JP2006012907A - 露光装置、搬送方法及び露光方法並びにデバイス製造方法 - Google Patents

露光装置、搬送方法及び露光方法並びにデバイス製造方法 Download PDF

Info

Publication number
JP2006012907A
JP2006012907A JP2004183886A JP2004183886A JP2006012907A JP 2006012907 A JP2006012907 A JP 2006012907A JP 2004183886 A JP2004183886 A JP 2004183886A JP 2004183886 A JP2004183886 A JP 2004183886A JP 2006012907 A JP2006012907 A JP 2006012907A
Authority
JP
Japan
Prior art keywords
wafer
mark
alignment
position information
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183886A
Other languages
English (en)
Inventor
Taro Sugihara
太郎 杉原
Masabumi Mimura
正文 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004183886A priority Critical patent/JP2006012907A/ja
Publication of JP2006012907A publication Critical patent/JP2006012907A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】安価、高精度、かつ高スループットに、物体を搬送して受け渡すことができる搬送方法を提供する。
【解決手段】プリアライメント装置45では、マーク50Mの位置情報と、ウエハWの位置情報とを非同時に検出する。このようにすれば、マーク50Mの位置情報を検出する検出系と、ウエハWの位置情報を検出する検出系との少なくとも一部を共通化することができるようになるため、その分だけ、装置コスト及び発熱量を低減することができる。
【選択図】図5

Description

本発明は、露光装置、搬送方法及び露光方法並びにデバイス製造方法に係り、特に、パターンを、投影光学系を介して物体上に転写する露光装置、物体が移動体上の所定の位置に保持されるように前記物体を搬送して前記移動体に受け渡す搬送方法及び該搬送方法を用いた露光方法並びに該露光方法を用いたデバイス製造方法に関する。
半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターンを、投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、「ウエハ」と総称する)上に転写する露光装置、例えばステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、このステッパに改良を加えたステップ・アンド・スキャン方式の走査型投影露光装置(いわゆるスキャニング・ステッパ)等の逐次移動型の投影露光装置が主として用いられている。
このような露光装置においては、ウエハ上に既に形成されているショット領域と、次に転写形成するショット領域との相対位置を最適化すべく、アライメント検出系を用いたウエハアライメントが行われており、そのウエハアライメントに先立って、ウエハ上にすでに形成されたウエハアライメント用のマークが、その検出系の捕捉範囲内(検出視野)に入るように、ウエハの位置及び回転を調整するいわゆるプリアライメントが行われている。
このプリアライメントにおいては、光源から発せられる照明光によってウエハを裏面(ショット領域が形成されていない面)から照明し、CCDカメラ等の撮像素子を有する検出光学系によりウエハの外形を例えば3箇所(そのうち1箇所は、ノッチ又はオリエンテーションフラット(以下、「ノッチ」と略述する)が含まれるようにする必要がある)検出し、その検出結果からウエハの中心位置及び回転に関する情報を算出し、その算出結果に基づいて、ウエハの中心位置及び回転がある程度調整されたうえで、ローディングポジションでのウエハのステージへの受け渡し等が行われる(例えば、特許文献1参照)。さらに、ステージがアライメント検出系の下方に移動した後、いわゆるサーチアライメントやウエハアライメントが行われ、このウエハアライメントの結果に基づいて、ステージが投影光学系を介した転写位置(即ち、ウエハの露光位置)に移動し、露光が行われる。
ところで、スループットを考慮すると、ローディングポジションと転写位置(又はアライメント位置)との間隔は短ければ短いほど良い。しかしながら、このローディングポジションと転写位置との間隔には制約がある。すなわち、ステージに対するウエハの受け渡し精度を考慮すると、プリアライメント時のウエハの姿勢を維持した状態でウエハを受け渡すために、プリアライメントが行われる位置とローディングポジションとをできるだけ近づけて配置する必要があるが、このような配置を採用すると、ローディングポジションの上方に配置される、プリアライメントを行う際にウエハのエッジを検出するために用いられる複数の光源や光学系と、転写位置の上方に配置される投影光学系とを、互いに干渉せずに設けるために、ローディングポジションと転写位置との間隔をある程度とらざるをえないのである。
このような背景から、ウエハを搬入する搬入アームにマークを形成しておき、搬入アームにウエハを保持させた状態で、そのマークとウエハとの相対位置関係を予め検出しておき、ウエハをロードする直前にはマークの位置情報だけを検出し、検出されたマークの位置情報と上記相対位置関係とに基づいてウエハの位置を推定し、その推定位置に基づいてウエハの受け渡し位置を調整する新方式のプリアライメントを行う技術が提案されている。この技術を採用すれば、ローディングポジションと転写位置とを接近させてスループットを飛躍的に向上させることができるようになるとともに、プリアライメント用の光源等を投影光学系から遠ざけることができるので、光源から発生する熱が投影光学系の光学特性に与える影響を低減することが可能となり、それらが露光装置内における転写位置近傍の雰囲気ガスの流れの障害とならないようにすることもできる。
しかしながら、上記技術を何の工夫もなく採用すると、プリアライメントの際にウエハの外形を検出するための検出光学系だけでなく、搬入アーム上のマークを検出するための検出光学系も新たに必要となって装置コストが増大し、却って全体的に発生する熱量が増大してしまう虞があった。
特開平7−288276号公報
上記事情の下になされた本発明は、第1の観点からすると、パターンを、投影光学系(PL)を介して物体(W)上に転写する露光装置(100)であって、前記物体を保持可能で、前記物体の受け渡し位置と前記投影光学系を介したパターンの転写位置との間を移動可能な移動体(WST)と;前記物体を保持して前記受け渡し位置近傍に搬送可能で、前記投影光学系の光軸方向に直交する2次元平面に略平行な面を有し、その面上に少なくとも1つのマーク(50M)が形成されている搬送部材(50)と;前記搬送部材によって前記物体が前記受け渡し位置近傍に搬送される前に、前記搬送部材に前記物体が保持されている所定状態で前記2次元平面内に関する前記マークの位置情報を検出し、その検出とは非同時に、前記所定状態での前記2次元平面内に関する前記物体の位置情報を検出する第1検出系(45)と;前記第1検出系での検出がなされた後において、前記物体が前記移動体に受け渡される前の前記2次元平面内に関する前記マークの位置情報を検出する第2検出系(42)と;前記第1検出系及び前記第2検出系の検出結果に基づいて、前記物体の受け渡し時の前記2次元平面内に関する前記移動体と前記搬送部材との相対位置と、前記移動体に保持された物体の位置情報との少なくとも一方を調整する調整装置(20)と;を備える露光装置である。
これによれば、搬送部材が物体を保持したときに、第1検出系によって、搬送部材上に形成されたマークの位置情報と、移動体に受け渡されるまではマークとの相対位置が変化しない物体の位置情報とを検出しておき、搬送部材から移動体への物体の受け渡し位置の近傍では、第2検出系によって、マークの位置情報のみを検出する。このようにすれば、物体の受け渡し位置近傍では、例えばその物体の外縁などを計測してその物体の位置情報を直接検出せずとも、受け渡し位置近傍に位置したときのマークの位置情報を検出するだけで、物体の位置情報を推定することができるようになる。したがって、本発明によれば、物体の外形等からその物体の位置情報を検出する大掛かりな検出系を受け渡し位置近傍に備える必要がなくなるので、受け渡し位置と転写位置(又はアライメント位置)との間隔を短縮して、移動体の移動時間を短くすることができるため、スループットを向上させることができる。
また、本発明では、第1検出系では、マークの位置情報と、物体の位置情報とを非同時に検出する。このようにすれば、マークの位置情報を検出する検出系と、物体の位置情報を検出する検出系との少なくとも一部を共通化することができるようになるため、共通化された分だけ、装置コスト及び発熱量を低減することができるので、安価かつ高精度な露光を実現することができる。
本発明は、第2の観点からすると、物体(W)が移動体(WST)上の所定の位置に保持されるように前記物体を搬送して前記移動体に受け渡す搬送方法であって、所定の2次元平面の略平行な面を有し、その面上に少なくとも1つのマーク(50M)が形成された搬送部材(50)に前記物体を保持させる第1工程と;前記搬送部材によって前記物体が前記受け渡し位置近傍に搬送される前に、前記搬送部材に前記物体が保持されている所定状態で前記2次元平面内に関する前記マークの位置情報を検出し、その検出とは非同時に、前記所定状態での前記2次元平面内に関する前記物体の位置情報を検出する第2工程と;前記第2工程の後に、前記搬送部材により前記物体を前記移動体への受け渡し位置に搬送する第3工程と;前記第3工程の後に、前記物体が前記移動体に受け渡される前の前記2次元平面内における前記マークの位置情報を検出する第4工程と;前記第2工程及び前記第4工程の検出結果に基づいて、前記物体の受け渡し時の前記2次元平面内における前記移動体と前記搬送部材との相対位置と、前記移動体に保持された前記物体の位置情報との少なくとも一方を調整して、前記搬送部材から前記移動体上に前記物体を受け渡す第5工程と;を含む搬送方法である。
これによれば、搬送部材が物体を保持したときに、搬送部材上に形成されたマークの位置情報と、その搬送部材上に保持された物体の位置情報とを前もって検出しておく(第2工程)。そして、搬送部材から移動体への物体の受け渡し位置近傍では、マークの位置情報のみを検出する(第4工程)。このように、マークの位置情報と、移動体に受け渡されるまではそのマークとの相対位置が変化しない物体の位置情報とを検出しておけば、物体の受け渡し位置近傍で、例えば物体の外縁などを計測してその物体の位置情報を直接検出せずとも、受け渡し位置近傍に位置したときのそのマークの位置情報を検出するだけで、物体の位置情報を推定することができる。このようにすれば、物体の外形等からその物体の位置情報を検出する大掛かりな検出系を受け渡し位置近傍に備える必要がなくなるので、受け渡し位置と転写位置との間隔を短縮して、移動体の移動時間を短くすることができるため、スループットを向上させることができる。
また、本発明では、第2工程では、マークの位置情報と、物体の位置情報を非同時に検出する。このようにすれば、マークの位置情報を検出する検出系の少なくとも一部と、物体の位置情報を検出する検出系の少なくとも一部とを共通化することができるようになるため、共通化された分だけ、発熱量及び装置コストを低減することができるので、安価かつ高精度に物体を搬送し、受け渡すことができる。
本発明は、第3の観点からすると、パターンを、投影光学系を介して物体上に転写する露光方法であって、本発明の搬送方法を用いて、前記物体の受け渡し位置と前記投影光学系を介したパターンの転写位置との間を移動可能な移動体に物体を受け渡す工程と;前記移動体に保持された物体に、前記パターンを転写する工程と;を含む露光方法である。かかる場合には、本発明の搬送方法を用いて物体の搬送が行われるため、安価で、高スループットで、かつ高精度な露光を実現することができる。
本発明は、第4の観点からすると、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程では、本発明の露光方法を用いるデバイス製造方法である。かかる場合には、本発明の露光方法によって露光が行われるため、露光精度を維持しつつ、スループットを、安価な方法で向上させることができるので、高集積度のデバイスの生産性を向上させることができる。
以下、本発明の一実施形態について、図1〜図19(B)に基づいて説明する。
図1には、本発明の一実施形態に係る露光装置100の一部(特に露光装置本体)の縦断面図が概略的に示されている。この露光装置100は、クリーンルーム内に設置された本体チャンバ14と、図1における該本体チャンバ14の紙面左側に隣接するように設置された搬送チャンバ15とを備えている。本体チャンバ14及び搬送チャンバ15は、互いの開口14A,15Aを介して内部空間が連結されている。
本体チャンバ14内には、露光装置本体の大部分が収納されている。露光装置本体は、不図示の照明系の少なくとも一部、マスクとしてのレチクルRを保持するレチクルステージRST、投影光学系PL、物体としてのウエハWを保持可能な移動体としてのウエハステージWST、アライメント検出系AS及びこれらの制御系としての主制御装置20等を含んで構成されている。主制御装置20は本体チャンバ14及び搬送チャンバ15の外部に配置されている。
露光装置本体は、前記投影光学系PLを中心に構成されている。そこで、以下では、図1における紙面内上下方向、すなわち投影光学系PLの光軸AXの方向をZ軸方向(紙面下側を正とする)とし、図1における紙面内左右方向をY軸方向(紙面左側を正とする)とし、図1における紙面直交方向をX軸方向(紙面手前側を正とする)として説明を行う。
投影光学系PLの−Z側(上方)に位置するレチクルステージRSTは、レチクルRを、例えば真空吸着又は静電吸着等により吸着保持する。そのレチクルRに描かれた回路パターン等が、不図示の照明系からの露光光ILにより照明され、ほぼ均一な照度の照明領域が形成される。レチクルステージRSTは、そのXY平面内の位置情報が不図示の干渉計等により検出されており、検出された位置情報に基づいて、主制御装置20の指示の下、例えば不図示のリニアモータ等によって、照明系の光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面(Z軸回りの回転を含む)内で少なくとも微小駆動可能に構成されている。
投影光学系PLは、レチクルステージRSTの図1における下方に配置されている。投影光学系PLとしては、例えば両側テレセントリックで所定の縮小倍率(例えば1/4又は1/5)を有する屈折光学系が使用されている。このため、露光光ILによってレチクルRの照明領域が照明されると、このレチクルRを通過した露光光ILにより、投影光学系PLを介してその照明領域内のレチクルRの回路パターンの縮小像(倒立像)が、投影光学系PLの下方(+Z側)に配置されたウエハステージWSTに吸着保持されたウエハW上のその照明領域と共役な露光領域に形成される。
ウエハステージWSTは、リニアモータ、ボイスコイルモータ(VCM)等を含む不図示のウエハステージ駆動部により、ウエハベース17上をXY平面内(Z軸回りの回転方向θz方向を含む)及びZ軸方向に移動可能であり、XY平面に対する傾斜方向(X軸回りの回転方向(θx方向)及びY軸回りの回転方向(θy方向))にも微小駆動可能となっている。また、ウエハステージWSTのXY平面内での位置(Z軸回りの回転(θz回転)を含む)は、複数の測長軸を有するウエハレーザ干渉計(以下、「ウエハ干渉計」と略述する)18によって、例えば0.5〜1nm程度の分解能で常時検出されている。ウエハ干渉計18によって検出されたウエハステージWSTの位置情報(又は速度情報)は主制御装置20に供給される。主制御装置20は、ウエハステージWSTの位置情報(又は速度情報)に基づいて、不図示のウエハステージ駆動部を介してウエハステージWSTの位置(又は速度)を制御する。この制御により、ウエハステージWSTは、図1に示されるように、実線で示される投影光学系PL直下の露光位置(投影光学系PLを介したパターンの転写位置)から、2点鎖線(仮想線)で示されるウエハWの受け渡し位置、すなわちローディングポジションまで少なくとも移動可能である。
図1に示されるように、ウエハステージWSTの中央部近傍には、点線で示されるセンタテーブルCTが配設されている。ウエハステージWSTからのウエハロード、ウエハアンロード時には、不図示の駆動機構により駆動されることで、センタテーブルCTがウエハWの中央部を下方から吸着保持した状態で上下動することが可能となっている。なお、センタテーブルCTは、その先端に形成された、真空吸着あるいは静電吸着による円板状の吸着部によってウエハWを吸着保持するものとする。このセンタテーブルCTの駆動も、主制御装置20の指示の下で行われる。
投影光学系PLの+Y側側面近傍には、オフアクシス方式のアライメント検出系ASが設けられている。このアライメント検出系ASとしては、例えばディジタル画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。このアライメント検出系ASの撮像結果は、主制御装置20に出力されている。
主制御装置20は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。また、主制御装置20には、例えばキーボード,マウス等のポインティングデバイス等を含んで構成される入力装置及びCRTディスプレイ(又は液晶ディスプレイ)等の表示装置、ハードディスクから成る記憶装置が、外付けで接続されている。これらの入力装置、表示装置、記憶装置はいずれも不図示としている。
上記露光装置本体の構成要素を有する露光装置100は、ウエハWをウエハステージWSTに搬送する搬送系と、その搬送系により搬送されるウエハWのプリアライメントを行うプリアライメント系とをさらに備えている。露光装置100においては、本体チャンバ14内に、ウエハWの搬送系の一部である搬送部材としてのロードスライダ50と、プリアライメント系の一部である第2検出系としてのマーク検出系42とが設けられている。
ロードスライダ50は、ウエハWを真空吸着又は静電吸着等により保持可能である。ロードスライダ50は、ウエハWを保持したまま、後述する搬送機構により、本体チャンバ14と搬送チャンバ15との間を、開口14A,15Aを通過して、Y軸方向に移動可能に構成されている。搬送チャンバ15内でウエハWを受け取ったロードスライダ50は、−Y方向に移動して、図1に示されるように、本体チャンバ14内のウエハステージWSTのローディングポジション上方に移動する。そして、ロードスライダ50と、ローディングポジションに位置するウエハステージWSTに設けられたセンタテーブルCTとの協調動作により、ウエハステージWSTへのウエハWのロードが実現される。
また、ロードスライダ50には、光をZ軸方向に透過させる光透過部(図1では不図示)が設けられている。その光透過部の−Z側の表面上には、例えばクロム蒸着により、XY平面内の2次元位置(回転含む)検出用のマークとしてのマーク50Mが形成されている。ロードスライダ50及びマーク50Mの詳細については後述する。
このマーク検出系42は、ローディングポジション上方に位置するロードスライダ50のマーク50Mに対向するように配置されている。マーク検出系42は、マーク50Mを含むXY平面内の領域を撮像するために、その領域を照明する光源と、2次元CCDカメラ等とを備えている。マーク検出系42では、その光源からの照明光に対する反射光を2次元CCDカメラ等で受光し、いわゆる落射照明式でマーク50Mを撮像する。マーク検出系42は、投影光学系PL等の露光装置本体を支持する不図示の構造体に固定されているので、投影光学系PL等との位置関係は一定であり、その撮像視野の原点のXY平面内の位置は、常に一定である。したがって、XY座標系とカメラの撮像視野によって規定される座標系、すなわちカメラ座標系とは常に一定の関係にある。マーク検出系42によるマーク50Mの撮像結果(ディジタル2次元画像データ)は、主制御装置20に送られる。
図2には、プリアライメント系を含むウエハWの搬送系を中心とした露光装置100の一部の横断面図が概略的に示されている。ウエハWの搬送系は、フロントオープニングユニファイドポッド(Front Opening Unified Pod:以下、「FOUP」と略述する)27からウエハWを取り出すロードロボット92と、該ロードロボット92からロードスライダ50へのウエハWの受け渡しの中継を行い、その中継の間にウエハWに対するプリアライメントを行うプリアライメントステージ52と、該プリアライメントステージ52上に搭載されたターンテーブル51と、前述のロードスライダ50と、該ロードスライダ50をY軸方向に駆動するY駆動機構60と、露光済みのウエハWをウエハステージWSTからアンロードするためのアンロードスライダ62と、該アンロードスライダ62からウエハWを受け取るアンロードロボット93とを含んで構成されている。
FOUP27は、例えば特開平8−279546号公報に開示された搬送コンテナと同様のものであり、一方の面のみに開口部が設けられ、該開口部を開閉する扉(蓋)を有する開閉型のコンテナ(密閉型のウエハカセット)である。このFOUP27の中には、ウエハWが複数枚上下方向に所定間隔を隔てて収納されている。このFOUP27は、不図示のFOUP搬送装置により、図2に示される位置にセッティングされる。このセッティングにより、搬送チャンバ15に配設されたFOUP27用の開口15Bが上記FOUP27の開口部と連結される。そして、その開口部の扉が開かれた状態では、該開口部及び開口15Bを介してFOUP27内部のウエハWを搬送チャンバ15内に搬入可能となっている。
前記ロードロボット92は、アームの先端にウエハWを吸着保持して搬送可能な、水平多関節ロボットであり、主に、FOUP27からプリアライメントステージ52へのウエハWの搬送、アンロードロボット93からの露光済みのウエハの回収を行う。ロードロボット92の姿勢制御は、主制御装置20の指示の下、ロードロボット92の関節等に組み込まれた不図示の回転モータ等の駆動により行われる。
前記プリアライメントステージ52は、XY平面内を移動可動なステージである。このプリアライメントステージ52は、Y軸方向に関し、ロードスライダ50へのウエハWの受け渡しが可能な位置と、ロードロボット92によるウエハWの受け渡しが可能な位置との間の移動が少なくとも可能となるように構成されている。プリアライメントステージ52の制御は、主制御装置20の指示の下、図1に示されるリニアモータ等の駆動機構の駆動により行われる。図2では、ロードスライダ50へのウエハWの受け渡しが可能な位置にあるプリアライメントステージ52が示されている。
前記ターンテーブル51は、このプリアライメントステージ52の−Z側の表面上略中央部に配設されており、上下動可能で、かつウエハWを保持してZ軸に平行な回転軸を中心に自転可能なテーブルである。このターンテーブル51の−Z側の端面には、真空吸着あるいは静電吸着等により、ウエハWを吸着保持するための円板状のウエハ吸着保持面が設けられており、ターンテーブル51の自転により、この吸着保持面に吸着保持されたウエハWを回転させることが可能である。この回転は、主制御装置20の指示の下、不図示の駆動機構の駆動により行われる。
なお、プリアライメントステージ52のXY位置、ターンテーブル51の回転位置及びウエハ吸着保持面(ウエハ)の高さなどに関する情報は、不図示の位置検出センサや、該プリアライメントステージ52、ターンテーブル51を駆動するモータの駆動量をモニタするセンサ等によって検出され、主制御装置20に送られている。主制御装置20は、その情報に基づいて、プリアライメントステージ52のXY位置、ターンテーブル51の位置(回転位置、Z位置)を制御する。
ロードスライダ50は、図2に示されるように、搬送チャンバ15の開口15A及び本体チャンバ14の開口14Aを通り、搬送チャンバ15側から本体チャンバ14側にまたがってY軸方向に延びるY駆動機構60に接続されている。ロードスライダ50は、主制御装置20の指示の下、Y駆動機構60の駆動により、搬送チャンバ15と本体チャンバ14との間をY軸方向に移動(スライド)可能であり、搬送チャンバ15に移動してターンテーブル51上に保持されたウエハWを受け取り、−Y側に移動して、ローディングポジション上方にウエハWを搬送する。図1、図2においては、ローディングポジション上方、すなわちマーク検出系42によりマーク50Mを検出可能な位置にロードスライダ50が位置している様子が示されている。
図3(A)には、ロードスライダ50の上面図が示されている。図3(A)に示されるように、ロードスライダ50では、X軸方向に延びるアーム部の−X側端部近傍に、光透過部50Aが形成されており、その光透過部50Aの−Z側表面の略中央部に、マーク50Mが形成されている。さらに、ロードスライダ50では、載置する物体を吸着保持するための吸着機構がそれぞれ設けられた一対の指部が設けられている。この一対の指部は、アーム部の一端と他端に連結されており、安定した状態でウエハWを搬送することができるように、−Z側から見て互いにウエハWの中心を挟んだ状態でウエハWを吸着保持することができるように構成されている。ロードスライダ50では、ターンテーブル51や、センタテーブルCTとのウエハWの受け渡しを行う必要があるため、この一対の指部の間隔は、ターンテーブル51やセンタテーブルCTの円板状の吸着保持面の直径よりも大きくなるように設定されている。
また、後述するように、プリアライメント系では、ウエハWの中心位置及び回転量を算出すべく、ウエハWの少なくとも3箇所のエッジ位置を検出するために、ロードスライダ50上に保持されたウエハWの外縁の一部を、−Z側から撮像する。図3(A)では、後述するプリアライメント装置45によって撮像対象となるウエハWの5つのエッジを含む領域が、それぞれ領域VA〜VEとして、またアーム上のマーク50Mを含む領域が50A(VF)として示されている。すなわち、ウエハWの中心に対して、+Y方向を6時方向とし、+X方向を3時方向とすると、6時(領域VA)、7時半(領域VB)、4時半(領域VC)、3時(領域VD)、1時半(領域VE)の方向のウエハWのエッジを含む領域が撮像対象の領域となる。この撮像は、いわゆる透過照明で行われるため、ロードスライダ50の一対の指部は、それぞれ透過照明領域(領域VA〜VE)を、避けるように配設されている。なお、このように撮像対象となる領域は、上述したように計5箇所であるが、実際には、ウエハWのノッチが6時方向である場合には、6時、7時半、4時半の3つの領域VA,VB,VCが撮像され、ウエハWのノッチが3時方向である場合には、3時、4時半、1時半の3つの領域VD,VC,VEが撮像されるようになる。すなわち、同一のウエハに対して、5箇所の領域がすべて撮像されることはない。以下では、上記領域VA〜VFを、撮像領域VA〜VFとも呼ぶものとする。
図3(B)の斜視図に示されるように、ロードスライダ50におけるアーム部と各指部との間の連結部は、Z軸方向にある程度の幅を有しており、アーム部と各指部との高さが異なるように設計されている。このアーム部と指部とのZ軸方向の間隔は、ウエハWの厚みよりも十分に広くなるように規定され、アーム部と各指部とを連結する連結部同士のX軸方向の間隔は、ウエハWの直径よりも十分に広くなるように規定されている。したがって、ロードスライダ50を、Y軸方向から見れば、アーム部と各指部とそれらの連結部とでウエハWを囲むような空間が形成されているように見える。これにより、ロードスライダ50は、Y駆動機構60による駆動で、例えばターンテーブル51上に保持されたウエハWに干渉することなくY軸方向に移動することができるようになる。
図3(C)には、マーク50M周辺の拡大図が示されている。図3(C)に示されるように、マーク50Mは、X軸方向を配列方向とするライン・アンド・スペース(L/S)パターン(Xパターン)と、Y軸方向を配列方向とするL/Sパターン(Yパターン)とを含んでいる。このうち、Xパターンは互いにYパターンを挟むように2つ配置されているが、2つのYパターンがXパターンを挟むように配置されていても良い。各L/Sパターンにおけるライン部はクロム部となっており、光を透過させるスペース部とは、マーク50Mを撮像したときの撮像結果(グレイ画像)における輝度が異なるようになる。そこで、マーク50Mを撮像し、その撮像結果における、Xパターンに対応する部分の輝度分布に関するいわゆる鏡映対称性(反転対称性)が最大となる位置をXパターンのX位置とし、Yパターンに対応する部分の輝度分布に関する鏡映対称性(反転対称性)が最大となる位置をYパターンのY位置として検出することができる。マーク50Mでは、Xパターン及びYパターンの少なくとも一方は、ある程度の距離を置いて少なくとも2つ形成されているため、マーク50MのZ軸回りの回転によって、2つのXパターン(またはYパターン)によって検出される位置が異なったものとなる。したがって、この2つのXパターンの位置の中間の位置をマーク50Mの位置として検出することができ、2つのパターンの位置の差とその2つのパターンの間隔とに基づいて、マーク50MのZ軸回りの回転量(すなわちロードスライダ50のZ軸回りの回転量)も検出することができるようになる。なお、マーク50Mでは、各L/Sパターンのライン部が光透過部で、スペース部がクロム部となっていても良い。
図2に戻り、前記アンロードスライダ62は、ロードスライダ50の下方(+Z側)を、Y軸方向に移動(スライド)可能に構成されている。このアンロードスライダ62は、露光が終了したウエハWをウエハステージWSTからアンロードする際に、ウエハWを保持して上昇したセンタテーブルCTからウエハWを真空吸着等による吸着により受け取って、+Y側に移動し、ウエハWの受け渡し位置に移動する。このアンロードスライダ62の駆動も、主制御装置20の指示の下、不図示の駆動機構の駆動により行われる。
前記アンロードロボット93は、その受け渡し位置で、アンロードスライダ62からウエハWを受け取り、例えばロードロボット92にウエハWを受け渡す水平多関節ロボットである。このアンロードロボット93の姿勢制御も、主制御装置20の指示の下、アンロードロボット93の関節等に組み込まれた不図示の回転モータ等の駆動により行われる。
すなわち、本実施形態では、ロードロボット92、ロードスライダ50、プリアライメントステージ52(ターンテーブル51を含む)、Y駆動機構60、アンロードスライダ62、アンロードロボット93などにより、ウエハWの搬送系が構成されている。
図4には、プリアライメント系の構成を概略的に示す斜視図が示されている。図4では、ロードロボット92とのウエハWの受け渡し位置(これを「第1位置」とする)にあるプリアライメントステージ52が2点鎖線(仮想線)で示され、ロードスライダ50とのウエハWの受け渡し位置(これを「第2位置」とする)にあるプリアライメントステージ52が実線で示されている。
第1位置から第2位置までのプリアライメントステージ52の移動領域の上方には、プリアライメント系の一部を搭載する天板46が設けられている。なお、図4では、図の錯綜を避けるため、天板46が、実際の配設位置よりも上方(−Z側)に図示されている。また、上記Y駆動機構60は、天板46とプリアライメントステージ52との間まで延びており、ロードスライダ50は、プリアライメントステージ52が第2位置にあるときに、その位置(点線で示される位置)まで+Y側にスライドしてターンテーブル51上に保持されたウエハWを受け取ることが可能となっている。
このプリアライメント系には、各種光学系が設けられている。まず、プリアライメントステージ52が第1位置にあるときに、ターンテーブル51上に保持されたウエハWの外縁の一部を+Z側から照明する照明装置81G(例えばLED等)が設けられている。この照明装置81Gは、天板46に吊り下げ支持されたL字状部材の先端に配設されている。このL字状部材は、ウエハWを載置したプリアライメントステージ52のXY平面内(特にY軸方向)の移動及びターンテーブル51の上昇の際にウエハWと干渉することがないように配置されている。天板46上には、この照明装置81Gからの照明光を、天板46に形成された不図示の光透過部を介して、ウエハWの上方で受光するラインセンサ83A,83Bが設けられている。これにより、第1位置にあるプリアライメントステージ52のターンテーブル51上に保持されたウエハWのエッジを、ラインセンサ83A,83Bで検出することが可能となる。その検出結果は、主制御装置20に送られる。
そして、プリアライメントステージ52が第2位置にあるときに、例えば、ターンテーブル51(又はロードスライダ50)に保持されたウエハWにおける図3(A)に示される撮像領域VA〜VEに対応する外縁を+Z側からそれぞれ照明する5つの照明装置81A〜81E(例えばLED等)が設けられている。このうち、照明装置81Aを除く照明装置81B〜81Eは、天板46に吊り下げ支持されたL字状部材の先端部に支持されている。各L字状部材は、ターンテーブル51がウエハWを保持したままプリアライメントステージ52が第2位置に進入することができるように、かつ、Y駆動機構60の駆動によりロードスライダ50が第2位置に進入することができるように配置されている。照明装置81Aは、プリアライメントステージ52の第1位置から第2位置への移動を確保するために、天板46から吊り下げ支持されずに、プリアライメントステージ52上に設けられている。なお、この照明装置81Aの配設位置は、プリアライメントステージ52上に限られるものではなく、例えば、図2に示される配設位置に退避/進入可能に天板46に回転可能に吊り下げ支持されたL字状部材の端部に配設されるようにしても良い。このようにすれば、プリアライメントステージ52が、第1位置と第2位置との間を移動する際には、その部材を回転させて照明装置81Aを退避させておくことができ、プリアライメントステージ52が第2位置に移動した後で、照明装置81Aを、+Z側から領域VAを照明可能な位置に進入させるようにすることができるようになる。
図4には、前述のように、第2位置上方に進入したロードスライダ50が2点鎖線(仮想線)で示されている。ロードスライダ50は、この位置で、ターンテーブル51よりウエハWを受け取る。プリアライメント系では、ロードスライダ50が、ウエハWを受け取った後、ロードスライダ50上のマーク50M付近を+Z側から照明する照明装置81Fが設けられている。照明装置81Fは、天板46に吊り下げ支持されたL字状部材の先端に支持されている。マーク50M近傍は前述のように光透過部50Aとなっているため、照明装置81Fからの照明光は、ロードスライダ50を透過し、天板46に至る。なお、天板46上には、照明装置81A〜81Fからの照明光を透過させる光透過部46A〜46Fが設けられている。
この光透過部46A〜46Fが配設された天板46上には、第1検出系としてのプリアライメント装置45が配設されている。プリアライメント装置45は、前述の撮像領域VA〜VFを撮像するための撮像装置を含む光学系を有している。このプリアライメント装置45の光学系の詳細な構成については後述する。
照明装置81A〜81F(例えばLED等)によってウエハWを+Z側から照明し、プリアライメント装置45によって−Z側から撮像領域VA〜VEを撮像すれば、その撮像結果において、ウエハWに相当する部分は暗部として、ウエハWでない部分は明部として撮像されるようになる。このようにすれば、その撮像結果からコントラストを際立たせた状態でウエハWの外形を精度良く認識することができるようになる。なお、天板46に撮像領域VA〜VFを照明する光源を設け、その光源から発せられた照明光を−Z側に反射させるプリズムを、照明装置81A〜81Fの代わりに配設し、そのプリズムからの反射光によってウエハW及びマーク50Mを下方から照明するようにしても良い。
図5には、撮像領域VA〜VFを撮像するプリアライメント装置45の光学系の構成が示されている。図5に示されるように、この光学系は、撮像領域VA〜VFの上に配置されたミラー55a〜55fと、3台のCCDカメラ40a,40b,40cとを備えている。照明装置81A〜81F(図4)から発せられ、撮像領域VA〜VFをそれぞれ通過した光DL1〜DL6は、それぞれミラー55a〜55fによって折り曲げられる。そのうち、撮像領域VBを通過しミラー55bによって折り曲げられた光DL2は、ミラー56bによってさらに折り曲げられており、撮像領域VEを通過してミラー55eによって折り曲げられた光DL5は、ミラー56eによってさらに折り曲げられる。
前述のように、同一のウエハWに対し実際に撮像するウエハのエッジは3箇所で良い。例えば、ウエハWのノッチの向きが6時である場合には、領域VA,VB,VCを撮像すれば良く、ウエハWのノッチの向きが3時である場合には、領域VC,VD,VEを撮像すれば良い。そこで、プリアライメント装置45では、それぞれCCDカメラ40a,40bの撮像面(受光面)に入射する光の光路上に、不図示の駆動機構により退避/挿入可能なミラー50a,50bを備えている。ミラー50aを退避した場合には、ミラー55aによって折り曲げられた光DL1がそのままCCDカメラ40aで受光されるようになり、ミラー50aを挿入した場合には、ミラー55dによって折り曲げられた光DL4がミラー50aに反射されて、CCDカメラ40aで受光されるようになる。また、ミラー50bを退避した場合には、ミラー55b,56bによって折り曲げられた光DL2がCCDカメラ40bで受光されるようになり、ミラー50bを挿入した場合には、ミラー55e,56eによって折り曲げられた光DL5がミラー50bで反射されて、CCDカメラ40bで受光されるようになる。
このミラー50a,50bの挿入/退避は、主制御装置20の指示によって行われる。すなわち、ウエハWのノッチ方向が6時である場合には、主制御装置20は、ミラー50a,50bを退避することにより、CCDカメラ40a,40bによって領域VA,VBの撮像結果が得られるように、ウエハWのノッチ方向が3時である場合には、ミラー50a,50bを挿入することにより、CCDカメラ40a,40bによって領域VD,VEの撮像結果が得られるように、プリアライメント装置45に指示する。
さらに、本実施形態では、ウエハの外形に対応する領域VA〜VEの撮像と、ロードスライダ50上のマーク50Mを含む領域(この領域を図5に示される領域VFとする)の撮像とを、同時には行わず、異なるタイミングで非同時に行うものとする。そこで、プリアライメント装置45では、それぞれCCDカメラ40cの受光面(撮像面)に入射する光の光路上に退避/挿入可能なミラー50cをさらに備えている。このミラー50cを退避した場合には、ミラー55fによって折り曲げられた光DL6がCCDカメラ40cで受光されるようになり、ミラー50cを挿入した場合には、ミラー55cによって折り曲げられた光がミラー50cで折り曲げられて、CCDカメラ40cで受光されるようになる。ミラー50cの光路上に対する退避/挿入は、主制御装置20の指示によって行われる。主制御装置20は、ウエハWの外形の撮像を行う際には、ミラー50cを挿入し、マーク50Mの計測を行う際には、ミラー50cを退避させるよう指示する。なお、上述において、上記照明装置81A〜81Fのうち、計測しない領域を照射する照明装置については消灯させておくものとする。
プリアライメント装置45を上述のような構成とすれば、ウエハWの5箇所のエッジ及びマーク50M、計6箇所の撮像をするための撮像装置をCCDカメラ3台に削減することができる。
なお、本実施形態の露光装置100のプリアライメント装置45の光学系の構成は、図5のような構成以外にも適宜変更が可能である。CCDカメラ40a,40b,40cなどの光学系の配置は、図5に示されるような配置には限られず、設計変更が可能であり、CCDカメラ40a,40b,40cに至るまでの各ミラーによる照明光の反射回数にも制限はない。また、領域VA〜VEを撮像するCCDカメラが領域毎に備えられていても良く、すべての領域VA〜VFを1台のCCDカメラで撮像するようになっていても良い。要は、ウエハWのエッジ部分の撮像と、マーク50Mとの撮像とを非同時に行うことにより、マーク50Mを撮像するCCDカメラと、ウエハWのエッジ部分を撮像するCCDカメラとを共通とすることができるような構成となっていれば良い。
なお、プリアライメント装置45の光学系を図5に示されるように構成した場合、CCDカメラ40a,40b,40cによって撮像される画像は、実際の物体と相似な正立像(正像)か、実際の物体とは反転した像となるいわゆる鏡像のいずれか一方となる。撮像結果が正像となるか鏡像となるかは、CCDカメラ40a〜40cに受光されるまでのミラーの反射回数が複数回(正像となる)であるか奇数回(鏡像となる)であるかによって決まる。例えば、領域VAを撮像する場合、CCDカメラ40aに受光されるまでの光DL1の反射回数は1回となるので、その撮像結果(画像)は鏡像となり、領域VDを撮像する場合、CCDカメラ40aに受光されるまでの光DL4の反射回数は2回となるので、その撮像結果(画像)は正像となる。
図6には、本実施形態におけるウエハの搬送系及びプリアライメント系に関連する制御系のブロック図が示されている。図6に示されるように、ウエハの搬送系及びプリアライメント系の制御系は、主制御装置20を中心に構成されており、主制御装置20より紙面左側に検出(撮像)に用いられる構成要素が示され、紙面右側には搬送動作やプリアライメントの結果によるウエハWの調整動作に用いられる構成要素が配置されている。各構成要素の機能(構成及び個々の動作)はすでに説明したとおりである。なお、図6においては、ラインセンサ83A,83Bがラインセンサ83としてまとめられており、照明装置81A〜81Gが照明装置81としてまとめられている。
このように構成されたプリアライメント系では、プリアライメント装置45(CCDカメラ40a,40b,40c)及びマーク検出系42の撮像結果から、ウエハWのエッジやマーク50Mの位置情報を検出する必要がある。しかしながら、プリアライメント装置45の個々のCCDカメラ40a,40b,40cの撮像視野や、マーク検出系42の撮像視野によって規定される座標系は、XY座標系と完全に一致するわけではなく、それぞれの取り付け具合によって若干のずれが生じる。図7には、本実施形態におけるプリアライメントに関連する各種座標系が示されている。プリアライメントにおいては、まず、ウエハWの位置合わせを行うための基準となる座標系を規定する必要がある。プリアライメントは、ウエハステージWSTのウエハWの位置合わせをウエハWのエッジの撮像結果に基づいて行うので、この基準の座標系は、プリアライメント装置45の撮像視野に基づいて決定される。すなわち、例えば、ウエハWのノッチが6時方向である場合には、領域VA,VB,VCに対応する撮像視野の位置関係によって規定される座標系をプリアライメントの基準座標系とし、ウエハWのノッチが3時方向である場合には、領域VC,VD,VEに対応する撮像視野の位置関係によって規定される座標系をプリアライメントの基準座標系とする。以下では、この基準座標系をウエハ座標系と呼ぶこととする。
図7では、このウエハ座標系としての座標軸であるXW軸及びYW軸が示されている。もっとも、CCDカメラ40,40b,40cが領域VA,VB,VCを撮像する際の個々の撮像視野によって規定されるいわゆる個々のカメラ座標系は、このウエハ座標系に対してそれぞれオフセット成分、回転成分、倍率成分を有している。本実施形態では、後述する露光動作に含まれる較正処理によって、これらの成分が算出される。同様に、CCDカメラ40cが領域VFを撮像する際のそれぞれの撮像視野によって規定される座標系を「プリ2TAカメラ座標系」と呼び、この座標系のウエハ座標系に対する回転成分をθAとする。同様に、マーク検出系42の撮像視野によって規定される座標系を「プリ3カメラ座標系」と呼び、この座標系のウエハ座標系に対する回転成分をθBとする。これらの回転成分θA,θBの値は予め求められているものとする。以降、本実施形態では、回転量(すなわち角度)を表す変数は、−Z方向に対して右ねじが回る方向を回転方向とする回転量を正とし、反対方向の回転量を負であるものとする。
次に、上記ウエハWの搬送系における搬送動作について図8(A)〜図10(D)を参照して、説明する。この搬送動作は、前述の通り、主制御装置20の指示の下で行われる。なお、前提として、搬送されるウエハWは、通常のロット処理のウエハ(プロセスウエハ)であり、そのノッチ方向は6時であるものとし、照明装置81A〜81Eのうち、実際の照明に用いられる照明装置81A,81C(照明装置81Bは、照明装置81Bの紙面奥側となるため、図示を省略している)だけを図示している。また、以下の搬送動作で行われるウエハWの受け渡しでは、その受け渡し元でのウエハWの吸着保持解除動作と、受け渡し先でのウエハWの吸着保持開始動作は、ウエハWのたわみ等によって発生するウエハWの位置ずれが極力発生しないように、常に適切なタイミングで行われているものとする。
まず、図8(A)に示されるように、FOUP27等からウエハWを取り出したロードロボット92が、そのウエハWを、第1位置に位置するプリアライメントステージ52の上方に位置させると、ターンテーブル51が上昇するか又はロードロボット92が下降することにより、ロードロボット92からターンテーブル51へウエハWが受け渡される。この時点で、ロードスライダ50は、待機位置(ローディングポジションと、第2位置との間の位置)に位置しているものとする。また、この時点で、アンロードスライダ62は、ウエハステージWSTからアンロードされたウエハWをアンロードロボット93に受け渡すための受け渡し位置に移動しており、図8(A)では図示されていない。ロードロボット92は、ウエハWをターンテーブル51に受け渡した後、+Y側に退避する。
ウエハWがターンテーブル51上に保持されると、図8(B)に示されるように、プリアライメントステージ52が第1位置にある状態で、ターンテーブル51及び保持されたウエハWを所定の角速度で回転させ、このウエハWの回転中に、ラインセンサ83A,83Bを用いてウエハWのノッチ(又はオリエンテーションフラット)を検出する。主制御装置20は、その検出結果に基づいて、ウエハWの回転量θ1と、ターンテーブル51の中心に対するウエハWの中心のXY2次元方向の偏心量(ΔX1、ΔY1)とを検出する。なお、このウエハWの回転量θ1とウエハWの中心位置の偏心量(ΔX1、ΔY1)の求め方は、例えば特開平10−12709号公報に開示されているので詳細な説明を省略する。図8(B)に示される工程は、ウエハWの回転及び位置をラフに調整する「プリ1計測工程」とも呼ばれる。
そして、図8(C)に示されるように、このウエハWの回転量θ1とウエハWの中心位置の偏心量(ΔX1、ΔY1)とがキャンセルされるように、ウエハWの位置調整を行う。回転量θ1は、ターンテーブル51を回転させることにより調整し、偏心量(ΔX1、ΔY1)は、プリアライメントステージ52をX軸方向、Y軸方向に駆動することにより調整する。この回転調整と偏心調整の順序としては、偏心調整を先に行い、偏心調整後に回転調整を行うのが望ましい。すなわち、プリアライメントステージ52のXY移動後に、プリアライメントステージ52が一旦停止し、その後で、ターンテーブル51の回転動作を行なうのが望ましい。
次に、図8(D)に示されるように、プリアライメントステージ52を−Y方向に所定距離(一定距離)だけ移動させる。これにより、プリアライメント装置45による計測が可能な位置(第2位置)にウエハWが位置するようになる。そして、ウエハWの外縁部をプリアライメント装置45の焦点深度内に位置させるように、ターンテーブル51の高さを調節する。
そして、図9(A)に示されるように、ターンテーブル51上に保持されたウエハWに対し、照明装置81A,81B,81Cにより、領域VA,VB,VCをそれぞれ照明し、CCDカメラ40a,40b,40cによって、領域VA,VB,VCに対応するウエハWのエッジをそれぞれ撮像する。このとき、プリアライメント装置45では、ミラー50a,50bを退避状態とし、ミラー50cについては、挿入状態としている。このようにすれば、CCDカメラ40a,40b,40cが、領域VA,VB,VCを撮像できるようになるからである。主制御装置20は、送られてきた撮像結果から、ウエハWの回転量θ2を求める。この求め方については後述する。そして、求められた回転量θ2がキャンセルされるように、ターンテーブル51を回転し、ウエハWの向きを所望の向き(すなわちノッチが6時方向を向くような向き)にファイン回転調整する。なお、この図9(A)に示される工程を特に「プリ2TT計測工程」と呼ぶものとする。なお、ウエハWのノッチの方向が3時である場合には、プリアライメント装置45では、ミラー50a,50b、50cをすべて挿入状態とし、CCDカメラ40a,40b,40cが、領域VD,VE,VCを撮像できるようにする必要があることは勿論である。
次に、図9(B)に示されるように、ターンテーブル51からロードスライダ50にウエハWを受け渡す。この受け渡しは、退避位置にあったロードスライダ50が、Y駆動機構60の駆動により+Y方向に進み、ターンテーブル51上に保持されたウエハWに干渉することなく通過して、その指部がウエハWを保持することが可能な位置まで進入した後、ターンテーブル51が下降することにより実現される。なお、この受け渡し動作と同時に、アンロードロボット93に対するウエハの受け渡しを終えたアンロードスライダ62を、退避位置に戻すようにする。なお、この受け渡し動作終了後も、プリアライメントステージ52はすぐに+Y側に退避することはなく、しばらくの間、第2位置に留まるものとする。これは、照明装置81Aがプリアライメント装置52上に設けられており、以降の動作で、照明装置81AによりウエハWを照明する必要があるためである。
次に、図9(C)に示されるように、ロードスライダ50に保持されたウエハWに対し、上述のプリ2TT計測工程と同様に、照明装置81A,81B,81Cにより、領域VA,VB,VCを照明し、CCDカメラ40a,40b,40cによって、領域VA,VB,VCに対応するウエハWのエッジをあらためて撮像する。主制御装置20は、送られてきた撮像結果から、ウエハ座標系におけるウエハの位置情報(中心位置座標(XC、YC)及び回転量θC)を求める。これらの求め方についても、上記プリ2TT計測工程と同様に後述する。なお、この図9(C)に示される工程を、特に、「プリ2LA計測工程」と呼ぶものとする。
次に、図9(D)に示されるように、プリアライメント装置45内のミラー50cを不図示の駆動機構によって退避させ、照明装置81Fにより領域VFを照明し、CCDカメラ40cによって、透過照明された領域VFを撮像する。主制御装置20は、送られてきた撮像結果から、プリ2TAカメラ座標系におけるマーク50Mの位置情報(位置及び回転量)を検出する。この求め方の詳細については後述する。なお、この図9(D)に示される工程を、特に「プリ2TA計測工程」と呼ぶものとする。
次に、図10(A)に示されるように、ウエハWを保持したロードスライダ50を所定距離(一定距離)だけ移動させ、ローディングポジションに位置させると同時に、露光済みのウエハW’を保持するウエハステージWSTをローディングポジションに移動させる。このときのウエハステージWSTの停止位置は、上記プリ2LA計測工程において検出されたウエハWの位置情報と、上記プリ2TA計測工程において検出されたマーク50Mの位置情報とに基づいて算出された位置ずれ量だけ、設計上のローディングポジションからずれた位置とする。この位置の決定方法の詳細についても後述する。なお、ウエハステージWSTの位置決め完了後所定時間(例えば20ms)は、次の図10(B)に示される動作は行わないようにする(この理由は後述する)。
次に、図10(B)に示されるように、マーク検出系42が、落射照明により、マーク50M周辺の領域VFを撮像し、その撮像結果から、プリ3カメラ座標系におけるマーク50Mの位置情報(位置及び回転量)を検出する。この求め方の詳細についても後述する。なお、この図10(B)に示される工程を、特に「プリ3計測工程」と呼ぶものとする。
そして、ここで、このプリ3計測工程において検出されたマーク50Mの位置情報と、上記プリ2LA計測工程で検出されたウエハWの位置情報と、上記プリ2TA計測工程において検出されたマーク50Mの位置情報とに基づいて、ウエハステージWST上のウエハWの後述する動作により推定されるロード位置などから、実際のロード位置との位置ずれを算出しておく。なお、このプリ3計測工程を行うと同時に(並行して)、ウエハステージWSTにおいては、露光済みのウエハW’の吸着を解除し、センタテーブルCTによりウエハWを吸着保持しつつ上昇させる動作もあわせて行う(この理由は後述する)。
次に、図10(C)に示されるように、露光済みウエハW’を保持するアンロードスライダ62を+Y側に退避させた後、センタテーブルCTをさらに上昇させ、ロードスライダ50からセンタテーブルCTにウエハWを受け渡し、ロードスライダ50が所定の待機位置に退避した後、センタテーブルCTが下降し、ウエハステージWST上にウエハWが保持されるようになる。なお、この後、アンロードスライダ62は、アンロードロボット93との受け渡し位置に移動しており、その図示を省略している。そして、図10(D)に示されるように、ウエハステージWSTは、上記プリ3計測工程で、算出された位置ずれを加味して、ウエハステージWSTを、図1に示されるアライメント検出系ASの下方へ移動させる。この後、アライメント検出系ASを用いていわゆるサーチアライメントが実行されるが、このサーチアライメントにおける、このときのウエハステージWSTの目標移動位置は、上述の位置ずれと、ウエハW上に形成されたサーチアライメントマークの設計位置座標とに基づいて決定される。このサーチアライメントに関し、上記目標移動位置の決定以外の処理手順については、例えば特開平2−272305号公報及びこれに対応する米国特許第5,151,750号などに詳細に開示されている方法と同様な方法が用いられるので、詳細な説明を省略する。このサーチアライメントの結果、ロードされたウエハWのサーチアライメントマークの計測位置と設計位置との間の位置ずれ(ΔX4、ΔY4)と、ウエハWの回転量θ4とを求めることができる。
そして、上記サーチアライメントや、そのサーチアライメントの結果を考慮して実施されるウエハアライメントの結果、ウエハW上の各ショット領域の位置座標が算出され、その算出結果に基づいて、ウエハステージWSTの位置を制御しながら、レチクルR上に形成された回路パターンを、ウエハW上の各ショット領域に順次露光する。なお、この露光動作時には、レチクルステージRSTをXY平面内のZ軸回りに回転させることにより、上記ウエハ回転量θ4をキャンセルした状態として露光を行うものとする。
以降、ウエハW上のすべてのショット領域に対する露光が終了すると、図10(A)〜図10(C)に示されるウエハW’と同様に、アンロードスライダ62により露光済みのウエハWがアンロードされる。そして、アンロードスライダ62が、アンロードロボット93との受け渡し位置に退避して、ウエハWをアンロードロボット93に受け渡すと、さらにそのウエハWは、アンロードロボット93からロードロボット92に受け渡され、ロードロボット92によってFOUP27に戻されるか、あるいは不図示の搬送系に受け渡され、インラインに接続された不図示のコータ・デベロッパ(以下、「C/D」と略述する)に搬送されるようになる。
以上述べたように、露光装置100におけるウエハWの搬送動作では、ウエハWがFOUP27から取り出され、ウエハステージWST上にロードされるまでは、上記プリ1計測工程(図8(B))、プリ2TT計測工程(図9(A))、プリ2LA計測工程(図9(C))、プリ2TA計測工程(図9(D))、プリ3計測工程(図10(B))という、計5回の計測工程が実施される。本実施形態では、この計測中においては、プリアライメントステージ52、ウエハステージWST、ロードスライダ50、アンロードスライダ62などの駆動系をXY平面内に駆動させないようにする。もし、計測中に上記各駆動系を動かすと、その駆動に起因する振動が計測結果に影響を与えるおそれがあるからである。例えば、図9(C)に示されるように、プリアライメントステージ52からロードスライダ50にウエハWを受け渡した後に、プリ2LA計測工程が実行されるが、プリ2LA計測工程実行中は、プリアライメントステージ52を第1位置に移動させないようにしている。
ただし、本実施形態では、上記各計測中における駆動系のZ軸方向に関する駆動は認容する。上記各計測工程において検出される情報は、すべてXY平面内の位置情報であり、Z軸方向に発生する振動がそれらの検出精度に与える影響は少ないことが期待されるからである。例えば、本実施形態では、図10(B)に示されるプリ3計測工程実行中には、アンロードスライダ62を停止させているが、ウエハステージWSTのセンタテーブルCTを上昇させている。
また、本実施形態では、搬送系の駆動停止後、その系の駆動により発生した振動が十分減衰してから上記各計測工程を行うのが望ましい。例えば、図10(A)に示されるように、ウエハステージWSTがローディングポジションに移動してから、そのウエハステージWSTの移動により発生する振動が十分収束したと考えられる20ms経過後に、図10(B)に示されるようにプリ3計測工程を開始している。このように、質量が大きいために、振動を発生させやすいと考えられる移動体を移動させる場合には、このような整定時間の設定が必要である。
また、本実施形態では、複数存在するウエハの搬送系のうち、ある搬送系を駆動する際には、他の搬送系を駆動するように、搬送動作のスケジューリングを行っている。例えば、前述のように、上記プリ2LA計測工程中は、プリアライメントステージ52を動かさないようにしているが、図10(A)に示されるように、プリアライメントステージ52を第1位置に戻すタイミングを、ロードスライダ50がプリ2計測位置に向けて移動する間としている。すなわち、プリアライメントステージ52の移動と、ロードスライダ50の移動と並行して行い、次のウエハの搬入に備えるようにして、スループットの向上を図っている。また、図9(B)に示されるように、アンロードスライダ62を、アンロードロボット93との受け渡し位置から待機位置に戻すタイミングは、ロードスライダ50が、プリアライメントステージ52からウエハWを受け取るために移動する間としている。
なお、上述した搬送動作においては、図10(A)に示されるウエハステージWSTのローディングポジションは、上記プリ2LA計測工程で検出されたウエハWの位置情報と、上記プリ2TA計測工程で検出されたマーク50Mの位置情報とから推定されるが、その推定を行うためには、マーク50MとウエハWとの相対位置関係を把握することが必要となると一般的には考えられる。しかしながら、プリ2TAカメラ座標系及びプリ3カメラ座標系と、ウエハ座標系との回転成分(θA,θB)や倍率成分(本実施形態では1倍として規定している)はわかっていても、ウエハ座標系に対する両カメラ座標系の原点の位置座標が未知である場合には、上記プリ2LA計測工程で及びプリ2TA計測工程での検出結果だけから、上記相対位置関係を求めるのは困難である。
そこで、本実施形態では、ウエハ座標系におけるプリ2カメラ座標系やプリ3カメラ座標系の原点が未知であっても、ウエハステージWSTのローディングポジションや、ウエハステージWSTにロードされた後のウエハWの位置情報を精度良く推定することができるプリアライメントの方法を提供する。ここでは、そのプリアライメントの方法を含む露光装置100における露光動作について説明する。
図11には、その推定に用いる基準物体としてのウエハ(以下、「工具ウエハ」と略述する)WSの一例が示されている。この工具ウエハWSは、円形のガラス基板であり、図11に示されるように、その表面上に、クロム蒸着により、第1基準マークFMa,FMb,FMc及び第2基準マークSMa,SMb,SMc,SMdが形成されている。第1基準マークFMa,FMb,FMcは、ウエハ座標系(XW,YW)において、工具ウエハWSの6時方向、7時半方向、4時半方向の外縁部に位置するように、工具ウエハWSの表面上に描画して形成されている。
第1基準マークFMa,FMb,FMcは、例えば、少なくとも一方向に所定幅を有する少なくとも1つのパターン(例えばラインパターン)を含み、互いの位置関係が明らかでかつ同一直線上にない少なくとも3つの較正用マーク(例えばボックスマーク)が、例えば領域VA,VB,VC内にそれぞれ同時に収まるように形成されているマークである。この3つの較正用マークと、工具ウエハWSの6時、7時半、4時半のエッジ位置との関係は一定となっており、3つの較正用マークの位置が既知であれば、それら3つのエッジ位置を求めることができるようになっている。したがって、工具ウエハWSに対して図8(A)〜図9(C)に示されるような搬送動作を行い、プリアライメント装置45において、領域VA〜VCを撮像すれば、その撮像結果から、領域VA〜VCを撮像するプリアライメント装置45の倍率、回転等の較正を行うことが可能となるとともに、工具ウエハWSの上記3つのエッジ位置をも求めることができるようになっている。なお、同様に、ターンテーブル51を90度回転させ、第1基準マークFMa,FMb,FMcを、3時、4時半、1時半に向けて、領域VC〜領域VEに対応させれば、残りの撮像領域VD,VCにおけるプリアライメント装置45の倍率、回転等の較正を行うことも可能であることは勿論である。なお、第1基準マークを3時、1時半の方向にも設け、上記ターンテーブル51の回転を不要とするようにしても良い。
第2基準マークSMa,SMb,SMc,SMdは、工具ウエハWSの表面において、XW軸又はYW軸に平行な四辺を有し、工具ウエハWSの中心を中心とする矩形の頂点位置に形成されており、その形状は、2次元L/Sマーク等の様な、その2次元位置を精度良く検出することが可能な2次元位置検出用マークとしての機能を有する形状となっている。したがって、この第2基準マークSMa,SMb,SMc,SMdの位置をそれぞれ検出すれば、それらの位置から工具ウエハWsの中心OJの位置や回転量を算出することができる。
上述のように露光装置本体、搬送系及びプリアライメント系が構成され、ウエハ搬送動作が規定された本実施形態の露光装置100により、較正処理及び露光処理を行う際の動作について、主制御装置20内のCPUの処理手順を示す図12〜図15のフローチャート及び図16(A)〜図19(B)に沿って説明する。
なお、前提として、この露光動作が行われる前に、プリアライメント装置45における撮像視野VA〜VEは、ウエハWがターンテーブル51またはロードスライダ50に保持されたときに、そのウエハWのエッジ(6時、7時半、4時半、3時、1時半のエッジ)がそれぞれ同時に各撮像視野内に入るように調整されているものとし、プリアライメントステージ52等の各ウエハ搬送系、マーク検出系42や、ラインセンサ83A,83B、各照明装置81A〜81Gの取り付け位置も、適切に調整されているものとする。また、ここでは、ウエハ座標系に対するプリ2TAカメラ座標系及びプリ3カメラ座標系のX軸方向及びY軸方向の倍率成分はともに1であるものとする。
また、後述する各ステップでは、主制御装置20が、上記搬送系やプリアライメント系等に指示を出すが、その指示伝達経路については上述した通りであるので、詳細な説明は行わないものとする。また、主制御装置20は、その搬送系やプリアライメント系等からの応答などにより、指示した動作が完了したことが確認されるまで待ち、次のステップに進まないものとする。そして、本実施形態では、ウエハWは常にノッチの方向を6時としてロードされるものとし、以下では、その方向でロードされるウエハWの処理に必要な手順について説明するが、ウエハWのノッチの方向が3時であった場合の手順についても適宜説明するものとする。
まず、図12のステップ109において、プリアライメント系の較正を行うか否かが判断される。ステップ109において肯定的な判定がなされた場合には、プリアライメント系の較正を行うサブルーチン101に移行する。プリアライメント系の較正は、露光装置100の据付時やメンテナンス時等に行われるものであり、こうした場合に肯定的な判定がなされる。まだ、較正処理が一度も行われていない場合には、必ず、肯定的な判断がなされる。一方、ステップ109において否定的な判定がなされた場合には、露光を行うサブルーチン102に移行する。通常のロット処理の場合には、プリアライメント系の較正は行われないので、否定的な判定がなされる。以下では、ステップ109における判定が肯定され、サブルーチン101に進むものとして、説明を行う。
図13には、サブルーチン101のフローチャートが示されている。図13に示されるように、まず、ステップ701において、ロードロボット92に対し、工具ウエハWSの搬入を指示する。ロードロボット92は、例えばFOUP27に格納されていた工具ウエハWSを搬送し、図8(A)に示されるようにターンテーブル51に受け渡す。
ステップ703では、プリアライメントステージ52を第2位置に移動させ、ステップ705では、プリアライメント装置45による領域VA〜VEの撮像結果を、オペレータが確認できるように、不図示の表示装置にその領域VA〜VEの画像を表示させるとともに、不図示の入力装置からの入力により、プリアライメントステージ52及びターンテーブル51を駆動することができるように、それらの駆動系に対する操作入力を手動に切り換える。これにより、オペレータが、表示装置に表示された領域VA〜VEの画像を確認しながら、入力装置を介して(すなわち手動で)、プリアライメントステージ52及びターンテーブル51をXY平面内で移動あるいは回転させることにより、5つの視野に工具ウエハWSのエッジが入るように(すなわち第1基準マークが視野内に入るように)、プリアライメントステージ52及びターンテーブル51の位置を調整する。図11に示される工具ウエハWSでは、第1基準マークが、3つしか形成されていないが、ターンテーブル51を適宜90度回転させることにより、すべての視野内に、第1基準マークが入るように、工具ウエハWSの位置が調整されていることを確認することができる。上記手動による調整が完了した後、オペレータは調整が完了したことを入力装置により入力する。この入力により、プリアライメントステージ52及びターンテーブル51の駆動系の入力を自動に切り換える。このように、工具ウエハWSをロードする際には、工具ウエハWSがガラスウエハであるために、ウエハのエッジを検出するプリ1計測工程を実行することができないため、プリアライメントステージ52を速やかに第2位置に移動させて、手動でその位置調整を行う。すなわち、図8(B)、図8(C)に示される工程は省略される。
次のステップ707では、図9(A)に示されるプリ2TT計測工程を行う。このとき、工具ウエハWSは、第1基準マークFMa,FMb,FMcが6時、7時半、4時半に向いているので、プリアライメント装置45のミラー50a,50bを退避させる。ミラー50cについては、挿入状態とする。このようにすれば、CCDカメラ40a,40b,40cが、領域VA,VB,VCを撮像可能となる。なお、ウエハWのノッチの方向が3時である場合には、ミラー50a,50bを挿入し、領域VC,VD,VEを撮像可能とする。そして、プリアライメント装置45から送られる、領域VA,VB,VC(又は領域VC,VD,VE)の撮像結果から第1基準マークFMa、FMb、FMcにおける一直線上にない少なくとも3つの較正用マークの位置情報を検出し、3つの較正用マークの位置関係から、個々のカメラ座標系のオフセット成分、回転成分、倍率成分を算出し、不図示の記憶装置に格納する。そして、そのオフセット成分、回転成分、倍率成分を考慮して、工具ウエハWSの3つのエッジ位置を検出し、その3つのエッジ位置から工具ウエハWSの回転量θ2を検出する。工具ウエハWSの回転量θ2も、記憶装置に記憶される。この回転量θ2は、上記ファイン回転調整(ターンテーブル51の回転)によりキャンセルされる。
次のステップ709では、図9(B)に示されるように、ターンテーブル51からロードスライダ50に対する工具ウエハWSの受け渡しを行なう(第6工程)。このときに、工具ウエハWS上の第1基準マークが、プリアライメント装置45の撮像視野内に入っているか否かを判断し、入っていない場合には、処理を強制終了するようにしても良い。
工具ウエハWSのロードスライダ50への受け渡し完了後、ステップ711では、ロードスライダ50に保持された工具ウエハWSに対するプリ2LA計測工程を行う(第7工程)。このときのプリアライメント装置45等の動作及び工具ウエハWSのエッジの検出方法については、上記ステップ707と同様であるが、ここでは、改めて、個々のカメラ座標系のオフセット成分、回転成分、倍率成分の値が算出されるので、不図示の記憶装置に格納された各成分の値を更新する。また、ここでは、求められた工具ウエハWSの3つのエッジ位置に基づいて、ウエハ座標系における工具ウエハWSの位置情報として、その回転量θ3とともに、中心位置座標O(X0,Y0)を算出する。図16(A)には、このプリ2LA計測工程において検出された、ウエハ座標系における工具ウエハWSの中心位置座標O(X0,Y0)が模式的に示されている。この中心座標O(X0,Y0)及び回転量θ3は、不図示の記憶装置に格納される。以降のプリ2LA計測工程において検出されるウエハの中心位置座標は、すべて、この位置座標Oを原点とした位置座標であるものとする。なお、プリ2TT計測において、工具ウエハWSは、ファイン回転調整が行われるため、回転量θ3は、通常ほぼ0となる。
次のステップ713では、図9(D)に示されるプリ2TA計測工程を行う。これにより、プリアライメント装置45では、ミラー50cを退避させ、CCDカメラ50cを用いて、マーク50Mを含む撮像領域VFを撮像する。そして、その撮像結果におけるマーク50MのL/Sパターン(Xパターン及びYパターン)に対応する部分の輝度分布の鏡映対称性などから、プリ2TAカメラ座標系におけるマーク50Mの位置情報を検出する。このマーク50Mの位置情報の検出について簡単に説明する。
まず、撮像結果としての2次元画像データの各画素(ピクセル)における輝度値のカメラ座標系における各座標軸方向(ここでは、説明を簡単にするためX軸方向及びY軸方向とする)に関する分散(又は標準偏差)の値を求める。マーク50Mに対応する部分の画像データの分散等は、他の部分よりも大きくなる。このことからマーク50MのXパターン及びYパターンに対応する前記画像内の範囲を特定することができる。そして、その範囲に含まれる各画素(ピクセル)の輝度値を、XパターンについてはY軸方向に加算し、YパターンについてはX軸方向に加算して、それぞれの加算結果を示す1次元波形を求める。さらに、その1次元波形に対し、例えばディジタルフィルタリング処理の一種であるSINC補間を行い、離散データの波形である上記1次元波形における位置の検出精度を高める。そして、1次元波形に対して走査する所定幅の観察窓を用いた相関演算により、その1次元波形の軸方向位置に対する全体の鏡映(反転)対称性相関度を示す相関度関数やXパターン(又はYパターン)、すなわちL/Sパターンの各ラインの反転対称性相関度を示す相関関数などを求め、各反転対称性相関度の相関度関数同士を乗じてその相関度を示す波形を尖鋭なものとしたり、2次関数フィッティングを施したりして、検出精度を高めつつ、相関度の最大値、すなわち反転対称性(鏡映対称性)が最大となる位置を、Xパターン及びYパターンの位置(すなわちL/S位置)として検出する。
なお、これらのL/S位置の検出方法は、上述したような方法に限られるものではなく、適宜変更が可能である。例えば、SINC補間を必ずしも行う必要はない。また、上記反転対称性相関度などからマーク50Mの位置情報を求めるのではなく、マーク50Mのテンプレート画像によるテンプレートマッチングにより、マーク50Mの位置情報を検出するようにしても良い。
検出されたL/S位置は、マーク50MについてXパターンが2つで、Yパターンが1つとなる。マーク50MのY位置は、このYパターンの検出位置とすればよく、マーク50MのX位置は、2つのXパターンのそれぞれの検出位置の中間の位置とすればよい。また、マーク50Mの回転量については、例えば2つのXパターンの検出位置と、Xパターンの設計上の距離とを用いた逆正接演算により求めることができる。
なお、このプリ2TAカメラ座標系におけるマーク50Mの位置情報をp(SCAx,SCAy,θCA)とする。SCAxはX座標であり、SCAyはY座標であり、θCAは回転量である。図16(A)には、プリ2TAカメラ座標系における位置情報p(SCAx,SCAy,θCA)が模式的に示されている。プリ2TAカメラ座標系におけるマーク50Mの位置情報p(SCAx,SCAy,θCA)は、不図示の記憶装置に記憶される。
次のステップ715では、図10(A)に示されるように、ロードスライダ50を、Y駆動機構60の駆動により、ローディングポジション上方まで移動させるとともに、ウエハステージWSTをローディングポジションへ移動させる(第8工程)。このときのウエハステージWSTのロード位置は設計上の位置とする。そして、ステップ717において、プリ3計測工程を行う(第9工程)。ここでは、マーク検出系42による撮像により得られた撮像結果に基づいて、プリ3カメラ座標系におけるマーク50Mの位置情報を検出する。なお、このプリ3カメラ座標系におけるマーク50Mの位置情報をq(SCBx,SCBy,θCB)とする。SCBxはX座標であり、SCByはY座標であり、θCBは回転量である。図16(B)には、プリ3カメラ座標系におけるマーク50Mの位置情報q(SCBx,SCBy,θCB)が模式的に示されている。このマーク50Mの位置情報q(SCBx,SCBy,θCB)は、不図示の記憶装置に記憶される。
そして、ステップ719において、図10(C)に示されるように、工具ウエハWSをウエハステージWSTにロードする。ただし、ここではウエハステージWST上に露光済みウエハW’はなく、図10(B)等に示されるアンロード動作は行われないものとする。工具ウエハWSがセンタテーブルCTに完全に受け渡された後、センタテーブルCTが下降して、最終的に工具ウエハWSがウエハステージWSTに載置され、真空吸着により吸着保持される。
次のステップ721では、図10(D)に示されるようにウエハステージWSTを−Y方向に移動させ、アライメント検出系ASの下方に位置させる。そして、ステップ723において工具ウエハWS上の第2基準マークSMa,SMb,SMc,SMdの位置情報を検出する(第10工程)。具体的には、ウエハ干渉計18から得られる位置情報に基づいてウエハステージWSTを駆動制御し、工具ウエハWS上の第2基準マークSMa,SMb,SMc,SMdが、アライメント検出系ASの下方に順次位置するように工具ウエハWSを移動させ、アライメント検出系ASにより第2基準マークSMa,SMb,SMc,SMdを撮像する。この撮像結果は、主制御装置20に供給される。
次のステップ723では、第2基準マークSMa〜SMdの位置情報から、XY座標系における工具ウエハWSの中心の位置座標を算出する。この位置座標が、XY座標系における工具ウエハWSのロード位置座標である。ここで、算出されたロード位置座標を、LP(LPX,LPY)とし、この点が、ウエハWのロード時における推定ロード位置の基準点となる。図16(B)には、このXY座標系における工具ウエハWSのロード位置座標LP(LPX,LPY)が示されている。なお、これに合わせて工具ウエハWSの回転量αを検出するようにしても良い。この回転量αが、ウエハ座標系と、XY座標系、すなわちウエハ干渉計18によって規定されるステージ座標系との回転ずれ量となる。算出された情報、ロード位置座標LP(LPX,LPY)やウエハ回転量αは、不図示の記憶装置に記憶される。
そして、ステップ725では、工具ウエハWSをアンロードする。このアンロード動作は前述した通りであるため、詳細な説明を省略する。ステップ725終了後は、サブルーチン101の処理を終了して、図12のステップ103に進む。
ステップ103では、引き続き露光を行うか否かが判断される。この判断が、肯定されれば、サブルーチン102に進み、否定されれば処理を終了する。この判断は、不図示の入力装置によるオペレータの指示によってなされる。ここでは、判断が肯定され、サブルーチン102に進むものとして話を進める。
図14には、露光処理サブルーチン102のフローチャートが示されている。図14に示されるように、まず、ステップ801において、ロードロボット92に対し、ウエハWの搬入を指示する。ロードロボット92は、図8(A)に示されるように、FOUP27からウエハWを取り出し、ターンテーブル51に受け渡す。なお、このときウエハWのノッチは、6時方向に向いているものとする。
次のステップ803では、図8(B)に示されるように、プリ1計測工程を行い、ステップ804では、図8(C)に示されるように、プリ1計測工程の算出結果(ΔX1,ΔY1,θ1)に基づいて、プリアライメントステージ52のXY移動及びターンテーブル51の回転により、ウエハWの位置を略調整する。
次のステップ805では、図8(D)に示されるように、プリアライメントステージ52を、第2位置に移動させ、ステップ807において、図9(A)に示されるように、プリ2TT計測工程を行う。ウエハWのノッチは6時に向いているので、プリアライメント装置45のミラー50a,50bを退避させ、ミラー50cについては、挿入しておく必要がある。なお、このウエハWはガラスウエハではなく、プロセスのウエハであり、上記第1基準マークFMa,FMb,FMc等も配設されていないので、上記ステップ707における工具ウエハプリ2TT計測とは、その処理手順が若干異なる。すなわち、ここでは、透過照明によるウエハWのノッチを含むウエハWのエッジを撮像結果の輝度分布から検出することにより、回転量θ2を算出し、その回転量θ2をキャンセルするようにターンテーブル51を回転させる。これにより、前述のように、ウエハWのファイン回転調整が実現される。
次のステップ809では、図9(B)に示されるように、ターンテーブル51からロードスライダ50へのウエハWの受け渡しが行われる(第1工程)。そして、ステップ811では、プリ2LA計測工程が行われる(第2工程)。このプリ2LA計測工程は、上記ステップ807のプリ2TT計測工程と同様に実施される。なお、ここで検出されるウエハWの位置情報、すなわち中心座標及び回転量を、C(XC,YC,θC)とする。XCはX座標であり、YCはY座標であり、θCは回転量であるが、このX座標及びY座標は、O(X0,Y0)を原点としたときの座標値であるものとする。図17(A)には、ウエハ座標系におけるウエハWの位置情報(中心座標及び回転量)C(XC,YC,θC)が模式的に示されている。この位置情報C(XC,YC,θC)は、不図示の記憶装置に記憶される。
次のステップ813では、図9(C)に示されるように、プリ2TA計測工程を行う(第3工程)。この動作は、上記ステップ713と同じである。検出されたプリ2TAカメラ座標系におけるマーク50Mの位置情報をp’(SCAx’,SCAy’,θCA’)とする。SCAx’はX座標であり、SCAy’はY座標であり、θCA’は回転量である。図17(A)には、位置情報p’(SCAx’,SCAy’,θCA’)が模式的に示されている。位置情報p’(SCAx’,SCAy’,θCA’)は、不図示の記憶装置に記憶される。
次のステップ815では、図9(A)に示されるように、ロードスライダ50を、Y駆動機構60の駆動により、ローディングポジション上方まで移動させるとともに、ウエハステージWSTをローディングポジションまで移動させる。なお、ここでは、ロードスライダ50からウエハWを受け渡すときのウエハステージWSTの位置を推定し、その推定結果に基づいてXY座標系におけるウエハステージWSTのロード位置を決定する。以下では、その推定方法について詳細に説明する。
上述したように、この時点では、上記ステップ711(図13)における工具ウエハWSに対するプリ2LA計測工程と、上記ステップ713(図13)におけるプリ2TA計測工程とが実施されており、プリ2LA計測工程でのウエハ座標系における工具ウエハWSの位置情報O(X0,Y0)と、プリ2TA計測工程でのプリ2TAカメラ座標系におけるマーク50Mの位置情報p(SCAx,SCAy,θCA)とが求められている(図16(A)参照)。また、上記ステップ723が実行され、XY座標系における工具ウエハWSのロード位置LP(LPX,LPY)が求められている(図16(B)参照)。
さらに、この時点では、上記ステップ811(図14)におけるウエハWに対するプリ2LA計測工程と、上記ステップ813(図14)におけるプリ2TA計測工程とが実施されており、プリ2LA計測工程でのウエハ座標系におけるウエハWの位置情報C(XC,YC,θC)と、プリ2TA計測工程でのプリ2TAカメラ座標系におけるマーク50Mの位置情報p’(SCAx’,SCAy’,θCA’)とが求められている(図17(A)参照)。これらの位置情報p,O,LP,C,p’が、ウエハステージWSTのウエハWの受け渡し位置の推定に用いられる。
ここでは、ウエハWの位置ずれを、マーク50Mの位置ずれによる平行移動成分とマーク50Mの回転量の差に起因する位置ずれ成分である回転成分とに分けて推定する。まず、ウエハWの位置ずれの平行成分の推定について説明する。図18(A)には、プリ2LA計測工程(ステップ711及びステップ811)において検出されたウエハ座標系におけるウエハWの位置情報O,C(以下、単に「位置O」、「位置C」と呼ぶ)と、プリ2TA計測工程(ステップ713及びステップ813)において検出されたマーク50Mの位置情報p,p’(以下、単に「位置p」、「位置p’」と呼ぶ)の位置関係を模式的に示すベクトル図が示されている。図18(A)では、工具ウエハWSをロードしたときのプリ2LA計測工程におけるマーク50Mの位置pと、工具ウエハWSの中心の位置Oとの相対位置関係を示すベクトルがベクトルPとして示されており、ウエハWをロードしたときのプリ2LA計測工程におけるマーク50Mの位置p’と、ウエハWの中心の位置Cとの相対位置関係を示すベクトルがベクトルP’として示されている。本実施形態では、このベクトルP、P’を基準として、ウエハWをロードする際のウエハステージWSTの位置の位置ずれの平行移動成分を推定する。
すなわち、マーク50Mの中心と、工具ウエハWSの中心とがベクトルPで表される位置関係にあり、その位置関係にあった工具ウエハWSがロードされた位置が位置LPであったことから、ウエハWがロードされるであろう位置は、位置LPを基点とした、ベクトルP’とベクトルPとの差のベクトルP’−Pで表される位置であると推定される。この位置ずれを示すベクトルをベクトルWAとする。
この平行移動成分の具体的な計算方法について説明する。まず最初に、図18(A)に示されるように、工具ウエハWSのロード時のプリ2LA計測工程で検出されたマーク50Mの位置p(SCAx,SCAy)と、ウエハWのロード時にプリ2LA計測工程で検出されたマーク50Mの位置p’(SCAx’,SCAy’)との差のベクトルApのX成分及びY成分は次式で表される。
Spx=SCAx’−SCAx …(1)
Spy=SCAy’−SCAy …(2)
ただし、前述のように、位置pと位置p’のX座標及びY座標は、プリ2TAカメラ座標系で求められたものであるため、その位置座標を、次式のようにウエハ座標系の座標値に変換する必要がある。
Figure 2006012907

ここで、Swpxは、ベクトルApのX成分であり、Swpyは、ベクトルApのY成分である。また、θAは上述のとおり、ウエハ座標系に対するプリ2LAカメラ座標系の回転成分である。
次に、ベクトルWAを求める。ベクトルWAのX,Y成分を(WAx,WAy)とすると、(WAx,WAy)は、それぞれ次式のように表される。
Figure 2006012907

したがって、ここでは、工具ウエハWSのロード位置LPを基準とするベクトルWAを上記式(1)〜(4)を計算して求め、それをウエハステージWSTのローディング位置の位置ずれ量の平行移動成分とし、不図示の記憶装置に格納する。
次に、位置ずれの回転成分を推定する。工具ウエハWSを保持したときのマーク50Mの位置pと、ウエハWを保持したときのマーク50Mの位置p’とが仮に完全に一致しており、マーク50Mから、ウエハの中心までの距離も同じであったとしても、マーク50Mの回転量が異なれば、工具ウエハWSとウエハWとの中心位置がずれるようになる。回転成分とは、このマーク50Mの回転によるウエハWの位置ずれのことをいう。
本実施形態では、プリアライメント装置45やマーク検出系42によって、工具ウエハWS搬送時におけるプリ2TA計測工程でのマーク50Mの回転量θCAと、ウエハW搬送時におけるプリ2TA計測工程でのマーク50Mの回転量θCA’とがすでに検出されている。そこで、これらのマーク50Mの回転量θCA,θCA’からウエハWの位置ずれの回転成分を推定する。
マーク50Mの中心と、工具ウエハWSの中心とがベクトルPで表される位置関係にあり、その位置関係にあった工具ウエハWSがロードされた位置が位置LPであったことから、ウエハWがロードされるであろう位置は、図18(B)に示されるように、位置Cを基点とした、マーク50Mの回転量θCAとマーク50Mの回転量θCA’との差のベクトルで表される位置となるであろうと推定される。そこで、マーク50Mの回転量θCAとマーク50Mの回転量θCA’との差を、例えば図18(B)に示されるθp(=θCA’−θCA)であるとする。
プリ2LA計測工程におけるマーク50Mの回転量は、工具ウエハWS又はウエハW等がロードスライダ50に保持される前のロードスライダ50の姿勢によって決定される。これは、ロードスライダ50へのウエハの受け渡しがターンテーブル51の駆動によって行われるため、ロードスライダ50の姿勢はその間変化せず、マーク50Mの回転量は一定であるとみなせるからである。このことにより、ローディングポジションへ搬送後、この回転量が修正されるとすると、マーク50Mの回転量θCA’でのロード位置は、マーク50Mの回転量θCAでのロード位置LPから、マーク50Mの中心を回転中心として、θpの方向(回転方向)とは、逆方向に回転するようになると考えられる。すなわち、修正すべきウエハWの中心位置の回転量は、−θpであると推定される。なお、図18(B)においては、θpは、正(反時計回り)であるものとしているが、θpは、負(時計回り)である場合もあり、その場合には、−θpは、正(反時計回り)となる。
本実施形態では、この修正回転量−θpに基づいて、上述のように求められた、マーク50Mの回転成分に伴うウエハステージWST上のウエハWの位置ずれベクトルDt1を次式を用いて算出する。
Figure 2006012907

Dt1x,Dt1yは、ベクトルDt1のX軸成分及びY軸成分である。ここでは、マーク50MとウエハWとの距離の設計値Lと、ウエハ座標系のXW軸に対するマーク50M中心と工具ウエハWSの中心とを結ぶ線分の回転量の設計値θDを用いている。
上述のように算出された、ウエハWの平行移動成分としてのベクトルWAと、回転成分Dt1とを次式のように加算すれば、ウエハステージWSTのロード位置の位置ずれ量を推定することができる。
Figure 2006012907

ここで、D1x,D1yは、ベクトルD1のX成分及びY成分である。なお、ここで、ウエハ座標系と、XY座標系との回転量αが無視できない場合には、この回転量αにより、このベクトルD1を回転させたベクトルをロード位置の推定に用いるようにしても良い。
主制御装置20は、この位置ずれベクトルD1を不図示の記憶装置に格納する。本実施形態では、そのベクトルD1に対応する位置を、ウエハステージWSTのロード位置として推定し、その推定ロード位置にウエハステージWSTを移動させて、ウエハWをロードする。
そして、図14のステップ817において、図10(B)に示されるように、プリ3計測工程を行う(第4工程)。マーク検出系42の撮像結果は、主制御装置20に送られる。主制御装置20は、この撮像結果に基づいて、プリ3カメラ座標系におけるマーク50Mの位置情報(位置及び回転)を、プリ2TA計測工程と同様にして検出する。プリ3カメラ座標系におけるマーク50Mの位置情報をq’(SCBx’,SCBy’,θCB’)とする。SCBx’はX座標であり、SCBy’はY座標であり、θCB’は回転量である。なお、この位置情報q’(SCBx’,SCBy’,θCB’)は、不図示の記憶装置に記憶される。図17(A)には、このステップ817におけるプリ3計測工程においてロードスライダ50のマーク50Mの位置情報q’の一例が示されている。
次のステップ819では、図10(C)に示されるように、ウエハステージWST上にウエハWをロードする。このときのウエハステージWST上のウエハWのロード位置をLP’(LPx’,LPy’)とする。図17(B)には、ウエハステージWST上のウエハWのロード位置の一例が示されている。なお、ウエハステージWST上に露光済みのウエハW’が保持されている場合には、このロード動作を行う前に、図10(B)に示されるように、ロード前にウエハステージWSTからウエハW’をアンロードする。
次のステップ821では、ウエハステージWST上のウエハWの位置ずれ量を算出する。ここでも、その位置ずれ量を、マーク50Mの位置ずれによる平行移動成分と、マーク50Mの回転量の差に起因する回転成分とに分けてそれぞれ推定するものとする。
図19(A)には、ウエハステージWST上のウエハWの位置ずれ量の推定方法を模式的に示すベクトル図が示されている。図19(A)では、工具ウエハWSをロードするときのプリ3カメラ座標系におけるマーク50Mの位置情報q(以下、「位置q」と略述する)と、工具ウエハWSのローディングポジションLPとの相対位置関係を示すベクトルがベクトルQとして示されている。本実施形態では、ベクトルQを基準として、ウエハステージWST上のウエハWのロード位置の位置ずれの平行移動成分を推定する。
まず、平行移動成分の推定方法について説明する。上記ステップ819におけるウエハステージWSTのロード位置は、ローディングポジションLP(すなわちベクトルQ)に、ベクトルWAを加算した位置(LP’)となっている。しかしながら、工具ウエハWSをロードする際のプリ3計測工程によって検出されたマーク50Mの位置q(SCBx,SCBy)と、ウエハWをロードする際のプリ3計測によって検出されたマーク50Mの位置情報q’(SCBx’,SCBy’)(以下、「位置q’」と略述する)とのずれにより、ウエハステージWST上のウエハWのローディングポジションは、当初に予定していた位置からそのずれ分だけずれることとなる。したがって、ウエハステージWST上のウエハWの位置ずれの平行移動成分は、工具ウエハWSのロード時にマーク検出系42によって検出されたマーク50Mの位置q(SCAx,SCAy)と、ウエハWのロード時にマーク検出系42によって検出されたマーク50Mの位置q’(SCAx’,SCAy’)との差のベクトルAqとなる。このベクトルAqの各座標軸成分Sqx,Sqyは以下の式(7)、式(8)で表される。
Sqx=SCBx’−SCBx …(7)
Sqy=SCBy’−SCBy …(8)
しかし、前述のように、ベクトルAqの各成分は、プリ3カメラ座標系で求められたものであり、各成分を、次式のようにウエハ座標系の位置座標に変換しておく必要がある。
Figure 2006012907

ここで、Swqxは、ベクトルApのX成分であり、Swqyは、ベクトルApのY成分である。また、θAは上述のとおり、ウエハ座標系に対するプリ2LAカメラ座標系の回転成分である。したがって、主制御装置20は、このベクトルAqを、平行移動成分の位置ずれ量として不図示の記憶装置に記憶する。
次に、位置ずれの回転成分の推定を行う。本実施形態では、マーク検出系42によって、工具ウエハWSを搬入する際のプリ3計測工程におけるマーク50Mの回転量θCB、ウエハWを搬入する際のプリ3計測工程におけるマーク50Mの回転量θCB’が検出されている。そこで、これらマーク50Mの回転量から、ウエハWの中心位置の位置ずれの回転成分を推定する。
また、図19(B)には、位置qでのマーク50Mの回転θCBと位置q’でのマーク50Mの回転θCB’との差を示す回転量θqの一例が示されている。本実施形態では、位置q及び位置q’によって検出されるマーク50Mの回転量の差が、ロードスライダ50に保持された後のマーク50Mの回転ずれとなる。プリ3計測工程におけるマーク50Mの回転量は、工具ウエハWS又はウエハW等がロードスライダ50に保持された後のロードスライダ50の姿勢によって決定される。この場合、位置q’でのマーク50Mの向きと位置qでのマーク50Mの回転の差がθq(=θCB’−θCB)であるとすると、その結果修正すべきウエハの方向の回転ずれは、そのまま+θqとなる。すなわち、ウエハの中心の推定位置の修正回転量は、+θqとなる。
本実施形態では、この修正回転量+θqに基づいて、ウエハステージWST上のウエハWの位置ずれの回転成分を算出するように、マーク50MとウエハWとの距離をL(設計値)とし、ウエハ座標系のXW軸に対するマーク50Mに対する工具ウエハWSの中心の回転成分の設計値をθDとすると、回転成分を示すベクトルDt2は、次式のようになる。
Figure 2006012907

ここで、Dt2x,Dt2yは、ベクトルDt2のX成分及びY成分である。上記式(9)、式(10)より、最終的なウエハステージWST上のウエハWの位置ずれベクトルD2は、次式のようになる。
Figure 2006012907

ここで、D2x,D2yは、ベクトルD2のX成分及びY成分である。主制御装置20は、この位置ずれベクトルD2を不図示の記憶装置に格納する。なお、ここで、ウエハ座標系と、XY座標系との回転量αが無視できない場合には、この回転量αにより、このベクトルD2を回転させたベクトルを求め、これを記憶装置に格納するようにしても良い。
また、ロード後のウエハWの回転量θも、θ=(θC+θq−θp)という計算式で推定することができる。ここでは、この回転量θも算出して合わせて不図示の記憶装置に記憶する。なお、θCは、プリ2LA計測によって計測されたウエハWの回転成分である。
次のステップ823ではサーチアライメントを行う。ここでは、ウエハW上に形成されたサーチアライメントマークを、アライメント検出系ASの下方に位置させるように、ウエハステージWSTをXY平面内で移動させるが、このときのウエハステージWSTの移動先は、サーチアライメントマークの設計上の位置座標に、ウエハWの位置ずれベクトルD2(又はそのベクトルを回転量αだけ回転させたベクトル)と、ウエハ回転量θとで補正することによって得られる位置とする。そして、ここでは、アライメント検出系ASの撮像結果から算出されたサーチアライメントマークの実測位置情報と、設計上の位置情報との差から、ウエハステージWST上のウエハWの位置情報(位置ずれ量(ΔX4、ΔY4)、回転量θ4)が求められる。
図15に進み、ステップ825では、ウエハアライメントを行う。すなわち、サーチアライメントの結果(ΔX4,ΔY4,θ4)を考慮して、ウエハW上の複数のサンプルショット領域に付設されたアライメントマークの位置を不図示のアライメント検出系ASにより計測し、その計測結果に基づいて、統計処理方法により全てのショット領域の配列座標を算出する、いわゆるEGA演算を行う。これにより、ウエハW上の全てのショット領域のXY座標系上における配列座標が算出される。この処理については、例えば特開昭61−44429号公報などに開示されているので、詳細な説明を省略する。
次のステップ827では、ショット領域の配列番号を示すカウンタjに1をセットし、最初のショット領域を露光対象領域とする。
そして、ステップ829では、EGA演算にて算出された露光対象領域の配列座標に基づいて、不図示の照明系からの露光光ILによってレチクルRのパターン領域を照明し、露光を行う。これにより、レチクルRのパターンが投影光学系PLを介してウエハW上の露光対象領域に縮小転写される。
ステップ831では、カウンタ値jを参照し、全てのショット領域に露光が行われたか否かを判断する。ここでは、j=1、すなわち、最初のショット領域に対して露光が行なわれたのみであるので、ステップ831での判断は否定され、ステップ833に進む。
ステップ833では、カウンタjの値をインクリメント(j←j+1)して、次のショット領域を露光対象領域とし、ステップ829に戻る。以下、ステップ831での判断が肯定されるまで、ステップ829→ステップ831→ステップ833の処理、判断が繰り返される。
ウエハW上の全てのショット領域へのパターンの転写が終了すると、ステップ831での判断が肯定され、ステップ835に移行する。
ステップ835では、ウエハWのアンロードを行う。ウエハWは、アンロードスライダ62によりアンロードされ、アンロードロボット93によってFOUP27に戻されるか、不図示の搬送系により、インラインに接続されたC/Dに搬送される。ステップ835終了後は、サブルーチン102を終了し、図12のステップ104に進む。ステップ104では、ロット内のすべてのウエハWの露光が終了したか否かが判断される。この判断が否定されるとサブルーチン102に戻り、肯定されると処理を終了する。すなわち、ロット内のすべてのウエハの露光が終了するまでサブルーチン102が繰り返し実行され、すべてのウエハWの露光が完了すると露光動作を終了する。
本実施形態では、上記ステップ815においてウエハステージWSTを位置ずれ量D1によって推定された推定ロード位置に移動させてから、上記ステップ817においてプリ3計測工程を行い、その結果求められたウエハステージWST上のウエハWの位置ずれ量D2についてはサーチアライメントマークの設計位置座標を補正することによりその位置ずれを吸収するようにしたが、これには限られない。例えば、ウエハステージWSTを推定ロード位置に移動させる前に、プリ3計測工程を行い、位置ずれ量D1+D2を求め、その位置ずれ量によって推定された推定ロード位置に、ウエハステージWSTを移動させてウエハWをロードするようにしても良い。また、ウエハWのロード時のウエハステージWSTの位置を常に同一のロード位置(すなわち原点O)として、位置ずれ量D1+D2を考慮して、サーチアライメントマークの位置座標の補正を行うようにしても良い。ウエハステージWSTのロード位置の推定値を平行移動成分WAだけで推定ロード位置を決定し、回転成分Dt1については、回転成分Dt2と同様に、サーチアライメントマークの位置座標の補正に含まれるようにしても良い。このときには位置ずれ量の回転成分ベクトルは、図20に示されるベクトルDtLPとなる。このベクトルDtLPの算出式は次式のようになる。
Figure 2006012907

ここで、DtLPxはX成分であり、DtLPyはY成分である。このときのサーチアライメントマークの位置座標の補正ベクトルは、Aq+DtLPとすれば良い。
なお、本実施形態では、上記ステップ815やステップ821が第5工程に相当することとなる。
以上詳細に述べたように、本実施形態の露光装置によれば、ロードスライダ50がウエハWを保持したときには、第1検出系としてのプリアライメント装置45によって、ロードスライダ50上に形成されたマーク50MとウエハWとのそれぞれの位置情報を検出しておき、ロードスライダ50からウエハステージWSTにウエハWを受け渡すローディングポジション近傍では、第2検出系としてのマーク検出系42によって、マーク50Mの位置情報のみを検出する。すなわち、マーク50MとウエハWとの相対位置に関する情報を予め検出しておけば、ウエハWのローディングポジション近傍では、例えばウエハWの外縁などを計測してウエハWの位置情報を直接検出せずとも、ローディングポジション近傍に位置したときのそのマーク50Mの位置情報を検出するだけで、ウエハWの位置情報を推定することができるようになる。このようにすれば、ウエハWの外形等からそのウエハWの位置情報を検出する大掛かりな検出系をローディングポジション近傍に備える必要がなくなるので、ローディングポジションと露光位置との間隔を短くすることができるようになり、ウエハステージWSTの移動距離を短くすることができるため、スループットに有利となる。
また、本実施形態では、プリアライメント装置45では、マーク50Mの位置情報と、ウエハWの位置情報とを非同時に検出する。このようにすれば、マーク50Mの位置情報を撮像する撮像装置と、ウエハWの位置情報を撮像する撮像装置をCCDカメラ40a〜40cの3台に共通化し、共通化された分だけ、装置コスト及び発熱量を低減することができるので、安価かつ高精度な露光を実現することができる。
また、本実施形態では、上述したプリアライメント方法により、ウエハステージWSTのロード位置座標及びウエハW上のマーク、すなわちサーチアライメントマークの位置座標等の少なくとも一方を調整したが、これによれば、同一の座標系(プリ2LAカメラ座標系、プリ3カメラ座標系及びウエハ座標系(XY座標系))における位置情報の差分によってのみ、ウエハWの位置を推定するので、ウエハ座標系とプリ2TAカメラ座標系及びプリ3カメラ座標系との位置関係が一部未知であるか否かに関わらず、ウエハWのプリアライメントを実現することができる。このように、異なる座標系の下でそれぞれ検出されたロードスライダ50と、ロードスライダ50によって搬送されるウエハWについて、ロードスライダ50のマーク50Mの位置情報を検出するための座標系と、ウエハWの位置情報を検出するための座標系とにずれがある場合に、搬送終了後のウエハWの位置を推定する場合には、通常、各座標系の位置関係を完全に計測して求めたうえで、マーク50MとウエハWとの相対位置関係を計測する。しかしながら、上記実施形態では、工具ウエハWSを用い、ロードスライダ50により工具ウエハWSが搬送されている間に検出されたロードスライダ50のマーク50Mの位置情報pと、工具ウエハWSの位置情報Oと、搬送終了後でのロードスライダ50のマーク50Mの位置情報qを検出しておき、ロードスライダ50によりウエハWが搬送されている間に検出されたロードスライダ50のマーク50Mの位置情報p’と、ウエハWの位置情報Cとを別々に検出し、搬送終了後でのロードスライダの位置情報q’を検出しておけば、各座標系の位置関係を完全に把握することなく、搬送終了後のウエハWの位置を精度良く推定することができるのである。このようにすれば、ウエハ座標系におけるプリ2TAカメラ座標系及びプリ3カメラ座標系との位置関係を完全に求める必要がなくなるため、露光装置100の調整時間を短縮することが可能となる。
なお、上記実施形態では、工具ウエハWSを用いて、各カメラ座標系に関する較正を厳密に行わずに、ウエハWのプリアライメントを高精度に行う方法であったが、これに限らず、ウエハ座標系と各カメラ座標系との関係が既知であれば、マーク50MとウエハWとの相対位置関係を直接求めて、ウエハWのロード位置を推定するようにしても良いことは勿論である。なお、この場合にも、ウエハWの推定ロード位置やサーチアライメントマークの位置座標の補正量は、平行成分と回転成分とに分けてそれぞれ推定するのが望ましい。
なお、上記実施形態における計算式は、説明を簡略化するため、プリアライメント系における撮像結果がすべて正像であるものとして説明したが、上述したように、実際には、撮像結果が、鏡像であるものも含まれているので、その場合には、座標変換における回転行列の回転方向や位置座標の反転などを考慮する必要がある。
また、上記実施形態では、ロードスライダ50上に形成されたマーク50Mを図3(C)に示されるようなX軸方向及びY軸方向のL/Sパターンを有するマーク50Mとしたが、本発明では、これらマークの形状は限定されず、ボックスマークや、十字マークや、井桁マーク、田の字マークその他あらゆる形状の2次元位置検出用のマークを適用することができる。要は、撮像視野内に含まれるような2次元位置(回転含む)の検出用マークであれば良い。
また、このようなマークは1つだけでも良く、3つ以上あっても良い。また、形状及び大きさの少なくとも一方が互いに異なる複数のマークがロードスライダ50上の異なる位置にそれぞれ設けられていることとしても良い。この場合には、ロードスライダ50の搬送精度の再現性の幅に対してマーク検出系42,プリアライメント装置45の撮像視野が比較的狭いものであっても、それらがロードスライダ50上のいずれかのマークを検出する確率が向上するので、そのマークの検出結果からロードスライダ50の位置情報を精度良く検出することができる。例えば、各マークの縦横のアスペクト比を算出すれば、検出されたのがどのマークであるかを認識することができる。また、前述の十字マーク、井桁マーク、田の字マークを適宜異なる位置に形成するようにしても良い。また、複数のマークをマトリクス状に配置するようにしても良い。
また、上記実施形態では、マーク50Mをロードスライダ50の−X側端部近傍に配設したが、これに限らず、アーム部の略中央部に配設するようにしても良いし、+X側端部に配設するようにしても良い。
また、上記実施形態では、ウエハステージWST上のウエハWの残存回転量、すなわちサーチアライメントで検出された回転量θ4を、レチクルステージRSTの回転で補正したが、レチクルステージRSTのθzの回転範囲が小さくその回転量θ4を十分にキャンセルできない場合には、例えばセンタテーブルCTをθz方向に回転可能とし、センタテーブルCTのθzの回転、あるいはレチクルステージRSTとセンタテーブルCTの回転により、回転ずれ量θ4をキャンセルするようにしても良い。また、ウエハステージWSTそのものを回転させるようにしても良い。なお、センタテーブルCT、ウエハステージWST及びレチクルステージRSTの少なくとも1つを回転させる代わりに、あるいはこれと組み合わせて、ロード前にロードスライダ50を微小回転させても良い。
また、上記実施形態では、センタテーブルCTの上下動によってウエハのロード及びアンロードを行うものとしたが、例えばセンタテーブルCTは固定としてウエハステージWSTの一部(ウエハホルダなど)を上下動させても良い。さらに、上記実施形態では、センタテーブルCTが3本のピンを有するものとしても良い。また、上記実施形態ではウエハステージWSTにセンタテーブルCTを設けるものとしたが、必ずしもセンタテーブルCTを設けなくても良く、センタテーブルCTを用いないでウエハのロード及びアンロードを行う露光装置にも本発明を適用することができる。例えば特開平11−284052号公報などに開示されているように、ウエハホルダの2箇所を切り欠いてロードスライダ又はアンロードスライダが進入する空隙を設け、この空隙内でロードスライダ又はアンロードスライダを上下動させてウエハWのロード及びアンロードを行う方式を採用しても構わない。この露光装置では、ロードスライダ50、ウエハステージWST、及びレチクルステージRSTの少なくとも1つを回転させることでウエハWの回転ずれ量をキャンセルすれば良い。
また、上記実施形態では、ロードスライダ50をY軸方向のみに可動としたが、ロードスライダ50は、X軸方向、Z軸方向及びθz方向の位置を調整可能となっていても良い。この場合には、ウエハステージWSTの位置調整及びセンタテーブルCT等の回転等を行わなくても、ウエハの受け渡しに先立ってロードスライダ50をその基準位置からX軸及びY軸方向とθz方向にそれぞれ微動することで、前述のウエハWの位置ずれ量及び回転ずれ量をキャンセルするようにしても良い。ロードスライダ50で調整するかウエハステージWST等で調整するかは、それらの位置決め精度の優劣を考慮して選択すれば良い。
また、上記実施形態で説明したように、ロードスライダ上のマークは落射照明系及び透過照明系のどちらでも検出することができるが、ウエハの外形は、ウエハの裏面から照明を当てることによって検出するのが望ましい。上記実施形態では、マークとウエハの外形とを同時に撮像しないため、一方の照明系が、他方の撮像結果に悪影響を及ぼさないようにできるという効果も生ずる。
また、上記実施形態では、第1位置と第2位置との間にまたがる天板46としたが、両位置上方の天板を、独立して配設された複数の天板に代えても良い。
また、上記実施形態におけるロードスライダ50は、撮像装置VA〜VEの撮像領域を避けるような形状となっている必要があるが、画像処理精度が高く、ウエハの外形も落射照明によって精度良く検出可能であるときには、ロードスライダは、その撮像領域を避ける形状となっていなくても良い。また、ロードスライダの光に対する反射特性を、ウエハの反射特性と著しく異なるようにすれば、ロードスライダの指部が、プリアライメント装置45の撮像領域VA〜VEに収まるような形状となっていても良い。要は、ロードスライダ50の形状が上記実施形態に限定されるものでなく任意で構わない。搬送部材としては、その形状、構造は、上記実施形態のロードスライダ50には限定されず、例えば、ウエハを吊り下げながら搬送する形態のものであっても良い。
また、上記実施形態では、ノッチ付のウエハを処理する場合について説明したが、OF付のウエハを処理する場合にも本発明を適用することができることは言うまでもない。
また、上記実施形態では、ウエハのプリアライメントを行う際に、ウエハの外形を3箇所検出するとしたが、ウエハの位置ずれ量及び回転ずれ量が精度良く算出できるのであれば、ウエハの外形をある程度広い撮像範囲(ノッチ等を必ず含む範囲)で1箇所だけ検出するだけでも良いし、領域VA〜VEのすべてのエッジを検出するようにしても良い。この場合にも、ウエハの外形を撮像する撮像装置と、マーク50Mを撮像する撮像装置とを共通化することができる。
なお、この工具ウエハWSについても、図11(C)に示されるようなものから、適宜変更が可能である。例えば、第1基準マーク及び第2基準マークの他にウエハWの位置が大幅にずれたときの検出用マーク、いわゆる大ずれマークや、第1基準マークを検出するためのユニークなマーク等の補助的なパターンが設けられていても良い。第1基準マーク及び第2基準マークの形状も適宜変更が可能であり、例えばL/Sパターンの組合せであっても良い。また、工具ウエハがガラスウエハである必要はなく、プロセスのウエハと同様のウエハであっても良い。この場合、第1基準マーク及び第2基準マークはなくても良い。これらのマークがない場合には、後述するような較正処理におけるプリアライメント装置45のウエハ座標系に対する撮像視野VA〜VCにおける個々のカメラ座標系のオフセット成分、回転成分及び倍率成分等の計測は行えなくなるが、この計測は、本実施形態で述べる較正処理とは、別に行っても良い。この場合の計測は、図11に示されるような工具ウエハWSを用いて行っても良いことは勿論である。本実施形態では、工具ウエハWSとして、ロードされた後のウエハの中心位置が、例えばアライメント検出系ASなどによって測定可能であるものを用いれば良い。
また、上記実施形態では、ウエハのアンロード動作については、特に何も規定していない。アンローディングポジションについては、ローディングポジションと同じ位置であっても良いし、別の位置であっても良い。いずれにしても、アンロード時は、プリアライメントを行う必要がないので、搬出アームやウエハが投影光学系PLに干渉しない限り、アンローディングポジションを転写位置に近づけることができる。また、上記実施形態では、プリアライメント装置45がCCDカメラ40a〜40cを備えるものとしたが、ウエハの外形やロードスライダ50のマーク50Mの検出に用いるセンサは撮像装置に限られるものではなく、例えば光量センサなどを用いても良い。このことはマーク検出系42についても同様である。さらに、上記実施形態では、プリ1計測工程を行うものとしたが、例えばウエハの中心とターンテーブル51の回転中心とのずれ量を比較的小さくしてウエハをターンテーブル51に保持できるときは、プリ1計測工程を行わなくても良い。
また、上記実施形態では、照明装置をウエハWの下方に配置し、撮像装置をウエハWの上方に配置したが、これは逆であっても構わない。
また、上記実施形態では、露光装置100が1つのウエハステージを備えるものとしたが、例えば国際公開WO98/24115号やWO98/40791号などに開示されているような、2つのウエハステージを備える露光装置にも本発明を適用することができる。なお、ウエハがローディングされたウエハステージはローディングポジションから、前述の転写位置に先立ってアライメント位置に移動されることが多いので、アライメント検出系ASの配置をも考慮してローディングポジションを決定することが好ましい。
また、上記実施形態では、照明装置81B〜81F等が、天板46から支持された別々のL字状の部材に配設されているものとしたが、ターンテーブル51のY軸方向の軌道を挟むように天板46から支持されたY軸方向に延びる一対のL字状部材に照明装置81B〜81Fを配設するようにしても良い。
また、上記実施形態では、ラインセンサ83A,83B、プリアライメント装置52のCCDカメラ40a,40b,40c、マーク検出系42を別々に設置したが、天板46上に引き回し光学系を配設して、例えばCCDカメラ40a,40b,40cにラインセンサ83A,83Bと、マーク検出系42のCCDカメラなどを共通化するようにしても良い。
また、プリ1計測工程を必ず第1位置で行う必要はなく、第2位置において、ターンテーブル51を回転させ、CCDカメラ40a,40b,40cの少なくとも2つをラインセンサとして用いて、プリ1計測工程に相当する動作を行うようにしても良い。
また、上記実施形態は、ウエハWのアライメントに関するものであったが、レチクルRの位置合わせについても適用可能であることは勿論であり、ウエハホルダなど、露光装置の部品を自動で交換する際にも適用することが可能である。
上記実施形態の露光装置は、ステップ・アンド・スキャン方式、ステップ・アンド・リピート方式、ステップ・アンド・スティッチ方式のいずれかの縮小投影露光装置とすることができる。また、プロキシミティ方式などの露光装置、あるいはミラープロジェクション・アライナー、及びフォトリピータにも本発明を適用することができる。
また、本発明は、露光光源には限定されない。露光光ILを発する不図示の照明系の光源としては、KrFエキシマレーザ光源(発振波長248nm)などの遠紫外光、ArFエキシマレーザ光源(発振波長193nm)、あるいはF2レーザ光源(発振波長157nm)などの真空紫外光など発するものを用いることができる。また、紫外域の輝線(g線、i線等)を発生させる超高圧水銀ランプを用いることも可能である。さらには、Ar2レーザ光源(出力波長126nm)などの他の真空紫外光源を用いても良い。また、例えば、真空紫外光として上記各光源から出力されるレーザ光源に限らず、DFB(Distributed Feedback、分布帰還)半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(Er)(又はエルビウムとイッテルビウム(Yb)の両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を照明光として照射する光源を用いても良い。また、EUV光、X線、あるいは電子線及びイオンビームなどの荷電粒子線を露光ビームとして用いる露光装置に本発明を適用しても良い。さらに、例えば国際公開WO99/49504号などに開示される、投影光学系PLとウエハWとの間に液体が満たされる液浸型露光装置に本発明を適用しても良い。
また、上記実施形態では、本発明が半導体製造用の露光装置に適用された場合について説明したが、これに限らず、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、薄膜磁気ヘッド、撮像素子、マイクロマシン、有機EL、DNAチップなどを製造するための露光装置などにも本発明は広く適用できる。
なお、複数のレンズから構成される照明光学系、投影光学系を露光装置本体に組み込み、光学調整をするとともに、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより、上記実施形態の露光装置を製造することができる。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、螢石、フッ化マグネシウム、又は水晶などが用いられる。
さらに、露光装置以外の検査装置、加工装置などの装置であっても、搬送後の物体の位置決め精度が要求される装置であれば、本発明の搬送方法を好適に適用することができる。
《デバイス製造方法》
次に、上述した露光装置100をリソグラフィ工程で使用したデバイスの製造方法の実施形態について説明する。
図21には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートが示されている。図21に示されるように、まず、ステップ201(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ202(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ203(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップ204(ウエハ処理ステップ)において、ステップ201〜ステップ203で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップ205(デバイス組立てステップ)において、ステップ204で処理されたウエハを用いてデバイス組立てを行う。このステップ205には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。
最後に、ステップ206(検査ステップ)において、ステップ205で作成されたデバイスの動作確認テスト、耐久テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。
図22には、半導体デバイスにおける、上記ステップ204の詳細なフロー例が示されている。図22において、ステップ211(酸化ステップ)においてはウエハの表面を酸化させる。ステップ212(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ213(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ214(イオン打ち込みステップ)においてはウエハにイオンを打ち込む。以上のステップ211〜ステップ214それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ215(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ216(露光ステップ)において、上記実施形態の露光装置100を用いてマスクの回路パターンをウエハに転写する。次に、ステップ217(現像ステップ)においては露光されたウエハを現像し、ステップ218(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ219(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法を用いれば、露光工程(ステップ216)において上記実施形態の露光装置100及び露光方法が用いられるので、スループットを向上させることができ、高精度な露光を実現することができる。この結果、高集積度のデバイスの生産性(歩留まりを含む)を向上させることが可能になる。
以上説明したように、本発明の露光装置は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適しており、本発明に係る搬送方法は、物体が移動体上の所定の位置に保持されるようにその物体を搬送して移動体に受け渡すのに適しており、本発明の露光方法は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適しており、本発明のデバイス製造方法は、マイクロデバイスの生産に適している。
本発明の一実施形態に係る露光装置の縦断面図である。 本発明の一実施形態に係る露光装置の横断面図である。 図3(A)は、ロードスライダの構造を示す上面図であり、図3(B)は、ロードスライダの構造を示す斜視図であり、図3(C)はロードスライダ上のマークの一例を示す図である。 プリアライメント系の構成を示す斜視図である。 プリアライメント装置の光学系の構成を示す斜視図である。 制御系の構成を示すブロック図である。 各座標系の関係を示す図である。 図8(A)は、ウエハの搬送手順を概略的に示す図(その1)であり、図8(B)は、ウエハの搬送手順を概略的に示す図(その2)であり、図8(C)は、ウエハの搬送手順を概略的に示す図(その3)であり、図8(D)は、ウエハの搬送手順を概略的に示す図(その4)である。 図9(A)は、ウエハの搬送手順を概略的に示す図(その5)であり、図9(B)は、ウエハの搬送手順を概略的に示す図(その6)であり、図9(C)は、ウエハの搬送手順を概略的に示す図(その7)であり、図9(D)は、ウエハの搬送手順を概略的に示す図(その8)である。 図10(A)は、ウエハの搬送手順を概略的に示す図(その9)であり、図10(B)は、ウエハの搬送手順を概略的に示す図(その10)であり、図10(C)は、ウエハの搬送手順を概略的に示す図(その11)であり、図10(D)は、ウエハの搬送手順を概略的に示す図(その12)である。 較正用基準ウエハの一例を示す図である。 本発明の一実施形態の露光動作を示すフローチャートである。 図12のサブルーチン101を示すフローチャートである。 図12のサブルーチン102を示すフローチャート(その1)である。 図12のサブルーチン102を示すフローチャート(その2)である。 図16(A)は、プリアライメント時の工具ウエハの中心位置とロードスライダのマークの位置との関係を示す図であり、図16(B)は、ローディング時のロードスライダのマークの位置と、工具ウエハの中心位置との関係を示す図である。 図17(A)は、プリアライメント時のウエハの中心位置と、ロードスライダのマークの位置との関係を示す図であり、図17(B)は、ローディング時のロードスライダのマークの位置と、ウエハステージWSTのローディングポジションの推定位置との関係を示す図である。 図18(A)は、本発明の一実施形態のウエハステージの受け渡し位置の推定方法を模式的に示すベクトル図であり、図18(B)は、ウエハの位置ずれの平行成分を概略的に示す図である。 図19(A)は、プリアライメント時のロードスライダでのマークの回転量とローディング時のマークの回転量との差の一例を示す図であり、図19(B)は、マーク50Mの回転量とローディング時のマークの回転量との差の一例を示す図である。 ウエハの位置ずれの全体の回転成分を概略的に示す図である。 本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである。 図21のステップ204の詳細を示すフローチャートである。
符号の説明
20…主制御装置、42…撮像装置(第2検出系)、45…プリアライメント装置(第1検出系)、50…ロードスライダ(搬送部材)、50M…マーク、51…ターンテーブル、52…プリアライメントステージ、60…Y駆動機構、81A〜81G…照明装置、83A、83B…ラインセンサ、100…露光装置、PL…投影光学系、RST…レチクルステージ、W…ウエハ(物体)、WST…ウエハステージ(移動体)。

Claims (8)

  1. パターンを、投影光学系を介して物体上に転写する露光装置であって、
    前記物体を保持可能で、前記物体の受け渡し位置と前記投影光学系を介したパターンの転写位置との間を移動可能な移動体と;
    前記物体を保持して前記受け渡し位置近傍に搬送可能で、前記投影光学系の光軸方向に直交する2次元平面に略平行な面を有し、その面上に少なくとも1つのマークが形成されている搬送部材と;
    前記搬送部材によって前記物体が前記受け渡し位置近傍に搬送される前に、前記搬送部材に前記物体が保持されている所定状態で前記2次元平面内に関する前記マークの位置情報を検出し、その検出とは非同時に、前記所定状態での前記2次元平面内に関する前記物体の位置情報を検出する第1検出系と;
    前記第1検出系での検出がなされた後において、前記物体が前記移動体に受け渡される前の前記2次元平面内に関する前記マークの位置情報を検出する第2検出系と;
    前記第1検出系及び前記第2検出系の検出結果に基づいて、前記物体の受け渡し時の前記2次元平面内に関する前記移動体と前記搬送部材との相対位置と、前記移動体に保持された物体の位置情報との少なくとも一方を調整する調整装置と;を備える露光装置。
  2. 前記第1検出系は、撮像素子による検出対象の撮像結果により、検出対象の位置情報を検出する検出系であり、
    前記マークを撮像する撮像素子と、前記物体を撮像する撮像素子とが共通化されていることを特徴とする請求項1に記載の露光装置。
  3. 物体が移動体上の所定の位置に保持されるように前記物体を搬送して前記移動体に受け渡す搬送方法であって、
    所定の2次元平面の略平行な面を有し、その面上に少なくとも1つのマークが形成された搬送部材に前記物体を保持させる第1工程と;
    前記搬送部材によって前記物体が前記受け渡し位置近傍に搬送される前に、前記搬送部材に前記物体が保持されている所定状態で前記2次元平面内に関する前記マークの位置情報を検出し、その検出とは非同時に、前記所定状態での前記2次元平面内に関する前記物体の位置情報を検出する第2工程と;
    前記第2工程の後に、前記搬送部材により前記物体を前記移動体への受け渡し位置に搬送する第3工程と;
    前記第3工程の後に、前記物体が前記移動体に受け渡される前の前記2次元平面内における前記マークの位置情報を検出する第4工程と;
    前記第2工程及び前記第4工程の検出結果に基づいて、前記物体の受け渡し時の前記2次元平面内における前記移動体と前記搬送部材との相対位置と、前記移動体に保持された前記物体の位置情報との少なくとも一方を調整する第5工程と;を含む搬送方法。
  4. 前記第2工程では、
    撮像素子による検出対象の撮像結果により、検出対象の位置情報を検出するための検出系であって、前記マークを撮像する撮像素子と、前記物体を撮像する撮像素子とが共通化された検出系を用いて前記マーク及び前記物体の位置情報を検出することを特徴とする請求項3に記載の搬送方法。
  5. 前記第1工程に先立って、
    前記移動体に保持された位置を計測可能な基準物体を前記搬送部材に保持させる第6工程と;
    前記搬送部材に前記基準物体が保持されている所定状態で前記2次元平面内における前記マークの位置情報を検出し、その検出とは非同時に、前記所定状態での前記2次元平面内に関する前記基準物体の位置情報を検出する第7工程と;
    前記搬送部材により前記基準物体を前記移動体への受け渡し位置に搬送する第8工程と;
    前記基準物体が前記移動体に受け渡される前の前記2次元平面内における前記マークの位置情報を検出する第9工程と;
    前記移動体に保持された後の前記2次元平面内における前記基準物体の位置情報を検出する第10工程と;をさらに含み、
    前記第5工程では、
    前記第2工程及び前記第4工程の検出結果に加え、前記第7工程、前記第9工程、及び前記第10工程の検出結果を考慮しつつ、前記物体の受け渡し時の前記搬送部材と前記移動体との相対位置と、前記移動体に保持された前記物体の位置情報との少なくとも一方を調整することを特徴とする請求項3又は4に記載の搬送方法。
  6. 前記第5工程では、
    前記第2工程と前記第7工程との検出結果の差と、前記第4工程と前記第9工程との検出結果の差と、前記第10工程の検出結果とに基づいて、前記物体の受け渡し時の前記搬送部材と前記移動体との相対位置と、前記移動体に保持された前記物体の位置情報との少なくとも一方を調整することを特徴とする請求項5に記載の搬送方法。
  7. パターンを、投影光学系を介して物体上に転写する露光方法であって、
    請求項3〜6のいずれか一項に記載の搬送方法を用いて、前記物体の受け渡し位置と前記投影光学系を介したパターンの転写位置との間を移動可能な移動体に物体を受け渡す工程と;
    前記移動体に保持された物体に、前記パターンを転写する工程と;を含む露光方法。
  8. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程では、請求項7に記載の露光方法を用いるデバイス製造方法。
JP2004183886A 2004-06-22 2004-06-22 露光装置、搬送方法及び露光方法並びにデバイス製造方法 Pending JP2006012907A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183886A JP2006012907A (ja) 2004-06-22 2004-06-22 露光装置、搬送方法及び露光方法並びにデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183886A JP2006012907A (ja) 2004-06-22 2004-06-22 露光装置、搬送方法及び露光方法並びにデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2006012907A true JP2006012907A (ja) 2006-01-12

Family

ID=35779812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183886A Pending JP2006012907A (ja) 2004-06-22 2004-06-22 露光装置、搬送方法及び露光方法並びにデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2006012907A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294817A (ja) * 2006-04-27 2007-11-08 Sokudo:Kk 基板処理方法、基板処理システムおよび基板処理装置
JP2009168507A (ja) * 2008-01-11 2009-07-30 Nsk Ltd 透明基板のエッジ位置検出方法及びエッジ位置検出装置
JP2013110200A (ja) * 2011-11-18 2013-06-06 Tokyo Electron Ltd 基板搬送システム
JP2019032260A (ja) * 2017-08-09 2019-02-28 株式会社ディスコ ラインセンサの位置調整方法
CN116552141A (zh) * 2023-07-03 2023-08-08 新乡市慧联电子科技股份有限公司 钻针半成品检测打标一体机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294817A (ja) * 2006-04-27 2007-11-08 Sokudo:Kk 基板処理方法、基板処理システムおよび基板処理装置
JP2009168507A (ja) * 2008-01-11 2009-07-30 Nsk Ltd 透明基板のエッジ位置検出方法及びエッジ位置検出装置
JP2013110200A (ja) * 2011-11-18 2013-06-06 Tokyo Electron Ltd 基板搬送システム
JP2019032260A (ja) * 2017-08-09 2019-02-28 株式会社ディスコ ラインセンサの位置調整方法
CN116552141A (zh) * 2023-07-03 2023-08-08 新乡市慧联电子科技股份有限公司 钻针半成品检测打标一体机
CN116552141B (zh) * 2023-07-03 2023-09-19 新乡市慧联电子科技股份有限公司 钻针半成品检测打标一体机

Similar Documents

Publication Publication Date Title
US11435672B2 (en) Measurement device, lithography system and exposure apparatus, and control method, overlay measurement method and device manufacturing method
JP6855012B2 (ja) 計測装置、リソグラフィシステム、並びにデバイス製造方法
US11977339B2 (en) Substrate processing system and substrate processing method, and device manufacturing method
US11430684B2 (en) Measurement system, substrate processing system, and device manufacturing method
US11274919B2 (en) Measurement system, substrate processing system, and device manufacturing method
JP5273522B2 (ja) 露光装置及びデバイスの製造方法
US6885437B2 (en) Mask exchanging method and exposure apparatus
WO2007046430A1 (ja) 物体の搬出入方法及び搬出入装置、露光方法及び露光装置、並びにデバイス製造方法
JP2006071395A (ja) 較正方法及び位置合わせ方法
JP2007335613A (ja) 基板位置検出装置、基板搬送装置、露光装置、基板位置検出方法及びマイクロデバイスの製造方法
JP2005340315A (ja) 位置合わせ装置、露光装置、位置合わせ方法及び露光方法、並びにデバイス製造方法及び較正用(工具)レチクル
JP4228137B2 (ja) 露光装置及びデバイス製造方法
JPH11307425A (ja) マスクの受け渡し方法、及び該方法を使用する露光装置
JP2007005617A (ja) 進捗状況表示方法、表示プログラム、及び表示装置、並びにデバイス製造方法
JP2006012907A (ja) 露光装置、搬送方法及び露光方法並びにデバイス製造方法
JP4815847B2 (ja) 基板処理装置及び露光装置
JP2004221296A (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
JP2006073916A (ja) 位置調整方法、デバイス製造方法、位置調整装置及び露光装置
JP2005277117A (ja) 基板保持装置、露光方法及び装置、並びにデバイス製造方法
JP2003156322A (ja) 位置計測方法及び装置、位置決め方法、露光装置、並びにマイクロデバイスの製造方法
JP2006073915A (ja) マーク、搬送装置、露光装置、位置検出方法及び搬送方法並びにデバイス製造方法
JP4724954B2 (ja) 露光装置、デバイス製造システム
US12007702B2 (en) Measurement device, lithography system and exposure apparatus, and control method, overlay measurement method and device manufacturing method
JP2003197504A (ja) 露光方法及びデバイス製造方法
JP2006190794A (ja) 調整方法、露光方法及び露光装置