JP2006003267A - Elastic wave element and biosensor device equipped therewith - Google Patents

Elastic wave element and biosensor device equipped therewith Download PDF

Info

Publication number
JP2006003267A
JP2006003267A JP2004181271A JP2004181271A JP2006003267A JP 2006003267 A JP2006003267 A JP 2006003267A JP 2004181271 A JP2004181271 A JP 2004181271A JP 2004181271 A JP2004181271 A JP 2004181271A JP 2006003267 A JP2006003267 A JP 2006003267A
Authority
JP
Japan
Prior art keywords
elastic wave
unit
excitation
wave element
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004181271A
Other languages
Japanese (ja)
Inventor
Motoko Ichihashi
素子 市橋
Atsushi Ito
敦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004181271A priority Critical patent/JP2006003267A/en
Publication of JP2006003267A publication Critical patent/JP2006003267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elastic wave element measuring a very small amount of a liquid substance with high precision even if a very small amount of the liquid substance is brought into contact with the detection part of the elastic wave element to be measured, and also to provide a biosensor device using it. <P>SOLUTION: The elastic wave element is constituted by providing an excitation part for exciting an elastic wave, a reception part for receiving the elastic wave and a detection part for detecting an object to be detected becoming a contact state between the excitation part and the reception part on a substrate. Partition plates are provided between the excitation part and the detection part, between the reception part and the detection part, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学、生化学、医療、食品分野における、圧電材料中又は表面を伝播する弾性波素子及びこれを使用したバイオセンサ装置に関するものである。   The present invention relates to an acoustic wave element propagating in or on a piezoelectric material and a biosensor device using the same in the chemical, biochemical, medical and food fields.

生体分子間の相互作用を測定するために、例えば、非特許文献1に示されるように弾性波素子が利用されている。
前記文献に記載されるラブ波デバイス、SH−SAWデバイス、APMデバイス、FPWデバイス、STWデバイス等の弾性波素子は、水晶発振子に比べて感度が高く、微量な被検出物を測定するには有用であった。
しかしながら、弾性波素子を使用した測定において、検出部に微量の液状物を接触させた場合、液状物の接触面積が変化してしまい、測定結果にばらつきが生じるという問題があった。また、検出部に予めバッファー液(生化学用緩衝液であり、主な含有物はNaClやKCl等である)等を接触させておいて、そこに被検出物の注入をしたりする場合に、励振部や受信部を構成するIDT(Interdigital Tranducer:交差指電極)にバッファー液等が接触し、波の減衰を引き起こし測定ができなくなるという問題があった。また、励振部や受信部付近の湿度変化の影響を受けることにより、周波数変化を起こし、質量負荷や粘性負荷などの正確な測定ができないという問題もあった。
In order to measure the interaction between biomolecules, for example, an elastic wave element is used as shown in Non-Patent Document 1.
Elastic wave elements such as Love wave devices, SH-SAW devices, APM devices, FPW devices, and STW devices described in the above documents have higher sensitivity than crystal oscillators, and are used to measure a small amount of an object to be detected. It was useful.
However, in the measurement using an acoustic wave element, when a small amount of liquid material is brought into contact with the detection unit, there is a problem that the contact area of the liquid material changes and the measurement results vary. In addition, when a buffer solution (a biochemical buffer solution, the main content is NaCl, KCl, or the like) is previously brought into contact with the detection unit, and an object to be detected is injected there. However, there is a problem that the buffer liquid or the like comes into contact with an IDT (Interdigital Tranducer: cross finger electrode) that constitutes the excitation unit or the reception unit, causing a wave attenuation and making measurement impossible. In addition, there is a problem that the frequency change occurs due to the influence of the humidity change in the vicinity of the excitation unit and the reception unit, and accurate measurement of mass load and viscous load cannot be performed.

塩川祥子、森泉豊栄,「弾性波デバイスを用いた化学センサ」,電学論C,平成3年,111巻9号)Shoko Shiokawa, Toyosaka Moriizumi, “Chemical Sensors Using Elastic Wave Devices”, Electrical Engineering C, 1991, Vol. 111, No. 9)

そこで、本発明は、弾性波素子の検出部に、微量の液状物を接触させて測定する場合であっても、高い精度で測定することが可能な弾性波素子及びこれを用いたバイオセンサ装置を提供することを目的とする。   Therefore, the present invention provides an elastic wave element that can be measured with high accuracy even when a minute amount of liquid material is brought into contact with the detection unit of the elastic wave element, and a biosensor device using the same The purpose is to provide.

上記課題を解決するために、本発明者等は鋭意検討の結果、下記の通り解決手段を見出した。
本発明の弾性波素子は、請求項1に記載の通り、基板上に弾性波を励起するための励振部と、前記弾性波を受信するための受信部と、前記励振部と前記受信部との間に被検出物が接触することになる検出部とを備える弾性波素子であって、前記励振部と前記検出部との間と、前記受信部と前記検出部との間に、それぞれ仕切板を設けたことを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の弾性波素子において、前記仕切板は、前記励振部と、前記検出部とを覆うようにして設けられたカバーの一部として構成されていることを特徴とする。
また、請求項3に記載の本発明は、請求項1又は2に記載の弾性波素子において、前記検出部上に液状物が保持できるように、前記仕切板間に枠板を立設して囲いとしたことを特徴とする。
また、請求項4に記載の本発明は、請求項1乃至3のいずれかに記載のバイオセンサにおいて、前記弾性波素子は、ラブ波デバイス、SH−SAWデバイス、APMデバイス、FPWデバイス又はSTWデバイスであることを特徴とする。
また、本発明のバイオセンサ装置は、請求項1乃至4の何れかに記載の弾性波素子を備えることを特徴とする。
In order to solve the above-mentioned problems, the present inventors have found a solution as follows as a result of intensive studies.
An elastic wave device according to the present invention includes an excitation unit for exciting an elastic wave on a substrate, a reception unit for receiving the elastic wave, the excitation unit, and the reception unit. Between the excitation unit and the detection unit, and between the reception unit and the detection unit, respectively. A board is provided.
According to a second aspect of the present invention, in the acoustic wave element according to the first aspect, the partition plate is a part of a cover provided so as to cover the excitation unit and the detection unit. It is configured.
According to a third aspect of the present invention, in the acoustic wave device according to the first or second aspect, a frame plate is erected between the partition plates so that a liquid material can be held on the detection unit. It is characterized by being enclosed.
The biosensor according to any one of claims 1 to 3, wherein the acoustic wave element is a Love wave device, an SH-SAW device, an APM device, an FPW device, or an STW device. It is characterized by being.
A biosensor device according to the present invention includes the acoustic wave device according to any one of claims 1 to 4.

本発明によれば、弾性波素子の検出部に接触することになる液状物の面積が測定の際に変化することを防ぐことができる。また、検出部上の液状物は、励振部又は受信部に接触することがないので、正確な弾性波を励起又は受信することができる。
また、励振部又は受信部が直接外気に触れないようにすることで、湿度・温度変化や風の流れによる周波数変化を抑えることができる。
また、検出部を囲うことにより、液状物が検出部に接触する面積を一定に保つことができ、正確に測定することが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, it can prevent that the area of the liquid substance which contacts the detection part of an elastic wave element changes in the case of a measurement. Moreover, since the liquid substance on the detection unit does not come into contact with the excitation unit or the reception unit, it is possible to excite or receive an accurate elastic wave.
In addition, by preventing the excitation unit or the reception unit from directly touching the outside air, it is possible to suppress changes in frequency due to changes in humidity and temperature and the flow of wind.
Further, by enclosing the detection unit, the area where the liquid material contacts the detection unit can be kept constant, and accurate measurement can be performed.

上記の通り、本発明の弾性波素子は、基板上に弾性波を励起するための励振部と、前記弾性波を受信するための受信部と、前記励振部と前記受信部との間に被検出物が接触することになる検出部とを備える弾性波素子であって、前記励振部と前記検出部との間と、前記受信部と前記検出部との間に、それぞれ仕切板を設けたことを特徴とする。   As described above, the acoustic wave device of the present invention includes an excitation unit for exciting an acoustic wave on a substrate, a reception unit for receiving the acoustic wave, and a gap between the excitation unit and the reception unit. An elastic wave element including a detection unit that comes into contact with a detection object, and a partition plate is provided between the excitation unit and the detection unit and between the reception unit and the detection unit, respectively. It is characterized by that.

本発明では、励振部と検出部との間と、受信部と検出部との間に、それぞれ仕切板を設けるようにしたものである。
仕切板の高さ、幅、厚み、形状及び立設する方向については、液状物が励振部及び受信部側に移動することを防ぐことができれば、特に制限はない。従って、仕切板の形状が曲面形状であってもよく、また、立設する方向が基板に対して垂直であっても傾斜していてもよい。
In the present invention, partition plates are provided between the excitation unit and the detection unit and between the reception unit and the detection unit, respectively.
There are no particular restrictions on the height, width, thickness, shape, and direction of the partition plate as long as the liquid material can be prevented from moving toward the excitation unit and the reception unit. Therefore, the shape of the partition plate may be a curved surface shape, and the standing direction may be vertical or inclined with respect to the substrate.

また、仕切板は、励振部と、検出部とを囲うようにして設けられたカバーの一部として構成されることが好ましい。励振部及び受信部が、雰囲気温度、湿度及び風速等の影響を受けることがなく正確な測定が可能となるからである。
このカバーの形状についても、励振部及び検出部を覆うことができれば、例えば、箱形、略半球状等とすることができ、特に制限はない。
Moreover, it is preferable that a partition plate is comprised as a part of cover provided so that an excitation part and a detection part may be enclosed. This is because the excitation unit and the reception unit can be accurately measured without being influenced by the ambient temperature, humidity, wind speed, and the like.
The shape of the cover is not particularly limited as long as it can cover the excitation unit and the detection unit, for example, a box shape or a substantially hemispherical shape.

また、検出部上に液状物が保持できるように、仕切板間に枠板を立設して囲いとすることが好ましい。これにより、液状物が検出部に接触することになる面積を一定とすることができ、正確な測定が可能となる。
この枠板の形状及び立設する方向についても、仕切板とともに検出部を囲うことにより液状物が外に漏れなければ、例えば、曲面形状であってもよく、また、基板に対して傾斜していてもよく、特に制限はない。
In addition, it is preferable that a frame plate is provided between the partition plates so as to hold the liquid material on the detection unit. Thereby, the area where the liquid material comes into contact with the detection unit can be made constant, and accurate measurement is possible.
The shape of the frame plate and the direction in which the frame plate is erected may also be, for example, a curved shape, or inclined with respect to the substrate, as long as the liquid material does not leak outside by surrounding the detector with the partition plate. There is no particular limitation.

弾性波素子としては、基板上に弾性波を励起するための励振部と、弾性波を受信するための受信部と、励振部と受信部との間に被検出物が接触することになる検出部とを備えるものであれば特に制限されるものではない。この弾性素子の中でも、ラブ波デバイス、SH−SAWデバイス、APMデバイス、FPWデバイス又はSTWデバイスを使用することが好ましい。
ラブ波デバイスは、圧電材料であるSTカット水晶、LiTaO3等からなる基板上にAu,Al,Cr等の金属膜からなるIDTを設け、これらの上から、前記基板の横波の伝播速度より遅い速度を有する材質(SiO2、ポリマー等)を層状に設け、波の伝播方向に垂直で、基板表面に平行な横波の成分の表面波(ラブ波)を励起するものである。
また、SH−SAWデバイスは、圧電材料であるLiTaO3(36°回転Y板X伝播、Xカット150°伝播)、LiNbO3等からなる基板上にAu,Al,Cr等の金属膜からなるIDTを設け、波の伝播方向に垂直で、基板表面に平行な横波成分の表面波(圧電表面すべり波等)を励起するものである。
また、STWデバイスは、圧電材料であるATカット水晶基板等からなる基板にAu,Al,Cr等の金属膜からなるIDTとグレーティングを設けたものであり、基板を伝播するSSBW(surface skimming bulkwave)をグレーティングにより基板表面にトラップし、表面横波(surface transverse wave)を励起するものである。
また、FPWデバイスは、圧電材料基板やZnO膜等の圧電材料薄膜上にAu,Al,Cr等の金属膜からなるIDTを設けたものであり、波の変位が波の伝播方向と基板に垂直方向の成分からなるラム波と呼ばれる板波を励起するものである。
また、APMデバイスは、圧電材料であるSTカット水晶基板上にAu,Al,Cr等の金属膜からなるIDTを設けたものであり、基板表面に沿って基板に平行伝播する板波を励起するものである。
As an acoustic wave element, an excitation unit for exciting an elastic wave on a substrate, a reception unit for receiving an elastic wave, and a detection object that comes into contact between the excitation unit and the reception unit are detected. If it has a part, it will not be restrict | limited in particular. Among these elastic elements, it is preferable to use a Love wave device, an SH-SAW device, an APM device, an FPW device, or an STW device.
The Love wave device is provided with an IDT made of a metal film such as Au, Al, Cr, etc. on a substrate made of ST cut crystal, LiTaO 3 or the like which is a piezoelectric material, and from above, the propagation speed of the transverse wave of the substrate is slower A material having a velocity (SiO 2 , polymer, etc.) is provided in a layer form to excite a surface wave (Love wave) of a transverse wave component that is perpendicular to the wave propagation direction and parallel to the substrate surface.
Further, the SH-SAW device is an IDT made of a metal film such as Au, Al, Cr on a substrate made of LiTaO 3 (36 ° rotation Y plate X propagation, X cut 150 ° propagation), LiNbO 3 or the like which is a piezoelectric material. To excite surface waves of a transverse wave component (such as a piezoelectric surface shear wave) that is perpendicular to the wave propagation direction and parallel to the substrate surface.
The STW device is an STBW (surface skimming bulkwave) that propagates through the substrate by providing an IDT and a grating made of a metal film of Au, Al, Cr, etc. on a substrate made of an AT-cut quartz substrate or the like that is a piezoelectric material. Is trapped on the substrate surface by a grating to excite a surface transverse wave.
Further, the FPW device has an IDT made of a metal film such as Au, Al, Cr on a piezoelectric material thin film such as a piezoelectric material substrate or a ZnO film, and the wave displacement is perpendicular to the wave propagation direction and the substrate. It excites a plate wave called a Lamb wave consisting of direction components.
In addition, the APM device is provided with an IDT made of a metal film such as Au, Al, and Cr on an ST-cut quartz substrate that is a piezoelectric material, and excites plate waves that propagate in parallel to the substrate along the substrate surface. Is.

また、仕切板、カバー又は枠板を構成する材料についても特に制限はないが、例えば、ポリプロピレン、アクリル樹脂、PDMS(ポリジメチルシロキサン)等を使用することができる。
仕切板等の基板上への固定方法としては、硬化後に弾性を有する接着剤を使用することができ、一例を挙げると、シリコーン系のバスコーク(登録商標)を使用することができる。また、仕切板等をPDMS等の粘着性を有する材料により構成し、この粘着性を利用して固定する方法もある。
Moreover, although there is no restriction | limiting in particular about the material which comprises a partition plate, a cover, or a frame board, For example, a polypropylene, an acrylic resin, PDMS (polydimethylsiloxane) etc. can be used.
As a fixing method on a substrate such as a partition plate, an adhesive having elasticity after curing can be used. For example, silicone-based bath coke (registered trademark) can be used. There is also a method in which the partition plate or the like is made of an adhesive material such as PDMS and fixed using this adhesive property.

次に、本発明の一実施例の弾性波素子について説明する。
まず、本実施例の弾性波素子の製造方法について説明する。
図1は、本実施例の弾性波素子30の基本構成となるラブ波デバイス10を示すもので、厚み0.5mm、33°30’回転水晶ST−カットウエーハからなる圧電基板1の上に、励振部2と、受信部3と、前記励振部2と受信部3との間の弾性波伝播路の表面に形成された検出部4とを備える。
前記励振部2は、弾性波を励起するためのもので、夫々75対の櫛形電極2a,2bから構成される。この櫛形電極2a,2bは、圧電基板1上に、厚み50nmのCr膜と、厚み150nmのAu膜とを順にスパッタリング法により積層した後、フォトリソグラフィにより不要な金属膜部分をドライエッチングにより除去することにより形成する。櫛形電極2a,2bの幅w及び間隔sは、夫々10μmに形成し、励起される弾性波の波長λ(λ=2(w+s))は40μmとする。また、受信部3も、励振部2と同様にして形成する。
前記励振部2及び受信部3を形成した圧電基板1の全面には、厚み3μm程度のSiO2膜からなるガイドレイヤー層を形成し、このガイドレイヤー層上に、検出部4として、厚み20nmのCr膜と、厚み100nmのAu膜とを順に積層して、矩形状の固定化用膜を形成する。
上記構成により、中心周波数125MHzのラブ波が励起されることになる。
Next, an acoustic wave device according to an embodiment of the present invention will be described.
First, the manufacturing method of the elastic wave element of a present Example is demonstrated.
FIG. 1 shows a Love wave device 10 which is a basic configuration of an acoustic wave element 30 of the present embodiment. A piezoelectric substrate 1 made of a 0.5 mm-thick, 33 ° 30 ′ rotating quartz ST-cut wafer, An excitation unit 2, a reception unit 3, and a detection unit 4 formed on the surface of the elastic wave propagation path between the excitation unit 2 and the reception unit 3 are provided.
The excitation unit 2 is for exciting an elastic wave, and includes 75 pairs of comb electrodes 2a and 2b. The comb electrodes 2a and 2b are formed by sequentially depositing a 50 nm thick Cr film and a 150 nm thick Au film on the piezoelectric substrate 1 by a sputtering method, and then removing unnecessary metal film portions by dry etching by photolithography. To form. The widths w and intervals s of the comb-shaped electrodes 2a and 2b are each 10 μm, and the wavelength λ (λ = 2 (w + s)) of the excited elastic wave is 40 μm. The receiving unit 3 is also formed in the same manner as the excitation unit 2.
A guide layer layer made of a SiO 2 film having a thickness of about 3 μm is formed on the entire surface of the piezoelectric substrate 1 on which the excitation unit 2 and the reception unit 3 are formed. A detection unit 4 having a thickness of 20 nm is formed on the guide layer layer. A Cr film and an Au film having a thickness of 100 nm are sequentially stacked to form a rectangular fixing film.
With the above configuration, a Love wave having a center frequency of 125 MHz is excited.

そして、上記ラブ波デバイス10の励振部2及び受信部3を覆うようにして、底面に開口部を備える箱形のポリプロピレン製のカバー5,5をバスコークにより固定する。このカバー5,5の対向する面5a,5aが、仕切板となり、検出部4上の液状物を励振部2側及び受信部3側に移動することを防ぐ。また、励振部2及び受信部3は、このカバー5,5により覆われているので、湿度・温度変化や風の流れによる周波数変化の影響を受けることがない。
また、本実施例では、仕切板5a,5aとともに、枠板6,6を立設することにより検出部4の上部に液状物が保持できるように囲いを設けるようにした。これにより、検出部4への液状物の接触面積が変化することなく測定することができる。
Then, the box-shaped polypropylene covers 5 and 5 having openings on the bottom surface are fixed by bus coke so as to cover the excitation unit 2 and the reception unit 3 of the Love wave device 10. The opposing surfaces 5a and 5a of the covers 5 and 5 serve as partition plates and prevent the liquid on the detection unit 4 from moving to the excitation unit 2 side and the reception unit 3 side. Further, since the excitation unit 2 and the reception unit 3 are covered with the covers 5 and 5, they are not affected by changes in humidity / temperature and frequency changes due to wind flow.
Further, in this embodiment, the frame plates 6 and 6 are erected together with the partition plates 5a and 5a so that the enclosure is provided on the upper portion of the detection unit 4 so that the liquid material can be held. Thereby, it can measure, without the contact area of the liquid substance to the detection part 4 changing.

次に、本発明のバイオセンサ装置の一実施例について説明する。
図3は、バイオセンサ装置の全体構成を示すもので、弾性波素子30は、分析装置7に接続され、分析装置7は所望の周波数の交流信号を表面弾性波素子30に出力する。制御装置8は、分析装置7の動作を制御するものであり、分析装置7が弾性波素子30に出力する信号の周波数を変化させ、弾性波素子30に出力された周波数と測定結果の周波数とを記憶するように構成されている。尚、分析装置7として、本実施例では、ネットワークアナライザを使用している。
Next, an embodiment of the biosensor device of the present invention will be described.
FIG. 3 shows the overall configuration of the biosensor device. The acoustic wave element 30 is connected to the analyzer 7, and the analyzer 7 outputs an AC signal having a desired frequency to the surface acoustic wave element 30. The control device 8 controls the operation of the analysis device 7. The control device 8 changes the frequency of the signal output from the analysis device 7 to the acoustic wave element 30, and the frequency output to the acoustic wave element 30 and the frequency of the measurement result. Is stored. In this embodiment, a network analyzer is used as the analysis device 7.

次に、上記バイオセンサ装置を用いた測定例について、比較例とともに説明する。
(実施例1)
まず、弾性波素子30の検出部4に10μlの純水を載置しておいて、分析装置7から励振部2に交流信号を出力し、励振部2により弾性波を励起する。そして、受信部3により受信される中心周波数(120MHz)が安定してから、検出部4に、更に、純水を1μlずつ計2回注入し、最後にブロックエース(登録商標、製造元:雪印乳業(株) 販売元:大日本製薬(株) UK−B25、以下同じ)を1μl注入する。その時の周波数変化を図4に示す。
Next, measurement examples using the biosensor device will be described together with comparative examples.
Example 1
First, 10 μl of pure water is placed on the detection unit 4 of the elastic wave element 30, an AC signal is output from the analyzer 7 to the excitation unit 2, and the excitation unit 2 excites an elastic wave. Then, after the center frequency (120 MHz) received by the receiving unit 3 is stabilized, pure water is further injected into the detecting unit 4 twice by 1 μl, and finally Block Ace (registered trademark, manufacturer: Snow Brand Milk Products). Co., Ltd. Distributor: Dainippon Pharmaceutical Co., Ltd. UK-B25 (hereinafter the same) is injected. The frequency change at that time is shown in FIG.

(比較例1)
図1に示す従来のラブ波デバイス10の検出部4に、1μlの純水を載置し、実施例1と同様にして弾性波を励起し、中心周波数(120MHz)が安定してから、粘性の負荷を与えないように、純水を0.5μlずつを計4回注入した。その時の周波数変化を図5に示す。
(Comparative Example 1)
1 μl of pure water is placed on the detection unit 4 of the conventional Love wave device 10 shown in FIG. 1 and an elastic wave is excited in the same manner as in Example 1 to stabilize the center frequency (120 MHz). In order not to give the load, 0.5 μl of pure water was injected four times in total. The frequency change at that time is shown in FIG.

上記測定の結果、実施例1では、純水を加えても大きな周波数変化は生じず、ブロックエースのみに感度を示していることがわかる。また、励振部2及び受信部3をカバー5,5で覆っていることに加え、囲い6を設けているため、励振部2側及び受信部3側に液状物が移動して悪影響を与えるようなことはなかった。
これに対して、比較例1は、同種の液体を注入しているにもかかわらず、純水を0.5μl注入する毎に周波数が20〜30kHz程度変化している。これは、検出部4に接触する液状物の面積が増加することによるものと推測される。
また、実施例1では、2μl以上の液状物を検出部4に載せても測定ができたが、比較例1では、励振部2側及び受信部3側に純水が移動し、弾性波の減衰を引き起こし、最後には測定ができなくなった。
As a result of the above measurement, it can be seen that in Example 1, even when pure water was added, a large frequency change did not occur, and the sensitivity was shown only in Block Ace. In addition to covering the excitation unit 2 and the reception unit 3 with the covers 5 and 5, the enclosure 6 is provided, so that the liquid material may move to the excitation unit 2 side and the reception unit 3 side and have an adverse effect. There was nothing wrong.
On the other hand, although the comparative example 1 is injecting the same kind of liquid, the frequency changes by about 20 to 30 kHz every time 0.5 μl of pure water is injected. This is presumed to be due to an increase in the area of the liquid material in contact with the detection unit 4.
Further, in Example 1, measurement was possible even when a liquid material of 2 μl or more was placed on the detection unit 4, but in Comparative Example 1, pure water moved to the excitation unit 2 side and the reception unit 3 side, and the elastic wave Attenuation was caused, and in the end it was impossible to measure.

尚、上記実施例の弾性波素子30は、囲い6を設けるようにしたものであるが、図6に示すように囲い6を設けないで、検出部4上に液状物を通過させるようにしたフローセルタイプの弾性波素子30とすることもできる。   Although the acoustic wave element 30 of the above embodiment is provided with the enclosure 6, as shown in FIG. 6, the liquid material is allowed to pass over the detection unit 4 without providing the enclosure 6. A flow cell type acoustic wave device 30 may be used.

本発明の一実施例の弾性波素子の製造に使用されるラブ波デバイスの説明図Explanatory drawing of the Love wave device used for manufacture of the elastic wave element of one Example of this invention 本発明の一実施例の弾性波素子の説明図Explanatory drawing of the elastic wave element of one Example of this invention 本発明の一実施例のバイオセンサ装置の説明図Explanatory drawing of the biosensor apparatus of one Example of this invention 本発明の実施例の測定結果を示すグラフThe graph which shows the measurement result of the Example of this invention 比較例の測定結果を示すグラフGraph showing measurement results of comparative example 本発明の弾性波素子の変形例の説明図Explanatory drawing of the modification of the elastic wave element of this invention

符号の説明Explanation of symbols

1 ラブ波デバイス
2 励振部
3 受信部
4 検出部
5 カバー
6 枠板
7 分析装置
8 制御装置
DESCRIPTION OF SYMBOLS 1 Love wave device 2 Excitation part 3 Receiving part 4 Detection part 5 Cover 6 Frame board 7 Analyzer 8 Control apparatus

Claims (5)

基板上に弾性波を励起するための励振部と、前記弾性波を受信するための受信部と、前記励振部と前記受信部との間に被検出物が接触することになる検出部とを備える弾性波素子であって、前記励振部と前記検出部との間と、前記受信部と前記検出部との間に、それぞれ仕切板を設けたことを特徴とする弾性波素子。   An excitation unit for exciting an elastic wave on a substrate, a receiving unit for receiving the elastic wave, and a detection unit that an object to be detected contacts between the excitation unit and the receiving unit. An elastic wave device comprising: a partition plate provided between the excitation unit and the detection unit, and between the reception unit and the detection unit. 前記仕切板は、前記励振部と、前記検出部とを覆うようにして設けられたカバーの一部として構成されていることを特徴とする弾性波素子。   The said partition plate is comprised as a part of cover provided so that the said excitation part and the said detection part might be covered, The acoustic wave element characterized by the above-mentioned. 前記検出部上に液状物が保持できるように、前記仕切板間に枠板を立設して囲いとしたことを特徴とする請求項1又は2に記載の弾性波素子。   The elastic wave device according to claim 1, wherein a frame plate is provided between the partition plates so as to hold a liquid material on the detection unit. 前記弾性波素子は、ラブ波デバイス、SH−SAWデバイス、APMデバイス、FPWデバイス又はSTWデバイスであることを特徴とする請求項1乃至3のいずれかに記載の弾性波素子。   The elastic wave element according to any one of claims 1 to 3, wherein the elastic wave element is a Love wave device, an SH-SAW device, an APM device, an FPW device, or an STW device. 請求項1乃至4の何れかに記載の弾性波素子を備えることを特徴とするバイオセンサ装置。   A biosensor device comprising the acoustic wave device according to claim 1.
JP2004181271A 2004-06-18 2004-06-18 Elastic wave element and biosensor device equipped therewith Pending JP2006003267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181271A JP2006003267A (en) 2004-06-18 2004-06-18 Elastic wave element and biosensor device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181271A JP2006003267A (en) 2004-06-18 2004-06-18 Elastic wave element and biosensor device equipped therewith

Publications (1)

Publication Number Publication Date
JP2006003267A true JP2006003267A (en) 2006-01-05

Family

ID=35771772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181271A Pending JP2006003267A (en) 2004-06-18 2004-06-18 Elastic wave element and biosensor device equipped therewith

Country Status (1)

Country Link
JP (1) JP2006003267A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184011A (en) * 2004-12-24 2006-07-13 Seiko Epson Corp Surface acoustic wave sensor
JP2008122105A (en) * 2006-11-08 2008-05-29 Japan Radio Co Ltd Elastic wave sensor and detection method
JP2010239477A (en) * 2009-03-31 2010-10-21 Japan Radio Co Ltd Surface acoustic wave sensor
JP2012085110A (en) * 2010-10-12 2012-04-26 Japan Radio Co Ltd Surface acoustic wave device and support device of surface acoustic wave device
JP2013152209A (en) * 2011-12-27 2013-08-08 Kyocera Corp Surface acoustic wave sensor and manufacturing method of the same
JP2014112109A (en) * 2014-03-06 2014-06-19 Japan Radio Co Ltd Surface acoustic wave sensor
JP2015065668A (en) * 2014-10-31 2015-04-09 日本無線株式会社 Surface acoustic wave sensor
JP2015210080A (en) * 2014-04-23 2015-11-24 日本無線株式会社 Surface acoustic wave sensor
JP2019074434A (en) * 2017-10-17 2019-05-16 日本無線株式会社 Specimen diagnosing device
JP2020180981A (en) * 2014-10-30 2020-11-05 京セラ株式会社 Sensor device
US20210093232A1 (en) * 2019-09-30 2021-04-01 University-Industry Foundation (Uif), Yonsei University Liquid information sensor and method of driving the same
US12019051B2 (en) 2014-10-30 2024-06-25 Kyocera Corporation Sensor apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082835U (en) * 1983-11-10 1985-06-08 松下電器産業株式会社 surface acoustic wave device
JPH026728A (en) * 1988-06-23 1990-01-10 Japan Radio Co Ltd Measuring instrument for liquid viscosity by surface acoustic wave
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JPH06133759A (en) * 1992-10-28 1994-05-17 Res Dev Corp Of Japan Elastic surface wave biosensor
JPH06177701A (en) * 1992-12-10 1994-06-24 Sanyo Electric Co Ltd Surface acoustic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082835U (en) * 1983-11-10 1985-06-08 松下電器産業株式会社 surface acoustic wave device
JPH026728A (en) * 1988-06-23 1990-01-10 Japan Radio Co Ltd Measuring instrument for liquid viscosity by surface acoustic wave
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JPH06133759A (en) * 1992-10-28 1994-05-17 Res Dev Corp Of Japan Elastic surface wave biosensor
JPH06177701A (en) * 1992-12-10 1994-06-24 Sanyo Electric Co Ltd Surface acoustic wave device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184011A (en) * 2004-12-24 2006-07-13 Seiko Epson Corp Surface acoustic wave sensor
JP4618492B2 (en) * 2004-12-24 2011-01-26 セイコーエプソン株式会社 Surface acoustic wave sensor
JP2008122105A (en) * 2006-11-08 2008-05-29 Japan Radio Co Ltd Elastic wave sensor and detection method
JP2010239477A (en) * 2009-03-31 2010-10-21 Japan Radio Co Ltd Surface acoustic wave sensor
JP2012085110A (en) * 2010-10-12 2012-04-26 Japan Radio Co Ltd Surface acoustic wave device and support device of surface acoustic wave device
JP2013152209A (en) * 2011-12-27 2013-08-08 Kyocera Corp Surface acoustic wave sensor and manufacturing method of the same
JP2014112109A (en) * 2014-03-06 2014-06-19 Japan Radio Co Ltd Surface acoustic wave sensor
JP2015210080A (en) * 2014-04-23 2015-11-24 日本無線株式会社 Surface acoustic wave sensor
JP2020180981A (en) * 2014-10-30 2020-11-05 京セラ株式会社 Sensor device
US12019051B2 (en) 2014-10-30 2024-06-25 Kyocera Corporation Sensor apparatus
JP2015065668A (en) * 2014-10-31 2015-04-09 日本無線株式会社 Surface acoustic wave sensor
JP2019074434A (en) * 2017-10-17 2019-05-16 日本無線株式会社 Specimen diagnosing device
US20210093232A1 (en) * 2019-09-30 2021-04-01 University-Industry Foundation (Uif), Yonsei University Liquid information sensor and method of driving the same
US11696709B2 (en) * 2019-09-30 2023-07-11 University-Industry Foundation (Uif), Yonsei University Liquid information sensor and method of driving the same

Similar Documents

Publication Publication Date Title
KR100708223B1 (en) Sensor array and method for determining the density and viscosity of a liquid
US5283037A (en) Chemical sensor utilizing a surface transverse wave device
US6293136B1 (en) Multiple mode operated surface acoustic wave sensor for temperature compensation
EP1605257B1 (en) Two-frequency measuring method using surface acoustic wave device, and surface acoustic wave device and biosensor device with analysis liquid agitating means
US11243189B2 (en) Surface acoustic wave resonant sensor
JP2008122105A (en) Elastic wave sensor and detection method
KR100706561B1 (en) Method and device for operating a microacoustic sensor array
JP2006003267A (en) Elastic wave element and biosensor device equipped therewith
JP6604238B2 (en) Elastic wave sensor
JP2007225546A (en) Elastic surface wave sensor
JP2008267968A (en) Measurement target characteristic measuring apparatus
JP5431687B2 (en) Device measurement device
JP4628075B2 (en) Sensor
JP2005351799A (en) Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
JP2009031233A (en) Multi-channel qcm sensor
JP2006038584A (en) Chemical sensor and measuring instrument
JP5195926B2 (en) Elastic wave sensor
RU2533692C1 (en) Multiplexer acoustic array for &#34;electronic nose&#34; and &#34;electronic tongue&#34; analytical instruments
JP4950752B2 (en) Density measuring device
JP2008180668A (en) Lamb wave type high-frequency sensor device
JP2013205172A (en) Saw sensor and saw sensor device
RU2393467C2 (en) Acoustic device for determining viscosity and temperature of liquid in one region of liquid sample and measurement technique using said device
JP2008298768A (en) Device for measuring relative permittivity
JP2010032245A (en) Relative permittivity/conductivity measuring apparatus
Kustanovich et al. Design and characterization of surface acoustic wave resonance (SAR) system for in-liquid sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02