユニット3、4の利用側膨張弁31、41に送られる。
そして、利用側膨張弁31、41に送られた冷媒は、利用側膨張弁31、41によって減圧された後、利用側熱交換器32、42において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7の合流ガス接続管65、75に送られる。
そして、合流ガス接続管65、75に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77及び低圧ガス接続管64、74を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(凝縮負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、凝縮負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の冷房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3、4の冷房負荷と、利用ユニット5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の凝縮負荷を非常に小さくしなければならない。
しかし、本実施形態の空気調和装置1では、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12bに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12bにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。
(3)空気調和装置の特徴
本実施形態の空気調和装置1には、以下のような特徴がある。
(A)
本実施形態の空気調和装置1は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23を含んでおり、熱源側熱交換器23と利用側熱交換器32、42、52とが、熱源側切換機構としての第1切換機構22及び利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)によって、それぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路12を備えている。このため、第1切換機構22を蒸発運転切換状態にすることにより熱源側熱交換器23を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構21から吐出された冷媒は、高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管を通じて、接続ユニット6、7、8を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器32、42、52に送られて凝縮されて液冷媒連絡配管9を含む液冷媒管に送られる。そして、この冷媒は、熱源側膨張弁24を通過した後に熱源側熱交換器23において蒸発され、圧縮機構21に吸入される。ここで、第1切換機構22を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器23内を流れるため、利用側熱交換器32、42、52における空調負荷に応じて熱源側膨張弁24の開度を小さくして熱源側熱交換器23の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器23内に溜まり込むことになる。
しかし、この空気調和装置1は、第1バイパス回路102と、第1油戻し回路101とを備えているため、第1切換機構22を蒸発運転切換状態にして運転している際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態に切り換え、熱源側膨張弁24を閉止することによって、圧縮機構21から吐出される冷媒を熱源側熱交換器23に流入させて、第1油戻し回路101を介して熱源側熱交換器23内に溜まった冷凍機油を圧縮機構21の吸入側に戻す油回収運転を行うことができる。このような油戻回収運転を行うことによって、第1切換機構22を凝縮運転切換状態に切り換えるのにもかかわらず、接続ユニット6、7、8を蒸発運転切換状態に切り換えて冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置1では、利用側熱交換器32、42、52の空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器23内における冷媒の液面が低下しても、熱源側熱交換器23内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(B)
本実施形態の空気調和装置1では、熱源側熱交換器23として多数の流路23bが形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器23内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器23の各流路23bに冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置1においては、熱源側熱交換器23内に溜まった冷凍機油を、熱源側熱交換器23の上側から流入した冷媒とともに熱源側熱交換器23の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、第1油戻し回路101の設置が容易である。
(C)
本実施形態の空気調和装置1では、凝縮器として機能する熱源側熱交換器23において凝縮された冷媒が熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる際に、加圧回路111から高圧のガス冷媒が合流して加圧されて、熱源側膨張弁24の下流側の冷媒圧力が高くなる。ここで、従来の空気調和装置のように高圧のガス冷媒が合流させるだけでは、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、結果的に、熱源側膨張弁24の開度を十分に小さくすることができないが、空気調和装置1においては、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになる。
これにより、空気調和装置1では、複数の利用側冷媒回路12a、12b、12cの空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の凝縮能力を小さくする制御を行うとともに加圧回路111によって高圧のガス冷媒を合流させて加圧する制御を行っても、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくて済むようになるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を凝縮器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の凝縮能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の凝縮能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して複数の利用側冷媒回路全体の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(D)
本実施形態の空気調和装置1では、加圧回路111が熱源側膨張弁24と冷却器121との間に高圧のガス冷媒が合流するように接続されているため、高圧のガス冷媒が合流されて冷媒の温度が高くなった冷媒を冷却器121によって冷却することになる。これにより、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。
また、空気調和装置1では、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧したものを冷却器121の冷却源として使用しているため、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。これにより、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になる。
(E)
本実施形態の空気調和装置1では、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器23における蒸発能力を制御することができない。しかし、この空気調和装置1においては、熱源側膨張弁24によって熱源側熱交換器23の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器23の蒸発能力を制御する際の制御幅を確保することができる。
(4)変形例1
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅を拡大するために、第1油戻し回路101と第1バイパス回路102とを設けるようにしているが、上述のように、油回収運転時においては、熱源側膨張弁24を閉止しているため、液冷媒連絡配管9から熱源側熱交換器23に向かう冷媒の流れが停止してしまい、わずかな時間であるが、利用ユニット3、4、5のうち暖房運転を行っている利用ユニットの暖房運転が停止(暖房運転モードにおける利用ユニット3、4、5、図5参照)したり、又は、暖房能力が低下(冷暖同時運転モード(蒸発負荷)における利用ユニット4、5、図8参照)することになる。このため、本変形例の空気調和装置1では、図10に示されるように、利用側熱交換器32、42、52と熱源側熱交換器23とを接続する液冷媒管から冷媒を分岐して圧縮機構21の吸入側(具体的には、圧縮機構21の吸入側に接続された冷却回路122の導出管122c)に送ることが可能な第2バイパス回路103が設けられている。この第2バイパス回路103は、主として、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置と圧縮機構21の吸入側とを接続するバイパス管103aと、バイパス管103aに接続された開閉弁103bとを有している。バイパス管103aは、本実施形態においては、図10に示されるように、レシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けられている。このため、油回収運転時に開閉弁103bを開けると、レシーバ25の上部に溜まったガス状態の冷媒が優先的に圧縮機構21の吸入側に送られることになる。尚、バイパス管103aは、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置から圧縮機構21の吸入側に冷媒を送ることかできればよいため、例えば、レシーバ25ではなく、液冷媒管に直接接続されていてもよいが、圧縮機構21の吸入側に液状態の冷媒を送るのをできるだけ防ぐために、本実施形態のように、レシーバ25の上部に接続するのが望ましい。
このように、第2バイパス回路103を設けることによって、油回収運転中においても、暖房運転を行っている利用ユニットの利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。しかも、本実施形態のように、第2バイパス回路103をレシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けることによって、圧縮機構21の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
(5)変形例2
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅と、熱源側膨張弁24による熱源側熱交換器23の凝縮能力の制御の制御幅との両方を拡大するために、第1油戻し回路101、第1バイパス回路102、加圧回路111、冷却器121及び冷却回路122(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けるようにしているが、例えば、熱源側熱交換器23の凝縮能力の制御の制御幅は確保されているが、熱源側熱交換器23の蒸発能力の制御の制御幅のみを拡大することが必要な場合には、図11に示されるように、第1油戻し回路101及び第1バイパス回路102だけ(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けて、加圧回路111、冷却器121及び冷却回路122を省略してもよい。
(6)変形例3
上述の空気調和装置1においては、第1切換機構22及び第2切換機構26として四路切換弁を使用しているが、これに限定されず、例えば、図12に示されるように、第1切換機構22及び第2切換機構26として三方弁を使用してもよい。
本発明を利用すれば、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することができる。
本発明にかかる一実施形態の空気調和装置の概略の冷媒回路図である。 熱源側熱交換器の全体の概略構造を示す図である。 図2のC部分の拡大図であって、熱源側熱交換器の下部の概略構造を示す図である。 空気調和装置の暖房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の暖房運転モードにおける油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(凝縮負荷)における動作を説明する概略の冷媒回路図である。 変形例1にかかる空気調和装置の概略の冷媒回路図である。 変形例2にかかる空気調和装置の概略の冷媒回路図である。 変形例3にかかる空気調和装置の概略の冷媒回路図である。
符号の説明
1 空気調和装置
12 冷媒回路
21 圧縮機構
22 第1切換機構(熱源側切換機構)
23 熱源側熱交換器
24 熱源側膨張弁(膨張弁)
32、42、52 利用側熱交換器
66、76、86 高圧ガス開閉弁(利用側切換機構)
76、77、87 低圧ガス開閉弁(利用側切換機構)
101 第1油戻し回路(油戻し回路)
102 第1バイパス回路
103 第2バイパス回路
本発明は、空気調和装置、特に、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置に関する。
従来より、冷媒の蒸発器として冷媒が下側から流入して上側から流出するように構成された熱交換器を有する蒸気圧縮式の冷媒回路を備えた冷凍装置がある(例えば、特許文献1参照。)。この冷凍装置においては、蒸発器内に冷凍機油が溜まり込むのを防ぐため、冷媒よりも比重が小さいために2層に分離して冷媒の液面の上に浮いた状態で溜まった冷凍機油を冷媒の液面付近から抜き出して圧縮機の吸入側に戻すようにしている。
また、蒸気圧縮式の冷媒回路を備えた冷凍装置の一例として、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な蒸気圧縮式の冷媒回路を備えた冷暖同時運転が可能な空気調和装置がある(例えば、特許文献2参照。)。このような空気調和装置においては、複数の熱源側熱交換器が設けられるとともに、各熱源側熱交換器に流入する冷媒の流量を調節することができるように膨張弁が設けられている。そして、この空気調和装置において、例えば、暖房運転時や冷暖同時運転時等のように、熱源側熱交換器を蒸発器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、膨張弁の開度を小さくすることによって蒸発能力を小さくする制御を行い、さらに、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行っている。
また、上述の空気調和装置においては、例えば、冷房運転時や冷暖同時運転時に熱源側熱交換器を凝縮器として機能させる場合には、利用側熱交換器の空調負荷が小さくなるのに応じて、熱源側熱交換器に接続された膨張弁の開度を小さくすることによって熱源側熱交換器内に溜まる液冷媒の量を増やして実質的な伝熱面積を減少させることで凝縮能力を小さくする制御を行っている。しかし、膨張弁の開度を小さくする制御を行うと、膨張弁の下流側(具体的には、膨張弁と利用側熱交換器との間)の冷媒圧力が低下する傾向となって安定せず、熱源側熱交換器の凝縮能力を小さくする制御を安定的に行うことができないという問題があった。これに対して、圧縮機で圧縮された高圧のガス冷媒を、膨張弁において減圧されて利用側熱交換器に送られる冷媒に合流させる加圧回路を設けることによって、膨張弁の下流側の冷媒圧力を高くする制御が提案されている(例えば、特許文献3参照。)。
特開昭63−204074号公報 特開平3−260561号公報 特開平3−129259号公報
上述の空気調和装置において、冷媒の蒸発器として機能する場合に冷媒が下側から流入して上側から流出するように構成されたプレート熱交換器等の熱交換器を熱源側熱交換器として使用する場合がある。この場合には、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐため、熱源側熱交換器内の冷媒の液面を一定以上のレベルになるように維持する必要がある。しかし、利用側熱交換器における空調負荷が非常に小さくなる場合等のように、熱源側熱交換器を蒸発能力の小さい蒸発器として機能させる場合においては、膨張弁の開度を小さくすることによって熱源側熱交換器を流れる冷媒量を減少させようとしても、熱源側熱交換器内の冷媒の液面の制約から膨張弁の開度をあまり小さくすることができないため、膨張弁の開度調節のみでは十分に蒸発能力を制御できず、結果的に、複数の膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。これに対して、蒸発能力を相殺するための熱源側熱交換器を設けることなく、液面の低下を許容しつつ熱源側熱交換器を蒸発能力の小さい蒸発器として機能させることができるようにするために、熱源側熱交換器を蒸発器として機能させて運転している際に、一時的に、熱源側熱交換器を凝縮器として機能させるように切り換えて冷媒が熱源側熱交換器の上側から下側に向かって流れるようにすることで、熱源側熱交換器に冷凍機油が溜まり込むのを防ぐ運転(油回収運転)を行うことも考えられるが、暖房運転(すなわち、凝縮器として機能)中の利用側熱交換器を一時的に冷房運転(すなわち、蒸発器として機能)に切り換えることになってしまうため、室内の快適性を損なうおそれがある。
また、上述の空気調和装置において、冷媒回路に加圧回路を設けることによって、熱源側熱交換器を冷媒の凝縮器として機能させる場合に、膨張弁において減圧されて利用側熱交換器に送られる冷媒に圧縮機で圧縮された高圧のガス冷媒を合流させるようにすると、膨張弁から利用側熱交換器に送られる冷媒が気液二相流になり、しかも、膨張弁の開度を小さくなる程、加圧回路から高圧のガス冷媒が合流された後の冷媒のガス分率が大きくなり、複数の利用側熱交換器間で偏流が生じてしまうため、結果的に、膨張弁の開度を十分に小さくすることができないという問題が生じている。この結果、熱源側熱交換器を冷媒の蒸発器として機能させる場合と同様に、複数の熱源側熱交換器を設けて、利用側熱交換器の空調負荷が非常に小さくなる場合には、複数の膨張弁を閉止して凝縮器として機能する熱源側熱交換器の台数を減らすことによって凝縮能力を小さくしたり、複数の熱源側熱交換器の一部を蒸発器として機能させることにより凝縮器として機能する熱源側熱交換器の凝縮能力と相殺して凝縮能力を小さくする制御を行うことが必要になっている。
このため、複数の熱源側熱交換器を設置する分だけ部品点数の増加及びコストアップが生じ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で蒸発される冷媒量の分だけ圧縮機において圧縮される冷媒量が増加することになり、利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題がある。
本発明の課題は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することにある。
第1の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁とを含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能である。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側熱交換器を蒸発器として機能させて運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器において凝縮され膨張弁を通過した後に、利用側熱交換器に送られる。この冷媒は、利用側熱交換器において蒸発された後に、圧縮機構に吸入される。また、暖房運転等を行う場合のように熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、利用側熱交換器において凝縮され膨張弁を通過した後に、熱源側熱交換器に送られる。この冷媒は、熱源側熱交換器において蒸発された後に、圧縮機構に吸入される。ここで、熱源側熱交換器を蒸発器として機能させる運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側熱交換器を蒸発器として機能させて運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側熱交換器を凝縮器として機能させる切り換えを行うにもかかわらず、利用側熱交換器を蒸発器に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第2の発明にかかる空気調和装置は、冷媒回路と、第1バイパス回路と、油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器とを接続する液冷媒管と、液冷媒管に設けられる膨張弁と、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構と、圧縮機構の吐出側と熱源側切換機構との間に接続されており圧縮機構から吐出される冷媒を熱源側切換機構に流入する前に分岐することが可能な高圧ガス冷媒管と、利用側熱交換器を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構と、利用側熱交換器において蒸発される冷媒を圧縮機構の吸入側に送る低圧ガス冷媒管とを含んでいる。第1バイパス回路は、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側切換機構を蒸発運転切換状態にして運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、冷房運転等を行う場合のように、熱源側切換機構を凝縮運転切換状態にすることにより熱源側熱交換器を冷媒の凝縮器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、熱源側熱交換器に送られて熱源側熱交換器において凝縮される。そして、この冷媒は、膨張弁を通過した後に液冷媒管を通じて利用側熱交換器に送られる。そして、この冷媒は、利用側切換機構を冷房運転切換状態にすることにより冷媒の蒸発器として機能する利用側熱交換器において蒸発された後に、低圧ガス冷媒管を通じて圧縮機構に吸入される。また、暖房運転等を行う場合のように、熱源側切換機構を蒸発運転切換状態にすることにより熱源側熱交換器を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構から吐出された冷媒は、高圧ガス冷媒管を通じて、利用側切換機構を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器に送られて凝縮されて液冷媒管に送られる。そして、この冷媒は、膨張弁を通過した後に熱源側熱交換器において蒸発され、圧縮機構に吸入される。ここで、熱源側切換機構を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器内を流れるため、利用側熱交換器における空調負荷に応じて膨張弁の開度を小さくして熱源側熱交換器の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器内に溜まり込むことになる。
しかし、この空気調和装置では、熱源側切換機構を蒸発運転切換状態にして運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側切換機構を凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構を蒸発運転切換状態に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置では、利用側熱交換器の空調負荷に応じて膨張弁の開度を小さくすることによって熱源側熱交換器の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器内における冷媒の液面が低下しても、熱源側熱交換器内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
第3の発明にかかる空気調和装置は、第1又は第2の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管から冷媒を分岐して圧縮機構の吸入側に送ることが可能な第2バイパス回路が設けられている。油回収運転を行う際に、液冷媒管を流れる冷媒は、第2バイパス回路を介して圧縮機構の吸入側に送られる。
この空気調和装置では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明にかかる空気調和装置は、第3の発明にかかる空気調和装置において、液冷媒管には、利用側熱交換器と膨張弁との間に接続されており、液冷媒管を流れる冷媒を溜めるレシーバがさらに設けられている。第2バイパス回路は、レシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられている。
この空気調和装置では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明にかかる空気調和装置は、第1〜第4の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、熱源側熱交換器内を流れる冷媒の流量制御とは関係なく一定量供給される水を熱源として使用している。
この空気調和装置では、熱源側熱交換器内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器における蒸発能力を制御することができない。しかし、この空気調和装置においては、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明にかかる空気調和装置は、第1〜第5の発明のいずれかにかかる空気調和装置において、熱源側熱交換器は、プレート式熱交換器である。
この空気調和装置では、熱源側熱交換器として多数の流路が形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器の各流路に冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置においては、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
第7の発明にかかる空気調和装置は、冷媒回路と油戻し回路とを備えている。冷媒回路は、圧縮機構と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器と、利用側熱交換器とを含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能である。油戻し回路は、熱源側熱交換器の下部と圧縮機構の吸入側とを接続する。そして、この空気調和装置は、熱源側熱交換器を蒸発器として機能させて運転している状態から、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行う。
この空気調和装置では、熱源側熱交換器を蒸発器として機能させて運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしている。このような油戻回収運転を行うことによって、熱源側熱交換器を凝縮器として機能させる切り換えを行うにもかかわらず、利用側熱交換器を蒸発器に切り換えて冷媒回路全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
第8の発明にかかる空気調和装置は、第7の発明にかかる空気調和装置において、圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスすることが可能な第1バイパス回路をさらに備えている。そして、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスする。
この空気調和装置では、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスしているため、圧縮機構の吸入圧力を確保することができる。しかも、油戻し回路を通じて圧縮機構の吸入側に戻される冷凍機油を、第1バイパス回路を介してバイパスされる高圧のガス冷媒に混合することになるため、圧縮機構における液圧縮を防ぐことができる。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の発明では、熱源側熱交換器を蒸発器として機能させて運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第2の発明では、熱源側切換機構を蒸発運転切換状態にして運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側切換機構を凝縮運転切換状態に切り換え、膨張弁を閉止することによって、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。これにより、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することが可能になる。
第3の発明では、第2バイパス回路が設けられているため、油回収運転中においても、凝縮器として機能する利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。
第4の発明では、第2バイパス回路がレシーバの上部から冷媒を圧縮機構の吸入側に送るように設けられているため、圧縮機構の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
第5の発明では、膨張弁によって熱源側熱交換器の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器の蒸発能力を制御する際の制御幅を確保することができる。
第6の発明では、熱源側熱交換器内に溜まった冷凍機油を、熱源側熱交換器の上側から流入した冷媒とともに熱源側熱交換器の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、油戻し回路の設置が容易である。
第7の発明では、熱源側熱交換器を蒸発器として機能させて運転している状態から、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスし、熱源側熱交換器を圧縮機構から吐出される冷媒が上側から流入して下側から流出する凝縮器として機能させる運転に切り換え、圧縮機構から吐出される冷媒を熱源側熱交換器に上側から流入させて、油戻し回路を介して熱源側熱交換器内に溜まった冷凍機油を圧縮機構の吸入側に戻す油回収運転を行うようにしているため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
第8の発明では、油回収運転の際に、第1バイパス回路を介して圧縮機構から吐出される冷媒を圧縮機構の吸入側にバイパスしているため、圧縮機構の吸入圧力を確保するとともに圧縮機構における液圧縮を防ぐことができる。
以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明する。
(1)空気調和装置の構成
図1は、本発明にかかる一実施形態の空気調和装置1の概略の冷媒回路図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の冷暖房に使用される装置である。
空気調和装置1は、主として、1台の熱源ユニット2と、複数(本実施形態では、3台)の利用ユニット3、4、5と、各利用ユニット3、4、5に接続される接続ユニット6、7、8と、接続ユニット6、7、8を介して熱源ユニット2と利用ユニット3、4、5とを接続する冷媒連絡配管9、10、11とを備えており、例えば、ある空調空間については冷房運転を行いつつ他の空調空間については暖房運転を行う等のように、利用ユニット3、4、5が設置される屋内の空調空間の要求に応じて、冷暖同時運転が可能になるように構成されている。すなわち、本実施形態の空気調和装置1の蒸気圧縮式の冷媒回路12は、熱源ユニット2と、利用ユニット3、4、5と、接続ユニット6、7、8と、冷媒連絡配管9、10、11とが接続されることによって構成されている。
<利用ユニット>
利用ユニット3、4、5は、ビル等の屋内の天井に埋め込みや吊り下げ等、又は、屋内の壁面に壁掛け等により設置されている。利用ユニット3、4、5は、冷媒連絡配管9、10、11及び接続ユニット6、7、8を介して熱源ユニット2に接続されており、冷媒回路12の一部を構成している。
次に、利用ユニット3、4、5の構成について説明する。尚、利用ユニット3と利用ユニット4、5とは同様の構成であるため、ここでは、利用ユニット3の構成のみ説明し、利用ユニット4、5の構成については、それぞれ、利用ユニット3の各部を示す30番台の符号の代わりに40番台又は50番台の符号を付して、各部の説明を省略する。
利用ユニット3は、主として、冷媒回路12の一部を構成しており、利用側冷媒回路12a(利用ユニット4、5では、それぞれ、利用側冷媒回路12b、12c)を備えている。この利用側冷媒回路12aは、主として、利用側膨張弁31と、利用側熱交換器32とを備えている。本実施形態において、利用側膨張弁31は、利用側冷媒回路12a内を流れる冷媒の流量の調節等を行うために、利用側熱交換器32の液側に接続された電動膨張弁である。本実施形態において、利用側熱交換器32は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷媒と屋内空気との熱交換を行うための機器である。本実施形態において、利用ユニット3は、ユニット内に屋内空気を吸入して、熱交換した後に、供給空気として屋内に供給するための送風ファン(図示せず)を備えており、屋内空気と利用側熱交換器32を流れる冷媒とを熱交換させることが可能である。
また、利用ユニット3には、各種のセンサが設けられている。利用側熱交換器32の液側には液冷媒の温度を検出する液側温度センサ33が設けられており、利用側熱交換器32のガス側にはガス冷媒の温度を検出するガス側温度センサ34が設けられている。さらに、利用ユニット3には、ユニット内に吸入される屋内空気の温度を検出するRA吸入温度センサ35が設けられている。また、利用ユニット3は、利用ユニット3を構成する各部の動作を制御する利用側制御部36を備えている。そして、利用側制御部36は、利用ユニット3の制御を行うために設けられたマイクロコンピュータやメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2との間で制御信号等のやりとりを行うことができるようになっている。
<熱源ユニット>
熱源ユニット2は、ビル等の屋上等に設置されており、冷媒連絡配管9、10、11を介して利用ユニット3、4、5に接続されており、利用ユニット3、4、5の間で冷媒回路12を構成している。
次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、冷媒回路12の一部を構成しており、熱源側冷媒回路12dを備えている。この熱源側冷媒回路10dは、主として、圧縮機構21と、第1切換機構22と、熱源側熱交換器23と、
熱源側膨張弁24と、レシーバ25と、第2切換機構26と、液側閉鎖弁27と、高圧ガス側閉鎖弁28と、低圧ガス側閉鎖弁29と、第1油戻し回路101と、第1バイパス回路102と、加圧回路111と、冷却器121と、冷却回路122とを備えている。
圧縮機構21は、主として、圧縮機21aと、圧縮機21aの吐出側に接続された油分離器21bと、油分離器21bと圧縮機21aの吸入管21cとを接続する第2油戻し回路21dとを有している。圧縮機21aは、本実施形態において、インバータ制御により運転容量を可変することが可能な容積式圧縮機である。油分離器21bは、圧縮機21aにおいて圧縮されて吐出された高圧のガス冷媒に同伴する冷凍機油を分離する容器である。第2油戻し回路21dは、油分離器21bにおいて分離された冷凍機油を圧縮機21aに戻すための回路である。第2油戻し回路21dは、主として、油分離器21bと圧縮機21aの吸入管21cとを接続する油戻し管21eと、油戻し管21eに接続された油分離器21bにおいて分離された高圧の冷凍機油を減圧するキャピラリチューブ21fとを有している。キャピラリチューブ21fは、油分離器21bにおいて分離された高圧の冷凍機油を圧縮機21aの吸入側の冷媒圧力まで減圧する細管である。本実施形態において、圧縮機構21は、圧縮機が圧縮機21aの1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよい。
第1切換機構22は、熱源側熱交換器23を凝縮器として機能させる際(以下、凝縮運転切換状態とする)には圧縮機構21の吐出側と熱源側熱交換器23のガス側とを接続し、熱源側熱交換器23を蒸発器として機能させる際(以下、蒸発運転切換状態とする)には圧縮機構21の吸入側と熱源側熱交換器23のガス側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート22aは圧縮機構21の吐出側に接続されており、その第2ポート22bは熱源側熱交換器23のガス側に接続されており、その第3ポート22cは圧縮機構21の吸入側に接続されており、第4ポート22dはキャピラリチューブ91を介して圧縮機構21の吸入側に接続されている。そして、第1切換機構22は、上述のように、第1ポート22aと第2ポート22bとを接続するとともに、第3ポート22cと第4ポート22dとを接続(凝縮運転切換状態に対応、図1の第1切換機構22の実線を参照)したり、第2ポート22bと第3ポート22cとを接続するとともに、第1ポート22aと第4ポート22dとを接続(蒸発運転切換状態に対応、図1の第1切換機構22の破線を参照)する切り換えを行うことが可能である。
熱源側熱交換器23は、冷媒の蒸発器及び冷媒の凝縮器として機能させることが可能な熱交換器であり、本実施形態において、水を熱源として冷媒と熱交換するプレート熱交換器である。熱源側熱交換器23は、そのガス側が第1切換機構22の第2ポート22bに接続され、その液側が熱源側膨張弁24に接続されている。熱源側熱交換器23は、図2に示されるように、プレス加工等によって成形された複数のプレート部材23aをパッキン(図示せず)を介して重ね合わせることにより、各プレート部材23a間に上下方向に延びる複数の流路23b、23cが形成され、これらの複数の流路23b、23c内を冷媒と水とが交互に流れる(具体的には、冷媒が流路23b内を流れて、水が流路23c内を流れる、図2の矢印A及びB参照)ことによって熱交換を行うことができるように構成されている。そして、複数の流路23bは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられたガス側ノズル23d及び液側ノズル23eに接続されている。このガス側ノズル23dは第1切換機構22に接続されており、液側ノズル23eは熱源側膨張弁24に接続されている。これにより、冷媒は、熱源側熱交換器23が蒸発器として機能する場合には、液側ノズル23e(すなわち、下側)から流入してガス側ノズル23d(すなわち、上側)から流出し、熱源側熱交換器23が凝縮器として機能する場合には、ガス側ノズル23d(すなわち、上側)から流入して液側ノズル23e(すなわち、下側)から流出することになる(図2の矢印A参照)。また、複数の流路23cは、その上端部及び下端部において、互いが連通されており、熱源側熱交換器23の上部及び下部に設けられた水入口ノズル23f及び水出口ノズル23gに接続されている。また、熱源としての水は、本実施形態において、空気調和装置1の外部に設置された冷水塔設備やボイラー設備からの水配管(図示せず)を通じて熱源側熱交換器23の水入口ノズル23fから供給水CWSとして流入し、冷媒と熱交換を行った後に、水出口ノズル23gから流出して冷水塔設備やボイラー設備に排出水CWRとして戻されるようになっている。ここで、冷水塔設備やボイラー設備から供給される水は、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給されている。
熱源側膨張弁24は、本実施形態において、液冷媒連絡配管9を介して熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒の流量の調節等を行うことが可能な電動膨張弁であり、熱源側熱交換器23の液側に接続されている。
レシーバ25は、熱源側熱交換器23と利用側冷媒回路12a、12b、12cとの間を流れる冷媒を一時的に溜めるための容器である。レシーバ25は、本実施形態において、熱源側膨張弁24と冷却器121との間に接続されている。
第2切換機構26は、熱源ユニット2を冷暖同時機用の熱源ユニットとして使用する場合であって高圧のガス冷媒を利用側冷媒回路12a、12b、12cに送る際(以下、暖房負荷要求運転状態とする)には、圧縮機構21の吐出側と高圧ガス側閉鎖弁28とを接続し、熱源ユニット2を冷暖切替機用の熱源ユニットとして使用する場合であって冷房運転を行う際には、高圧ガス側閉鎖弁28と圧縮機構21の吸入側とを接続するように、熱源側冷媒回路12d内における冷媒の流路を切り換えることが可能な四路切換弁であり、その第1ポート26aは圧縮機構21の吐出側に接続されており、その第2ポート26bはキャピラリチューブ92を介して圧縮機構21の吸入側に接続されており、その第3ポート26cは圧縮機構21の吸入側に接続されており、その第4ポート26dは高圧ガス側閉鎖弁28に接続されている。そして、第2切換機構26は、上述のように、第1ポート26aと第2ポート26bとを接続するとともに、第3ポート26cと第4ポート26dとを接続(冷暖切替時冷房運転状態に対応、図1の第2切換機構26の実線を参照)したり、第2ポート26bと第3ポート26cとを接続するとともに、第1ポート26aと第4ポート26dとを接続(暖房負荷要求運転状態に対応、図1の第2切換機構26の破線を参照)する切り換えを行うことが可能である。
液側閉鎖弁27、高圧ガス側閉鎖弁28及び低圧ガス側閉鎖弁29は、外部の機器・配管(具体的には、冷媒連絡配管9、10及び11)との接続口に設けられた弁である。液側閉鎖弁27は、冷却器121に接続されている。高圧ガス側閉鎖弁28は、第2切換機構26の第4ポート26dに接続されている。低圧ガス側閉鎖弁29は、圧縮機構21の吸入側に接続されている。
第1油戻し回路101は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続するように設けられている。第1油戻し回路101は、主として、熱源側熱交換器23の下部と圧縮機構21の吸入側とを接続する油戻し管101aと、油戻し管101aに接続された開閉弁101bと、逆止弁101cと、キャピラリチューブ101dとを有している。油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられており、本実施形態においては、図3に示されるように、熱源側熱交換器23の下部に設けられた液側ノズル23eの管内を通じて熱源側熱交換器23の冷媒が流れる流路23b内まで延びる配管である。ここで、熱源側熱交換器23には、複数の流路23b間を連通させるために、各プレート部材23aに連通孔23hが設けられている(複数の流路23c間も同様)。このため、油戻し管101aは、複数の流路23bを貫通するように設けられていてもよい(図3の破線で示される油戻し管101a参照)。尚、油戻し管101aは、一端が熱源側熱交換器23の下部から冷媒とともに冷凍機油を抜き出すことができるように設けられていればよいため、熱源側熱交換器23の液側ノズル23eや熱源側熱交換器23と熱源側膨張弁24とを接続する配管に設けられていてもよい。また、油戻し管101aの他端は、本実施形態において、圧縮機構21の吸入側に接続されている。開閉弁101bは、本実施形態において、必要に応じて第1油戻し回路101を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。逆止弁101cは、冷媒及び冷凍機油が熱源側熱交換器23の下部から圧縮機構21の吸入側に向かって油戻し管101a内を流れることをのみを許容する弁である。キャピラリチューブ101dは、熱源側熱交換器23の下部から抜き出された冷媒及び冷凍機油を圧縮機構21の吸入側の冷媒圧力まで減圧する細管である。
第1バイパス回路102は、蒸発運転切換状態、すなわち、熱源側熱交換器23を蒸発器として機能させる際に、熱源側熱交換器23内に溜まった冷凍機油を、圧縮機構21の吸入側に戻す油回収運転(後述)に使用される回路であり、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられている。第1バイパス回路102は、主として、圧縮機構21から吐出側と圧縮機構21の吸入側とを接続するバイパス管102aと、バイパス管102aに接続された開閉弁102bとを有している。バイパス管102aは、本実施形態においては、図1に示されるように、一端が油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに接続されており、他端が圧縮機構21の吸入側に接続されており、油分離器21bにおいて分離された冷凍機油が流れる油戻し管21eに設けられたキャピラリチューブ21fをバイパスするように設けられている。このため、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21から吐出される冷媒は、油分離器21b及び油戻し管21eを通じて第1バイパス回路102に流入し、圧縮機構21の吸入側に戻されることになる。尚、バイパス管102aは、圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスすることができるように設けられていればよいため、例えば、油分離器21bの上流側や下流側の位置から圧縮機構21の吸入側に冷媒を流すことができるように設けられていてもよい。開閉弁102bは、本実施形態において、必要に応じて第1バイパス回路102を使用できるようにするために接続されており、冷媒及び冷凍機油の流通及び遮断が可能な電磁弁である。
加圧回路111は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、圧縮機構21において圧縮された高圧のガス冷媒を、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧された後に利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる回路である。加圧回路111は、主として、圧縮機構21の吐出側と熱源側膨張弁24の下流側(すなわち、熱源側膨張弁24と液側閉鎖弁27との間)とを接続する加圧管111aと、加圧管111aに接続された開閉弁111bと、逆止弁111cと、キャピラリチューブ111dとを有している。加圧管111aは、本実施形態において、一端が圧縮機構21の油分離器21bの出口と第1及び第2切換機構22、26の第1ポート22a、26aとの間に接続されている。また、加圧管111aの他端は、本実施形態において、熱源側膨張弁24とレシーバ25との間に接続されている。開閉弁111bは、本実施形態において、必要に応じて加圧回路111を使用できるようにするために接続されており、冷媒の流通及び遮断が可能な電磁弁である。逆止弁111cは、冷媒が圧縮機構21の吐出側から熱源側膨張弁24の下流側に向かって加圧管111a内を流れることをのみを許容する弁である。キャピラリチューブ111dは、圧縮機構21の吐出側から抜き出された冷媒を熱源側膨張弁24の下流側の冷媒圧力まで減圧する細管である。
冷却器121は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23において凝縮された後に、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却する熱交換器である。冷却器121は、本実施形態において、レシーバ25と液側閉鎖弁27との間に接続されている。言い換えれば、加圧回路111は、加圧管111aが熱源側膨張弁24と冷却器121との間に接続されて、高圧のガス冷媒が熱源側膨張弁24において減圧された冷媒に合流するように接続されている。冷却器121としては、例えば、2重管式の熱交換器を用いることが可能である。
冷却回路122は、凝縮運転切換状態、すなわち、熱源側熱交換器23を凝縮器として機能させる際に、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を熱源側冷媒回路12dから分岐させて冷却器121に導入し、熱源側熱交換器23において凝縮され熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を冷却した後、圧縮機構21の吸入側に戻すように熱源側冷媒回路12dに接続された回路である。冷却回路122は、主として、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を冷却器121に導入する導入管122aと、導入管122aに接続された冷却回路側膨張弁122bと、冷却器121を通過した冷媒を圧縮機構21の吸入側に戻す導出管122cとを有している。導入管122aは、本実施形態において、一端がレシーバ25と冷却器121との間との間に接続されている。また、導入管122aの他端は、本実施形態において、冷却器121の冷却回路122側の入口に接続されている。冷却回路側膨張弁122bは、本実施形態において、必要に応じて冷却回路122を使用できるようにするために接続されており、冷却回路122を流れる冷媒の流量を調節することが可能な電動膨張弁である。導出管122cは、本実施形態において、一端が冷却器121の冷却回路122側の出口に接続されている。また、導出管122cは、本実施形態において、他端が圧縮機構21の吸入側に接続されている。
また、熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2は、圧縮機構21の吸入圧力を検出する吸入圧力センサ93と、圧縮機構21の吐出圧力を検出する吐出圧力センサ94と、圧縮機構21の吐出側の冷媒の吐出温度を検出する吐出温度センサ95と、冷却回路122の導出管122cを流れる冷媒の温度を検出する冷却回路出口温度センサ96とが設けられている。また、熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源側制御部97を備えている。そして、熱源側制御部97は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3、4、5の利用側制御部36、46、56との間で制御信号等のやりとりを行うことができるようになっている。
<接続ユニット>
接続ユニット6、7、8は、ビル等の屋内に利用ユニット3、4、5とともに設置されている。接続ユニット6、7、8は、冷媒連絡配管9、10、11とともに、利用ユニット3、4、5と熱源ユニット2との間に介在しており、冷媒回路12の一部を構成している。
次に、接続ユニット6、7、8の構成について説明する。尚、接続ユニット6と接続ユニット7、8とは同様の構成であるため、ここでは、接続ユニット6の構成のみ説明し、接続ユニット7、8の構成については、それぞれ、接続ユニット6の各部を示す60番台の符号の代わりに70番台又は80番台の符号を付して、各部の説明を省略する。
接続ユニット6は、主として、主として、冷媒回路12の一部を構成しており、接続側冷媒回路12e(接続ユニット7、8では、それぞれ、接続側冷媒回路12f、12g)を備えている。この接続側冷媒回路12eは、主として、液接続管61と、ガス接続管62と、高圧ガス開閉弁66と、低圧ガス開閉弁67とを有している。本実施形態において、液接続管61は、液冷媒連絡配管9と利用側冷媒回路12aの利用側膨張弁31とを接続している。ガス接続管62は、高圧ガス冷媒連絡配管10に接続された高圧ガス接続管63と、低圧ガス冷媒連絡配管11に接続された低圧ガス接続管64と、高圧ガス接続管63と低圧ガス接続管64とを合流させる合流ガス接続管65とを有している。合流ガス接続管65は、利用側冷媒回路12aの利用側熱交換器32のガス側に接続されている。そして、高圧ガス開閉弁66は、本実施形態において、高圧ガス接続管63に接続されており、冷媒の流通及び遮断が可能な電磁弁である。低圧ガス開閉弁67は、本実施形態において、低圧ガス接続管64に接続されており、冷媒の流通及び遮断が可能な電磁弁である。これにより、接続ユニット6は、利用ユニット3が冷房運転を行う際(以下、冷房運転切換状態とする)には、高圧ガス開閉弁66を閉止し、かつ、低圧ガス開閉弁67を開けた状態にして、液冷媒連絡配管9を通じて液接続管61に流入する冷媒を利用側冷媒回路12aの利用側膨張弁31に送り、利用側膨張弁31で減圧され利用側熱交換器32において蒸発された後に、合流ガス接続管65及び低圧ガス接続管64を通じて低圧ガス冷媒連絡配管11に戻すように機能することができる。また、接続ユニット6は、利用ユニット3が暖房運転を行う際(以下、暖房運転切換状態とする)には、低圧ガス開閉弁67を閉止し、かつ、高圧ガス開閉弁66を開けた状態にして、高圧ガス冷媒連絡配管10を通じて高圧ガス接続管63及び合流ガス接続管65に流入する冷媒を利用側冷媒回路12aの利用側熱交換器32のガス側に送り、利用側熱交換器32において凝縮され利用側膨張弁31で減圧された後に、液接続管61を通じて液冷媒連絡配管9に戻すように機能することができる。また、接続ユニット6は、接続ユニット6を構成する各部の動作を制御する接続側制御部68を備えている。そして、接続側制御部68は、接続ユニット6の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3の利用側制御部36との間で制御信号等のやりとりを行うことができるようになっている。
以上のように、利用側冷媒回路12a、12b、12cと、熱源側冷媒回路12dと、冷媒連絡配管9、10、11と、接続側冷媒回路12e、12f、12gとが接続されて、空気調和装置1の冷媒回路12が構成されている。つまり、この冷媒回路12は、圧縮機構21と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23と、利用側熱交換器32、42、52と、熱源側熱交換器23と利用側熱交換器32、42、52とを接続する液冷媒連絡配管9を含む液冷媒管と、液冷媒管に設けられる熱源側膨張弁24と、熱源側熱交換器23を圧縮機構21から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と熱源側熱交換器23を液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構としての第1切換機構22と、圧縮機構21の吐出側と第1切換機構22との間に接続されており圧縮機構21から吐出される冷媒を第1切換機構22に流入する前に分岐することが可能な高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管と、利用側熱交換器32、42、52を液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と利用側熱交換器32、42、52を高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)と、利用側熱交換器32、42、52において蒸発される冷媒を圧縮機構21の吸入側に送る低圧ガス冷媒連絡配管11を含む低圧ガス冷媒管とを備えており、熱源側熱交換器23と利用側熱交換器32、42、52とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能になっている。これにより、本実施形態の空気調和装置1では、例えば、利用ユニット3、4が冷房運転を行いつつ、利用ユニット5が暖房運転を行う等の、いわゆる、冷暖同時運転を行うことが可能になっている。
そして、本実施形態の空気調和装置1では、後述のように、熱源側熱交換器23を蒸発器として機能させる運転をしている際に、第1油戻し回路101及び第1バイパス回路102を用いて油回収運転を行うことで、熱源側熱交換器23内に冷凍器油が溜まり込むのを防ぐことができるようになっているため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の蒸発能力の制御幅を得ることができるようになっている。また、空気調和装置1では、後述のように、熱源側熱交換器23を凝縮器として機能させる際に、加圧回路111及び冷却器121を用いることによって、熱源側熱交換器23の凝縮能力を熱源側膨張弁24によって制御する際の制御幅が拡大されており、単一の熱源側熱交換器23によって広範囲の凝縮能力の制御幅を得ることができるようになっている。これにより、本実施形態の空気調和装置1では、従来の空気調和装置において、複数台設けられていた熱源側熱交換器の単一化が実現されている。
(2)空気調和装置の動作
次に、本実施形態の空気調和装置1の動作について説明する。
本実施形態の空気調和装置1の運転モードは、各利用ユニット3、4、5の空調負荷に応じて、利用ユニット3、4、5の全て暖房運転を行う暖房運転モードと、利用ユニット3、4、5の全てが冷房運転を行う冷房運転モードと、利用ユニット3、4、5の一部が冷房運転を行いつつ他の利用ユニットが暖房運転を行う冷暖房同時運転モードとに分けることができる。また、冷暖同時運転モードについては、利用ユニット3、4、5全体の空調負荷により、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している場合(蒸発運転切換状態)と、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している場合(凝縮運転切換状態)とに運転モードを分けることができる。
以下、空気調和装置1の4つの運転モードにおける動作について説明する。
<暖房運転モード>
利用ユニット3、4、5の全てを暖房運転する際、空気調和装置1の冷媒回路12は、図4に示されるように構成される(冷媒の流れについては、図4の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を蒸発運転切換状態(図4の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図4の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット3、4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6、7、8においては、低圧ガス開閉弁67、77、87を閉止するとともに高圧ガス開閉弁66、76、86を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過冷却度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、3つに分岐されて、各接続ユニット6、7、8の高圧ガス接続管63、73、83に送られる。接続ユニット6、7、8の高圧ガス接続管63、73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁66、76、86及び合流ガス接続管65、75、85を通じて、利用ユニット3、4、5の利用側熱交換器32、42、52に送られる。
そして、利用側熱交換器32、42、52に送られた高圧のガス冷媒は、利用ユニット3、4、5の利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器32、42、52において凝縮された冷媒は、利用側膨張弁31、41、51を通過した後、接続ユニット6、7、8の液接続管61、71、81に送られる。
そして、液接続管61、71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じて、レシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、暖房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の暖房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の暖房負荷(すなわち、利用側熱交換器32、42、52の凝縮負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の蒸発量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内における冷媒の液面が低下することになる。すると、本実施形態の熱源側熱交換器23のように、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱交換器(図2及び図3参照)では、蒸発された冷媒とともに冷凍機油が同伴して排出されにくくなり、冷凍機油の溜まり込みが生じやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられている。そして、この空気調和装置1では、第1切換機構22を蒸発運転切換状態にして運転している際に、図5に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図5の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図4に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、第2切換機構26に送られていた高圧のガス冷媒は、第2切換機構26から高圧ガス冷媒連絡配管10、接続ユニット6、7、8、利用ユニット3、4、5及び液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されるため、第1バイパス回路102を通じて圧縮機構21の吸入側に送られることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図5参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図4参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。例えば、油回収運転を行う条件として、第1切換機構22が蒸発運転切換状態であることに加えて、熱源側膨張弁24が所定開度以下であることを加えることができる。この所定開度は、熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態となる熱源側膨張弁24の開度を実験的に見い出し、この実験的に見い出された開度に基づいて決定される。
<冷房運転モード>
利用ユニット3、4、5の全てを冷房運転する際、空気調和装置1の冷媒回路12は、図6に示されるように構成される(冷媒の流れについては、図6の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図6の第1切換機構22の実線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7、8においては、高圧ガス開閉弁66、76、86を閉止するとともに低圧ガス開閉弁67、77、87を開けることによって、利用ユニット3、4、5の利用側熱交換器32、42、52を蒸発器として機能させるとともに、利用ユニット3、4、5の利用側熱交換器32、42、52と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4、5においては、利用側膨張弁31、41、51は、例えば、利用側熱交換器32、42、52の過熱度(具体的には、液側温度センサ33、43、53で検出される冷媒温度とガス側温度センサ34、44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
そして、液冷媒連絡配管9に送られた冷媒は、3つに分岐されて、各接続ユニット6、7、8の液接続管61、71、81に送られる。そして、接続ユニット6、7、8の液接続管61、71、81に送られた冷媒は、利用ユニット3、4、5の利用側膨張弁31、41、51に送られる。
そして、利用側膨張弁31、41、51に送られた冷媒は、利用側膨張弁31、41、51によって減圧された後、利用側熱交換器32、42、52において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7、8の合流ガス接続管65、75、85に送られる。
そして、合流ガス接続管65、75、85に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77、87及び低圧ガス接続管64、74、84を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られて合流した低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷房運転モードにおける動作が行われている。
このとき、各利用ユニット3、4、5の冷房負荷が非常に小さくなる場合がある。このような場合には、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の冷房負荷(すなわち、利用側熱交換器32、42、52の蒸発負荷)とバランスさせなければならない。このため、熱源側膨張弁24の開度を小さくする制御を行うことで熱源側熱交換器23における冷媒の凝縮量を少なくする制御を行うようにしている。このような熱源側膨張弁24の開度を小さくする制御を行うと、熱源側熱交換器23内に溜まる液冷媒の量が増加して実質的な伝熱面積を減少することで凝縮能力が小さくなる。しかし、熱源側膨張弁24の開度を小さくする制御を行うと、熱源側膨張弁24の下流側(具体的には、熱源側膨張弁24と利用側冷媒回路12a、12b、12cとの間)の冷媒圧力が低下する傾向となって安定せず、熱源側冷媒回路12dの凝縮能力を小さくする制御を安定的に行うことが困難になる傾向にある。
これに対して、本実施形態の空気調和装置1では、圧縮機構21で圧縮され吐出された高圧のガス冷媒を、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒に合流させる加圧回路111を設けている。そして、この加圧回路111の開閉弁111bは、冷房運転モードの場合(すなわち、第1切換機構22が凝縮運転切換状態になっている場合)に、開けられており、加圧管111aを通じて圧縮機構21の吐出側から熱源側膨張弁24の下流側に合流させることができるようになっている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くすることができるようになっている。しかし、加圧回路111を通じて高圧のガス冷媒を熱源側膨張弁24の下流側に合流させるだけでは、高圧のガス冷媒が合流されることにより、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、液冷媒連絡配管9から各利用側冷媒回路12a、12b、12cに冷媒を分岐する際に、利用側冷媒回路12a、12b、12c間で偏流が生じてしまう。
これに対して、本実施形態の空気調和装置1では、冷却器121を熱源側膨張弁24の下流側にさらに設けている。このため、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。また、本実施形態の空気調和装置1においては、加圧管111aは、熱源側膨張弁24とレシーバ25との間に接続されているため、熱源側膨張弁24の下流側の冷媒に高圧のガス冷媒が合流し、高圧のガス冷媒が合流されて温度が高くなった冷媒を冷却器121によって冷却するようになっている。このため、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。しかも、本実施形態の空気調和装置1においては、冷却回路122が設けられており、熱源側熱交換器23から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧し、この冷媒を冷却器121の冷却源として使用しているため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。このため、熱源側膨張弁24において減圧されて利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になっている。そして、冷却回路122の冷却回路側膨張弁122bは、例えば、冷却器121の過熱度(冷却回路122の導出管122cに設けられた冷却回路出口温度センサ96によって検出される冷媒温度より演算)に基づいて開度調節する等、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の流量や温度に応じて開度調節されている。
<冷暖同時運転モード(蒸発負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3を冷房運転し、かつ、利用ユニット4、5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を蒸発器として機能させて運転している際(蒸発運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図7に示されるように構成される(冷媒の流れについては、図7の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態(図7の第1切換機構22の破線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図7の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を蒸発器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット4、5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、冷媒を減圧するように開度調節されている。尚、加圧回路111の開閉弁111b及び冷却回路122の冷却回路側膨張弁122bは閉止されており、熱源側膨張弁24とレシーバ25との間を流れる冷媒に高圧のガス冷媒を合流させたり、冷却器121への冷熱源の供給を遮断してレシーバ25と利用ユニット3、4、5との間を流れる冷媒を冷却しない状態になっている。接続ユニット6においては、高圧ガス開閉弁66を閉止するとともに低圧ガス開閉弁67を開けることによって、利用ユニット3の利用側熱交換器32を蒸発器として機能させるとともに、利用ユニット3の利用側熱交換器32と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3においては、利用側膨張弁31は、例えば、利用側熱交換器32の過熱度(具体的には、液側温度センサ33で検出される冷媒温度とガス側温度センサ34で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット7、8においては、低圧ガス開閉弁77、87を閉止するとともに高圧ガス開閉弁76、86を開けることによって、利用ユニット4、5の利用側熱交換器42、52を凝縮器として機能させる状態(すなわち、暖房運転切換状態)になっている。利用ユニット4、5においては、利用側膨張弁41、51は、例えば、利用側熱交換器42、52の過冷却度(具体的には、液側温度センサ43、53で検出される冷媒温度とガス側温度センサ44、54で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、2つに分岐されて、各接続ユニット7、8の高圧ガス接続管73、83に送られる。接続ユニット7、8の高圧ガス接続管73、83に送られた高圧のガス冷媒は、高圧ガス開閉弁76、86及び合流ガス接続管75、85を通じて利用ユニット4、5の利用側熱交換器42、52に送られる。
そして、利用側熱交換器42、52に送られた高圧のガス冷媒は、利用ユニット4、5の利用側熱交換器42、52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器42、52において凝縮された冷媒は、利用側膨張弁41、51を通過した後、接続ユニット7、8の液接続管71、81に送られる。
そして、液接続管71、81に送られた冷媒は、液冷媒連絡配管9に送られて合流する。
そして、液冷媒連絡配管9に送られて合流した冷媒の一部は、接続ユニット6の液接続管61に送られる。そして、接続ユニット6の液接続管61に送られた冷媒は、利用ユニット3の利用側膨張弁31に送られる。
そして、利用側膨張弁31に送られた冷媒は、利用側膨張弁31によって減圧された後、利用側熱交換器32において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6の合流ガス接続管65に送られる。
そして、合流ガス接続管65に送られた低圧のガス冷媒は、低圧ガス開閉弁67及び低圧ガス接続管64を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。
一方、液冷媒連絡配管9から接続ユニット6及び利用ユニット3に送られる冷媒を除いた残りの冷媒は、熱源ユニット2の液側閉鎖弁27及び冷却器121を通じてレシーバ25に送られる。レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、熱源側膨張弁24によって減圧される。そして、熱源側膨張弁24によって減圧された冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって蒸発されて低圧のガス冷媒になり、第1切換機構22に送られる。そして、第1切換機構22に送られた低圧のガス冷媒は、第1切換機構22の第2ポート22b及び第3ポート22cを通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(蒸発負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、蒸発負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の暖房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の蒸発能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3の冷房負荷と、利用ユニット4、5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の蒸発負荷を非常に小さくしなければならないため、上述の暖房運転モードよりも、熱源側熱交換器23内に冷凍機油が溜まり込みやすくなる。
しかし、本実施形態の空気調和装置1では、第1油戻し回路101と、第1バイパス回路102とが設けられているため、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している際に、図8に示されるように、一時的に、開閉弁102bを開けることにより第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態(図8の第1切換機構22の実線で示された状態)に切り換えて、熱源側膨張弁24を閉止し、開閉弁101bを開けることにより油回収運転を行い、その後、開閉弁101bを閉止し、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより図7に示される油回収運転前の運転状態に復帰させることができるようになっている。
この油回収運転及び油回収運転前の運転状態への復帰の動作について詳述すると、まず、第1バイパス回路102の開閉弁102bを開けると、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、その一部が油分離器21bを通過して第1切換機構22及び第2切換機構26に送られ、残りの高圧のガス冷媒は、油分離器21bから第1バイパス回路102を通じて圧縮機構21に送られる。次に、熱源側膨張弁24を閉止すると、接続ユニット6,7、8及び液冷媒連絡配管9を介して暖房運転を行っている利用ユニット4、5から冷房運転を行っている利用ユニット3への冷媒の流れは確保されるが、液冷媒連絡配管9を通じて熱源側熱交換器23に戻る冷媒の流れが停止されることになる。次に、第1切換機構22を凝縮運転切換状態に切り換えた後に、第1油戻し回路101の開閉弁101bを開けると、第1切換機構22を通じて高圧のガス冷媒が熱源側熱交換器23の上側から流入して下側に向かって流れるようになり、熱源側熱交換器23内に溜まった冷凍機油を第1油戻し回路101を通じて圧縮機構21の吸入側に押し流すことになる(図8参照)。そして、油回収運転が終了した後、開閉弁101bを閉止し、第1切換機構22を蒸発運転切換状態に切り換え、熱源側膨張弁24を開けて、開閉弁102bを閉止することにより、油回収運転前の運転状態に復帰する(図7参照)。ここで、油回収運転の際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスしているのは、圧縮機構21の吸入圧力を確保するとともに、第1油戻し回路101を通じて圧縮機構21の吸入側に戻される冷凍機油を第1バイパス回路102を介してバイパスされる高圧のガス冷媒に混合することによって圧縮機構21における液圧縮を防ぐためである。尚、上記の開閉弁101b、102b、熱源側膨張弁24及び第1切換機構22の開閉操作の順序は、上記に限定されるものではないが、圧縮機構21から吐出される高圧のガス冷媒の流路を確保するという観点から、油回収運転を行う際には開閉弁102bを開ける操作を他の操作に優先して行い、油回収運転前の運転状態に復帰する際には開閉弁102bを閉止する操作を他の操作を行った後に行うことが望ましい。
このような油戻回収運転を行うことによって、第1切換機構22を一時的に凝縮運転切換状態に切り換えるのにもかかわらず、利用側切換機構としての接続ユニット6、7、8の高圧ガス開閉弁66、76、86や低圧ガス開閉弁67、77、87を全て冷房運転切換状態になるように操作して、冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器23内に溜まった冷凍機油を回収することができる。
尚、このような油回収運転は、上述の暖房運転モードと同様に、第1切換機構22を蒸発運転切換状態にして運転している場合に定期的に行うようにしてもよいし、油回収運転の頻度を減らすために、第1切換機構22を蒸発運転切換状態にして運転している場合であって、熱源側膨張弁24の開度を小さくする制御を行うことによって熱源側熱交換器23内における冷媒の液面が低下して、蒸発された冷媒とともに冷凍機油が同伴して排出されにくい状態になっている場合にのみ定期的に行うようにしてもよい。
<冷暖同時運転モード(凝縮負荷)>
利用ユニット3、4、5のうち、例えば、利用ユニット3、4を冷房運転し、かつ、利用ユニット5を暖房運転する冷暖同時運転モードであって、利用ユニット3、4、5全体の空調負荷に応じて、熱源ユニット2の熱源側熱交換器23を凝縮器として機能させて運転している際(凝縮運転切換状態)の動作について説明する。この際、空気調和装置1の冷媒回路12は、図9に示されるように構成される(冷媒の流れについては、図9の冷媒回路12に付された矢印を参照)。具体的には、熱源ユニット2の熱源側冷媒回路12dにおいては、第1切換機構22を凝縮運転切換状態(図9の第1切換機構22の実線で示された状態)に切り換え、第2切換機構26を暖房負荷要求運転状態(図9の第2切換機構26の破線で示された状態)に切り換えることによって、熱源側熱交換器23を凝縮器として機能させるとともに、高圧ガス冷媒連絡配管10を通じて利用ユニット5に圧縮機構21において圧縮され吐出された高圧のガス冷媒を供給できるようになっている。また、熱源側膨張弁24は、開けられた状態になっている。尚、尚、第1油戻し回路101の開閉弁101b及び第1バイパス回路102の開閉弁102bは閉止されており、これらの回路を用いた油回収運転を行わないようにしている。接続ユニット6、7においては、高圧ガス開閉弁66、76を閉止するとともに低圧ガス開閉弁67、77を開けることによって、利用ユニット3、4の利用側熱交換器32、42を蒸発器として機能させるとともに、利用ユニット3、4の利用側熱交換器32、42と熱源ユニット2の圧縮機構21の吸入側とが低圧ガス冷媒連絡配管11を介して接続された状態(すなわち、冷房運転切換状態)になっている。利用ユニット3、4においては、利用側膨張弁31、41は、例えば、利用側熱交換器32、42の過熱度(具体的には、液側温度センサ33、43で検出される冷媒温度とガス側温度センサ34、44で検出される冷媒温度との温度差)に基づいて開度調節する等、各利用ユニットの冷房負荷に応じて開度調節されている。接続ユニット8においては、低圧ガス開閉弁87を閉止するとともに高圧ガス開閉弁86を開けることによって、利用ユニット5の利用側熱交換器52を凝縮器として機能させるようにしている。利用ユニット5においては、利用側膨張弁51は、例えば、利用側熱交換器52の過冷却度(具体的には、液側温度センサ53で検出される冷媒温度とガス側温度センサ54で検出される冷媒温度との温度差)に基づいて開度調節する等、利用ユニットの暖房負荷に応じて開度調節されている。
このような冷媒回路12の構成において、圧縮機構21の圧縮機21aで圧縮され吐出された高圧のガス冷媒は、油分離器21bにおいて、高圧のガス冷媒中に同伴する冷凍機油の大部分が分離されて第1切換機構22及び第2切換機構26に送られる。そして、油分離器21bにおいて分離された冷凍機油は、第2油戻し回路21dを通じて圧縮機21aの吸入側に戻される。そして、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第1切換機構22に送られた高圧のガス冷媒は、第1切換機構22の第1ポート22a及び第2ポート22bを通じて、熱源側熱交換器23に送られる。そして、熱源側熱交換器23に送られた高圧のガス冷媒は、熱源側熱交換器23において、熱源としての水と熱交換を行うことによって凝縮される。そして、熱源側熱交換器23において凝縮された冷媒は、熱源側膨張弁24を通過した後、加圧回路111通じて圧縮機構21で圧縮され吐出された高圧のガス冷媒が合流し(詳細は後述)、レシーバ25に送られる。そして、レシーバ25に送られた冷媒は、レシーバ25内に一時的に溜められた後、冷却器121に送られる。そして、冷却器121に送られた冷媒は、冷却回路122を流れる冷媒と熱交換を行うことによって冷却される(詳細は後述)。そして、冷却器121において冷却された冷媒は、液側閉鎖弁27を通じて、液冷媒連絡配管9に送られる。
一方、圧縮機構21で圧縮され吐出された高圧のガス冷媒のうち第2切換機構26に送られた高圧のガス冷媒は、第2切換機構26の第1ポート26a及び第4ポート26dと、高圧ガス側閉鎖弁28とを通じて、高圧ガス冷媒連絡配管10に送られる。
そして、高圧ガス冷媒連絡配管10に送られた高圧のガス冷媒は、接続ユニット8の高圧ガス接続管83に送られる。接続ユニット8の高圧ガス接続管83に送られた高圧のガス冷媒は、高圧ガス開閉弁86及び合流ガス接続管85を通じて利用ユニット5の利用側熱交換器52に送られる。
そして、利用側熱交換器52に送られた高圧のガス冷媒は、利用ユニット5の利用側熱交換器52において、屋内空気と熱交換を行うことによって凝縮される。一方、屋内の空気は、加熱されて屋内に供給される。利用側熱交換器52において凝縮された冷媒は、利用側膨張弁51を通過した後、接続ユニット8の液接続管81に送られる。
そして、液接続管81に送られた冷媒は、液冷媒連絡配管9に送られて、第1切換機構22、熱源側熱交換器23、熱源側膨張弁24、レシーバ25、冷却器121及び液側閉鎖弁27を通じて液冷媒連絡配管9に送られた冷媒に合流される。
そして、この液冷媒連絡配管9を流れる冷媒は、2つに分岐されて、各接続ユニット6、7の液接続管61、71に送られる。そして、接続ユニット6、7の液接続管61、71に送られた冷媒は、利用ユニット3、4の利用側膨張弁31、41に送られる。
そして、利用側膨張弁31、41に送られた冷媒は、利用側膨張弁31、41によって減圧された後、利用側熱交換器32、42において、屋内空気と熱交換を行うことによって蒸発されて低圧のガス冷媒となる。一方、屋内の空気は、冷却されて屋内に供給される。そして、低圧のガス冷媒は、接続ユニット6、7の合流ガス接続管65、75に送られる。
そして、合流ガス接続管65、75に送られた低圧のガス冷媒は、低圧ガス開閉弁67、77及び低圧ガス接続管64、74を通じて、低圧ガス冷媒連絡配管11に送られて合流する。
そして、低圧ガス冷媒連絡配管11に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁29を通じて、圧縮機構21の吸入側に戻される。このようにして、冷暖同時運転モード(凝縮負荷)における動作が行われている。
このとき、各利用ユニット3、4、5全体の空調負荷に応じて、熱源側熱交換器23としては、凝縮負荷が必要であるが、その大きさが非常に小さくなる場合がある。このような場合には、上述の冷房運転モードと同様に、熱源ユニット2の熱源側熱交換器23における冷媒の凝縮能力を小さくして、利用ユニット3、4、5全体の空調負荷とバランスさせなければならない。特に、このような冷暖同時運転モードにおいては、利用ユニット3、4の冷房負荷と、利用ユニット5の暖房負荷とがほぼ同程度の負荷になる場合があり、このような場合には、熱源側熱交換器23の凝縮負荷を非常に小さくしなければならない。
しかし、本実施形態の空気調和装置1では、熱源側膨張弁24の開度を小さくする制御を行いつつ、熱源側膨張弁24の下流側に加圧回路111を通じて高圧のガス冷媒を合流させることによって、熱源側膨張弁24の下流側の冷媒の圧力を高くする制御を行うとともに、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12bに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12bにガス分率の大きな気液二相流の冷媒を送らなくても済むようになっている。
(3)空気調和装置の特徴
本実施形態の空気調和装置1には、以下のような特徴がある。
(A)
本実施形態の空気調和装置1は、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器23を含んでおり、熱源側熱交換器23と利用側熱交換器32、42、52とが、熱源側切換機構としての第1切換機構22及び利用側切換機構としての接続ユニット6、7、8(具体的には、高圧ガス開閉弁66、76、86及び低圧ガス開閉弁67、77、87)によって、それぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路12を備えている。このため、第1切換機構22を蒸発運転切換状態にすることにより熱源側熱交換器23を冷媒の蒸発器として機能させる運転を行う場合には、圧縮機構21から吐出された冷媒は、高圧ガス冷媒連絡配管10を含む高圧ガス冷媒管を通じて、接続ユニット6、7、8を暖房運転切換状態にすることにより冷媒の凝縮器として機能する利用側熱交換器32、42、52に送られて凝縮されて液冷媒連絡配管9を含む液冷媒管に送られる。そして、この冷媒は、熱源側膨張弁24を通過した後に熱源側熱交換器23において蒸発され、圧縮機構21に吸入される。ここで、第1切換機構22を蒸発運転切換状態にして運転を行う場合には、冷媒が下側から流入して上側から流出するように熱源側熱交換器23内を流れるため、利用側熱交換器32、42、52における空調負荷に応じて熱源側膨張弁24の開度を小さくして熱源側熱交換器23の蒸発能力を小さくする制御を行うと、冷凍機油が熱源側熱交換器23内に溜まり込むことになる。
しかし、この空気調和装置1は、第1バイパス回路102と、第1油戻し回路101とを備えているため、第1切換機構22を蒸発運転切換状態にして運転している際に、第1バイパス回路102を介して圧縮機構21から吐出される冷媒を圧縮機構21の吸入側にバイパスし、第1切換機構22を凝縮運転切換状態に切り換え、熱源側膨張弁24を閉止することによって、圧縮機構21から吐出される冷媒を熱源側熱交換器23に流入させて、第1油戻し回路101を介して熱源側熱交換器23内に溜まった冷凍機油を圧縮機構21の吸入側に戻す油回収運転を行うことができる。このような油戻回収運転を行うことによって、第1切換機構22を凝縮運転切換状態に切り換えるのにもかかわらず、接続ユニット6、7、8を蒸発運転切換状態に切り換えて冷媒回路12全体の冷媒の流れの向きを変更しなくてもよいため、油回収運転後に油回収運転前の運転状態に復帰させる際の立ち上がりを素早く行うことができるようになり、室内の快適性を損なうことなく、しかも、短時間で熱源側熱交換器内に溜まった冷凍機油を回収することができる。
このように、この空気調和装置1では、利用側熱交換器32、42、52の空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の蒸発能力を小さくする制御を行い、その結果、熱源側熱交換器23内における冷媒の液面が低下しても、熱源側熱交換器23内に冷凍機油が溜まり込むことがなくなるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、この空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を蒸発器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の蒸発能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の蒸発能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を凝縮器として機能させて蒸発能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して利用側熱交換器の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(B)
本実施形態の空気調和装置1では、熱源側熱交換器23として多数の流路23bが形成されたプレート式熱交換器を使用しており、その構造上、熱源側熱交換器23内に冷凍機油が溜まり込むのを防ぐために、熱源側熱交換器23の各流路23bに冷凍機油を抜き出すための油戻し回路を設けることが困難である。しかし、この空気調和装置1においては、熱源側熱交換器23内に溜まった冷凍機油を、熱源側熱交換器23の上側から流入した冷媒とともに熱源側熱交換器23の下部から押し出すように抜き出すことができるため、プレート式熱交換器を使用する場合であっても、第1油戻し回路101の設置が容易である。
(C)
本実施形態の空気調和装置1では、凝縮器として機能する熱源側熱交換器23において凝縮された冷媒が熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる際に、加圧回路111から高圧のガス冷媒が合流して加圧されて、熱源側膨張弁24の下流側の冷媒圧力が高くなる。ここで、従来の空気調和装置のように高圧のガス冷媒が合流させるだけでは、利用側冷媒回路12a、12b、12cに送られる冷媒がガス分率の大きな気液二相流となってしまい、結果的に、熱源側膨張弁24の開度を十分に小さくすることができないが、空気調和装置1においては、熱源側膨張弁24によって減圧されて利用側冷媒回路12a、12b、12cに送られる冷媒を、冷却器121によって冷却するようにしているため、ガス冷媒を凝縮させることができて、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくても済むようになる。
これにより、空気調和装置1では、複数の利用側冷媒回路12a、12b、12cの空調負荷に応じて熱源側膨張弁24の開度を小さくすることによって熱源側熱交換器23の凝縮能力を小さくする制御を行うとともに加圧回路111によって高圧のガス冷媒を合流させて加圧する制御を行っても、利用側冷媒回路12a、12b、12cにガス分率の大きな気液二相流の冷媒を送らなくて済むようになるため、熱源側熱交換器23の蒸発能力を熱源側膨張弁24によって制御する際の制御幅を拡大することが可能になる。
そして、空気調和装置1では、従来の空気調和装置のように、熱源側熱交換器を複数設けて、熱源側熱交換器を凝縮器として機能させる場合に、複数の熱源側膨張弁の一部を閉止して蒸発器として機能する熱源側熱交換器の台数を減らすことによって蒸発能力を小さくしたり、複数の熱源側熱交換器の一部を凝縮器として機能させることにより蒸発器として機能する熱源側熱交換器の蒸発能力と相殺して蒸発能力を小さくする制御を行う必要がなくなるため、単一の熱源側熱交換器によって広範囲の凝縮能力の制御幅を得ることができるようになる。
これにより、熱源側熱交換器の凝縮能力の制御の制御幅の制約によって熱源側熱交換器の単一化が実現できていなかった空気調和装置において、熱源側熱交換器の単一化が可能となるため、従来の空気調和装置において複数の熱源側熱交換器を設置することにより発生していた部品点数の増加及びコストアップを防ぎ、また、複数の熱源側熱交換器の一部を蒸発器として機能させて凝縮能力を小さくする場合に熱源側熱交換器で凝縮される冷媒量の分だけ圧縮機構において圧縮される冷媒量が増加して複数の利用側冷媒回路全体の空調負荷が小さい運転条件におけるCOPが悪くなるという問題を解消することができる。
(D)
本実施形態の空気調和装置1では、加圧回路111が熱源側膨張弁24と冷却器121との間に高圧のガス冷媒が合流するように接続されているため、高圧のガス冷媒が合流されて冷媒の温度が高くなった冷媒を冷却器121によって冷却することになる。これにより、冷却器121において冷媒を冷却するための冷熱源として、低温の冷熱源を使用する必要がなく、比較的高温の冷熱源を使用することができる。
また、空気調和装置1では、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の一部を圧縮機構21の吸入側に戻すことができる冷媒圧力まで減圧したものを冷却器121の冷却源として使用しているため、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒の温度よりも十分に低い温度の冷却源を得ることができる。これにより、熱源側膨張弁24の下流側から利用側冷媒回路12a、12b、12cへ送られる冷媒を過冷却状態まで冷却することが可能になる。
(E)
本実施形態の空気調和装置1では、熱源側熱交換器23内を流れる冷媒の流量とは関係なく一定量供給される水を熱源として使用しており、水量の制御により熱源側熱交換器23における蒸発能力を制御することができない。しかし、この空気調和装置1においては、熱源側膨張弁24によって熱源側熱交換器23の蒸発能力を制御する際の制御幅が拡大されているため、水量の制御をしなくても、熱源側熱交換器23の蒸発能力を制御する際の制御幅を確保することができる。
(4)変形例1
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅を拡大するために、第1油戻し回路101と第1バイパス回路102とを設けるようにしているが、上述のように、油回収運転時においては、熱源側膨張弁24を閉止しているため、液冷媒連絡配管9から熱源側熱交換器23に向かう冷媒の流れが停止してしまい、わずかな時間であるが、利用ユニット3、4、5のうち暖房運転を行っている利用ユニットの暖房運転が停止(暖房運転モードにおける利用ユニット3、4、5、図5参照)したり、又は、暖房能力が低下(冷暖同時運転モード(蒸発負荷)における利用ユニット4、5、図8参照)することになる。このため、本変形例の空気調和装置1では、図10に示されるように、利用側熱交換器32、42、52と熱源側熱交換器23とを接続する液冷媒管から冷媒を分岐して圧縮機構21の吸入側(具体的には、圧縮機構21の吸入側に接続された冷却回路122の導出管122c)に送ることが可能な第2バイパス回路103が設けられている。この第2バイパス回路103は、主として、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置と圧縮機構21の吸入側とを接続するバイパス管103aと、バイパス管103aに接続された開閉弁103bとを有している。バイパス管103aは、本実施形態においては、図10に示されるように、レシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けられている。このため、油回収運転時に開閉弁103bを開けると、レシーバ25の上部に溜まったガス状態の冷媒が優先的に圧縮機構21の吸入側に送られることになる。尚、バイパス管103aは、液冷媒管の利用側熱交換器32、42、52と熱源側膨張弁24との間の位置から圧縮機構21の吸入側に冷媒を送ることかできればよいため、例えば、レシーバ25ではなく、液冷媒管に直接接続されていてもよいが、圧縮機構21の吸入側に液状態の冷媒を送るのをできるだけ防ぐために、本実施形態のように、レシーバ25の上部に接続するのが望ましい。
このように、第2バイパス回路103を設けることによって、油回収運転中においても、暖房運転を行っている利用ユニットの利用側熱交換器に冷媒を流すことができるようになり、暖房運転を継続することができる。しかも、本実施形態のように、第2バイパス回路103をレシーバ25の上部から冷媒を圧縮機構21の吸入側に送るように設けることによって、圧縮機構21の吸入側にガス状態の冷媒を優先的に送り、液状態の冷媒を送るのをできるだけ防ぐことができる。
(5)変形例2
上述の空気調和装置1においては、熱源側膨張弁24による熱源側熱交換器23の蒸発能力の制御の制御幅と、熱源側膨張弁24による熱源側熱交換器23の凝縮能力の制御の制御幅との両方を拡大するために、第1油戻し回路101、第1バイパス回路102、加圧回路111、冷却器121及び冷却回路122(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けるようにしているが、例えば、熱源側熱交換器23の凝縮能力の制御の制御幅は確保されているが、熱源側熱交換器23の蒸発能力の制御の制御幅のみを拡大することが必要な場合には、図11に示されるように、第1油戻し回路101及び第1バイパス回路102だけ(変形例1の場合には、第2バイパス回路103をさらに含む)を熱源ユニット2に設けて、加圧回路111、冷却器121及び冷却回路122を省略してもよい。
(6)変形例3
上述の空気調和装置1においては、第1切換機構22及び第2切換機構26として四路切換弁を使用しているが、これに限定されず、例えば、図12に示されるように、第1切換機構22及び第2切換機構26として三方弁を使用してもよい。
本発明を利用すれば、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器を含んでおり、熱源側熱交換器と利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路を備えた空気調和装置において、熱源側熱交換器の蒸発能力を膨張弁によって制御する際の制御幅を拡大することができる。
本発明にかかる一実施形態の空気調和装置の概略の冷媒回路図である。 熱源側熱交換器の全体の概略構造を示す図である。 図2のC部分の拡大図であって、熱源側熱交換器の下部の概略構造を示す図である。 空気調和装置の暖房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の暖房運転モードにおける油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷房運転モードにおける動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(蒸発負荷)における油回収運転の動作を説明する概略の冷媒回路図である。 空気調和装置の冷暖房同時運転モード(凝縮負荷)における動作を説明する概略の冷媒回路図である。 変形例1にかかる空気調和装置の概略の冷媒回路図である。 変形例2にかかる空気調和装置の概略の冷媒回路図である。 変形例3にかかる空気調和装置の概略の冷媒回路図である。
符号の説明
1 空気調和装置
12 冷媒回路
21 圧縮機構
22 第1切換機構(熱源側切換機構)
23 熱源側熱交換器
24 熱源側膨張弁(膨張弁)
32、42、52 利用側熱交換器
66、76、86 高圧ガス開閉弁(利用側切換機構)
76、77、87 低圧ガス開閉弁(利用側切換機構)
101 第1油戻し回路(油戻し回路)
102 第1バイパス回路
103 第2バイパス回路

Claims (6)

  1. 圧縮機構(21)と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器(23)と、利用側熱交換器(32、42、52)と、前記熱源側熱交換器と前記利用側熱交換器とを接続する液冷媒管と、前記液冷媒管に設けられる膨張弁(24)とを含んでおり、前記熱源側熱交換器と前記利用側熱交換器とがそれぞれ個別に冷媒の蒸発器又は凝縮器として機能させる切り換えが可能な冷媒回路(12)と、
    前記圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスすることが可能な第1バイパス回路(102)と、
    前記熱源側熱交換器の下部と前記圧縮機構の吸入側とを接続する油戻し回路(101)とを備え、
    前記熱源側熱交換器を蒸発器として機能させて運転している際に、前記第1バイパス回路を介して前記圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスし、前記熱源側熱交換器を凝縮器として機能させる運転に切り換え、前記膨張弁を閉止することによって、前記圧縮機構から吐出される冷媒を前記熱源側熱交換器に流入させて、前記油戻し回路を介して前記熱源側熱交換器内に溜まった冷凍機油を前記圧縮機構の吸入側に戻す油回収運転を行う、
    空気調和装置(1)。
  2. 圧縮機構(21)と、冷媒の蒸発器として機能する際に冷媒が下側から流入して上側から流出するように構成された熱源側熱交換器(23)と、利用側熱交換器(32、42、52)と、前記熱源側熱交換器と前記利用側熱交換器とを接続する液冷媒管と、前記液冷媒管に設けられる膨張弁(24)と、前記熱源側熱交換器を前記圧縮機構から吐出される冷媒の凝縮器として機能させる凝縮運転切換状態と前記熱源側熱交換器を前記液冷媒管を流れる冷媒の蒸発器として機能させる蒸発運転切換状態とを切り換え可能にする熱源側切換機構(22)と、前記圧縮機構の吐出側と前記熱源側切換機構との間に接続されており前記圧縮機構から吐出される冷媒を前記熱源側切換機構に流入する前に分岐することが可能な高圧ガス冷媒管と、前記利用側熱交換器を前記液冷媒管を流れる冷媒の蒸発器として機能させる冷房運転切換状態と前記利用側熱交換器を前記高圧ガス冷媒管を流れる冷媒の凝縮器として機能させる暖房運転切換状態とを切り換え可能にする利用側切換機構(66、67、76、77、86、87)と、前記利用側熱交換器において蒸発される冷媒を前記圧縮機構の吸入側に送る低圧ガス冷媒管とを含む冷媒回路(12)と、
    前記圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスすることが可能な第1バイパス回路(102)と、
    前記熱源側熱交換器の下部と前記圧縮機構の吸入側とを接続する油戻し回路(101)とを備え、
    前記熱源側切換機構を蒸発運転切換状態にして運転している際に、前記第1バイパス回路を介して前記圧縮機構から吐出される冷媒を前記圧縮機構の吸入側にバイパスし、前記熱源側切換機構を凝縮運転切換状態に切り換え、前記膨張弁を閉止することによって、前記圧縮機構から吐出される冷媒を前記熱源側熱交換器に流入させて、前記油戻し回路を介して前記熱源側熱交換器内に溜まった冷凍機油を前記圧縮機構の吸入側に戻す油回収運転を行う、
    空気調和装置(1)。
  3. 前記液冷媒管には、前記利用側熱交換器(32、42、52)と前記膨張弁(24)との間に接続されており、前記液冷媒管から冷媒を分岐して前記圧縮機構(21)の吸入側に送ることが可能な第2バイパス回路(103)が設けられている、請求項1又は2に記載の空気調和装置(1)。
  4. 前記液冷媒管には、前記利用側熱交換器(32、42、52)と前記膨張弁(24)との間に接続されており、前記液冷媒管を流れる冷媒を溜めるレシーバ(25)がさらに設けられており、
    前記第2バイパス回路(103)は、前記レシーバの上部から冷媒を前記圧縮機構(21)の吸入側に送るように設けられている、請求項3に記載の空気調和装置(1)。
  5. 前記熱源側熱交換器(23)は、前記熱源側熱交換器内を流れる冷媒の流量制御とは関係なく一定量供給される水を熱源として使用している、請求項1〜4のいずれかに記載の空気調和装置(1)。
  6. 前記熱源側熱交換器(23)は、プレート式熱交換器である、請求項1〜5のいずれかに記載の空気調和装置(1)。
JP2004227662A 2004-08-04 2004-08-04 空気調和装置 Expired - Fee Related JP3861891B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004227662A JP3861891B2 (ja) 2004-08-04 2004-08-04 空気調和装置
CNB2005800025578A CN100472149C (zh) 2004-08-04 2005-07-28 空调装置
EP05767222.2A EP1775527B1 (en) 2004-08-04 2005-07-28 Air conditioner
ES05767222.2T ES2465643T3 (es) 2004-08-04 2005-07-28 Acondicionador de aire
PCT/JP2005/013814 WO2006013769A1 (ja) 2004-08-04 2005-07-28 空気調和装置
US10/586,582 US7607317B2 (en) 2004-08-04 2005-07-28 Air conditioner with oil recovery function
AU2005268315A AU2005268315B2 (en) 2004-08-04 2005-07-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227662A JP3861891B2 (ja) 2004-08-04 2004-08-04 空気調和装置

Publications (2)

Publication Number Publication Date
JP2006046779A true JP2006046779A (ja) 2006-02-16
JP3861891B2 JP3861891B2 (ja) 2006-12-27

Family

ID=35787057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227662A Expired - Fee Related JP3861891B2 (ja) 2004-08-04 2004-08-04 空気調和装置

Country Status (7)

Country Link
US (1) US7607317B2 (ja)
EP (1) EP1775527B1 (ja)
JP (1) JP3861891B2 (ja)
CN (1) CN100472149C (ja)
AU (1) AU2005268315B2 (ja)
ES (1) ES2465643T3 (ja)
WO (1) WO2006013769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052038A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
CN109405353A (zh) * 2018-10-30 2019-03-01 广东美的暖通设备有限公司 回油控制方法及控制系统、存储介质和三管制空调系统
JPWO2021225177A1 (ja) * 2020-05-08 2021-11-11

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103952B2 (ja) * 2007-03-08 2012-12-19 ダイキン工業株式会社 冷凍装置
JP4285583B2 (ja) * 2007-05-30 2009-06-24 ダイキン工業株式会社 空気調和装置
WO2009103470A1 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating system
JP5377653B2 (ja) * 2009-09-10 2013-12-25 三菱電機株式会社 空気調和装置
CN102753910B (zh) * 2010-02-10 2015-09-30 三菱电机株式会社 冷冻循环装置
CN101865555B (zh) * 2010-06-29 2012-10-03 广东志高空调有限公司 一种同时制冷和制热的一拖多空调
JP2012077983A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd 冷凍回路
KR101995581B1 (ko) * 2012-11-12 2019-07-02 엘지전자 주식회사 오일 분리기 및 이를 사용한 공기조화기
US10309698B2 (en) * 2013-05-03 2019-06-04 Trane International Inc. Oil return management in a HVAC system
JP6436196B1 (ja) * 2017-07-20 2018-12-12 ダイキン工業株式会社 冷凍装置
WO2020250986A1 (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 冷媒サイクルシステム
CN112524836B (zh) * 2020-12-17 2022-07-08 广东积微科技有限公司 一种三管制多联机系统及其控制方法
CN114696400A (zh) 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 充电仓和电连接移动的控制方法
CN112594985B (zh) * 2020-12-31 2022-04-19 广东积微科技有限公司 一种具有双四通阀多功能多联机系统的回油控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257038U (ja) * 1985-09-27 1987-04-09
JPS62276368A (ja) * 1986-05-23 1987-12-01 株式会社ボッシュオートモーティブ システム 空調装置における油戻し機構
JPH0336474A (ja) * 1989-07-03 1991-02-18 Toshiba Corp 空気調和機
JPH0474257U (ja) * 1990-11-08 1992-06-29
JP2003240364A (ja) * 2002-02-19 2003-08-27 Denso Corp 冷凍サイクル装置及びヒートポンプ式空調装置
JP2003287291A (ja) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp 冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715196A (en) 1986-04-11 1987-12-29 Diesel Kiki Co., Ltd. Oil returning mechanism of evaporator for air conditioner
JPS63204074A (ja) 1987-02-19 1988-08-23 ダイキン工業株式会社 冷凍装置
JPH0359362A (ja) * 1989-07-28 1991-03-14 Toshiba Corp 空気調和機
JPH03129259A (ja) 1989-10-13 1991-06-03 Matsushita Refrig Co Ltd 多室型空気調和機
JP2954259B2 (ja) 1990-03-09 1999-09-27 株式会社日立製作所 空気調和機
JP3060770B2 (ja) * 1993-02-26 2000-07-10 ダイキン工業株式会社 冷凍装置
KR100437805B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
KR100504498B1 (ko) * 2003-01-13 2005-08-03 엘지전자 주식회사 공기조화기용 과냉확보장치
JP3781046B2 (ja) * 2004-07-01 2006-05-31 ダイキン工業株式会社 空気調和装置
EP1780479A4 (en) * 2004-07-01 2013-12-11 Daikin Ind Ltd COOLER AND AIR CONDITIONER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257038U (ja) * 1985-09-27 1987-04-09
JPS62276368A (ja) * 1986-05-23 1987-12-01 株式会社ボッシュオートモーティブ システム 空調装置における油戻し機構
JPH0336474A (ja) * 1989-07-03 1991-02-18 Toshiba Corp 空気調和機
JPH0474257U (ja) * 1990-11-08 1992-06-29
JP2003240364A (ja) * 2002-02-19 2003-08-27 Denso Corp 冷凍サイクル装置及びヒートポンプ式空調装置
JP2003287291A (ja) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp 冷凍装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052038A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
JP5523470B2 (ja) * 2009-10-27 2014-06-18 三菱電機株式会社 空気調和装置
US8839640B2 (en) 2009-10-27 2014-09-23 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2495511A4 (en) * 2009-10-27 2018-04-04 Mitsubishi Electric Corporation Air conditioning device
CN109405353A (zh) * 2018-10-30 2019-03-01 广东美的暖通设备有限公司 回油控制方法及控制系统、存储介质和三管制空调系统
JPWO2021225177A1 (ja) * 2020-05-08 2021-11-11
JP7492154B2 (ja) 2020-05-08 2024-05-29 ダイキン工業株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP1775527B1 (en) 2014-03-05
AU2005268315B2 (en) 2008-05-29
ES2465643T3 (es) 2014-06-06
US20080236189A1 (en) 2008-10-02
CN1910409A (zh) 2007-02-07
AU2005268315A1 (en) 2006-02-09
EP1775527A1 (en) 2007-04-18
CN100472149C (zh) 2009-03-25
WO2006013769A1 (ja) 2006-02-09
EP1775527A4 (en) 2013-02-20
US7607317B2 (en) 2009-10-27
JP3861891B2 (ja) 2006-12-27

Similar Documents

Publication Publication Date Title
JP4475278B2 (ja) 冷凍装置及び空気調和装置
EP1775527B1 (en) Air conditioner
EP1762796B1 (en) Air conditioner
AU2008208346B2 (en) Air conditioner
WO2008062769A1 (en) Air conditioner
JP6880204B2 (ja) 空気調和装置
JP5875710B2 (ja) 空気調和装置
JP4407012B2 (ja) 冷凍装置
JP2010048506A (ja) マルチ型空気調和機
JP4981411B2 (ja) 空気調和機
JP2011127775A (ja) 空気調和装置
KR100741252B1 (ko) 공기 조화 장치
WO2013073070A1 (ja) 冷凍サイクル装置
WO2024071214A1 (ja) 冷凍サイクル装置
WO2024071215A1 (ja) 冷凍サイクル装置
WO2024071213A1 (ja) 冷凍サイクル装置
KR20060075024A (ko) 냉난방 동시형 멀티 공기조화기
US20230065072A1 (en) Refrigeration cycle system, heat source unit, and refrigeration cycle apparatus
KR100825622B1 (ko) 공기 조화 장치
KR102163743B1 (ko) 공기조화 시스템 및 그 제어방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees