JP2006032524A - Nitride semiconductor heterostructure field-effect transistor and its manufacturing method - Google Patents

Nitride semiconductor heterostructure field-effect transistor and its manufacturing method Download PDF

Info

Publication number
JP2006032524A
JP2006032524A JP2004206975A JP2004206975A JP2006032524A JP 2006032524 A JP2006032524 A JP 2006032524A JP 2004206975 A JP2004206975 A JP 2004206975A JP 2004206975 A JP2004206975 A JP 2004206975A JP 2006032524 A JP2006032524 A JP 2006032524A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
aln
device structure
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206975A
Other languages
Japanese (ja)
Inventor
Masanobu Hiroki
正伸 廣木
Takashi Kobayashi
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004206975A priority Critical patent/JP2006032524A/en
Publication of JP2006032524A publication Critical patent/JP2006032524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a nitride semiconductor HFET structure using an InGaN channel with high quality such as the steepness of a boundary or the like or a barrier layer having high band offset, and to improve the reproducibility of manufacture of an HFET structure. <P>SOLUTION: The nitride semiconductor element structure has an In<SB>x</SB>Ga<SB>1-x</SB>N (0≤x≤1) layer, a nitride semiconductor intermediate layer thereon, and an AlN layer thereon. In addition, the nitride semiconductor element structure has an In<SB>x</SB>Ga<SB>1-x</SB>N (0≤x≤1) layer on a nitride semiconductor thin film and an AlN layer thereon. The In<SB>x</SB>Ga<SB>1-x</SB>N layer is made of a multilayer film with a different composition. The nitride semiconductor intermediate layer is made of GaN, or AlN, or Al<SB>x</SB>Ga<SB>1-x</SB>N, or their multilayer film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は窒化物半導体材料を用いたヘテロ構造電界効果トランジスタ構造とその作製法に関するものである。   The present invention relates to a heterostructure field effect transistor structure using a nitride semiconductor material and a method for manufacturing the same.

窒化物半導体は、遠赤外から紫外領域のバンドギャップを有するため、その領域での、受光・発光素子用の材料として有望である。また、原子結合力が強く、絶縁破壊電界が高く、飽和電子速度が大きいことから、耐高温・高出力・高周波トランジスタ等の電子デバイスの材料としても有望である。
特に電子デバイス用の用途において、携帯電話基地局用の増幅器への適用を目指し、数百mW以上の高出力ヘテロ構造電界効果トランジスタ(HFET)の開発が進められている。HFETの高出力化のためには、高耐圧化や、よりチャネルに電流を流すための高電流化、熱損失を防ぐための放熱性の向上、電流コラプスの抑制等が必要となるが、その中の高電流化を図る技術として、従来用いられているGaNチャネルをInGaNチャネルヘ替えること、あるいは、バリア層のAlGaN層のAlN混晶組成比を高くすることが有効である。
InGaNチャネルを用いることで、InGaNが、GaNと比較して、理論的には、飽和電子速度が大きく、また組成によって移動度が大きく、また、より大きな分極効果と大きなバリア層とのバンドオフセットにより、ヘテロ界面の2次元電子ガスをより高濃度とすることができる。高AlN混晶組成比をもちいることでも、より大きな分極効果と大きなバリア層とのバンドオフセットにより、ヘテロ界面の2次元電子ガスをより高濃度とすることができ、またゲート耐圧を向上させることが可能である(特許文献1参照)。
Nitride semiconductors have a band gap from the far infrared to the ultraviolet region, and thus are promising as materials for light receiving and light emitting elements in that region. In addition, since it has a strong atomic bonding force, a high dielectric breakdown electric field, and a high saturation electron velocity, it is also promising as a material for electronic devices such as high temperature resistance, high output, and high frequency transistors.
Particularly in applications for electronic devices, development of high-power heterostructure field effect transistors (HFETs) of several hundred mW or more is underway with the aim of applying to amplifiers for mobile phone base stations. In order to increase the output of the HFET, it is necessary to increase the withstand voltage, increase the current to flow more current through the channel, improve the heat dissipation to prevent heat loss, suppress the current collapse, etc. As a technique for increasing the current, it is effective to replace a conventionally used GaN channel with an InGaN channel, or to increase the AlN mixed crystal composition ratio of the AlGaN layer of the barrier layer.
By using the InGaN channel, InGaN theoretically has a higher saturation electron velocity and higher mobility depending on the composition compared to GaN, and due to a larger polarization effect and a larger band offset of the barrier layer. The two-dimensional electron gas at the heterointerface can be made higher in concentration. Even by using a high AlN mixed crystal composition ratio, it is possible to increase the concentration of the two-dimensional electron gas at the heterointerface due to a larger polarization effect and a band offset with a large barrier layer, and to improve the gate breakdown voltage. Is possible (see Patent Document 1).

従来のInGaNチャネルを用いたHFET構造としては、AlGaN/InGaN/GaN構造、あるいはAlGaN/InGaN/AlGaN構造のMOCVD法による作製が報告されており(非特許文献1、2参照)、それを用いた高出力HFETの特性も報告されている。しかしながら、この構造の作製は、下記に示すような問題がある。それは、MOCVD成長において、InGaN層の最適成長温度がIn組成10%程度の場合で700℃〜800℃であるのに対し、AlGaN層では900℃以上と高い。よって、InGaN上にAlGaNバリア層を成長するためには、InGaN層成長後に、基板温度を900℃以上に上げる必要があるが、InGaNは900℃以上の高温では、熱的に不安定であり、気相への脱離等が生じ、InGaN層の結晶性の劣化や、ヘテロ界面の急峻性の劣化が生じてしまう。
以上の理由より、ヘテロ界面、すなわちAlGaNとInGaNの界面を高品質に作製することは非常に困難である。それに伴い、AlGaN/InGaN/GaN構造の電気的特性もAlGaN/GaNヘテロ構造と比較して、劣っており、例えば、2次元電子ガスの移動度は、700cm/Vsec程度と期待される値よりも大幅に低い。また、高AlN混晶組成比のAlGaN層を用いた場合でも、結晶性や界面の劣化により、ゲートリークが増大する等の問題が生じている。
As a conventional HFET structure using an InGaN channel, production of an AlGaN / InGaN / GaN structure or an AlGaN / InGaN / AlGaN structure by MOCVD has been reported (see Non-Patent Documents 1 and 2). High power HFET characteristics have also been reported. However, the production of this structure has the following problems. In MOCVD growth, the optimum growth temperature of the InGaN layer is 700 ° C. to 800 ° C. when the In composition is about 10%, whereas the AlGaN layer is as high as 900 ° C. or higher. Therefore, in order to grow an AlGaN barrier layer on InGaN, it is necessary to raise the substrate temperature to 900 ° C. or higher after growing the InGaN layer, but InGaN is thermally unstable at a high temperature of 900 ° C. or higher, Desorption to the gas phase occurs, and the crystallinity of the InGaN layer is deteriorated and the steepness of the hetero interface is deteriorated.
For the above reasons, it is very difficult to produce a hetero interface, that is, an interface between AlGaN and InGaN with high quality. Accordingly, the electrical characteristics of the AlGaN / InGaN / GaN structure are inferior to those of the AlGaN / GaN heterostructure. For example, the mobility of the two-dimensional electron gas is about 700 cm 2 / Vsec than expected. Is also significantly lower. Even when an AlGaN layer having a high AlN mixed crystal composition ratio is used, problems such as increased gate leakage occur due to crystallinity and interface deterioration.

図4は、従来用いられているAlGaN/GaNヘテロ構造の断面模式図である。図4において、1はSiC基板、2はAlN層、3はGaN層、4はAlGaN層である。SiC基板上の構造は、すべてMOCVD法により作製されている。SiC基板上に1100℃でAlN緩衝層を50〜200nm堆積した後に、約1000℃〜1050℃でGaN層を1〜2μm、アンドープAl0.25Ga0.75N層を20nm順次堆積した構造となっている。この時、AlGaNとGaNの分極効果により、2次元電子ガスがAlGaN層とGaN層との界面に生じている。2次元電子ガスの電気的特性から、ある程度HFETの特性を見積もることができる。すなわち、シート抵抗が低いほど、HFETの相互コンダクタンスや最大電流密度が増大することが期待できる。この場合、電子移動度1500cm/Vsec、2次元電子濃度7×1012cm−2であり、シート抵抗はおよそ600Ω/sqであった。実用上は、AlGaNバリア層へ、Siドーピングを施し、よりシート抵抗を低減させた構造を用いて、トランジスタが作製されている。 FIG. 4 is a schematic cross-sectional view of a conventionally used AlGaN / GaN heterostructure. In FIG. 4, 1 is a SiC substrate, 2 is an AlN layer, 3 is a GaN layer, and 4 is an AlGaN layer. All structures on the SiC substrate are produced by the MOCVD method. A structure in which an AlN buffer layer of 50 to 200 nm is deposited on a SiC substrate at 1100 ° C., and then a GaN layer of 1 to 2 μm and an undoped Al 0.25 Ga 0.75 N layer of 20 nm are sequentially deposited at about 1000 ° C. to 1050 ° C. It has become. At this time, a two-dimensional electron gas is generated at the interface between the AlGaN layer and the GaN layer due to the polarization effect of AlGaN and GaN. The characteristics of the HFET can be estimated to some extent from the electrical characteristics of the two-dimensional electron gas. That is, it can be expected that the lower the sheet resistance, the higher the mutual conductance and maximum current density of the HFET. In this case, the electron mobility was 1500 cm 2 / Vsec, the two-dimensional electron concentration was 7 × 10 12 cm −2 , and the sheet resistance was about 600 Ω / sq. In practical use, a transistor is fabricated using a structure in which Si doping is performed on the AlGaN barrier layer to further reduce sheet resistance.

図5は、InGaNチャネルにおいて、従来報告されているAlGaN/InGaN/GaNダブルヘテロ構造の断面模式図である。図5において、1はSiC基板、2はAlN層、3はGaN層、5はInGaN層、4はAlGaN層である。SiC基板上の構造は、すべてMOCVD法により作製されている。SiC基板上に1100℃でAlN緩衝層を50〜200nm堆積した後に、1000℃〜1050℃でGaN層を1〜2μm成長し、基板温度を750℃に下げ、アンドープIno.1Ga0.9N層を約10nm堆積した後、再び基板温度を1000℃〜1050℃へ上げ、アンドープAl0.25Ga0.75N層を20nm堆積した構造となっている。2次元電子ガスがAlGaN層とInGaN層との界面に生じている。
この時、この構造の電気的特性は、電子移動度750cm/Vsec、シート電子濃度1.2×1013cm−2であり、シート抵抗は、およそ690Ω/sqであった。図4の構造と比べ、分極効果の増大による2次元電子濃度の大幅な増大がみられたものの、結晶品質、界面急峻性の劣化により、電子移動度が大きく下がり、シート抵抗は、図4で示した従来のAlGaN/GaN−HFET構造と比較して高くなった。この電気的特性では、HFETとして高いデバイス特性を出すことは困難である。
FIG. 5 is a schematic cross-sectional view of a conventionally reported AlGaN / InGaN / GaN double heterostructure in an InGaN channel. In FIG. 5, 1 is a SiC substrate, 2 is an AlN layer, 3 is a GaN layer, 5 is an InGaN layer, and 4 is an AlGaN layer. All structures on the SiC substrate are produced by the MOCVD method. After depositing an AlN buffer layer of 50 to 200 nm on a SiC substrate at 1100 ° C., a GaN layer was grown by 1 to 2 μm at 1000 ° C. to 1050 ° C., the substrate temperature was lowered to 750 ° C., and undoped In o. After the 1 Ga 0.9 N layer is deposited by about 10 nm, the substrate temperature is again raised to 1000 ° C. to 1050 ° C., and the undoped Al 0.25 Ga 0.75 N layer is deposited by 20 nm. A two-dimensional electron gas is generated at the interface between the AlGaN layer and the InGaN layer.
At this time, the electrical characteristics of this structure were an electron mobility of 750 cm 2 / Vsec, a sheet electron concentration of 1.2 × 10 13 cm −2 , and a sheet resistance of about 690 Ω / sq. Compared with the structure of FIG. 4, although the two-dimensional electron concentration is greatly increased due to the increase of the polarization effect, the electron mobility is greatly lowered due to the deterioration of crystal quality and interface steepness, and the sheet resistance is as shown in FIG. It was higher than the conventional AlGaN / GaN-HFET structure shown. With this electrical characteristic, it is difficult to obtain high device characteristics as an HFET.

特開2003−109973号公報JP 2003-109973 A G.Simin et al.“AlGaN/InGaN/GaN Doub1e−Heterostructure Field Effect Transistor”:Jpn.J.Appl.Phys.Vol.40(2001)L1142G. Simin et al. “AlGaN / InGaN / GaN Doub1e-Heterostructural Field Effect Transistor”: Jpn. J. et al. Appl. Phys. Vol. 40 (2001) L1142 N.Maeda et al.“Enhanced Electron Mobility in AlGaN/InGaN/AlGaN Dobuble−Heterostructures by Piezoelectric Effect”:Jpn.J.Appl.Phys.Vol.38(1999)L799N. Maeda et al. “Enhanced Electron Mobility in AlGaN / InGaN / AlGaN Double-Heterostructures by Piezoelectric Effect”: Jpn. J. et al. Appl. Phys. Vol. 38 (1999) L799

上述のように、InGaNチャネル、あるいは、高AlN混晶組成比のAlGaN層を用いた高品質なAlGaN/InGaN/GaNヘテロ構造の作製は困難である。それは、電気的特性の劣化を招き、ひいては、その構造により作製したHFETの特性も、GaNチャネルと比べ劣ったものであり、InGaNチャネル技術を用いたHFETは未だ実用化に至っていない。   As described above, it is difficult to produce a high-quality AlGaN / InGaN / GaN heterostructure using an InGaN channel or an AlGaN layer having a high AlN mixed crystal composition ratio. This causes deterioration of electrical characteristics, and as a result, the characteristics of the HFET manufactured by the structure are also inferior to those of the GaN channel, and the HFET using the InGaN channel technology has not yet been put into practical use.

本発明の目的は、上記課題を解決し、界面の急峻性等の品質に優れたInGaNチャネルまたは、高いバンドオフセットを持つバリア層を用いた窒化物半導体HFET構造の作製を可能とすること、および上記HFET構造の作製の再現性を向上させることである。   The object of the present invention is to solve the above-mentioned problems and enable the fabrication of a nitride semiconductor HFET structure using an InGaN channel excellent in quality such as interface steepness or a barrier layer having a high band offset, and It is to improve the reproducibility of the production of the HFET structure.

以上の課題を解決するために、本発明では、窒化物半導体薄膜上に、InGa1−xN(0≦x≦1)層をチャネルとして有し、その上にGaN等の窒化物半導体中間層を有し、その上にAlN層を有するHFET構造、または、そのInGa1−xN(0≦x≦1)チャネル層上にAlN層を有するHFET構造という構成からなっている。
また、最上層のAlN層の堆積法として、MOCVD法等による下部の構造からの連続成長に限らず、MOCVD法よりもより低温で成膜できるスパッタ法により堆積する作製法も採用している。
In order to solve the above problems, in the present invention, an In x Ga 1-x N (0 ≦ x ≦ 1) layer is formed as a channel on a nitride semiconductor thin film, and a nitride semiconductor such as GaN is formed thereon. It has a configuration of an HFET structure having an intermediate layer and an AlN layer thereon, or an HFET structure having an AlN layer on the In x Ga 1-x N (0 ≦ x ≦ 1) channel layer.
Further, the deposition method of the uppermost AlN layer is not limited to the continuous growth from the lower structure by the MOCVD method or the like, but a production method of depositing by a sputtering method capable of forming a film at a lower temperature than the MOCVD method is also employed.

上記本発明の課題を解決するために、具体的には特許請求の範囲に記載のような構成とするものである。すなわち、
請求項1に記載のように、窒化物半導体薄膜上に、InGa1−xN(0≦x≦1)層を有し、その上に窒化物半導体中間層を有し、その上にAlN層を有する構成の窒化物半導体素子構造とするものである。
In order to solve the above-described problems of the present invention, specifically, the configuration described in the claims is adopted. That is,
As described in claim 1, an In x Ga 1-x N (0 ≦ x ≦ 1) layer is provided on a nitride semiconductor thin film, and a nitride semiconductor intermediate layer is provided thereon. A nitride semiconductor device structure having an AlN layer is provided.

また、請求項2に記載のように、窒化物半導体薄膜上に、InGa1−xN(0≦x≦1)層を有し、その上にAlN層を有する構成の窒化物半導体素子構造とするものである。 A nitride semiconductor device having an In x Ga 1-x N (0 ≦ x ≦ 1) layer on a nitride semiconductor thin film and an AlN layer on the In x Ga 1-x N (0 ≦ x ≦ 1) layer. It is a structure.

また、請求項3に記載のように、請求項1または請求項2に記載の窒化物半導体素子構造において、前記InGa1−xN層は、組成の異なる多層膜とする窒化物半導体素子構造とするものである。 Further, as described in claim 3, in the nitride semiconductor device structure according to claim 1 or 2, the In x Ga 1-x N layer is a multilayer film having a different composition. It is a structure.

また、請求項4に記載のように、請求項1に記載の窒化物半導体素子構造において、前記窒化物半導体中間層は、GaN、もしくはAlN、もしくはAlGa1−xN、もしくはそれらの多層膜である窒化物半導体素子構造とするものである。 Further, according to claim 4, in the nitride semiconductor device structure according to claim 1, the nitride semiconductor intermediate layer is made of GaN, AlN, Al x Ga 1-x N, or a multilayer thereof. It is a nitride semiconductor device structure that is a film.

また、請求項5に記載のように、請求項1ないし請求項4のいずれか1項に記載の窒化物半導体素子構造において、前記最上層のAlN層の結晶形態が多結晶である窒化物半導体素子構造とするものである。   The nitride semiconductor device structure according to any one of claims 1 to 4, wherein the crystal form of the uppermost AlN layer is polycrystalline. It is an element structure.

また、請求項6に記載のように、請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子構造において、前記窒化物半導体薄膜は、GaN、もしくはAlN、もしくはAlGa1−xN層である窒化物半導体素子構造とするものである。 Moreover, as described in claim 6, in the nitride semiconductor device structure according to any one of claims 1 to 5, the nitride semiconductor thin film is made of GaN, AlN, or Al x Ga 1. −x N layer is a nitride semiconductor device structure.

また、請求項7に記載のように、請求項1ないし請求項6のいずれか1項に記載の窒化物半導体素子構造において、前記InGa1−xN層の電気的極性は、すべて真性、もしくは上から真性/n型、もしくは上から真性/n型/真性の前記InGa1−xN層よりなる窒化物半導体素子構造とするものである。 In addition, as described in claim 7, in the nitride semiconductor device structure according to any one of claims 1 to 6, the electrical polarity of the In x Ga 1-x N layer is all intrinsic. Alternatively, a nitride semiconductor device structure composed of the In x Ga 1-x N layer, which is intrinsic / n-type from the top or intrinsic / n-type / intrinsic from the top, is used.

また、請求項8に記載のように、請求項1ないし請求項7のいずれか1項に記載の窒化物半導体素子構造において、前記最上層AlN層を除き、前記窒化物半導体素子構造を作製する場合に、有機金属気相成長(MOVPE)法、もしくは分子線エピタキシー(MBE)法、もしくはハイドライド気相成長(HVPE)法により行い、その上に最上層としてAlN層をスパッタ法により堆積して構成する窒化物半導体素子構造の作製法とするものである。   In addition, as described in claim 8, in the nitride semiconductor device structure according to any one of claims 1 to 7, the nitride semiconductor device structure is manufactured except for the uppermost AlN layer. In some cases, a metal organic vapor phase epitaxy (MOVPE) method, a molecular beam epitaxy (MBE) method, or a hydride vapor phase epitaxy (HVPE) method is performed, and an AlN layer is deposited thereon as a top layer by a sputtering method. This is a method for producing a nitride semiconductor device structure.

また、請求項9に記載のように、請求項8に記載の窒化物半導体材料によるヘテロ構造電界効果トランジスタ(HFET)素子構造の作製法において、InGaNチャネル層にAlNバリア層のHFET構造を作製する際に、スパッタ法を用いてAlNバリア層を堆積する工程を有し、さらに、InGaNチャネル層とAlNバリア層との間に、MOCVD法で中間層のGaNバリア層を設ける場合に、2次元電子ガスの生じるInGaN/GaNヘテロ界面は単結晶同士であり、大気にさらされることなく同一のMOCVD装置内で連続してInGaN/GaNを成長させ、高電子移動度を有するInGaNチャネルHFETを作製できる窒化物半導体素子構造の作製法とするものである。   According to a ninth aspect of the present invention, in the method for fabricating a heterostructure field effect transistor (HFET) device structure using the nitride semiconductor material according to the eighth aspect, an HFET structure of an AlN barrier layer is fabricated in the InGaN channel layer. In the case where an AlN barrier layer is deposited using a sputtering method, and when an intermediate GaN barrier layer is provided by an MOCVD method between the InGaN channel layer and the AlN barrier layer, two-dimensional electrons The InGaN / GaN heterointerface where the gas is generated is a single crystal, and the InGaN / GaN can be continuously grown in the same MOCVD apparatus without being exposed to the atmosphere, thereby producing an InGaN channel HFET having high electron mobility. This is a method for manufacturing a physical semiconductor element structure.

また、請求項10に記載のように、請求項8または請求項9において、AlN層をスパッタ法で堆積する方法は、ECRプラズマスパッタリング成膜装置に、冷却した被処理基板を導入し、Alと窒素を用い、スパッタの成膜条件としては、AlとNの化学量論比が1:1となるように、RFの印加電圧、ガス圧、原料窒素の流量のバランスを調整し、成膜温度は室温から600℃までとし、堆積したAlN層はC軸配向した多結晶で、極性も下地と同様、III族面で、Al面が上を向き、InGaN層とAlN層との間に分極効果により高濃度の2次元電子ガスを生成する窒化物半導体素子構造の作製法とするものである。   In addition, as described in claim 10, in the method according to claim 8 or 9, the method of depositing the AlN layer by sputtering includes introducing a cooled substrate to be processed into an ECR plasma sputtering film forming apparatus, Nitrogen is used as a sputtering film forming condition, and the balance of the RF applied voltage, the gas pressure, and the flow rate of the raw material nitrogen is adjusted so that the stoichiometric ratio of Al and N is 1: 1, and the film forming temperature is set. Is from room temperature to 600 ° C., the deposited AlN layer is C-axis oriented polycrystal, the polarity is the same as the base, group III surface, the Al surface faces up, and polarization effect between the InGaN layer and the AlN layer Thus, a method of manufacturing a nitride semiconductor device structure that generates a high-concentration two-dimensional electron gas is obtained.

本発明によれば、結晶品質および電気的特性に優れたInGaNチャネルHFET構造の作製が可能となる。そのことにより、従来のAlGaN/GaN HFET構造よりも大電流化、高耐圧化が可能となる。   According to the present invention, an InGaN channel HFET structure excellent in crystal quality and electrical characteristics can be produced. This makes it possible to increase the current and withstand voltage compared to the conventional AlGaN / GaN HFET structure.

〈実施例1〉
図1は、本発明の実施例1で例示したInGaNチャネルHFET構造の断面模式図を示す。図1において、1はSiC基板、2はAlN層、3はGaN層、5はInGaN層、6はAlN層、12は2次元電子ガスである。ここで、InGaN層までは、図5(従来のAlGaN/InGaN/GaN HFET構造)と同様に、MOCVD法により作製されている。
SiC基板1上に1100℃でAlN緩衝層2を50〜200nm堆積した後に、1000℃〜1050℃でGaN層3を1〜2μm成長し、基板温度を750℃に下げ、アンドープIn0.1Ga0.9N層5を約10nm堆積した。
<Example 1>
FIG. 1 is a schematic cross-sectional view of the InGaN channel HFET structure exemplified in Example 1 of the present invention. In FIG. 1, 1 is a SiC substrate, 2 is an AlN layer, 3 is a GaN layer, 5 is an InGaN layer, 6 is an AlN layer, and 12 is a two-dimensional electron gas. Here, the layers up to the InGaN layer are fabricated by MOCVD as in FIG. 5 (conventional AlGaN / InGaN / GaN HFET structure).
After depositing 50 to 200 nm of AlN buffer layer 2 on SiC substrate 1 at 1100 ° C., GaN layer 3 is grown to 1 to 2 μm at 1000 ° C. to 1050 ° C., the substrate temperature is lowered to 750 ° C., and undoped In 0.1 Ga A 0.9 N layer 5 was deposited about 10 nm.

本発明の効果は、InGaNチャネル層の組成xの全組成域においてあるが、実用上は0.05から0.2程度が望ましい。この後、被処理基板を冷却し、MOCVD装置から外部へ取り出し、ECR(E1ectron Cyclotron Resonance)プラズマスパッタリング成膜装置へ導入し、Alと窒素を用い、室温、Arプラズマ中でAlN層6を厚さ20nm程度堆積した。スパッタの成膜条件としては、AlとNの化学量論比が1:1となるように、RFの印加電圧、ガス圧、原料窒素の流量のバランスを調整すること、成膜温度は室温から600℃までが望ましい。
堆積したAlN層は、MOCVDで成長された下地の窒化物半導体層と同じく、C軸配向した多結晶であった。極性も下地と同様、III族面、すなわちAl面が上を向いていた。このため、InGaN層とAlN層との間には、分極効果により2次元電子ガスが生じた。電子移動度800cm/Vsec、2次元電子濃度1.4×1013cm−2であり、シート抵抗は、およそ560Ω/sq(スクエア)であった。
The effect of the present invention is in the entire composition region of the composition x of the InGaN channel layer, but is practically about 0.05 to 0.2. Thereafter, the substrate to be processed is cooled, taken out from the MOCVD apparatus, introduced into an ECR (E1 Electron Cyclotron Resonance) plasma sputtering film forming apparatus, and the AlN layer 6 is thickened at room temperature in Ar plasma using Al and nitrogen. Deposited about 20 nm. As film formation conditions for sputtering, the balance between the applied voltage of RF, the gas pressure, and the flow rate of raw material nitrogen is adjusted so that the stoichiometric ratio of Al and N is 1: 1. Up to 600 ° C is desirable.
The deposited AlN layer was a C-axis oriented polycrystal similar to the underlying nitride semiconductor layer grown by MOCVD. As for the polarity, the group III surface, that is, the Al surface faced upward as in the base. For this reason, a two-dimensional electron gas was generated between the InGaN layer and the AlN layer due to the polarization effect. The electron mobility was 800 cm 2 / Vsec, the two-dimensional electron concentration was 1.4 × 10 13 cm −2 , and the sheet resistance was about 560 Ω / sq (square).

図5で示した従来のAlGaN/InGaN/GaN−HFET構造と比較して、電子移動度が向上したのは、AlNを室温で堆積していることから、InGaNの脱離が抑制され、急峻な界面が形成されたことが原因と考えられる。AlNは、下地の窒化物半導体層に対して格子緩和しており、ピエゾ分極が発生していないが、自発分極は、図5のAlGaN/InGaN界面の約4倍あった。このため、2次元電子濃度は増大したものと考えられる。   Compared with the conventional AlGaN / InGaN / GaN-HFET structure shown in FIG. 5, the reason why the electron mobility is improved is that AlN is deposited at room temperature. This is probably because the interface was formed. AlN is lattice-relaxed with respect to the underlying nitride semiconductor layer, and no piezo polarization is generated, but the spontaneous polarization is about four times that of the AlGaN / InGaN interface in FIG. For this reason, it is considered that the two-dimensional electron concentration has increased.

以上の結果により、本発明の実施例1(図1)に示したHFET構造は、従来のInGaNチャネルのHFET構造と比べ、電気的特性が向上されていることが確認された。また、図4で示した従来のアンドープAlGaN/GaN−HFET構造と比較しても、より低いシート抵抗を実現できた。なお、SiC基板上に成長された窒化物半導体薄膜上の構造以外にも、サファイア基板、Si基板上に成長した窒化物半導体薄膜上の構造でも、ここに示したものと同じ効果が得られた。また、図1の符号3で示したGaN層ではなく、他のAlN層、AlGaN層とした場合においても、本実施例1と同様の効果が得られた。   From the above results, it was confirmed that the electrical characteristics of the HFET structure shown in Example 1 (FIG. 1) of the present invention were improved as compared with the conventional InGaN channel HFET structure. In addition, a lower sheet resistance could be realized as compared with the conventional undoped AlGaN / GaN-HFET structure shown in FIG. In addition to the structure on the nitride semiconductor thin film grown on the SiC substrate, the same effect as that shown here was also obtained on the structure on the sapphire substrate and the nitride semiconductor thin film grown on the Si substrate. . In addition, when the AlN layer and the AlGaN layer other than the GaN layer indicated by reference numeral 3 in FIG. 1 were used, the same effect as in Example 1 was obtained.

〈実施例2〉
図2は、本発明の実施例2で例示したInGaNチャネルHFET構造の断面模式図を示す。図2において、1はSiC基板、2はAlN層、3はGaN層、5はInGaN層、7はGaN層、6はAlN層、12は2次元電子ガスである。
MOCVD法により、SiC基板1上に1100℃でAlN緩衝層2を50〜200nm堆積した後に、1000℃〜1050℃でGaN層3を1〜2μm成長し、基板温度を750℃に下げ、アンドープIn0.1Ga0.9N層5を約10nm堆積し、基板温度を800℃に上げGaN層3を約3nm成長した。中間層の膜厚としては1nmから15nm程度で効果が確認されているが、5nm以下が望ましい。その後、MOCVD装置から取り出して、この後、被処理基板を冷却し、MOCVD装置から外部へ取り出し、ECRプラズマスパッタリング成膜装置へ導入し、Alと窒素を用い、室温、Arプラズマ中でAlN層を厚さ20nm程度堆積した。図1で示した〈実施例1〉と同様に、AlN層は、Al面が上に向きC軸配向した多結晶であった。2次元電子ガス12はGaNとInGaNの界面に生じており、電子移動度1200cm/Vsec、2次元電子濃度1.4×1013cm−2であり、シート抵抗は、およそ370Ω/sqであった。
<Example 2>
FIG. 2 is a schematic cross-sectional view of the InGaN channel HFET structure exemplified in Example 2 of the present invention. In FIG. 2, 1 is a SiC substrate, 2 is an AlN layer, 3 is a GaN layer, 5 is an InGaN layer, 7 is a GaN layer, 6 is an AlN layer, and 12 is a two-dimensional electron gas.
After depositing 50 to 200 nm of AlN buffer layer 2 on SiC substrate 1 at 1100 ° C. by MOCVD, GaN layer 3 is grown to 1 to 2 μm at 1000 ° C. to 1050 ° C., substrate temperature is lowered to 750 ° C., and undoped In A 0.1 Ga 0.9 N layer 5 was deposited to about 10 nm, the substrate temperature was raised to 800 ° C., and a GaN layer 3 was grown to about 3 nm. The effect is confirmed to be about 1 nm to 15 nm as the film thickness of the intermediate layer, but 5 nm or less is desirable. Thereafter, the substrate is taken out from the MOCVD apparatus, and then the substrate to be processed is cooled, taken out from the MOCVD apparatus, introduced into the ECR plasma sputtering film forming apparatus, and Al and nitrogen are used to form an AlN layer at room temperature in Ar plasma. A thickness of about 20 nm was deposited. As in <Example 1> shown in FIG. 1, the AlN layer was a polycrystal with the Al surface facing upward and C-axis oriented. The two-dimensional electron gas 12 is generated at the interface between GaN and InGaN, has an electron mobility of 1200 cm 2 / Vsec, a two-dimensional electron concentration of 1.4 × 10 13 cm −2 , and a sheet resistance of about 370 Ω / sq. It was.

この実施例2(図2)で示されるように、GaN(バリア)層7は、従来の図5に示すAlGaN(バリア)層4と比べ、低い温度で成長することができるため、結晶品質、界面急峻性とも、図5に示される従来構造のAlGaN/InGaN/GaN HFET構造と比較して良好であった。さらに、この実施例2(図2)のGaN7とInGaN5の界面は、単結晶同士であり、大気にさらされることなくMOCVD装置内で連続して成長されていることから、図1に示す構造の実施例1と比較して、さらに電子移動度が向上した。InGaNとGaN間のバンドオフセット、分極は、InGaNとAlGaN間のそれらと比較して小さいが、上層にAlN層を堆積することで、図1に示す構造の実施例1と同様に、AlNの自発分極効果により、高い2次元電子濃度が得られた。また、従来の図4に示されるアンドープAlGaN/GaN−HFET構造と比較して、大幅に低いシート抵抗を実現することができた。   As shown in Example 2 (FIG. 2), the GaN (barrier) layer 7 can grow at a lower temperature than the conventional AlGaN (barrier) layer 4 shown in FIG. The interface steepness was also better than that of the conventional AlGaN / InGaN / GaN HFET structure shown in FIG. Furthermore, since the interface between GaN 7 and InGaN 5 in Example 2 (FIG. 2) is a single crystal and is continuously grown in the MOCVD apparatus without being exposed to the atmosphere, the structure shown in FIG. Compared with Example 1, the electron mobility was further improved. The band offset and polarization between InGaN and GaN are small compared to those between InGaN and AlGaN, but by depositing an AlN layer on the upper layer, similar to Example 1 having the structure shown in FIG. A high two-dimensional electron concentration was obtained due to the polarization effect. In addition, a sheet resistance significantly lower than that of the conventional undoped AlGaN / GaN-HFET structure shown in FIG. 4 could be realized.

なお、SiC基板上に成長された窒化物半導体薄膜上の構造以外にも、サファイア基板、Si基板上に成長した窒化物半導体薄膜上の構造でも、この実施例2と同様の効果が得られた。
また、図1、図2で示される符号3がGaN層ではなく、他のAlN層、AlGaN層とした場合においても、本実施例2と同じ効果が得られた。
In addition to the structure on the nitride semiconductor thin film grown on the SiC substrate, the same effect as in Example 2 was obtained with the structure on the sapphire substrate and nitride semiconductor thin film grown on the Si substrate. .
In addition, when the reference numeral 3 shown in FIGS. 1 and 2 is not a GaN layer but another AlN layer or an AlGaN layer, the same effect as in the second embodiment was obtained.

〈実施例3〉
図3は、本発明の実施例3で例示したInGaNチャネルHFET構造の断面模式図を示す。
図3は、本発明の構造を用いて作製されたInGaNチャネルHFETの断面模式図であり、1はSiC基板、2はAlN層、3はGaN層、8はSiドープInGaN層、5はアンドープInGaN層、7はアンドープGaN層、6はAlN層、9はソース電極、10はドレイン電極、11はゲート電極、12は2次元電子ガスを示す。
MOCVD法により、SiC基板1上に1100℃でAlN緩衝層2を50〜200nm堆積した後に、1000℃〜1050℃でGaN層を1〜2μm成長し、基板温度を750℃に下げ、n型のキャリア濃度3×1018cm−3となるようSiドープされたIn0.1Ga0.9N層8を約10nm堆積し、アンドープIno.1Ga0.9N層5を約4nm堆積し、基板温度を800℃に上げGaN層7を約3nm成長した。その後、MOCVD装置から取り出して、この後、被処理基板1を冷却し、MOCVD装置から外部へ取り出し、ECRプラズマスパッタリング成膜装置へ導入し、Alと窒素を用い、室温、Arプラズマ中でAlN層6を厚さ20nm程度堆積した。AlN層6をドライエッチングで除去して、ソース、ドレイン電極9、10を堆積し、AlN層6上に、ゲート電極11を堆積した。
<Example 3>
FIG. 3 is a schematic cross-sectional view of the InGaN channel HFET structure exemplified in Example 3 of the present invention.
FIG. 3 is a schematic cross-sectional view of an InGaN channel HFET fabricated using the structure of the present invention, where 1 is a SiC substrate, 2 is an AlN layer, 3 is a GaN layer, 8 is a Si-doped InGaN layer, and 5 is an undoped InGaN. A layer, 7 an undoped GaN layer, 6 an AlN layer, 9 a source electrode, 10 a drain electrode, 11 a gate electrode, and 12 a two-dimensional electron gas.
After depositing 50 to 200 nm of AlN buffer layer 2 at 1100 ° C. on SiC substrate 1 by MOCVD, a GaN layer is grown to 1 to 2 μm at 1000 ° C. to 1050 ° C., the substrate temperature is lowered to 750 ° C., and the n-type A Si-doped In 0.1 Ga 0.9 N layer 8 having a carrier concentration of 3 × 10 18 cm −3 is deposited to a thickness of about 10 nm, and undoped In o. The 1 Ga 0.9 N layer 5 was deposited to about 4 nm, the substrate temperature was raised to 800 ° C., and the GaN layer 7 was grown to about 3 nm. Thereafter, the substrate 1 is taken out from the MOCVD apparatus, and then the substrate 1 to be processed is cooled, taken out from the MOCVD apparatus, introduced into the ECR plasma sputtering film forming apparatus, and Al and nitrogen are used in an AlN layer at room temperature in Ar plasma. 6 was deposited to a thickness of about 20 nm. The AlN layer 6 was removed by dry etching, source and drain electrodes 9 and 10 were deposited, and a gate electrode 11 was deposited on the AlN layer 6.

2次元電子ガス12はGaN7とInGaN5の界面に生じており、電子移動度1200cm/Vsec、2次元電子濃度1.6×1013cm−2であり、シート抵抗は、およそ330Ω/sqであった。チャネルの下に発生したキャリアが2次元電子ガスとなることを用いた窒化物半導体HFET構造が提案されているが、これを利用することで、上記図2の実施例2と比べ、より高い2次元電子濃度が実現された。また、AlN層の高いバンドギャップを反映して、ゲートリークの低減も確認された。 The two-dimensional electron gas 12 is generated at the interface between GaN 7 and InGaN 5, has an electron mobility of 1200 cm 2 / Vsec, a two-dimensional electron concentration of 1.6 × 10 13 cm −2 , and a sheet resistance of approximately 330 Ω / sq. It was. A nitride semiconductor HFET structure using the fact that carriers generated under the channel become a two-dimensional electron gas has been proposed. By using this, a higher 2 than the second embodiment of FIG. Dimensional electron concentration was realized. In addition, a reduction in gate leakage was also confirmed reflecting the high band gap of the AlN layer.

本発明の実施例1において例示したInGaNチャネルHFET構造の構成を示す模式図。1 is a schematic diagram showing a configuration of an InGaN channel HFET structure exemplified in Example 1 of the present invention. FIG. 本発明の実施例2において例示したInGaNチャネルHFET構造の構成を示す模式図。The schematic diagram which shows the structure of the InGaN channel HFET structure illustrated in Example 2 of this invention. 本発明の実施例3において例示したInGaNチャネルHFET構造の構成を示す模式図。The schematic diagram which shows the structure of the InGaN channel HFET structure illustrated in Example 3 of this invention. 従来用いられているAlGaN/GaN HFET構造の構成を示す模式図。The schematic diagram which shows the structure of the AlGaN / GaN HFET structure used conventionally. 従来報告されているAlGaN/InGaN/GaN HFET構造の構成を示す模式図。The schematic diagram which shows the structure of the AlGaN / InGaN / GaN HFET structure reported conventionally.

符号の説明Explanation of symbols

1…SiC基板
2…AlN層
3…GaN層
4…AlGaN層
5…InGaN層
6…AlN層
7…GaN層
8…SiドープInGaN層
9…ソース電極
10…ドレイン電極
11…ゲート電極
12…2次元電子ガス
DESCRIPTION OF SYMBOLS 1 ... SiC substrate 2 ... AlN layer 3 ... GaN layer 4 ... AlGaN layer 5 ... InGaN layer 6 ... AlN layer 7 ... GaN layer 8 ... Si dope InGaN layer 9 ... Source electrode 10 ... Drain electrode 11 ... Gate electrode 12 ... Two-dimensional Electronic gas

Claims (10)

窒化物半導体薄膜上に、InGa1−xN(0≦x≦1)層を有し、その上に窒化物半導体中間層を有し、その上にAlN層を有することを特徴とする窒化物半導体素子構造。 An In x Ga 1-x N (0 ≦ x ≦ 1) layer is provided on a nitride semiconductor thin film, a nitride semiconductor intermediate layer is provided thereon, and an AlN layer is provided thereon. Nitride semiconductor device structure. 窒化物半導体薄膜上に、InGa1−xN(0≦x≦1)層を有し、その上にAlN層を有することを特徴とする窒化物半導体素子構造。 A nitride semiconductor device structure comprising an In x Ga 1-x N (0 ≦ x ≦ 1) layer on a nitride semiconductor thin film and an AlN layer thereon. 請求項1または請求項2に記載の窒化物半導体素子構造において、前記InGa1−xN層は、組成の異なる多層膜であることを特徴とする窒化物半導体素子構造。 3. The nitride semiconductor device structure according to claim 1, wherein the In x Ga 1-x N layer is a multilayer film having a different composition. 請求項1に記載の窒化物半導体素子構造において、前記窒化物半導体中間層は、GaN、もしくはAlN、もしくはAlGa1−xN、もしくはそれらの多層膜であることを特徴とする窒化物半導体素子構造。 The nitride semiconductor device structure according to claim 1, wherein the nitride semiconductor intermediate layer is GaN, AlN, Al x Ga 1-x N, or a multilayer film thereof. Element structure. 請求項1ないし請求項4のいずれか1項に記載の窒化物半導体素子構造において、前記最上層のAlN層の結晶形態が多結晶であることを特徴とする窒化物半導体素子構造。   5. The nitride semiconductor device structure according to claim 1, wherein a crystal form of the uppermost AlN layer is polycrystalline. 6. 請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子構造において、前記窒化物半導体薄膜は、GaN、もしくはAlN、もしくはAlGa1−xN層であることを特徴とする窒化物半導体素子構造。 6. The nitride semiconductor device structure according to claim 1, wherein the nitride semiconductor thin film is a GaN, AlN, or Al x Ga 1-x N layer. Nitride semiconductor device structure. 請求項1ないし請求項6のいずれか1項に記載の窒化物半導体素子構造において、前記InGa1−xN層の電気的極性は、すべて真性、もしくは上から真性/n型、もしくは上から真性/n型/真性の前記InGa1−xN層よりなることを特徴とする窒化物半導体素子構造。 7. The nitride semiconductor device structure according to claim 1, wherein all of the electrical polarities of the In x Ga 1-x N layer are intrinsic, or from top to intrinsic / n-type, or above. A nitride semiconductor device structure comprising the In x Ga 1-x N layer of intrinsic / n-type / intrinsic. 請求項1ないし請求項7のいずれか1項に記載の窒化物半導体素子構造において、前記最上層AlN層を除き、前記窒化物半導体素子構造を作製する場合に、有機金属気相成長(MOVPE)法、もしくは分子線エピタキシー(MBE)法、もしくはハイドライド気相成長(HVPE)法により行い、その上に最上層としてAlN層をスパッタ法により堆積して構成することを特徴とする窒化物半導体素子構造の作製法。   8. The nitride semiconductor device structure according to claim 1, wherein the nitride semiconductor device structure is formed except for the uppermost AlN layer when metal nitride vapor phase epitaxy (MOVPE) is formed. 9. Nitride semiconductor device structure characterized by comprising an AlN layer deposited by sputtering as an uppermost layer on the surface thereof, by a molecular beam epitaxy (MBE) method or a hydride vapor phase epitaxy (HVPE) method How to make 請求項8に記載の窒化物半導体材料によるヘテロ構造電界効果トランジスタ(HFET)素子構造の作製法において、InGaNチャネル層にAlNバリア層のHFET構造を作製する際に、スパッタ法を用いてAlNバリア層を堆積する工程を有し、さらに、InGaNチャネル層とAlNバリア層との間に、MOCVD法で中間層のGaNバリア層を設ける場合に、2次元電子ガスの生じるInGaN/GaNヘテロ界面は単結晶同士であり、大気にさらされることなく同一のMOCVD装置内で連続してInGaN/GaNを成長させ、高電子移動度を有するInGaNチャネルHFETを作製することを特徴とする窒化物半導体素子構造の作製法。   9. The method of manufacturing a heterostructure field effect transistor (HFET) device structure using a nitride semiconductor material according to claim 8, wherein an AlN barrier layer is formed using a sputtering method when an HFET structure of an AlN barrier layer is formed in an InGaN channel layer. In addition, when an intermediate GaN barrier layer is provided by MOCVD between the InGaN channel layer and the AlN barrier layer, the InGaN / GaN heterointerface in which the two-dimensional electron gas is generated is a single crystal. Fabrication of a nitride semiconductor device structure characterized in that InGaN / GaN is grown continuously in the same MOCVD apparatus without being exposed to the atmosphere to produce an InGaN channel HFET having high electron mobility. Law. 請求項8または請求項9において、AlN層をスパッタ法で堆積する方法は、ECRプラズマスパッタリング成膜装置に、冷却した被処理基板を導入し、Alと窒素を用い、スパッタの成膜条件としては、AlとNの化学量論比が1:1となるように、RFの印加電圧、ガス圧、原料窒素の流量のバランスを調整し、成膜温度は室温から600℃までとし、堆積したAlN層はC軸配向した多結晶で、極性も下地と同様、III族面で、Al面が上を向き、InGaN層とAlN層との間に分極効果により高濃度の2次元電子ガスを生成する窒化物半導体素子構造の作製法。   The method for depositing an AlN layer by sputtering according to claim 8 or claim 9 includes introducing a cooled substrate to be processed into an ECR plasma sputtering film forming apparatus, using Al and nitrogen, and forming film conditions for sputtering as follows: The balance of the applied voltage of RF, the gas pressure, and the flow rate of raw material nitrogen was adjusted so that the stoichiometric ratio of Al to N was 1: 1, the film formation temperature was from room temperature to 600 ° C., and the deposited AlN The layer is a polycrystal with C-axis orientation, the polarity is the same as that of the base, the group III surface, the Al surface faces up, and a high concentration two-dimensional electron gas is generated between the InGaN layer and the AlN layer by the polarization effect. A method for fabricating a nitride semiconductor device structure.
JP2004206975A 2004-07-14 2004-07-14 Nitride semiconductor heterostructure field-effect transistor and its manufacturing method Pending JP2006032524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206975A JP2006032524A (en) 2004-07-14 2004-07-14 Nitride semiconductor heterostructure field-effect transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206975A JP2006032524A (en) 2004-07-14 2004-07-14 Nitride semiconductor heterostructure field-effect transistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006032524A true JP2006032524A (en) 2006-02-02

Family

ID=35898530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206975A Pending JP2006032524A (en) 2004-07-14 2004-07-14 Nitride semiconductor heterostructure field-effect transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006032524A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010216A (en) * 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd Iii-nitride based semiconductor transistor and iii-nitride semiconductor multilayer wafer
WO2009119479A1 (en) * 2008-03-24 2009-10-01 日本電気株式会社 Semiconductor device, and method for manufacturing the same
EP1976016A3 (en) * 2007-03-30 2010-01-20 Fujitsu Limited Compound semiconductor device
US7687828B2 (en) 2006-04-17 2010-03-30 Panasonic Corporation Field-effect transistor
JP2010199597A (en) * 2010-04-09 2010-09-09 Fujitsu Ltd Method of manufacturing compound semiconductor device
JP2013004924A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Semiconductor device
KR20130030215A (en) * 2011-09-16 2013-03-26 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device and method for manufacturing the same
US8426892B2 (en) 2007-02-20 2013-04-23 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
JP2014187344A (en) * 2013-02-25 2014-10-02 Renesas Electronics Corp Semiconductor device
JP2015529009A (en) * 2012-07-02 2015-10-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Buffer and active layers of aluminum nitride by physical vapor deposition.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687828B2 (en) 2006-04-17 2010-03-30 Panasonic Corporation Field-effect transistor
US8896022B2 (en) 2007-02-20 2014-11-25 Fujitsu Limited Method of manufacturing compound semiconductor device
US8426892B2 (en) 2007-02-20 2013-04-23 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
EP1976016A3 (en) * 2007-03-30 2010-01-20 Fujitsu Limited Compound semiconductor device
US7795622B2 (en) 2007-03-30 2010-09-14 Fujitsu Limited Compound semiconductor device
JP2009010216A (en) * 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd Iii-nitride based semiconductor transistor and iii-nitride semiconductor multilayer wafer
US8426895B2 (en) 2008-03-24 2013-04-23 Nec Corporation Semiconductor device and manufacturing method of the same
WO2009119479A1 (en) * 2008-03-24 2009-10-01 日本電気株式会社 Semiconductor device, and method for manufacturing the same
JP2010199597A (en) * 2010-04-09 2010-09-09 Fujitsu Ltd Method of manufacturing compound semiconductor device
JP2013004924A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Semiconductor device
JP2013065649A (en) * 2011-09-16 2013-04-11 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
KR20130030215A (en) * 2011-09-16 2013-03-26 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device and method for manufacturing the same
US9337325B2 (en) 2011-09-16 2016-05-10 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
KR101943657B1 (en) 2011-09-16 2019-01-29 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device and method for manufacturing the same
JP2015529009A (en) * 2012-07-02 2015-10-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Buffer and active layers of aluminum nitride by physical vapor deposition.
US10109481B2 (en) 2012-07-02 2018-10-23 Applied Materials, Inc. Aluminum-nitride buffer and active layers by physical vapor deposition
JP2014187344A (en) * 2013-02-25 2014-10-02 Renesas Electronics Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP4530171B2 (en) Semiconductor device
JP4531071B2 (en) Compound semiconductor device
JP5653607B2 (en) GaN-based field effect transistor and manufacturing method thereof
JP5634681B2 (en) Semiconductor element
JP6035721B2 (en) Manufacturing method of semiconductor device
JP2001230407A (en) Semiconductor device
JP2007165431A (en) Field effect transistor, and method of fabrication same
JP2007158143A (en) Heterojunction field effect transistor
JP2011166067A (en) Nitride semiconductor device
JP5343910B2 (en) Method for manufacturing compound semiconductor device
JP6841344B2 (en) Manufacturing method of semiconductor devices, semiconductor devices
JP2003151996A (en) Electronic device using two-dimensional electronic gas
JP2005005657A (en) Crystal layer structure of field effect transistor
JP4468744B2 (en) Method for producing nitride semiconductor thin film
JP2009111204A (en) Field effect transistor and its manufacturing method
JP4908856B2 (en) Semiconductor device and manufacturing method thereof
JP2012169470A (en) Semiconductor device and manufacturing method of the same
JP5436819B2 (en) High-frequency semiconductor element, epitaxial substrate for forming high-frequency semiconductor element, and method for producing epitaxial substrate for forming high-frequency semiconductor element
JP2006032524A (en) Nitride semiconductor heterostructure field-effect transistor and its manufacturing method
JP6880406B2 (en) Compound semiconductor device and its manufacturing method
JP2007123824A (en) Electronic device using group-iii nitride based compound semiconductor
WO2018098952A1 (en) Gan-based epitaxial structure, semiconductor device and formation method therefor
JP2004289005A (en) Epitaxial substrate, semiconductor device, and high electron mobility transistor
JP2011124514A (en) Group-iii nitride-based semiconductor element, and method of manufacturing the same
TWI760937B (en) Semiconductor structure and method of making the same