JP2006073916A - 位置調整方法、デバイス製造方法、位置調整装置及び露光装置 - Google Patents

位置調整方法、デバイス製造方法、位置調整装置及び露光装置 Download PDF

Info

Publication number
JP2006073916A
JP2006073916A JP2004258023A JP2004258023A JP2006073916A JP 2006073916 A JP2006073916 A JP 2006073916A JP 2004258023 A JP2004258023 A JP 2004258023A JP 2004258023 A JP2004258023 A JP 2004258023A JP 2006073916 A JP2006073916 A JP 2006073916A
Authority
JP
Japan
Prior art keywords
wafer
stage
alignment
mark
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258023A
Other languages
English (en)
Inventor
Taro Sugihara
太郎 杉原
Masabumi Mimura
正文 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004258023A priority Critical patent/JP2006073916A/ja
Publication of JP2006073916A publication Critical patent/JP2006073916A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】物体の位置を高精度に調整する位置調整方法を提供する。
【解決手段】ステップ103〜ステップ117において、ウエハステージWSTに対するウエハWの位置合わせを行う。次のステップ119では、ウエハWをウエハステージWSTにロードし、ウエハステージWSTでは、サーチアライメントを行って、ウエハステージWSTに対するウエハWの残留回転量を算出する。ステップ125では、残留回転量が許容範囲内か否か判断し、許容範囲外であれば、ステップ127においてウエハを回収し、ステップ125での判断が肯定されるまで、ステップ103〜ステップ125を繰り返す。この際、ウエハWの回転を調整する場合には、サーチアライメントで検出されたウエハWの回転を考慮する。
【選択図】図10

Description

本発明は、位置調整方法、デバイス製造方法、位置調整装置及び露光装置に係り、特に、物体の位置を調整する位置調整方法、該位置調整方法を用いたデバイス製造方法、物体の位置を調整する位置調整装置及び該位置調整装置を備える露光装置に関する。
半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターンを、投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、「ウエハ」と総称する)上に転写する露光装置、例えばステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、このステッパに改良を加えたステップ・アンド・スキャン方式の走査型投影露光装置(いわゆるスキャニング・ステッパ)等の逐次移動型の投影露光装置が主として用いられている。
このような露光装置においては、ウエハ上に既に形成されているショット領域と、次に転写形成するショット領域との相対位置を最適化すべく、ウエハアライメントが行われており、そのウエハアライメントに先立って、ウエハ上にすでに形成されたウエハアライメント用のマークが、その検出系の捕捉範囲内(検出視野)に入るように、ウエハの位置及び回転を調整するいわゆるプリアライメントが行われている。
そして、このプリアライメントにおいて位置及び回転が調整されたウエハが、ステージ上に載置され、そのウエハに対してサーチアライメントやウエハアライメントが行われ、このウエハアライメントの結果に基づいて、ステージが投影光学系を介した転写位置(即ち、ウエハの露光位置)に移動し、露光が行われる。
このプリアライメントにおいては、光源から発せられる照明光によってウエハを裏面(ショット領域が形成されていない面)から照明し、CCDカメラ等の撮像素子を有する検出光学系によりウエハの外形を例えば3箇所(そのうち1箇所は、ノッチ又はオリエンテーションフラット(以下、「ノッチ」と略述する)が含まれるようにする必要がある)検出し、その検出結果からノッチが所定の方向に対してどれだけ回転しているかを検出することにより、ウエハの回転等に関する情報を算出している(例えば、特許文献1参照)。
しかしながら、ウエハ上に既に形成されているショット領域の配列が、ノッチに対してウエハ面内で傾斜した状態で転写形成されていると、プリアライメントによってノッチの方向に基づいてウエハの回転を調整しても、ウエハ上に実際に形成されているショット領域の配列と、転写形成するショット領域の配列とがずれてしまい、最適な重ね合わせ露光をすることが必ずしもできなくなるという不都合があった。
特開平7−288276号公報
上記事情の下になされた本発明は、第1の観点からすると、ステージ(WST)に対する物体(W)の位置合わせを行う第1工程と;前記第1工程を行った後に、前記物体を前記ステージに載置する第2工程と;前記第2工程を行った後に、前記ステージ上に置かれた前記物体の位置情報を検出する第3工程と;前記第3工程を行った後に、前記検出結果と許容範囲とを比較する第4工程と;前記検出結果が前記許容範囲内となるまで、前記物体を前記ステージから取り出して、前記検出結果を考慮しつつ、前記第1工程と、前記第2工程と、前記第3工程と、前記第4工程とを少なくとも1回繰り返す第5工程と;を含む位置調整方法である。
これによれば、ステージ上に置かれた物体の位置情報の検出結果が許容範囲でなく、ステージから取り出して物体の位置を調整して置きなおす際には、そのステージ上に置かれたときの物体の位置情報の検出結果を考慮して、物体の位置を調整する。このようにすれば、ステージに対する物体の位置合わせ結果と、ステージに載置された物体の位置情報とのずれを考慮して、ステージに対する物体の位置合わせを行うことができるので、ステージ上の物体の位置を高精度に調整することができる。
本発明は、第2の観点からすると、物体(W)をステージ(WST)上に載置する前に、そのステージに対する前記物体の位置合わせを行う際には、過去にその位置合わせを行った後に検出された、前記ステージ上に載置された複数の物体の位置情報から推定される補正値に基づいて、位置合わせを行う工程を含む位置調整方法である。
これによれば、ステージに対する物体の位置合わせを行う際には、過去にステージ上に載置された複数の物体の位置情報から推定される補正値に基づいて、ステージに対する物体の位置合わせ結果と、ステージに載置された物体の位置情報とのずれを考慮しつつ位置合わせを行うことができるので、ステージ上の物体の位置を高精度に調整することができる。
本発明は、第3の観点からすると、デバイスを製造するデバイス製造方法であって、本発明の位置調整方法を用いて、物体(W)の位置調整を行ってステージに前記物体を受け渡す工程と;前記ステージ上に保持された物体に、デバイスパターンを転写する工程と;を含むデバイス製造方法である。かかる場合には、本発明の位置調整方法を用いて物体がステージ上に受け渡されるので、ステージ上の物体の位置を高精度に調整することができるため、その物体に対する高精度な露光を実現することができ、高集積度のデバイスの生産性を向上させることができる。
本発明は、第4の観点からすると、物体(W)を保持するステージ(WST)と;前記ステージに前記物体を搬送する搬送系と;前記搬送系により前記ステージに前記物体を搬送する前に、前記ステージに対する前記物体の位置合わせを行う位置合わせ装置(45,51,52等)と;前記ステージ上の前記物体の位置情報を検出する検出系(AS)と;前記検出系の検出結果が許容範囲内となるまで、前記物体を前記ステージから取り出して、前記検出結果を考慮しつつ、前記位置合わせ装置による位置合わせと、前記搬送系による搬送と、前記検出系による検出とを少なくとも1回繰り返し行わせ、前記ステージに前記物体を置き直すように制御する制御装置(20)と;を備える位置調整装置である。
これによれば、ステージ上に置かれた物体の位置情報の検出結果が許容範囲でなく、ステージから取り出して物体の位置を調整して置きなおす際には、そのステージ上に置かれたときの物体の位置情報の検出結果を考慮して、物体の位置を調整する。このようにすれば、ステージに対する物体の位置合わせ結果と、ステージに載置された物体の位置情報とのずれを考慮して、ステージに対する物体の位置合わせを行うことができるので、ステージ上の物体の位置を高精度に調整することができる。
本発明は、第5の観点からすると、パターンを、物体上に転写する露光装置(100)であって、本発明の位置調整装置と;前記位置調整装置により位置が調整された前記物体に、前記パターンを転写する転写装置(20)と;を備える露光装置である。かかる場合には、本発明の位置調整装置を用いて物体の位置を高精度に調整することができるため、その物体に対し高精度な露光を実現することができる。
以下、本発明の一実施形態について、図1〜図16(B)に基づいて説明する。
図1には、本発明の一実施形態に係る露光装置100の一部(特に露光装置本体)の縦断面図が概略的に示されている。この露光装置100は、クリーンルーム内に設置された本体チャンバ14と、図1における該本体チャンバ14の紙面左側に隣接するように設置された搬送チャンバ15とを備えている。本体チャンバ14及び搬送チャンバ15は、互いの開口14A,15Aを介して内部空間が連結されている。
本体チャンバ14内には、露光装置本体の大部分が収納されている。露光装置本体は、不図示の照明系の少なくとも一部、マスクとしてのレチクルRを保持するレチクルステージRST、投影光学系PL、物体としてのウエハWを保持可能なウエハステージWST、アライメント検出系AS及びこれらの制御系としての主制御装置20等を含んで構成されている。主制御装置20は本体チャンバ14及び搬送チャンバ15の外部に配置されている。
露光装置本体は、前記投影光学系PLを中心に構成されている。そこで、以下では、図1における紙面内上下方向、すなわち投影光学系PLの光軸AXの方向をZ軸方向(紙面下側を正とする)とし、図1における紙面内左右方向をY軸方向(紙面左側を正とする)とし、図1における紙面直交方向をX軸方向(紙面手前側を正とする)として説明を行う。
投影光学系PLの−Z側(上方)に位置するレチクルステージRSTは、レチクルRを、例えば真空吸着又は静電吸着等により吸着保持する。レチクルステージRSTは、そのXY平面内の位置情報が不図示の干渉計等により検出されており、検出された位置情報に基づいて、主制御装置20の指示の下、例えば不図示のリニアモータ等によって、照明系の光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面(Z軸回りの回転を含む)内で少なくとも微小駆動可能に構成されている。レチクルRに描かれた回路パターンが、不図示の照明系からの露光光ILにより照明されると、その回路パターン上に、ほぼ均一な照度の照明領域が形成される。
投影光学系PLは、レチクルステージRSTの図1における下方に配置されている。投影光学系PLとしては、例えば両側テレセントリックで所定の縮小倍率(例えば1/4又は1/5)を有する屈折光学系が使用されている。このため、露光光ILによってレチクルRの照明領域が形成されると、このレチクルRを通過した露光光ILにより、投影光学系PLを介してその照明領域内のレチクルRの回路パターンの縮小像(倒立像)が、投影光学系PLの下方(+Z側)に配置されたウエハステージWSTに吸着保持されたウエハW上のその照明領域と共役な露光領域に形成される。
ウエハステージWSTは、リニアモータ、ボイスコイルモータ(VCM)等を含む不図示のウエハステージ駆動部により、ウエハベース17上をXY平面内(Z軸回りの回転方向θz方向を含む)及びZ軸方向に移動可能であり、XY平面に対する傾斜方向(X軸回りの回転方向(θx方向)及びY軸回りの回転方向(θy方向))にも微小駆動可能となっている。また、ウエハステージWSTのXY平面内での位置(Z軸回りの回転(θz回転)を含む)は、複数の測長軸を有するウエハレーザ干渉計(以下、「ウエハ干渉計」と略述する)18によって、例えば0.5〜1nm程度の分解能で常時検出されている。ウエハ干渉計18によって検出されたウエハステージWSTの位置情報(又は速度情報)は主制御装置20に供給されている。主制御装置20は、ウエハステージWSTの位置情報(又は速度情報)に基づいて、不図示のウエハステージ駆動部を介してウエハステージWSTの位置(又は速度)を制御する。この制御により、ウエハステージWSTは、図1に示されるように、実線で示される投影光学系PL直下の露光位置(投影光学系PLを介したパターンの転写位置)から、2点鎖線(仮想線)で示されるウエハWの受け渡し位置、すなわちローディングポジションまで少なくとも移動可能となっている。
図1に示されるように、ウエハステージWSTの中央部近傍には、点線で示されるセンタテーブルCTが配設されている。ウエハステージWSTに対しウエハWをロードする際、又はウエハWをアンロードする際には、不図示の駆動機構により駆動されることで、このセンタテーブルCTがウエハWの中央部を下方から吸着保持した状態で上下動する。なお、センタテーブルCTは、その先端に形成された、真空吸着あるいは静電吸着による円板状の吸着部によってウエハWを吸着保持するものとする。このセンタテーブルCTの駆動も、主制御装置20の指示の下で行われる。
投影光学系PLの+Y側側面近傍には、オフアクシス方式のアライメント検出系ASが設けられている。このアライメント検出系ASとしては、例えばディジタル画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。このアライメント検出系ASの撮像結果は、主制御装置20に出力されている。
主制御装置20は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。また、主制御装置20には、例えばキーボード,マウス等のポインティングデバイス等を含んで構成される入力装置及びCRTディスプレイ(又は液晶ディスプレイ)等の表示装置、ハードディスクから成る記憶装置が、外付けで接続されている。これらの入力装置、表示装置、記憶装置はいずれも不図示としている。
上記構成要素から成る露光装置本体を有する露光装置100は、ウエハWをウエハステージWSTに搬送する搬送系と、その搬送系により搬送されるウエハWの位置合わせ、すなわちプリアライメントを行うプリアライメント系とをさらに備えている。露光装置100においては、本体チャンバ14内に、ウエハWの搬送系の一部であるロードスライダ50と、プリアライメント系の一部であるマーク検出系42とが設けられている。
ロードスライダ50は、真空吸着又は静電吸着等によりウエハWを保持可能である。ロードスライダ50は、ウエハWを保持したまま、後述する搬送機構により、本体チャンバ14と搬送チャンバ15との間を、開口14A,15Aを通過して、Y軸方向に移動可能に構成されている。搬送チャンバ15内でウエハWを受け取ったロードスライダ50は、−Y方向に移動して、図1に示されるように、本体チャンバ14内のウエハステージWSTのローディングポジション上方に移動する。そして、ロードスライダ50と、ローディングポジションに位置するウエハステージWSTに設けられたセンタテーブルCTとの協調動作により、ウエハステージWSTへのウエハWのロードが実現される。
また、ロードスライダ50には、光をZ軸方向に透過させる光透過部(図1では不図示)が設けられている。その光透過部の−Z側の表面上には、XY平面内の2次元位置(回転含む)検出用のマークとしてのマーク50Mが形成されている。ロードスライダ50及びマーク50Mの詳細については後述する。
このマーク検出系42は、ロードスライダ50がローディングポジション上方に位置するときのそのロードスライダ50上のマーク50Mの位置に対向する位置(すなわちマーク50Mの上方)に配置されている。マーク検出系42は、マーク50Mを含むXY平面内の領域を撮像するために、その領域を照明する光源と、2次元CCDカメラ等とを備えている。マーク検出系42では、その光源からの照明光に対する反射光を2次元CCDカメラ等で受光し、いわゆる落射照明式でマーク50Mを撮像する。マーク検出系42は、投影光学系PL等の露光装置本体を支持する不図示の構造体に固定されているので、投影光学系PL等との位置関係は一定であり、その撮像視野の原点のXY平面内の位置は、常に一定である。したがって、XY座標系とカメラの撮像視野によって規定される座標系、すなわちカメラ座標系とは常に一定の関係にある。マーク検出系42によるマーク50Mの撮像結果(ディジタル2次元画像データ)は、主制御装置20に送られる。
図2には、プリアライメント系を含むウエハWの搬送系を中心とした露光装置100の一部の横断面図が概略的に示されている。ウエハWの搬送系は、フロントオープニングユニファイドポッド(Front Opening Unified Pod:以下、「FOUP」と略述する)27からウエハWを取り出すロードロボット92と、該ロードロボット92からロードスライダ50へのウエハWの受け渡しの中継を行い、その中継の間にウエハWに対するプリアライメントを行うプリアライメントステージ52と、該プリアライメントステージ52上に搭載されたターンテーブル51と、前述のロードスライダ50と、該ロードスライダ50をY軸方向に駆動するY駆動機構60と、露光済みのウエハをウエハステージWSTからアンロードするためのアンロードスライダ62と、該アンロードスライダ62からウエハWを受け取るアンロードロボット93とを含んで構成されている。
FOUP27は、例えば特開平8−279546号公報に開示された搬送コンテナと同様のものであり、一方の面のみにウエハWを出し入れ可能な開口部が設けられ、該開口部に開閉可能な扉(蓋)が取り付けられた開閉型のコンテナ(密閉型のウエハカセット)である。このFOUP27の中には、ウエハWが複数枚上下方向に所定間隔を隔てて収納されている。このFOUP27は、不図示のFOUP搬送装置により、図2に示される位置にセッティングされる。このセッティングにより、搬送チャンバ15に配設されたFOUP27用の開口15Bが上記FOUP27の開口部と連結される。そして、その開口部の扉が開かれた状態では、該開口部及び開口15Bを介してFOUP27内部のウエハWを搬送チャンバ15内に搬入可能となっている。
前記ロードロボット92は、そのアームの先端にウエハWを吸着保持して搬送可能な、水平多関節ロボットであり、主に、FOUP27からプリアライメントステージ52へのウエハWの搬送、アンロードロボット93からの露光済みのウエハの回収を行う。ロードロボット92の姿勢制御は、主制御装置20の指示の下、ロードロボット92の関節等に組み込まれた不図示の回転モータ等の駆動により行われる。
前記プリアライメントステージ52は、XY平面内を移動可能なステージである。このプリアライメントステージ52は、Y軸方向に関し、ロードスライダ50へのウエハWの受け渡しが可能な位置と、ロードロボット92によるウエハWの受け渡しが可能な位置との間の移動が少なくとも可能となるように構成されている。プリアライメントステージ52の制御は、主制御装置20の指示の下、図2に示されるリニアモータ等の駆動機構の駆動により行われる。図2では、ロードスライダ50へのウエハWの受け渡しが可能な位置にあるプリアライメントステージ52が示されている。
前記ターンテーブル51は、このプリアライメントステージ52の−Z側の表面上略中央部に配設されており、上下動可能で、かつウエハWを保持してZ軸に平行な回転軸を中心に自転可能なテーブルである。このターンテーブル51の−Z側の端面には、真空吸着あるいは静電吸着等により、ウエハWを吸着保持するための円板状のウエハ吸着保持面が設けられており、ターンテーブル51の自転により、この吸着保持面に吸着保持されたウエハWを回転させることが可能である。この回転は、主制御装置20の指示の下、不図示の駆動機構の駆動により行われる。
なお、プリアライメントステージ52のXY位置、ターンテーブル51の回転位置及びウエハ吸着保持面(ウエハ)の高さなどに関する情報は、不図示の位置検出センサによって検出され、主制御装置20に送られている。主制御装置20は、その情報に基づいて、プリアライメントステージ52のXY位置、ターンテーブル51の位置(回転位置、Z位置)を制御する。
ロードスライダ50は、図2に示されるように、搬送チャンバ15の開口15A及び本体チャンバ14の開口14Aを通り、搬送チャンバ15側から本体チャンバ14側にまたがってY軸方向に延びるY駆動機構60に接続されている。ロードスライダ50は、主制御装置20の指示の下、Y駆動機構60の駆動により、搬送チャンバ15と本体チャンバ14との間をY軸方向に移動(スライド)可能であり、搬送チャンバ15内に移動してターンテーブル51上に保持されたウエハWを受け取り、−Y側に移動して、ローディングポジション上方にウエハWを搬送する。図2においては、ローディングポジション上方、すなわちマーク検出系42によりマーク50Mを検出可能な位置にロードスライダ50が位置している様子が示されている。
図3(A)には、ロードスライダ50の上面図が示されている。図3(A)に示されるように、ロードスライダ50では、X軸方向に延びるアーム部の−X側端部近傍に、光透過部50Aが形成されており、その光透過部50Aの−Z側表面の略中央部に、マーク50Mが形成されている。さらに、ロードスライダ50では、載置する物体を吸着保持するための吸着機構がそれぞれ設けられた一対の指部が設けられている。この一対の指部は、アーム部の一端と他端に連結されており、安定した状態でウエハWを搬送することができるように、−Z側から見て互いにウエハWの中心を挟んだ状態でウエハWを吸着保持することができるように構成されている。ロードスライダ50では、ターンテーブル51や、センタテーブルCTとのウエハWの受け渡しを行う必要があるため、この一対の指部の間隔は、ターンテーブル51やセンタテーブルCTの円板状の吸着保持面の直径よりも大きくなるように設定されている。
また、後述するように、プリアライメント系では、ウエハWの中心位置及び回転量を算出すべく、ウエハWの少なくとも3箇所のエッジ位置を検出するために、ロードスライダ50上に保持されたウエハWの外縁の一部を、−Z側から撮像する。図3(A)では、後述するプリアライメント装置によって撮像対象となるウエハWの5つのエッジを含む領域が、それぞれ領域VA〜VEとして示されている。すなわち、ウエハWの中心に対して、+Y方向を6時方向とし、+X方向を3時方向とすると、6時(領域VA)、7時半(領域VB)、4時半(領域VC)、3時(領域VD)、1時半(領域VE)の方向のウエハWのエッジを含む領域が撮像対象の領域となる。この撮像は、いわゆる透過照明で行われるため、ロードスライダ50の一対の指部は、それぞれ透過照明領域(領域VA〜VE)を、避けるように配設されている。
なお、このように撮像対象となる領域は、上述したように計5箇所であるが、実際には、ウエハWのノッチが6時方向である場合には、6時、7時半、4時半の3つの領域VA,VB,VCが撮像され、ウエハWのノッチが3時方向である場合には、3時、4時半、1時半の3つの領域VD,VC,VEが撮像されるようになる。すなわち、同一のウエハに対して、5箇所の領域がすべて撮像されることはない。以下では、この領域VA〜VEを、撮像領域VA〜VEとも呼ぶものとする。
図3(B)の斜視図に示されるように、ロードスライダ50におけるアーム部と各指部との間の連結部は、Z軸方向にある程度の幅を有しており、アーム部と各指部との高さが異なるように設計されている。このアーム部と指部とのZ軸方向の間隔は、ウエハWの厚みよりも十分に広くなるように規定され、アーム部と各指部とを連結する連結部同士のX軸方向の間隔は、ウエハWの直径よりも十分に広くなるように規定されている。したがって、ロードスライダ50を、Y軸方向から見れば、アーム部と各指部とそれらの連結部とでウエハWを囲むような空間が形成されているように見える。したがって、ロードスライダ50は、Y駆動機構60による駆動により、例えばターンテーブル51上に保持されたウエハWに干渉することなくY軸方向に移動することができるようになっている。
図3(C)には、マーク50M周辺の拡大図が示されている。図3(C)に示されるように、マーク50Mは、X軸方向を配列方向とするライン・アンド・スペース(L/S)パターン(Xパターン)と、Y軸方向を配列方向とするL/Sパターン(Yパターン)とを含んでいる。このうち、Xパターンは互いにYパターンを挟むように2つ配置されているが、2つのYパターンがXパターンを挟むように配置されていても良い。各L/Sパターンにおけるライン部はクロム部(遮光部)となっており、光を透過させるスペース部とは、マーク50Mを撮像したときの撮像結果(グレイ画像)における輝度が異なるようになる。そこで、マーク50Mを撮像し、その撮像結果における、Xパターンに対応する部分の輝度分布に関するいわゆる鏡映対称性(反転対称性)が最大となる位置をXパターンのX位置とし、Yパターンに対応する部分の輝度分布に関する鏡映対称性(反転対称性)が最大となる位置をYパターンのY位置として検出することができる。
マーク50Mでは、Xパターン及びYパターンの少なくとも一方は、ある程度の距離を置いて少なくとも2つ形成されているため、マーク50MのZ軸回りの回転によって、2つのXパターン(またはYパターン)によって検出される位置が異なったものとなる。したがって、この2つのXパターンの位置の中間の位置をマーク50Mの位置として検出することができ、2つのパターンの位置の差とその2つのパターンの間隔とに基づいて、マーク50MのZ軸回りの回転量(すなわちロードスライダ50のZ軸回りの回転量)も検出することができるようになる。なお、マーク50Mでは、各L/Sパターンのライン部が光透過部で、スペース部がクロム部となっていても良い。
図2に戻り、前記アンロードスライダ62は、ロードスライダ50の下方(+Z側)を、Y軸方向に移動(スライド)可能に構成されている。このアンロードスライダ62は、露光が終了したウエハWをウエハステージWSTからアンロードする際に、ウエハWを保持して上昇したセンタテーブルCTからウエハWを真空吸着等による吸着により受け取って、+Y側に移動し、ウエハWの受け渡し位置に移動する。このアンロードスライダ62の駆動も、主制御装置20の指示の下、不図示の駆動機構の駆動により行われる。
前記アンロードロボット93は、その受け渡し位置で、アンロードスライダ62からウエハWを受け取り、例えばロードロボット92にウエハWを受け渡す水平多関節ロボットである。このアンロードロボット93の姿勢制御も、主制御装置20の指示の下、アンロードロボット93の関節等に組み込まれた不図示の回転モータ等の駆動により行われる。
すなわち、本実施形態では、ロードロボット92、ロードスライダ50、プリアライメントステージ52(ターンテーブル51を含む)、Y駆動機構60、アンロードスライダ62、アンロードロボット93などにより、ウエハWの搬送系が構成されている。
図4には、プリアライメント系の構成を概略的に示す斜視図が示されている。図4では、ロードロボット92とのウエハWの受け渡し位置(これを「第1位置」とする)にあるプリアライメントステージ52が2点鎖線(仮想線)で示され、ロードスライダ50とのウエハWの受け渡し位置(これを「第2位置」とする)にあるプリアライメントステージ52が実線で示されている。
このプリアライメント系は、照明装置81A〜81G1,81G2と、ラインセンサ83A,83Bと、プリアライメント装置45とを備えている。これらは、第1位置及び第2位置を中心にして配置された不図示の架台の天板上に、あるいはその天板から吊り下げられた状態で、プリアライメントステージ52や、ロードスライダ50の移動と干渉することがないように、支持されているものとする。ただし、照明装置81Aについては、天板ではなく、プリアライメントステージ52上に形成されているものとする。
前記照明装置81G1,81G2は、プリアライメントステージ52が第1位置にあるときに、ターンテーブル51上に保持されたウエハWの外縁の一部を+Z側から照明するように配置されている。前記ラインセンサ83A,83Bはそれぞれ、この照明装置81G1,81G2からの各照明光を、ウエハWの上方で受光する。これにより、第1位置にあるプリアライメントステージ52のターンテーブル51上に保持されたウエハWのエッジを、各ラインセンサ83A,83Bで検出することが可能となる。その検出結果は、主制御装置20に送られる。
前記照明装置81A〜81Eは、プリアライメントステージ52が第2位置にあるときに、例えば、ターンテーブル51(又はロードスライダ50)に保持されたウエハWにおける図3(A)に示される撮像領域VA〜VEに対応する外縁を+Z側からそれぞれ照明する。なお、この照明装置81Aの配設位置は、プリアライメントステージ52上に限られるものではなく、例えば、図2に示される配設位置に退避/進入可能に不図示の天板に回転可能に吊り下げ支持されたL字状部材の端部に配設されるようにしても良い。このようにすれば、プリアライメントステージ52が、第1位置と第2位置との間を移動する際には、その部材を回転させて照明装置81Aを退避させておき、プリアライメントステージ52が第2位置に移動した後で、照明装置81Aを+Z側から領域VAを照明可能な位置に進入させれば、照明装置81AによりウエハWを照明することができる。
上記Y駆動機構60は、第2位置よりも+Y側に延びており、ロードスライダ50は、プリアライメントステージ52が第2位置にあるときに、その位置(点線で示される位置)まで+Y側にスライドしてターンテーブル51上に保持されたウエハWを受け取ることが可能となっている。図4では、前述のように、第2位置上方に進入したロードスライダ50が2点鎖線(仮想線)で示されている。ロードスライダ50は、この位置で、ターンテーブル51よりウエハWを受け取る。
前記照明装置81Fは、ロードスライダ50が、ウエハWを受け取った後、ロードスライダ50上のマーク50M付近を+Z側から照明する。マーク50M近傍は前述のように光透過部50Aとなっているため、照明装置81Fからの照明光は、ロードスライダ50を透過し、プリアライメント装置45に至る。なお、プリアライメント装置45には、照明装置81A〜81Fからの照明光を透過させる光透過部45A〜45Fが設けられており、各照明光を内部に取り入れることができるようになっている。
プリアライメント装置45は、照明装置81A〜81Fからの照明光を受光することにより、ウエハWのエッジ部(領域VA〜VE)やマーク50Mの近傍(この撮像領域を領域VFと呼ぶこととする)などを撮像する。その撮像結果は主制御装置20に送られる。このように、照明装置81A〜81EによってウエハWを+Z側から照明し、プリアライメント装置45によって−Z側から撮像領域VA〜VEを撮像すれば、その撮像結果において、ウエハWに相当する部分は暗部として、ウエハWでない部分は明部として撮像されるようになる。このようにすれば、その撮像結果からコントラストを際立たせた状態でウエハWの外形を精度良く認識することができるようになる。なお、プリアライメント装置45内に撮像領域VA〜VFを照明する光源を設け、その光源から発せられた照明光を−Z側に反射させるプリズムを、照明装置81A〜81Fの代わりに配設し、そのプリズムからの反射光によってウエハW及びマーク50Mを下方から照明するようにしても良い。プリアライメント装置45内部の光学系の構成は、領域VA〜VFの撮像が可能であれば、その光学系の設計に制限はない。
図5には、本実施形態におけるウエハの搬送系及びプリアライメント系に関連する制御系のブロック図が示されている。図5に示されるように、ウエハの搬送系及びプリアライメント系の制御系は、主制御装置20を中心に構成されており、主制御装置20より紙面左側に検出(撮像)に用いられる構成要素が示され、紙面右側には搬送動作やプリアライメントの結果によるウエハWの調整動作に用いられる構成要素が配置されている。各構成要素の機能(構成及び個々の動作)はすでに説明したとおりである。なお、図5においては、ラインセンサ83A,83Bがラインセンサ83としてまとめられており、照明装置81A〜81G1,81G2が照明装置81としてまとめられている。
このように構成されたプリアライメント系では、プリアライメント装置45及びマーク検出系42の撮像結果から、ウエハWのエッジやマーク50Mの位置情報を検出する必要がある。しかしながら、プリアライメント装置45の個々の撮像視野や、マーク検出系42の撮像視野によって規定される座標系は、XY座標系と完全に一致するわけではなく、それぞれの取り付け具合によって若干のずれが生じる。図6には、本実施形態におけるプリアライメントに関連する各種座標系が示されている。プリアライメントにおいては、まず、ウエハWの位置合わせを行うための基準となる座標系を規定する必要がある。プリアライメントは、ウエハステージWSTのウエハWの位置合わせをウエハWのエッジの撮像結果に基づいて行うので、この基準の座標系は、プリアライメント装置45の撮像視野に基づいて決定される。すなわち、例えば、ウエハWのノッチが6時方向である場合には、領域VA,VB,VCに対応する撮像視野の位置関係によって規定される座標系をプリアライメントの基準座標系とし、ウエハWのノッチが3時方向である場合には、領域VC,VD,VEに対応する撮像視野の位置関係によって規定される座標系をプリアライメントの基準座標系とする。以下では、この基準座標系をウエハ座標系と呼ぶこととする。なお、XY座標系に対するウエハ座標系の回転成分をαとし、説明を簡単にするため、本実施形態では、α=0であるとする。
図6では、このウエハ座標系としての座標軸であるXW軸及びYW軸が示されている。もっとも、プリアライメント装置45が領域VA,VB,VCを撮像する際の個々の撮像視野によって規定されるいわゆる個々のカメラ座標系は、このウエハ座標系に対してそれぞれオフセット成分、回転成分、倍率成分を有している。本実施形態では、これらの成分がすでに算出されているものとする。同様に、プリアライメント装置45が領域VFを撮像する際のそれぞれの撮像視野によって規定される座標系を「プリ2TAカメラ座標系」と呼び、この座標系のウエハ座標系に対する回転成分をθAとする。同様に、マーク検出系42の撮像視野によって規定される座標系を「プリ3カメラ座標系」と呼び、この座標系のウエハ座標系に対する回転成分をθBとする。これらの回転成分θA,θBの値は予め求められているものとする。以降、本実施形態では、回転量(すなわち角度)を表す変数は、−Z方向に対して右ねじが回る方向を回転方向とする回転量を正とし、反対方向の回転量を負であるものとする。
次に、上記ウエハWの搬送系における搬送動作について図7(A)〜図9(D)を参照して説明する。この搬送動作は、前述の通り、主制御装置20の指示の下で行われる。なお、前提として、搬送されるウエハWは、通常のロット処理のウエハ(プロセスウエハ)であり、そのノッチ方向は6時であるものとするので、照明装置81A〜81Eのうち、実際の照明に用いられる照明装置81A,81C(照明装置81Bは、照明装置81Cの紙面奥側となるため、図示を省略している)だけを図示している。また、以下の搬送動作で行われるウエハWの受け渡しでは、その受け渡し元でのウエハWの吸着保持解除動作と、受け渡し先でのウエハWの吸着保持開始動作は、ウエハWのたわみ等によって発生するウエハWの位置ずれが極力発生しないように、常に適切なタイミングで行われているものとする。
まず、図7(A)に示されるように、FOUP27等からウエハWを取り出したロードロボット92が、そのウエハWを、第1位置に位置するプリアライメントステージ52の上方に位置させると、ターンテーブル51が上昇するか又はロードロボット92が下降することにより、ロードロボット92からターンテーブル51へウエハWが受け渡される。この時点で、ロードスライダ50は、待機位置(ローディングポジションと、第2位置との間の位置)に位置しているものとする。また、この時点で、アンロードスライダ62は、ウエハステージWSTからアンロードされたウエハWをアンロードロボット93に受け渡すための受け渡し位置に移動しており、図7(A)では図示されていない。ロードロボット92は、ウエハWをターンテーブル51に受け渡した後、+Y側に退避する。
ウエハWがターンテーブル51上に保持されると、図7(B)に示されるように、プリアライメントステージ52が第1位置にある状態で、ターンテーブル51及び保持されたウエハWを所定の角速度で回転させ、このウエハWの回転中に、ラインセンサ83A,83Bを用いてウエハWのノッチを検出する。主制御装置20は、その検出結果に基づいて、ウエハWの回転量と、ターンテーブル51の中心に対するウエハWの中心のXY2次元平面内の偏心量とを検出する。なお、このウエハWの回転量とウエハWの中心位置の偏心量の求め方は、例えば特開平10−12709号公報に開示されているので詳細な説明を省略する。図7(B)に示される工程は、ウエハWの回転及び位置をラフに調整する「プリ1計測工程」とも呼ばれる。
そして、図7(C)に示されるように、このウエハWの回転量とウエハWの中心位置の偏心量とがキャンセルされるように、ウエハWの位置調整を行う。回転量は、ターンテーブル51を回転させることにより調整し、偏心量は、プリアライメントステージ52をX軸方向、Y軸方向に駆動することにより調整する。
次に、図7(D)に示されるように、プリアライメントステージ52を−Y方向に所定距離(一定距離)だけ移動させる。これにより、プリアライメント装置45による計測が可能な位置(第2位置)にウエハWが位置するようになる。そして、ウエハWの外縁部をプリアライメント装置45の焦点深度内に位置させるように、ターンテーブル51の高さを調節する。
そして、図8(A)に示されるように、ターンテーブル51上に保持されたウエハWに対し、照明装置81A,81B,81Cにより、領域VA,VB,VCをそれぞれ照明し、プリアライメント装置45によって、領域VA,VB,VCに対応するウエハWのエッジをそれぞれ撮像する。主制御装置20は、送られてきた撮像結果から、ウエハWの回転量θ1を求める。この求め方については後述する。そして、求められた回転量θ1及び後述する補正回転量βがキャンセルされるように、ターンテーブル51を回転し、ウエハWの向きを所望の向き(すなわちノッチが6時方向を向くような向き)にファイン回転調整する。なお、この図8(A)に示される工程を、特に「プリ2TT計測工程」と呼ぶものとする。
次に、図8(B)に示されるように、ターンテーブル51からロードスライダ50にウエハWを受け渡す。この受け渡しは、退避位置にあったロードスライダ50が、Y駆動機構60の駆動により+Y方向に進み、ターンテーブル51上に保持されたウエハWに干渉することなく通過して、その指部がウエハWを保持することが可能な位置まで進入した後、ターンテーブル51が下降することにより実現される。なお、この受け渡し動作と同時に、アンロードロボット93に対する露光済みウエハの受け渡しを終えたアンロードスライダ62を、退避位置に戻すようにする。なお、この受け渡し動作終了後も、プリアライメントステージ52はすぐに+Y側に退避することはなく、しばらくの間、第2位置に留まるものとする。これは、照明装置81Aがプリアライメントステージ52上に設けられており、以降の動作で、照明装置81AによりウエハWを照明する必要があるためである。
次に、図8(C)に示されるように、ロードスライダ50に保持されたウエハWに対し、上述のプリ2TT計測工程と同様に、照明装置81A,81B,81Cにより、領域VA,VB,VCを照明し、プリアライメント装置45によって、領域VA,VB,VCに対応するウエハWのエッジをあらためて撮像する。主制御装置20は、送られてきた撮像結果から、ウエハ座標系におけるウエハの位置情報(中心位置座標(XC、YC)及び回転量θC)を求める。これらの求め方についても、上記プリ2TT計測工程と同様に後述する。なお、この図8(C)に示される工程を、特に、「プリ2LA計測工程」と呼ぶものとする。
次に、図8(D)に示されるように、照明装置81Fにより領域VFを照明し、プリアライメント装置45によって、透過照明された領域VFを撮像する。主制御装置20は、送られてきた撮像結果から、プリ2TAカメラ座標系におけるマーク50Mの位置情報(位置及び回転量)を検出する。この求め方の詳細についても後述する。なお、この図8(D)に示される工程を、特に「プリ2TA計測工程」と呼ぶものとする。
次に、図9(A)に示されるように、ウエハWを保持したロードスライダ50を所定距離だけ移動させ、ローディングポジションに位置させると同時に、露光済みのウエハW’を保持するウエハステージWSTをローディングポジションに移動させる。このときのウエハステージWSTの停止位置は、上記プリ2LA計測工程において検出されたウエハWの位置情報と、上記プリ2TA計測工程において検出されたマーク50Mの位置情報とに基づいて算出される位置ずれ量だけ設計上のローディングポジション(基準ロード位置)からずれた位置とする。この位置の決定方法の詳細についても後述する。
次に、図9(B)に示されるように、マーク検出系42が、落射照明により、マーク50M周辺の領域VFを撮像し、その撮像結果から、プリ3カメラ座標系におけるマーク50Mの位置情報(位置及び回転量)を検出する。この求め方の詳細についても後述する。なお、この図9(B)に示される工程を、特に「プリ3計測工程」と呼ぶものとする。
ここで、このプリ3計測工程において検出されたマーク50Mの位置情報と、上記プリ2LA計測工程で検出されたウエハWの位置情報と、上記プリ2TA計測工程において検出されたマーク50Mの位置情報とに基づいて、ウエハステージWST上のウエハWの後述する動作により推定されるロード位置などから、実際のロード位置との位置ずれを算出しておく。なお、このプリ3計測工程を行うと同時に、ウエハステージWSTにおいては、露光済みのウエハW’の吸着を解除し、センタテーブルCTによりウエハWを吸着保持しつつ上昇させる動作もあわせて行う。
次に、図9(C)に示されるように、露光済みウエハW’を保持するアンロードスライダ62を+Y側に退避させた後、センタテーブルCTをさらに上昇させ、ロードスライダ50からセンタテーブルCTにウエハWを受け渡し、ロードスライダ50が所定の待機位置に退避した後、センタテーブルCTが下降し、ウエハステージWST上にウエハWが保持されるようになる。なお、この後、アンロードスライダ62は、アンロードロボット93との受け渡し位置に移動しており、その図示を図9(D)では省略している。
そして、図9(D)に示されるように、ウエハステージWSTは、上記プリ3計測工程で、算出された位置ずれを加味して、ウエハステージWSTを、図1に示されるアライメント検出系ASの下方へ移動させる。この後、アライメント検出系ASを用いていわゆるサーチアライメントが実行されるが、このサーチアライメントにおける、このときのウエハステージWSTの目標移動位置は、上述の位置ずれと、ウエハW上に形成された後述するサーチアライメントマークの設計位置座標とに基づいて決定される。このサーチアライメントに関し、上記目標移動位置の決定以外の処理手順については、例えば特開平2−272305号公報及びこれに対応する米国特許第5,151,750号などに詳細に開示されている方法と同様な方法が用いられるので、詳細な説明を省略する。このサーチアライメントの結果、ロードされたウエハWのサーチアライメントマークの計測位置と設計位置との間の位置ずれ(ΔX、ΔY)と、ウエハWの回転量θ2とを求めることができる。
ここで、本実施形態では、このウエハWの回転量θ2が予め設定されている許容範囲内であるか否かを判断するが、ここでは、回転量θ2が、許容範囲であるものとして話を進める。
上記判断を行った後、そのサーチアライメントの結果を考慮してウエハアライメントが実施され、ウエハW上の各ショット領域の位置座標が算出され、その算出結果に基づいて、ウエハステージWSTの位置を制御しながら、レチクルR上に形成された回路パターンを、ウエハW上の各ショット領域に順次露光する。なお、この露光動作時には、レチクルステージRSTをXY平面内のZ軸回りに回転させることにより、上記ウエハ回転量θ2をキャンセルした状態として露光を行うものとする。
以降、ウエハW上のすべてのショット領域に対する露光が終了すると、図9(A)〜図9(C)に示されるウエハW’と同様に、アンロードスライダ62により露光済みのウエハWがアンロードされる。そして、アンロードスライダ62が、アンロードロボット93との受け渡し位置に退避して、ウエハWをアンロードロボット93に受け渡すと、さらにそのウエハWは、アンロードロボット93からロードロボット92に受け渡され、ロードロボット92によってFOUP27に戻されるか、あるいは不図示の搬送系に受け渡され、インラインに接続された不図示のコータ・デベロッパ(以下、「C/D」と略述する)に搬送されるようになる。
上述のように露光装置本体、搬送系及びプリアライメント系が構成され、ウエハ搬送動作が規定された本実施形態の露光装置100により、露光処理を行う際の動作について、主制御装置20内のCPUの処理手順を示す図10〜図11のフローチャート及び図12〜図16(B)に沿って説明する。
なお、前提として、露光対象のウエハWは、すでにショット領域が形成されたウエハであるものとする。このウエハWには、図12に示されるように、複数のショット領域SAに付設されたサーチアライメントマークSYM,SθMが少なくとも形成されており、後述するサーチアライメントにおいては、これらのサーチアライメントマークSYM,SθMがアライメント検出系ASにより検出されるようになる。
また、この露光動作が行われる前に、プリアライメント装置45における撮像視野VA〜VEは、ウエハWがターンテーブル51またはロードスライダ50に保持されたときに、そのウエハWのエッジ(6時、7時半、4時半、3時、1時半のエッジ)がそれぞれ同時に各撮像視野内に入るように調整されているものとし、プリアライメントステージ52等の各ウエハ搬送系、マーク検出系42や、ラインセンサ83A,83B、各照明装置81A〜81G1,G2の取り付け位置も、適切に調整されているものとする。また、ここでは、ウエハ座標系に対するプリ2TAカメラ座標系及びプリ3カメラ座標系のX軸方向及びY軸方向の倍率成分はともに1であるものとする。
また、後述する各ステップでは、主制御装置20が、上記搬送系やプリアライメント系等に指示を出すが、その指示伝達経路については上述した通りであるので、詳細な説明は行わないものとする。また、主制御装置20は、その搬送系やプリアライメント系等からの応答などにより、指示した動作が完了したことが確認されるまで待ち、次のステップに進まないものとする。そして、本実施形態では、ウエハWは常にノッチの方向を6時としてロードされるものとし、以下では、その方向でロードされるウエハWの処理に必要な手順について説明する。
さらに、本実施形態では、プリ2LA計測工程でのウエハ座標系におけるウエハWの基準位置情報(位置座標O(X0,Y0))と、プリ2TAカメラ座標系におけるマーク50Mの基準位置情報(XY位置座標及び回転量)p(SCAx,SCAy,θCA)とが予め求められているものとする(図13(A)参照)。また、ウエハWとマーク50Mの位置が、図13(A)に示される位置であった場合での、プリ3カメラ座標系におけるマーク50Mの基準位置情報(XY位置座標及び回転量)q(SCBx,SCBy,θCB)と、ウエハWがウエハステージWSTにロードされたときの、XY座標系におけるウエハの基準ロード位置の位置座標LP(LPX,LPY)も予め求められているものとする(図13(B)参照)。
図10に示されるように、まず、ステップ101において、ロードロボット92に対し、ウエハWの搬入を指示する。ロードロボット92は、図7(A)に示されるように、FOUP27からウエハWを取り出し、ターンテーブル51に受け渡す。なお、このときウエハWのノッチは、6時方向に向いているものとする。
次のステップ103では、図7(B)に示されるように、プリ1計測工程を行い、ステップ104では、図7(C)に示されるように、プリ1計測工程の算出結果に基づいて、プリアライメントステージ52のXY移動及びターンテーブル51の回転により、ウエハWの位置を略調整する。
次のステップ105では、図7(D)に示されるように、プリアライメントステージ52を、第2位置に移動させ、ステップ107において、図8(A)に示されるように、プリ2TT計測工程を行う。ここでは、透過照明によるウエハWのノッチを含むウエハWのエッジを撮像結果の輝度分布から検出することにより、回転量θ1を算出し、その回転量(θ1+β)をキャンセルするようにターンテーブル51を回転させる。そして、ステップ107では、ターンテーブル51の回転調整により、回転量(θ1+β)がキャンセルされる。なお、ここで、βは、キャンセルする回転量の補正値であり、初期値を0としている。すなわち、ここでは、βは初期値のままであるので、β=0となっており、回転量θ1がそのままキャンセルされるものとする。なお、このβについては、後のステップ127において詳述する。
次のステップ109では、図8(B)に示されるように、ターンテーブル51からロードスライダ50へのウエハWの受け渡しが行われる。そして、ステップ111では、図8(C)に示されるように、プリ2LA計測工程が行われる。このプリ2LA計測工程は、上記ステップ107のプリ2TT計測工程と同様に実施される。なお、ここで検出されるウエハWの位置情報、すなわち中心座標及び回転量を、C(XC,YC,θC)とする。XCはX座標であり、YCはY座標であり、θCは回転量であるが、このX座標XC及びY座標YCは、O(X0,Y0)を原点としたときの座標値であるものとする。図14(A)には、ウエハ座標系におけるウエハWの位置情報(中心座標及び回転量)C(XC,YC,θC)が模式的に示されている。この位置情報C(XC,YC,θC)は、不図示の記憶装置に記憶される。
次のステップ113では、図8(D)に示されるように、プリ2TA計測工程を行う。この動作は、上記ステップ113と同じである。検出されたプリ2TAカメラ座標系におけるマーク50Mの位置情報(位置座標及び回転量)をp’(SCAx’,SCAy’,θCA’)とする。SCAx’はX座標であり、SCAy’はY座標であり、θCA’は回転量である。図14(A)には、位置情報p’(SCAx’,SCAy’,θCA’)が模式的に示されている。位置情報p’(SCAx’,SCAy’,θCA’)は、不図示の記憶装置に記憶される。
次のステップ115では、図9(A)に示されるように、ロードスライダ50を、Y駆動機構60の駆動により、ローディングポジション上方まで移動させるとともに、ウエハステージWSTをローディングポジションまで移動させる。なお、ここでは、ロードスライダ50からウエハWを受け渡すときのウエハステージWSTの位置を推定し、その推定結果に基づいてXY座標系におけるウエハステージWSTのロード位置を決定する。以下では、その推定方法について詳細に説明する。
上述したように、プリ2LA計測工程でのウエハ座標系におけるウエハWの基準位置情報O(X0,Y0)と、プリ2TA計測工程でのプリ2TAカメラ座標系におけるマーク50Mの基準位置情報p(SCAx,SCAy,θCA)とが求められている(図13(A)参照)。また、XY座標系におけるウエハの基準ロード位置LP(LPX,LPY)が求められている(図13(B)参照)。
さらに、この時点では、上記ステップ111(図10)におけるウエハWに対するプリ2LA計測工程と、上記ステップ113(図10)におけるプリ2TA計測工程とが実施されており、プリ2LA計測工程でのウエハ座標系におけるウエハWの位置情報C(XC,YC,θC)と、プリ2TA計測工程でのプリ2TAカメラ座標系におけるマーク50Mの位置情報p’(SCAx’,SCAy’,θCA’)とが求められている(図14(A)参照)。これらの位置情報p,O,LP,C,p’が、ウエハステージWSTのウエハWの受け渡し位置の推定に用いられる。
ここでは、ウエハWの位置ずれを、マーク50Mの位置ずれによる平行移動成分とマーク50Mの回転量の差に起因する位置ずれ成分である回転成分とに分けて推定する。まず、ウエハWの位置ずれの平行成分の推定について説明する。図15(A)には、プリ2LA計測工程におけるウエハWの基準位置情報O(以下、単に「基準位置O」と呼ぶ)と、プリ2LA計測工程(ステップ111)におけるウエハWの位置情報Cと(以下、単に「位置C」と呼ぶ)と、プリ2TA計測工程におけるマーク50Mの基準位置情報p(以下、単に「基準位置p」と呼ぶ)と、プリ2TA計測工程(ステップ113)におけるマーク50Mの位置情報p’(以下、単に「位置p’」と呼ぶ)の位置関係を模式的に示すベクトル図が示されている。図15(A)では、マーク50Mの基準位置pと、ウエハの基準位置Oとの相対位置関係を示すベクトルがベクトルPとして示されており、ウエハWをロードしたときのプリ2LA計測工程におけるマーク50Mの位置p’と、ウエハWの中心の位置Cとの相対位置関係を示すベクトルがベクトルP’として示されている。本実施形態では、このベクトルP、P’を基準として、ウエハWをロードする際のウエハステージWSTの位置の位置ずれの平行移動成分を推定する。
すなわち、マーク50Mの中心と、ウエハWの中心とがベクトルPで表される位置関係にあり、その位置関係にあった場合のロード位置が基準ロード位置LPで既知であることから、ウエハWがロードされるべき位置は、位置LPを基点とした、ベクトルP’とベクトルPとの差のベクトルP’−Pで表される位置であると推定される。この位置ずれを示すベクトルをベクトルWAとする。
この平行移動成分の具体的な計算方法について説明する。図15(A)に示されるように、マーク50Mの基準位置p(SCAx,SCAy)と、ウエハWのロード時にプリ2LA計測工程で検出されたマーク50Mの位置p’(SCAx’,SCAy’)との差のベクトルApのX成分及びY成分は次式で表される。
Spx=SCAx’−SCAx …(1)
Spy=SCAy’−SCAy …(2)
ただし、前述のように、位置pと位置p’のX座標及びY座標は、プリ2TAカメラ座標系で求められたものであるため、その位置座標を、次式のようにウエハ座標系の座標値に変換する必要がある。
Figure 2006073916

ここで、Swpxは、ベクトルApのX成分であり、Swpyは、ベクトルApのY成分である。また、θAは上述のとおり、ウエハ座標系に対するプリ2LAカメラ座標系の回転成分である。
次に、ベクトルWAを求める。ベクトルWAのX,Y成分を(WAx,WAy)とすると、(WAx,WAy)は、それぞれ次式のように表される。
Figure 2006073916

したがって、ここでは、基準ロード位置LPを基準とするベクトルWAを上記式(1)〜(4)を計算して求め、それをウエハステージWSTのローディング位置の位置ずれ量の平行移動成分とし、不図示の記憶装置に格納する。
次に、位置ずれの回転成分を推定する。マーク50Mの基準位置pと、マーク50Mの位置p’とが仮に完全に一致しており、マーク50Mから、ウエハWの中心までの距離も同じであったとしても、マーク50Mの回転量が違っていれば、ウエハWの中心位置が異なるようになる。この位置ずれの回転成分とは、このマーク50Mの回転によるウエハWの位置ずれのことをいう。
本実施形態では、プリアライメント装置45やマーク検出系42によって、プリ2TA計測工程でのマーク50Mの基準の回転量θCAと、ウエハW搬送時におけるプリ2TA計測工程でのマーク50Mの回転量θCA’とがすでに検出されている。そこで、これらのマーク50Mの基準回転量θCA,回転量θCA’からウエハWの位置ずれの回転成分を推定する。
マーク50Mの中心p’と、基準位置pとがベクトルPで表される位置関係にあり、基準ロード位置が位置LPであったことから、ウエハWがロードされるべき位置は、図15(B)に示されるように、位置Cを基点とした、マーク50Mの回転量θCAとマーク50Mの回転量θCA’との差のベクトルで表される位置となるであろうと推定される。そこで、マーク50Mの回転量θCAとマーク50Mの回転量θCA’との差を、例えば図15(B)に示されるθp(=θCA’−θCA)であるとする。
プリ2LA計測工程におけるマーク50Mの回転量は、ウエハW等がロードスライダ50に保持される前のロードスライダ50の姿勢によって決定される。これは、ロードスライダ50へのウエハWの受け渡しがターンテーブル51の駆動によって行われるため、ロードスライダ50の姿勢はその受け渡しの間変化せず、マーク50Mの回転量は一定であるとみなせるからである。このことにより、ローディングポジションへ搬送後、この回転量が修正されるとすると、マーク50Mの基準回転量θCA’でのロード位置は、マーク50Mの回転量θCAでのロード位置LPから、マーク50Mの中心を回転中心として、θpの方向(回転方向)とは、逆方向にずれるようになると考えられる。すなわち、修正すべきウエハWの中心位置の回転量は、−θpであると推定される。なお、図15(B)においては、θpは、正(反時計回り)であるものとしているが、θpは、負(時計回り)である場合もあり、その場合には、−θpは、正(反時計回り)となる。
本実施形態では、この修正回転量−θpに基づいて、上述のように求められた、マーク50Mの回転成分に伴うウエハステージWST上のウエハWの位置ずれベクトルDt1を次式を用いて算出する。
Figure 2006073916

Dt1x,Dt1yは、ベクトルDt1のX軸成分及びY軸成分である。ここでは、マーク50MとウエハWとの距離の設計値Lと、ウエハ座標系のXW軸に対するマーク50Mの中心とウエハWの中心とを結ぶ線分の回転量の設計値θDを用いている(図3(A)参照)。
上述のように算出された、ウエハWの平行移動成分としてのベクトルWAと、回転成分Dt1とを次式のように加算すれば、ウエハステージWSTのロード位置の位置ずれ量を推定することができる。
Figure 2006073916

ここで、D1x,D1yは、ベクトルD1のX成分及びY成分である。なお、ここで、ウエハ座標系と、XY座標系との回転量αが無視できない場合には、この回転量αにより、このベクトルD1を回転させたベクトルをロード位置の推定に用いるようにしても良い。
主制御装置20は、この位置ずれベクトルD1を不図示の記憶装置に格納する。本実施形態では、そのベクトルD1に対応する位置を、ウエハステージWSTのロード位置として推定し、その推定ロード位置にウエハステージWSTを移動させる。
次に、図10のステップ117において、図9(B)に示されるように、プリ3計測工程を行う。マーク検出系42の撮像結果は、主制御装置20に送られる。主制御装置20は、この撮像結果に基づいて、プリ3カメラ座標系におけるマーク50Mの位置情報(位置及び回転)を、プリ2TA計測工程と同様にして検出する。プリ3カメラ座標系におけるマーク50Mの位置情報をq’(SCBx’,SCBy’,θCB’)とする。SCBx’はX座標であり、SCBy’はY座標であり、θCB’は回転量である。なお、この位置情報q’(SCBx’,SCBy’,θCB’)は、不図示の記憶装置に記憶される。図14(B)には、このステップ117におけるプリ3計測工程においてロードスライダ50のマーク50Mの位置情報q’の一例が示されている。
次のステップ119では、図9(C)に示されるように、ウエハステージWST上にウエハWをロードする(第2工程)。このときのウエハステージWST上のウエハWのロード位置をLP’(LPx’,LPy’)とする。図14(B)には、ウエハステージWST上のウエハWのロード位置LP’の一例が示されている。なお、ウエハステージWST上に露光済みのウエハW’が保持されている場合には、このロード動作を行う前に、図9(B)に示されるように、ロード前にウエハステージWSTからウエハW’をアンロードする。
次のステップ121では、ウエハステージWST上のウエハWの位置ずれ量を算出する。ここでも、その位置ずれ量を、マーク50Mの位置ずれによる平行移動成分と、マーク50Mの回転量の差に起因する回転成分とに分けてそれぞれ推定するものとする。
図16(A)には、ウエハステージWST上のウエハWの位置ずれ量の推定方法を模式的に示すベクトル図が示されている。図16(A)では、プリ3カメラ座標系におけるマーク50Mの基準位置情報q(以下、「基準位置q」と略述する)と、ウエハWの基準ロード位置LPとの相対位置関係を示すベクトルがベクトルQとして示されている。本実施形態では、ベクトルQを基準として、ウエハステージWST上のウエハWのロード位置の位置ずれの平行移動成分を推定する。
まず、平行移動成分の推定方法について説明する。上記ステップ119におけるウエハステージWSTのロード位置は、基準ロード位置LP(すなわちベクトルQ)に、ベクトルWAを加算した位置(LP’)となっている。しかしながら、ウエハWをロードする際のプリ3計測工程におけるマーク50Mの基準位置q(SCBx,SCBy)と、ウエハWをロードする際のプリ3計測によって検出されたマーク50Mの位置情報q’(SCBx’,SCBy’)(以下、「位置q’」と略述する)とのずれにより、ウエハステージWST上のウエハWのローディングポジションは、当初に予定していた位置からその分だけずれることとなる。したがって、ウエハステージWST上のウエハWの位置ずれの平行移動成分は、プリ3カメラ座標系におけるマーク50Mの基準位置q(SCBx,SCBy)と、ウエハWのロード時にマーク検出系42によって検出されたマーク50Mの位置q’(SCBx’,SCBy’)との差のベクトルAqとなる。このベクトルAqの各座標軸成分Sqx,Sqyは以下の式(7)、式(8)で表される。
Sqx=SCBx’−SCBx …(7)
Sqy=SCBy’−SCBy …(8)
しかし、前述のように、ベクトルAqの各成分は、プリ3カメラ座標系で求められたものであり、各成分を、次式のようにウエハ座標系の位置座標に変換しておく必要がある。
Figure 2006073916

ここで、Swqxは、ベクトルAqのX成分であり、Swqyは、ベクトルAqのY成分である。また、θBは上述のとおり、ウエハ座標系に対するプリ2LAカメラ座標系の回転成分である。したがって、主制御装置20は、このベクトルAqを、平行移動成分の位置ずれ量として不図示の記憶装置に記憶する。
次に、位置ずれの回転成分の推定を行う。本実施形態では、プリ3計測工程におけるマーク50Mの基準回転量θCBが既知であり、ウエハWを搬入する際のプリ3計測工程におけるマーク50Mの回転量θCB’がマーク検出系42により検出されている。そこで、これらマーク50Mの回転量から、ウエハWの中心位置の位置ずれの回転成分を推定する。
また、図16(B)には、基準位置qでのマーク50Mの基準回転量θCBと位置q’でのマーク50Mの回転量θCB’との差を示す回転量θqの一例が示されている。本実施形態では、位置q及び位置q’によって検出されるマーク50Mの回転量の差が、ロードスライダ50に保持された後のマーク50Mの回転ずれとなる。プリ3計測工程におけるマーク50Mの回転量は、ウエハW等がロードスライダ50に保持された後のロードスライダ50の姿勢によって決定される。この場合、位置q’でのマーク50Mの向きと基準位置qでのマーク50Mの回転の差がθq(=θCB’−θCB)であるとすると、その結果修正すべきウエハの回転ずれは、そのまま+θqとなる。すなわち、ウエハの中心の推定位置の修正回転量は、+θqとなる。
本実施形態では、この修正回転量+θqに基づいて、ウエハステージWST上のウエハWの位置ずれの回転成分を算出するように、マーク50MとウエハWとの距離をL(設計値)とし、ウエハ座標系のXW軸に対するマーク50Mに対するウエハWの中心の回転成分の設計値をθDとすると、回転成分を示すベクトルDt2は、次式のようになる。
Figure 2006073916

ここで、Dt2x,Dt2yは、ベクトルDt2のX成分及びY成分である。上記式(9)、式(10)より、最終的なウエハステージWST上のウエハWの位置ずれベクトルD2は、次式のようになる。
Figure 2006073916

ここで、D2x,D2yは、ベクトルD2のX成分及びY成分である。主制御装置20は、この位置ずれベクトルD2を不図示の記憶装置に格納する。なお、ここで、ウエハ座標系と、XY座標系との回転量αが無視できない場合には、この回転量αにより、このベクトルD2を回転させたベクトルを求め、これを記憶装置に格納するようにしても良い。
また、ロード後のウエハWの回転量θも、θ=(θC+θq−θp)という計算式で推定することができる。ここでは、この回転量θも算出して合わせて不図示の記憶装置に記憶する。なお、θCは、プリ2LA計測によって計測されたウエハWの回転成分である。
次のステップ123ではサーチアライメントを行う(第3工程)。ここでは、図12に示されるような、ウエハW上に形成されたサーチアライメントマークSYM,SθMを、アライメント検出系ASの下方に位置させるように、ウエハステージWSTをXY平面内で移動させるが、このときのウエハステージWSTの移動先は、サーチアライメントマークSYM,SθMの設計上の位置座標に、ウエハWの位置ずれベクトルD2(又はそのベクトルを回転量αだけ回転させたベクトル)と、ウエハ回転量θとで補正することによって得られる位置とする。そして、ここでは、アライメント検出系ASの撮像結果から算出されたサーチアライメントマークの実測位置情報と、設計上の位置情報との差から、ウエハステージWST上のウエハWの位置情報(位置ずれ量(ΔX、ΔY)、回転量θ2)が求められる。この位置ずれ量(ΔX、ΔY)及び回転量θ2は、不図示の記憶装置に記憶される。
次のステップ125では、ウエハWの回転量θ2が、許容範囲内であるか否かが判断される(第4工程)。この判断が肯定されれば、図11のステップ129に進み、否定されればステップ127に進む。ここでは、回転量θ2が、許容範囲を超えており、判断が否定され、ステップ127に進むものとして話を進める。なお、この許容範囲としては、例えば、レチクルステージRSTの回転により調整可能な回転量などが設定される。
ステップ127では、ウエハの自動回収を行う。具体的には、ウエハWは、アンロードスライダ62によりアンロードされる。その後、アンロードロボット93は、アンロードスライダ62からウエハWを受け取り、ロードロボット92にそのウエハWを受け渡す。また、ステップ127では、サーチアライメントにおいて算出したウエハWの回転量θ2を回転補正量βに代入する。ステップ127を完了した後、ステップ103に戻る。
以降ステップ125において判断が肯定されるまで、ステップ103→ステップ104→ステップ105→ステップ107→ステップ109→ステップ111→ステップ113→ステップ115→ステップ117→ステップ119→ステップ121→ステップ123→ステップ125(判断)→ステップ127が少なくとも1回繰り返される(第5工程)。この繰り返しでは、βにサーチアライメントの結果としてのウエハWの回転量θ2が代入され、ステップ107において、ターンテーブル51が調整する回転量が(θ1+β)(すなわち(θ1+θ2))となる。すなわち、ステップ107においてターンテーブル51の回転を調整する際には、上記ステップ123(サーチアライメント)において算出された回転量θ2がそのターンテーブル51の回転量に足し込まれるので、実際のウエハW上に形成されたサーチアライメントマークSYM,SθMに代表されるウエハW上のショット領域の配列の回転がプリアライメントに反映されるようになる。
ステップ125の判断が肯定された後、図11のステップ129に進む。ステップ129では、ウエハアライメントを行う。すなわち、サーチアライメントの結果(ΔX,ΔY,θ2)を考慮して、ウエハW上の複数のサンプルショット領域に付設されたアライメントマークの位置を不図示のアライメント検出系ASにより計測し、その計測結果に基づいて、統計処理方法により全てのショット領域の配列座標を算出する、いわゆるEGA演算を行う。これにより、ウエハW上の全てのショット領域のXY座標系上における配列座標が算出される。この処理については、例えば特開昭61−44429号公報などに開示されているので、詳細な説明を省略する。
次のステップ131では、ショット領域の配列番号を示すカウンタjに1をセットし、最初のショット領域を露光対象領域とする。
そして、ステップ135では、EGA演算にて算出された露光対象領域の配列座標に基づいて、不図示の照明系からの露光光ILによってレチクルRのパターン領域を照明し、露光を行う。これにより、レチクルRのパターンが投影光学系PLを介してウエハW上の露光対象領域に縮小転写される。すなわち、ここでは、ショット領域の配列の回転量がほとんど0となった状態で露光することができるので、精度良く回路パターン(デバイスパターン)を転写することができる。
ステップ137では、カウンタ値jを参照し、全てのショット領域に露光が行われたか否かを判断する。ここでは、j=1、すなわち、最初のショット領域に対して露光が行なわれたのみであるので、ステップ135での判断は否定され、ステップ137に進む。
ステップ137では、カウンタjの値をインクリメント(j←j+1)して、次のショット領域を露光対象領域とし、ステップ133に戻る。以下、ステップ135での判断が肯定されるまで、ステップ133→ステップ135→ステップ137の処理、判断が繰り返される。
ウエハW上の全てのショット領域へのパターンの転写が終了すると、ステップ135での判断が肯定され、ステップ139に移行する。
ステップ139では、ウエハWのアンロードを行う。ウエハWは、アンロードスライダ62によりアンロードされ、アンロードロボット93及びロードロボット92によってFOUP27に戻されるか、不図示の搬送系により、インラインに接続されたC/Dに搬送される。ステップ139終了後は、露光動作を終了する。
本実施形態では、上記ステップ115においてウエハステージWSTを位置ずれ量D1によって推定された推定ロード位置に移動させてから、上記ステップ117においてプリ3計測工程を行い、その結果求められたウエハステージWST上のウエハWの位置ずれ量D2についてはサーチアライメントマークの設計位置座標を補正することによりその位置ずれを吸収するようにしたが、これには限られない。例えば、ウエハステージWSTを推定ロード位置に移動させる前に、プリ3計測工程を行い、位置ずれ量D1+D2を求め、その位置ずれ量によって推定された推定ロード位置に、ウエハステージWSTを移動させてウエハWをロードするようにしても良い。また、ウエハWのロード時のウエハステージWSTの位置を常に同一のロード位置(すなわち原点O)として、位置ずれ量D1+D2を考慮して、サーチアライメントマークの位置座標の補正を行うようにしても良い。ウエハステージWSTのロード位置の推定値を平行移動成分WAだけで推定ロード位置を決定し、回転成分Dt1については、回転成分Dt2と同様に、サーチアライメントマークの位置座標の補正に含まれるようにしても良い。このときには位置ずれ量の回転成分ベクトルは、図17に示されるベクトルDtLPとなる。このベクトルDtLPの算出式は次式のようになる。
Figure 2006073916

ここで、DtLPxはX成分であり、DtLPyはY成分である。このときのサーチアライメントマークの位置座標の補正ベクトルは、Aq+DtLPとすれば良い。
本実施形態では、ステップ127終了後は、ステップ103に戻ることとしたが、ステップ105に戻ることとしても良い。また、ステップ107において、サーチアライメントによって検出されたウエハの回転量θ2をそのまま補正値βとしたが、回転量θ2に所定の係数を乗じて得られる値をβとしても良い。また、ステップ125では、回転量が許容範囲となるまで、肯定されないものとしたが、所定回数(例えば1回)繰り返したら、ステップ125での判断を肯定するようにしても良い。また、所定回数繰り返しても、回転量が許容範囲内とならない場合には、表示装置等にその旨をアラーム表示して、処理を強制終了するようにしても良い。
これまでの説明から明らかなように、本実施形態では、主制御装置20のCPUが行う、ステップ103〜ステップ117(図10)が第1工程に対応する。
以上詳細に述べたように、本実施形態によれば、ウエハステージWST上に置かれたウエハの位置情報の検出結果(サーチアライメントの検出結果)が許容範囲でなく、ウエハステージWSTからウエハWを取り出して、その位置を調整して置きなおす場合には、そのウエハステージWST上のウエハWの位置情報の検出結果を考慮して、ウエハWの位置を調整する。このようにすれば、ウエハステージWSTに対するウエハWの位置合わせ結果と、ウエハステージWSTに載置されたウエハWの位置情報との定性的なずれを考慮してウエハステージWSTに対してウエハWを位置合わせすることができるので、ウエハWの位置を高精度に調整することができる。
本実施形態の位置調整方法は、露光装置100内でウエハWを搬送する際の定性的なずれをキャンセルするのも有効であり、ウエハW上に既に形成されているショット領域の配列が、ウエハWのノッチに対して傾斜していた場合などに特に有効である。すなわち、ウエハのノッチを検出することにより行われるプリアライメントと、ウエハW上のショット配列との定性的なずれの除去に特に有効である。
なお、本実施形態では、サーチアライメントの結果が許容範囲内となるまで、プリアライメントを続けるが、実際のウエハステージWST上のウエハWの回転量を検出して、ウエハWのプリアライメントを行うので、通常は、1回プリアライメントを繰り返すだけで、そのウエハWの回転量をほぼ0とすることが期待されるので、スループットに与える影響は少ないと考えられる。また、この位置調整方法は、プロセスのウエハを実際にロードする際に行われるので、特別な基準ウエハなどを一切用いる必要がない。したがって、基準ウエハ等を揃える必要がなく、その基準ウエハを用いた特別な計測工程を行うことなく、通常のプロセス中で行うことができるので、コスト面及びスループットに有利である。
なお、上記実施形態における露光動作は、種々の変形を行い得る。例えば、上記ステップ123では、サーチアライメントにおいて記憶された回転量θ2を、記憶しておき、過去n回の回転量θ2を用いて今回ロードされるウエハWの残留回転量を推定し、その残留回転量を、ステップ107におけるターンテーブル51の回転量に、その補正値γとして上乗せするようにしても良い。
このようなウエハWの残留回転量の推定方法としては、様々な方法を適用し得る。例えば、直近の過去n回におけるサーチアライメントによって検出されたウエハWの回転量θ2の平均値を回転量の補正値として用いることができる。また、ウエハWの回転量θ2の時系列の変化により予測する自己回帰モデル(通称ARモデル)に基づく線形予測値を補正値γとして適用しても良い。また、プリ2LA計測、プリ2TA計測、プリ3計測の計測結果を説明変数として回転量の補正値を推定する多変量解析方法(例えば重回帰分析法)などを用いて、補正値γを推定するようにしても良い。いずれにしても、統計的手法を用いて、過去のウエハWの回転量θ2から補正量を推定すれば良い。
この他、カルバックライブラーの情報量などの情報量、赤池情報量規準(AIC)などに代表される情報量規準、順序統計、EMアルゴリズムなどの他の統計的手法を用いて、あるいは、これら統計的手法を組み合わせた手法を用いて、補正値を統計的に求めるようにしても良い。このように、過去のサーチアライメントの結果に基づいてウエハWの残留回転量を推定すれば、例えば、長時間の運用による、露光装置100のプリアライメント系、例えば、マーク検出系42の取り付け位置の微妙な変化や、ロードスライダ50の停止位置のずれなどの経時変化によるプリアライメントの検出精度の変化に対応することができるようになる。
また、上記実施形態では、上記ステップ127におけるウエハの自動回収を、アンロード動作と同様の動作としたが、これには限らず、ロードスライダ50を用いてウエハを回収するようにしても良い。この場合、ウエハWを回収したロードスライダ50は、第2位置に移動して、プリアライメントステージ52上のターンテーブル51に、ウエハWを受け渡すようになる。この場合、ステップ127終了後は、ステップ103に戻らず、ステップ105に戻るようにすることができるので、スループットに有利となる。
しかしながら、露光装置100では、スループットを向上すべく、ウエハステージWST上に保持されたウエハWが露光されている間に、次の露光対象であるウエハWがプリアライメントステージ52上にロードされ、ターンテーブル51上に待機している場合もある。ウエハの自動回収の経路をウエハWのロード経路とは逆とする場合には、ターンテーブル51上に待機しているウエハWを退避させる必要がある。図18には、その退避場所が設定された露光装置の横断面図が示されている。図18に示されるように、搬送チャンバ15内にその待機場所としてのテーブル28が設けられている。
この場合、ステップ125における判断が否定されると、ステップ127におけるウエハ自動回収においては、まず、ターンテーブル51に次の露光対象となるウエハW(これをW”とする)を保持した状態で、プリアライメントステージ52が第1位置に進み、ロードロボット92が、ターンテーブル51上のウエハW”を受け取り、テーブル28上にウエハW”を載置する。その後、プリアライメントステージ52が第2位置に戻り、ウエハステージWST上からアンロードされ、ロードスライダ50上に保持されたウエハWをターンテーブル51上に受け渡す。
そして、ターンテーブル51上に保持されたウエハWの回転量が調整され、ロードスライダ50上に受け渡された後、ロードロボット92がテーブル28上に退避していた次の露光対象となるウエハW”が改めてターンテーブル51に受け渡されるようにすれば良い。なお、ウエハの退避場所は、テーブル28以外であっても良く、例えば、ロードロボット92のアームを次の露光対象のウエハW”の退避場所とするようにしても良い。
なお、上記実施形態では、ウエハWの回転を再調整する場合について述べたが、これに限らず、ウエハWのXY平面内の位置ずれ量の再調整についても、本発明を適用することができるのは勿論である。
また、上記実施形態では、ウエハ座標系と各カメラ座標系との関係が既知であれば、マーク50MとウエハWとの相対位置関係を直接求めて、ウエハWのロード位置を推定するようにしても良いことは勿論である。なお、この場合にも、ウエハWの推定ロード位置やサーチアライメントマークの位置座標の補正量は、平行成分と回転成分とに分けてそれぞれ推定するのが望ましい。
また、上記実施形態では、ロードスライダ50上に形成されたマーク50Mを図3(C)に示されるようなX軸方向及びY軸方向のL/Sパターンを有するマーク50Mとしたが、本発明では、これらマークの形状は限定されず、ボックスマークや、十字マークや、井桁マーク、田の字マークその他あらゆる形状の2次元位置検出用のマークを適用することができる。要は、撮像視野内に含まれるような2次元位置(回転含む)の検出用マークであれば良い。
また、このようなマークは1つだけでも良く、3つ以上あっても良い。また、形状及び大きさの少なくとも一方が互いに異なる複数のマークがロードスライダ50上の異なる位置にそれぞれ設けられていることとしても良い。この場合には、ロードスライダ50の搬送精度の再現性の幅に対してマーク検出系42,プリアライメント装置45の撮像視野が比較的狭いものであっても、それらがロードスライダ50上のいずれかのマークを検出する確率が向上するので、そのマークの検出結果からロードスライダ50の位置情報を精度良く検出することができる。例えば、各マークの縦横のアスペクト比を算出すれば、検出されたのがどのマークであるかを認識することができる。また、前述の十字マーク、井桁マーク、田の字マークを適宜異なる位置に形成するようにしても良い。また、複数のマークをマトリクス状に配置するようにしても良い。要は、本発明は、マークの形状及び配置には制限されない。
また、上記実施形態では、マーク50Mをロードスライダ50の−X側端部近傍に配設したが、これに限らず、アーム部の略中央部に配設するようにしても良いし、+X側端部に配設するようにしても良い。
また、上記実施形態では、ウエハステージWST上のウエハWの残存回転量、すなわちサーチアライメントで検出された回転量θ2を、レチクルステージRSTの回転で補正したが、レチクルステージRSTのθzの回転範囲が小さくその回転量θ2を十分にキャンセルできない場合には、例えばセンタテーブルCTをθz方向に回転可能とし、センタテーブルCTのθzの回転、あるいはレチクルステージRSTとセンタテーブルCTの回転により、回転ずれ量θ2をキャンセルするようにしても良い。また、ウエハステージWSTそのものを回転させるようにしても良い。なお、センタテーブルCT、ウエハステージWST及びレチクルステージRSTの少なくとも1つを回転させる代わりに、あるいはこれと組み合わせて、ロード前にロードスライダ50を微小回転させても良い。
また、上記実施形態では、ノッチ付のウエハを処理する場合について説明したが、オリエンテーションフラット付のウエハを処理する場合にも本発明を適用することができることは言うまでもない。
また、アンローディングポジションについては、ローディングポジションと同じ位置であっても良いし、別の位置であっても良い。いずれにしても、アンロード時は、プリアライメントを行う必要がないので、搬出アームやウエハが投影光学系PLに干渉しない限り、アンローディングポジションを転写位置に近づけることができる。また、ウエハの外形やロードスライダ50のマーク50Mの検出に用いるセンサは撮像装置に限られるものではなく、例えば光量センサなどを用いても良い。さらに、上記実施形態では、プリ1計測工程を行うものとしたが、例えばウエハの中心とターンテーブル51の回転中心とのずれ量を比較的小さくしてウエハをターンテーブル51に保持できるときは、プリ1計測工程を行わなくても良い。要は、サーチアライメントで検出されたウエハの回転量を調整可能な機構がプリアライメント系に備えられていれば良い。
また、上記実施形態では、プリ1計測工程と、プリ2LA計測工程と、プリ2TA計測工程と、プリ3計測工程とを含むプリアライメントを行う場合について述べたが、本発明は、プリアライメントの方法には限定されない。例えば、ロードスライダ50のマーク50Mを設けずに、単にウエハWのエッジからウエハWの位置及び回転のみを検出し、調整するプリアライメントにも本発明を適用することができるのは勿論である。
また、上記実施形態では、照明装置をウエハWの下方に配置し、撮像装置をウエハWの上方に配置したが、これは逆であっても構わない。
また、プリ1計測工程を必ず第1位置で行う必要はなく、第2位置において、ターンテーブル51を回転させ、プリアライメント装置45をラインセンサとして用いて、プリ1計測工程に相当する動作を行うようにしても良い。
また、上記実施形態は、ウエハWのアライメントに関するものであったが、レチクルRの位置合わせについても適用可能であることは勿論であり、ウエハホルダなど、露光装置の部品を自動で交換する際にも適用することが可能である。
上記実施形態の露光装置は、ステップ・アンド・スキャン方式、ステップ・アンド・リピート方式、ステップ・アンド・スティッチ方式のいずれかの縮小投影露光装置とすることができる。また、プロキシミティ方式などの露光装置、あるいはミラープロジェクション・アライナー、及びフォトリピータにも本発明を適用することができる。
また、本発明は、露光光源には限定されない。さらに、例えば国際公開WO99/49504号などに開示される、投影光学系PLとウエハWとの間に液体が満たされる液浸型露光装置に本発明を適用しても良い。
また、上記実施形態では、本発明が半導体製造用の露光装置に適用された場合について説明したが、これに限らず、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、薄膜磁気ヘッド、撮像素子、マイクロマシン、有機EL、DNAチップなどを製造するための露光装置などにも本発明は広く適用できる。
また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、螢石、フッ化マグネシウム、又は水晶などが用いられる。
さらに、露光装置以外の検査装置、加工装置などの装置であっても、搬送後の物体の位置決め精度が要求される装置であれば、本発明の位置調整方法を好適に適用することができる。
半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光工程によりレチクルのパターンをウエハに転写するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。
以上説明したように、本発明に係る位置調整方法及び装置は、物体の位置を調整するのに適しており、本発明のデバイス製造方法は、マイクロデバイスの生産に適しており、本発明の露光装置は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適している。
本発明の一実施形態に係る露光装置の縦断面図である。 本発明の一実施形態に係る露光装置の横断面図である。 図3(A)は、ロードスライダの構造を示す上面図であり、図3(B)は、ロードスライダの構造を示す斜視図であり、図3(C)はロードスライダ上のマークの一例を示す図である。 プリアライメント系の構成を示す斜視図である。 制御系の構成を示すブロック図である。 各座標系の関係を示す図である。 図7(A)は、ウエハの搬送手順を概略的に示す図(その1)であり、図7(B)は、ウエハの搬送手順を概略的に示す図(その2)であり、図7(C)は、ウエハの搬送手順を概略的に示す図(その3)であり、図7(D)は、ウエハの搬送手順を概略的に示す図(その4)である。 図8(A)は、ウエハの搬送手順を概略的に示す図(その5)であり、図8(B)は、ウエハの搬送手順を概略的に示す図(その6)であり、図8(C)は、ウエハの搬送手順を概略的に示す図(その7)であり、図8(D)は、ウエハの搬送手順を概略的に示す図(その8)である。 図9(A)は、ウエハの搬送手順を概略的に示す図(その9)であり、図9(B)は、ウエハの搬送手順を概略的に示す図(その10)であり、図9(C)は、ウエハの搬送手順を概略的に示す図(その11)であり、図9(D)は、ウエハの搬送手順を概略的に示す図(その12)である。 本発明の一実施形態の露光動作を示すフローチャート(その1)である。 本発明の一実施形態の露光動作を示すフローチャート(その2)である。 ウエハの一例を示す図である。 図13(A)は、プリアライメント時のウエハの基準位置とロードスライダのマークの基準位置との関係を示す図であり、図13(B)は、ローディング時のロードスライダのマークの基準位置と、ウエハの基準ロード位置との関係を示す図である。 図14(A)は、プリアライメント時のウエハの中心位置と、ロードスライダのマークの位置との関係を示す図であり、図14(B)は、ローディング時のロードスライダのマークの位置と、ウエハステージWSTのローディングポジションの推定位置との関係を示す図である。 図15(A)は、ウエハの位置ずれの平行成分の一例を示すベクトル図であり、図15(B)は、ウエハの位置ずれの回転成分の一例を示すベクトル図である。 図16(A)は、ウエハの残留位置ずれの平行成分の一例を示すベクトル図であり、図16(B)は、ウエハの残留位置ずれの回転成分の一例を示すベクトル図である。 ウエハの位置ずれの全体の回転成分を概略的に示す図である。 本実施形態の露光装置100の構成の変形例を示す図である。
符号の説明
20…主制御装置(制御装置)、28…テーブル(退避機構)、42…マーク検出系、45…プリアライメント装置、50…ロードスライダ(搬送系)、50M…マーク、51…ターンテーブル、52…プリアライメントステージ、60…Y駆動機構、81A〜81G1,81G2…照明装置、83A、83B…ラインセンサ、100…露光装置、AS…アライメント検出系(検出系)、PL…投影光学系、RST…レチクルステージ、W…ウエハ(物体)、WST…ウエハステージ(ステージ)。

Claims (13)

  1. ステージに対する物体の位置合わせを行う第1工程と;
    前記第1工程を行った後に、前記物体を前記ステージに載置する第2工程と;
    前記第2工程を行った後に、前記ステージ上に置かれた前記物体の位置情報を検出する第3工程と;
    前記第3工程を行った後に、前記検出結果と許容範囲とを比較する第4工程と;
    前記検出結果が前記許容範囲内となるまで、前記物体を前記ステージから取り出して、前記検出結果を考慮しつつ、前記第1工程と、前記第2工程と、前記第3工程と、前記第4工程とを少なくとも1回繰り返す第5工程と;を含む位置調整方法。
  2. 複数の物体各々に対して、前記第1工程から前記第4工程までの処理及び前記第1工程から前記第5工程までの処理のいずれか一方の処理を行った後、前記第4工程において前記検出結果が前記許容範囲内となったときには、その物体の検出結果を記憶する第6工程をさらに含み、
    前記第1工程では、それまでの記憶内容から推定される補正値に基づいて、前記位置合わせを行うことを特徴とする請求項1に記載の位置調整方法。
  3. 前記第1工程では、
    統計的演算手法により、前記補正値を推定することを特徴とする請求項2に記載の位置調整方法。
  4. 前記記憶内容の平均値と、前記記憶内容に基づいて作成された自己回帰モデルが示す値と、多変量解析方法を用いた前記記憶内容の解析結果との少なくとも一方を前記補正値とすることを特徴とする請求項3に記載の位置調整方法。
  5. 前記第5工程において、前記第1工程を繰り返し行う前に、
    前記ステージに対する位置合わせが行われる前記物体が置かれる場所に、他の物体が置かれている場合には、該他の物体を退避場所に一時退避させる第7工程をさらに含むことを特徴とする請求項1〜4のいずれか一項に記載の位置調整方法。
  6. 物体をステージ上に載置する前に、そのステージに対する前記物体の位置合わせを行う際には、過去にその位置合わせを行った後に検出された、前記ステージ上に載置された複数の物体の位置情報から推定される補正値に基づいて、位置合わせを行う工程を含む位置調整方法。
  7. 前記工程では、
    統計的演算手法により、補正値を推定することを特徴とする請求項6に記載の位置調整方法。
  8. 前記記憶内容の平均値と、前記記憶内容に基づいて作成された自己回帰モデルが示す値と、多変量解析方法を用いた前記記憶内容の解析結果との少なくとも一方を前記補正値として推定することを特徴とする請求項7に記載の位置調整方法。
  9. デバイスを製造するデバイス製造方法であって、
    請求項1〜8のいずれか一項に記載の位置調整方法を用いて、物体の位置調整を行ってステージに前記物体を受け渡す工程と;
    前記ステージ上に保持された物体に、デバイスパターンを転写する工程と;を含むデバイス製造方法。
  10. 物体を保持するステージと;
    前記ステージに前記物体を搬送する搬送系と;
    前記搬送系により前記ステージに前記物体を搬送する前に、前記ステージに対する前記物体の位置合わせを行う位置合わせ装置と;
    前記ステージ上の前記物体の位置情報を検出する検出系と;
    前記検出系の検出結果が許容範囲内となるまで、前記物体を前記ステージから取り出して、前記検出結果を考慮しつつ、前記位置合わせ装置による位置合わせと、前記搬送系による搬送と、前記検出系による検出とを少なくとも1回繰り返し行わせ、前記ステージに前記物体を置き直すように制御する制御装置と;を備える位置調整装置。
  11. 前記検出系の検出結果が許容範囲内となったとき、その検出結果を記憶する記憶装置をさらに備え、
    前記位置合わせ装置は、前記記憶内容を考慮しつつ、前記位置合わせを行うことを特徴とする請求項10に記載の位置調整装置。
  12. 前記物体を前記ステージから取り出して、前記検出結果を考慮しつつ前記位置合わせを繰り返し行う際に、他の物体を前記位置合わせが行われる位置から一時退避させる退避機構をさらに備えることを特徴とする請求項10又は11に記載の位置調整装置。
  13. パターンを、物体上に転写する露光装置であって、
    請求項10〜12のいずれか一項に記載の位置調整装置と;
    前記位置調整装置により位置が調整された物体に、前記パターンを転写する転写装置と;を備える露光装置。

JP2004258023A 2004-09-06 2004-09-06 位置調整方法、デバイス製造方法、位置調整装置及び露光装置 Pending JP2006073916A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258023A JP2006073916A (ja) 2004-09-06 2004-09-06 位置調整方法、デバイス製造方法、位置調整装置及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258023A JP2006073916A (ja) 2004-09-06 2004-09-06 位置調整方法、デバイス製造方法、位置調整装置及び露光装置

Publications (1)

Publication Number Publication Date
JP2006073916A true JP2006073916A (ja) 2006-03-16

Family

ID=36154178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258023A Pending JP2006073916A (ja) 2004-09-06 2004-09-06 位置調整方法、デバイス製造方法、位置調整装置及び露光装置

Country Status (1)

Country Link
JP (1) JP2006073916A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083520A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp 露光装置およびアライメント方法
JP2011060858A (ja) * 2009-09-07 2011-03-24 Canon Inc 露光装置、露光装置の制御方法、及びデバイス製造方法
JP2013224961A (ja) * 2013-07-12 2013-10-31 Hitachi High-Technologies Corp 半導体ウェハ検査装置
JP2018146856A (ja) * 2017-03-07 2018-09-20 キヤノン株式会社 リソグラフィ装置及び物品の製造方法
CN113734784A (zh) * 2021-09-17 2021-12-03 苏州华兴源创科技股份有限公司 上下料控制装置及控制方法
WO2024077801A1 (zh) * 2022-10-14 2024-04-18 长鑫存储技术有限公司 套刻标记检查方法及设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083520A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp 露光装置およびアライメント方法
JP2011060858A (ja) * 2009-09-07 2011-03-24 Canon Inc 露光装置、露光装置の制御方法、及びデバイス製造方法
JP2013224961A (ja) * 2013-07-12 2013-10-31 Hitachi High-Technologies Corp 半導体ウェハ検査装置
JP2018146856A (ja) * 2017-03-07 2018-09-20 キヤノン株式会社 リソグラフィ装置及び物品の製造方法
CN113734784A (zh) * 2021-09-17 2021-12-03 苏州华兴源创科技股份有限公司 上下料控制装置及控制方法
WO2024077801A1 (zh) * 2022-10-14 2024-04-18 长鑫存储技术有限公司 套刻标记检查方法及设备

Similar Documents

Publication Publication Date Title
CN109791379B (zh) 测量系统及基板处理系统、及元件制造方法
TWI411011B (zh) 標線保護構件、標線運送裝置、曝光裝置以及標線運送方法
EP1791169A1 (en) Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus
US6885437B2 (en) Mask exchanging method and exposure apparatus
WO1999028220A1 (fr) Dispositif et procede de transfert de substrats
JP4978471B2 (ja) 物体の搬出入方法及び搬出入装置、露光方法及び露光装置、並びにデバイス製造方法
JP2007115784A (ja) 露光システム、露光方法、及びデバイス製造工場
JP2006071395A (ja) 較正方法及び位置合わせ方法
JP2005333116A (ja) 位置検出装置及び方法、位置調整装置及び方法、並びに露光装置及び方法
US7307695B2 (en) Method and device for alignment of a substrate
JP2007335613A (ja) 基板位置検出装置、基板搬送装置、露光装置、基板位置検出方法及びマイクロデバイスの製造方法
JP2005340315A (ja) 位置合わせ装置、露光装置、位置合わせ方法及び露光方法、並びにデバイス製造方法及び較正用(工具)レチクル
JP2007005617A (ja) 進捗状況表示方法、表示プログラム、及び表示装置、並びにデバイス製造方法
JPH11307425A (ja) マスクの受け渡し方法、及び該方法を使用する露光装置
JP2003059807A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2006073916A (ja) 位置調整方法、デバイス製造方法、位置調整装置及び露光装置
JP4228137B2 (ja) 露光装置及びデバイス製造方法
JP4815847B2 (ja) 基板処理装置及び露光装置
JP2006073915A (ja) マーク、搬送装置、露光装置、位置検出方法及び搬送方法並びにデバイス製造方法
JP2006012907A (ja) 露光装置、搬送方法及び露光方法並びにデバイス製造方法
JP2003156322A (ja) 位置計測方法及び装置、位置決め方法、露光装置、並びにマイクロデバイスの製造方法
JP2007115829A (ja) マスク搬送装置、マスク搬送方法、及び露光方法
JP4332891B2 (ja) 位置検出装置、位置検出方法、及び露光方法、並びにデバイス製造方法
JP2006064495A (ja) 計測方法、基板搬送方法及び計測装置
JP2003197504A (ja) 露光方法及びデバイス製造方法