JP4950752B2 - Density measuring device - Google Patents

Density measuring device Download PDF

Info

Publication number
JP4950752B2
JP4950752B2 JP2007120902A JP2007120902A JP4950752B2 JP 4950752 B2 JP4950752 B2 JP 4950752B2 JP 2007120902 A JP2007120902 A JP 2007120902A JP 2007120902 A JP2007120902 A JP 2007120902A JP 4950752 B2 JP4950752 B2 JP 4950752B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
propagation path
output
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007120902A
Other languages
Japanese (ja)
Other versions
JP2008275503A (en
Inventor
崇 小貝
博美 谷津田
祥子 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007120902A priority Critical patent/JP4950752B2/en
Publication of JP2008275503A publication Critical patent/JP2008275503A/en
Application granted granted Critical
Publication of JP4950752B2 publication Critical patent/JP4950752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Description

本発明は、液体状の被測定物の密度を測定する弾性表面波素子を有する密度測定装置に関するものである。   The present invention relates to a density measuring apparatus having a surface acoustic wave element for measuring the density of a liquid object to be measured.

一般に、弾性表面波素子は、圧電基板と、前記圧電基板上に設けられた櫛歯状電極指からなる入力電極及び出力電極を備えている。弾性表面波素子では、入力電極に電気信号が入力されると、電極指間に電界が発生し、圧電効果により弾性表面波が励振され、圧電基板上を伝搬していく。この弾性表面波のうち、伝搬方向と直交する方向に変位するすべり弾性表面波(SH-SAW:Shear horizontal Surface Acoustic Wave)を利用する弾性表面波素子を用いた各種物質の検出や物性値等の測定を行うための弾性波センサが研究されている。   In general, a surface acoustic wave element includes a piezoelectric substrate, and an input electrode and an output electrode composed of comb-like electrode fingers provided on the piezoelectric substrate. In the surface acoustic wave element, when an electric signal is input to the input electrode, an electric field is generated between the electrode fingers, and the surface acoustic wave is excited by the piezoelectric effect and propagates on the piezoelectric substrate. Among these surface acoustic waves, detection of various substances and physical property values using surface acoustic wave elements that use a shear surface acoustic wave (SH-SAW) that is displaced in a direction perpendicular to the propagation direction Elastic wave sensors for making measurements have been studied.

弾性表面波素子では、圧電基板上に液体状の被測定物が負荷されると、被測定物の質量の増加に伴って弾性表面波の伝搬速度が低下し、伝搬速度の変化に基づいて弾性表面波素子の共振周波数が変化するという質量負荷効果が知られている。弾性表面波素子の入力電極と出力電極の間の伝搬路上に凹凸構造を形成し、その凹部に被測定物を負荷すると、負荷された被測定物は擬似的に膜を形成する。この膜は圧電基板とともに励振し、膜の質量に基づいて共振周波数が変化することを利用して、被測定物の密度を求めることができる(特許文献1、非特許文献1参照)。   In a surface acoustic wave element, when a liquid object to be measured is loaded on a piezoelectric substrate, the propagation speed of the surface acoustic wave decreases with an increase in the mass of the object to be measured. A mass load effect is known in which the resonance frequency of a surface acoustic wave element changes. When a concavo-convex structure is formed on the propagation path between the input electrode and the output electrode of the surface acoustic wave element, and the object to be measured is loaded in the concave portion, the loaded object to be measured forms a pseudo film. This film is excited together with the piezoelectric substrate, and the density of the object to be measured can be obtained by utilizing the fact that the resonance frequency changes based on the mass of the film (see Patent Document 1 and Non-Patent Document 1).

図9Aは、特許文献1に示す密度測定装置100の説明図であり、図9Bは、図9AのIXB−IXB端面図である。密度測定装置100は、第1弾性表面波素子10と第2弾性表面波素子20とを備える。第1弾性表面波素子10は、入力電極12及び出力電極14を備え、入力電極12と出力電極14の間には、短絡伝搬路16が形成されている。第2弾性表面波素子20は、入力電極22及び出力電極24を備え、入力電極22と出力電極24の間には、入力電極22から出力される弾性表面波の伝搬方向と垂直に凹凸構造を有する伝搬路26が形成されている。短絡伝搬路16、前記凹凸構造の凸部28は、圧電基板42の表面に形成された金属膜44上に設けられている。   9A is an explanatory diagram of the density measuring apparatus 100 shown in Patent Document 1, and FIG. 9B is an end view of IXB-IXB in FIG. 9A. The density measuring apparatus 100 includes a first surface acoustic wave element 10 and a second surface acoustic wave element 20. The first surface acoustic wave element 10 includes an input electrode 12 and an output electrode 14, and a short-circuit propagation path 16 is formed between the input electrode 12 and the output electrode 14. The second surface acoustic wave element 20 includes an input electrode 22 and an output electrode 24, and an uneven structure is formed between the input electrode 22 and the output electrode 24 in a direction perpendicular to the propagation direction of the surface acoustic wave output from the input electrode 22. A propagation path 26 is formed. The short-circuit propagation path 16 and the convex portion 28 of the concavo-convex structure are provided on a metal film 44 formed on the surface of the piezoelectric substrate 42.

密度測定装置100における被測定物の密度の測定は、測定対象となる被測定物46を、短絡伝搬路16及び伝搬路26に負荷した状態で、入力電極12及び22に同一の信号を入力し、出力電極14及び24から出力される信号の位相差を測定することにより、被測定物の密度を求めている。   The measurement of the density of the object to be measured in the density measuring apparatus 100 is performed by inputting the same signal to the input electrodes 12 and 22 while the object to be measured 46 is loaded on the short-circuit propagation path 16 and the propagation path 26. The density of the object to be measured is obtained by measuring the phase difference between the signals output from the output electrodes 14 and 24.

特許第3248683号公報Japanese Patent No. 3248683 近藤淳、塩川祥子、「すべり弾性表面波センサを用いた液体の密度と粘度の分離計測」、信学技報、電子情報通信学会、2000年11月Satoshi Kondo and Shoko Shiokawa, “Separate measurement of density and viscosity of liquids using a slip surface acoustic wave sensor”, IEICE Technical Report, IEICE, November 2000

しかしながら、図9Bに示すように、伝搬路26では、被測定物46は凹部30に負荷され、入力電極22から出力される弾性表面波は、凸部28と、凹部30に負荷されている被測定物46というように異なる媒体を伝搬して、出力電極24から出力される。そのために、凸部28を伝搬する弾性表面波と、凹部30に負荷されている被測定物46を伝搬する弾性表面波が出力電極24においてベクトル合成され、両弾性表面波が打ち消し合う場合があり、結果として、被測定物の密度の測定誤差が生じる場合がある。   However, as shown in FIG. 9B, in the propagation path 26, the object to be measured 46 is loaded on the concave portion 30, and the surface acoustic wave output from the input electrode 22 is loaded on the convex portion 28 and the concave portion 30. It propagates through a different medium such as the measurement object 46 and is output from the output electrode 24. Therefore, the surface acoustic wave propagating through the convex portion 28 and the surface acoustic wave propagating through the object to be measured 46 loaded in the concave portion 30 are vector-synthesized at the output electrode 24, and both surface acoustic waves may cancel each other. As a result, a measurement error of the density of the object to be measured may occur.

本発明は、上記の課題を考慮してなされたものであって、液体状の被測定物の密度を正確に測定することが可能な密度測定装置を提供することを目的とする。   The present invention has been made in consideration of the above-described problems, and an object of the present invention is to provide a density measuring apparatus capable of accurately measuring the density of a liquid object to be measured.

本発明に係る密度測定装置は、入力電極と出力電極との間に電気的に短絡した短絡伝搬路を有する第1弾性表面波素子と、入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成され電気的に短絡した格子状伝搬路を有する第2弾性表面波素子とを備え、前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、前記短絡伝搬路及び前記格子状伝搬路に液体状の被測定物を負荷した状態において、前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求めることを特徴とする。   The density measuring apparatus according to the present invention outputs a first surface acoustic wave element having a short-circuit propagation path electrically short-circuited between an input electrode and an output electrode, and outputs from the input electrode between the input electrode and the output electrode. And a second surface acoustic wave element having a lattice-shaped propagation path in which a concavo-convex structure is formed in a direction parallel to the propagation direction of the surface acoustic wave to be electrically short-circuited, and the first surface acoustic wave element and the second surface acoustic wave element The surface acoustic wave element is arranged in parallel, and the same signal is input to each of the input electrodes in a state where a liquid measurement object is loaded on the short-circuit propagation path and the lattice-shaped propagation path, and the output electrodes The density of the object to be measured is obtained from the phase difference between the output signals output from.

また、本発明に係る他の密度測定装置は、入力電極と出力電極との間に電気的に開放した開放伝搬路を有する第1弾性表面波素子と、入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成され電気的に開放した格子状伝搬路を有する第2弾性表面波素子とを備え、前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、前記開放伝搬路及び前記格子状伝搬路に液体状の被測定物を負荷した状態において、前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求めることを特徴とする。   Another density measuring apparatus according to the present invention includes a first surface acoustic wave device having an open propagation path electrically opened between an input electrode and an output electrode, and the input electrode and the output electrode. A first surface acoustic wave device, comprising: a second surface acoustic wave device having a lattice-shaped propagation path in which an uneven structure is formed in a direction parallel to a propagation direction of the surface acoustic wave output from the input electrode; And the second surface acoustic wave element are arranged in parallel, and in the state where a liquid object to be measured is loaded on the open propagation path and the lattice propagation path, the same signal is input to each input electrode, The density of the object to be measured is obtained from the phase difference between the output signals output from the output electrodes.

本発明によれば、入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成された格子状伝搬路を設けることにより、出力電極における弾性表面波のベクトル合成に起因する測定誤差の発生を防ぎ、液体状の被測定物の密度を正確に測定することができる。   According to the present invention, the output electrode is provided by providing a grid-like propagation path having a concavo-convex structure formed in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode between the input electrode and the output electrode. It is possible to prevent the occurrence of measurement errors due to the vector synthesis of surface acoustic waves in and to accurately measure the density of the liquid object to be measured.

さらに、他の本発明の密度測定装置は、入力電極と出力電極との間に電気的に短絡した短絡伝搬路を有する第1弾性表面波素子と、入力電極と出力電極との間に市松格子状の凹凸構造が形成され電気的に短絡した市松格子状伝搬路を有する第2弾性表面波素子とを備え、前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、前記短絡伝搬路及び前記市松格子状伝搬路に液体状の被測定物を負荷した状態において、前記各入力電極に同一の信号を入力し、前記各出力電極から出力された各出力信号の位相差から、前記被測定物の密度を求めることを特徴とする。   Further, another density measuring apparatus according to the present invention includes a first surface acoustic wave element having a short-circuit propagation path electrically short-circuited between an input electrode and an output electrode, and a checkered lattice between the input electrode and the output electrode. And a second surface acoustic wave element having a checkered lattice-shaped propagation path that is electrically short-circuited, and the first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel. In the state where the liquid measurement object is loaded on the short circuit propagation path and the checkered lattice propagation path, the same signal is input to each input electrode, and the level of each output signal output from each output electrode The density of the object to be measured is obtained from the phase difference.

さらにまた、他の本発明の密度測定装置は、入力電極と出力電極との間に電気的に開放した開放伝搬路を有する第1弾性表面波素子と、入力電極と出力電極との間に市松格子状の凹凸構造が形成され電気的に開放した市松格子状伝搬路を有する第2弾性表面波素子とを備え、前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、前記開放伝搬路及び前記市松格子状伝搬路に液体状の被測定物を負荷した状態において、前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求めることを特徴とする。   Furthermore, another density measuring apparatus of the present invention includes a first surface acoustic wave element having an open propagation path electrically opened between an input electrode and an output electrode, and a checkered pattern between the input electrode and the output electrode. A second surface acoustic wave element having a checkered lattice-shaped propagation path formed with a lattice-shaped uneven structure, and the first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel. In the state where a liquid object to be measured is loaded on the open propagation path and the checkered lattice propagation path, the same signal is input to each input electrode, and each output signal output from each output electrode The density of the object to be measured is obtained from the phase difference.

本発明によれば、入力電極と出力電極との間に市松格子状の凹凸構造が形成された市松格子状伝搬路を設けることにより、出力電極における弾性表面波のベクトル合成に起因する測定誤差の発生を防ぎ、液体状の被測定物の密度を正確に測定することができる。   According to the present invention, by providing a checkered lattice-shaped propagation path in which a checkered lattice-shaped uneven structure is formed between an input electrode and an output electrode, measurement errors caused by vector synthesis of surface acoustic waves at the output electrode are reduced. Generation | occurrence | production can be prevented and the density of a liquid to-be-measured object can be measured correctly.

さらに、前記被測定物がアルコールであることが好ましい。   Furthermore, the object to be measured is preferably alcohol.

本発明によれば、入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成された格子状伝搬路又は市松格子状伝搬路を設けることにより、出力電極における弾性表面波のベクトル合成に起因する測定誤差の発生を防ぎ、液体状の被測定物の密度を正確に測定することができる。   According to the present invention, the lattice-shaped propagation path or the checkered lattice-shaped propagation path in which an uneven structure is formed between the input electrode and the output electrode in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode. By providing, it is possible to prevent measurement errors caused by vector synthesis of surface acoustic waves at the output electrode, and to accurately measure the density of the liquid object to be measured.

以下、本発明の第1実施形態について図面を参照して説明する。図1は、本発明の実施形態に係る密度測定装置40の構成の説明図である。また、図2A、図2Cは、図1のIIA−IIA端面図であって、図2Aは、被測定物を負荷する前の状態を示す図であり、図2Cは、被測定物を負荷した後の状態を示す図である。さらに、図2B、図2Dは、図1のIIB−IIB端面図であって、図2Bは、被測定物を負荷する前の状態を示す図であり、図2Dは、被測定物を負荷した後の状態を示す図である。なお、図9A、図9Bに示した密度測定装置100と同一の構成要素には同一の符号を付している。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a configuration of a density measuring device 40 according to the embodiment of the present invention. 2A and 2C are end views of IIA-IIA in FIG. 1, FIG. 2A is a diagram showing a state before loading the object to be measured, and FIG. 2C is loaded with the object to be measured. It is a figure which shows a back state. 2B and 2D are end views of IIB-IIB in FIG. 1, FIG. 2B is a diagram showing a state before loading the object to be measured, and FIG. 2D is loaded with the object to be measured. It is a figure which shows a back state. In addition, the same code | symbol is attached | subjected to the component same as the density measuring apparatus 100 shown to FIG. 9A and FIG. 9B.

図1に示すように、密度測定装置40は、第1弾性表面波素子10と、第2弾性表面波素子20と、高周波の電気信号を発生する発振器48と、発振器48からの電気信号を分配する分配器50と、第1弾性表面波素子10と第2弾性表面波素子20とを伝搬する弾性表面波の位相差を測定する位相差検出器52を備える。第1弾性表面波素子10は、入力電極12及び出力電極14を備え、入力電極12と出力電極14の間には、短絡伝搬路16が形成されている。第2弾性表面波素子20は、入力電極22及び出力電極24を備え、入力電極22と出力電極24の間には、格子状伝搬路32が形成されている。また、第1弾性表面波素子10及び第2弾性表面波素子20は、圧電基板42上に並列に配置されている。   As shown in FIG. 1, the density measuring device 40 distributes the electric signal from the first surface acoustic wave element 10, the second surface acoustic wave element 20, an oscillator 48 that generates a high-frequency electric signal, and the oscillator 48. And a phase difference detector 52 that measures the phase difference of the surface acoustic waves propagating through the first surface acoustic wave element 10 and the second surface acoustic wave element 20. The first surface acoustic wave element 10 includes an input electrode 12 and an output electrode 14, and a short-circuit propagation path 16 is formed between the input electrode 12 and the output electrode 14. The second surface acoustic wave element 20 includes an input electrode 22 and an output electrode 24, and a lattice propagation path 32 is formed between the input electrode 22 and the output electrode 24. Further, the first surface acoustic wave element 10 and the second surface acoustic wave element 20 are arranged in parallel on the piezoelectric substrate 42.

入力電極12及び22は、発振器48から分配器50を介して入力された電気信号によって、弾性表面波を励振させるために櫛形電極で構成されている。また、出力電極14及び24は、入力電極12又は22で励振され伝搬してきた弾性表面波を受信するために櫛形電極で構成されている。   The input electrodes 12 and 22 are composed of comb-shaped electrodes for exciting surface acoustic waves by an electric signal input from an oscillator 48 via a distributor 50. The output electrodes 14 and 24 are composed of comb-shaped electrodes for receiving the surface acoustic waves excited and propagated by the input electrode 12 or 22.

短絡伝搬路16及び格子状伝搬路32は、圧電基板42上に蒸着された金属膜44で形成され、金属膜44は、電気的に短絡されている(図1A、図1B参照)。また、金属膜44は、測定精度を向上させるために、共通に接地されている。金属膜44の材料は特に限られないが、被測定物46に対して、化学的に安定している金で形成することが好ましい。   The short-circuit propagation path 16 and the lattice-shaped propagation path 32 are formed of a metal film 44 deposited on the piezoelectric substrate 42, and the metal film 44 is electrically short-circuited (see FIGS. 1A and 1B). Further, the metal film 44 is commonly grounded in order to improve measurement accuracy. The material of the metal film 44 is not particularly limited, but is preferably formed of gold that is chemically stable with respect to the measurement object 46.

また、格子状伝搬路32には、入力電極22から出力される弾性表面波の伝搬方向(図1中矢印X方向)に対して垂直な方向に形成された凸部34がX方向に等間隔で配置され、隣接する凸部34の間に形成される凹部36に測定の対象となる被測定物46が負荷される(図2D参照)。つまり、格子状伝搬路32には、X方向に凸部34及び凹部36から構成される凹凸構造38が形成されている。凹凸構造38を形成し、凹部36に被測定物46を負荷して閉じこめることにより後述する質量負荷効果に基づく出力信号を得ることが可能となる。   In the lattice-shaped propagation path 32, convex portions 34 formed in a direction perpendicular to the propagation direction of the surface acoustic wave output from the input electrode 22 (the arrow X direction in FIG. 1) are equally spaced in the X direction. The measured object 46 to be measured is loaded on the concave portion 36 formed between the adjacent convex portions 34 (see FIG. 2D). In other words, the lattice-shaped propagation path 32 is formed with a concavo-convex structure 38 composed of convex portions 34 and concave portions 36 in the X direction. By forming the concavo-convex structure 38 and loading and confining the measurement object 46 in the concave portion 36, an output signal based on the mass load effect described later can be obtained.

なお、凸部34同士の間隔は、伝搬する弾性表面波の波長λよりも短いことが好ましく、より好ましくはλ/8である。また、凹部36の深さは、質量負荷効果の検出精度を上げるために可能な限り深く形成することが好ましい。   In addition, it is preferable that the space | interval of convex parts 34 is shorter than wavelength (lambda) of the surface acoustic wave to propagate, More preferably, it is (lambda) / 8. Further, it is preferable that the depth of the recess 36 is formed as deep as possible in order to increase the detection accuracy of the mass load effect.

圧電基板42は、すべり弾性表面波を伝搬することができれば、特に限られないが、36度回転Y板X伝搬LiTaO3であることが好ましい。 The piezoelectric substrate 42 is not particularly limited as long as it can propagate a sliding surface acoustic wave, but is preferably a 36-degree rotated Y-plate X-propagating LiTaO 3 .

次に、密度測定装置40を用いた被測定物46の密度測定について説明する。   Next, density measurement of the measurement object 46 using the density measuring device 40 will be described.

まず、測定の対象である被測定物46を短絡伝搬路16及び格子状伝搬路32に負荷する。短絡伝搬路16では、金属膜44上に負荷され(図2C参照)、格子状伝搬路32では、凸部34及び凹部36から構成される凹凸構造38が形成されているために、被測定物46は主として凹部36に負荷される(図2D参照)。   First, the DUT 46 to be measured is loaded on the short-circuit propagation path 16 and the lattice-shaped propagation path 32. The short-circuit propagation path 16 is loaded on the metal film 44 (see FIG. 2C), and the lattice-shaped propagation path 32 is formed with the concavo-convex structure 38 composed of the convex part 34 and the concave part 36, so 46 is mainly loaded in the recess 36 (see FIG. 2D).

次いで、発振器48より、電気信号を分配器50で分配して、入力電極12及び22へ同一信号を入力する。入力電極12では、入力された信号に基づいて弾性表面波が励振され、短絡伝搬路16上を伝搬して、出力電極14で受信される。同様に、入力電極22では、入力された信号に基づいて弾性表面波が励振され、格子状伝搬路32上を伝搬して、出力電極24で受信される。   Next, the electric signal is distributed by the distributor 50 from the oscillator 48, and the same signal is input to the input electrodes 12 and 22. In the input electrode 12, a surface acoustic wave is excited based on the input signal, propagates on the short-circuit propagation path 16, and is received by the output electrode 14. Similarly, at the input electrode 22, a surface acoustic wave is excited based on the input signal, propagates on the lattice propagation path 32, and is received by the output electrode 24.

格子状伝搬路32では、X方向に凹凸構造38が形成され、伝搬路の電気長が等しいために、X方向に対して平行な任意の経路P−P間において、弾性表面波の位相が等しくなる。その結果、異なる経路を経て伝搬した弾性表面波同士が、出力電極24で受信され互いに打ち消し合うのを防ぐことができる。   In the lattice-shaped propagation path 32, the concavo-convex structure 38 is formed in the X direction, and the electrical lengths of the propagation paths are equal. Therefore, the phase of the surface acoustic wave is equal between the arbitrary paths PP parallel to the X direction. Become. As a result, the surface acoustic waves propagated through different paths can be prevented from being received by the output electrode 24 and canceling each other.

出力電極14と24で受信した弾性表面波から取り出された両出力信号を位相差検出器52で比較し位相差を検出する。出力電極14からの出力信号には、密度粘度積に基づく信号成分が含まれ、出力電極24からの出力信号には、密度粘度積及び質量負荷効果に基づく信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、質量負荷効果に基づく信号であり、この信号から検出した位相差に基づいて、被測定物46の密度が算出される。具体的な密度の算出は、以下に説明する算出式によって行われる。   Both output signals extracted from the surface acoustic waves received by the output electrodes 14 and 24 are compared by a phase difference detector 52 to detect a phase difference. The output signal from the output electrode 14 includes a signal component based on the density viscosity product, and the output signal from the output electrode 24 includes a signal component based on the density viscosity product and the mass load effect. Therefore, the difference signal detected from both the output signals is a signal based on the mass load effect, and the density of the DUT 46 is calculated based on the phase difference detected from this signal. The specific density is calculated by a calculation formula described below.

質量負荷に対するセンサ感度式より、凸部34での速度変化(ΔV/V)m、凹部36でのおける伝搬速度の変化(ΔV/V)lは、式(1)、式(2)で表される。ここで、添え字mは凸部34、添え字lは凹部36に対応し、ρは負荷膜の密度、μはラーメ定数、Smは凸部34の断面積であり、Slは凹部36の底面積、Sは凸部34の金属膜44に平行な断面の断面積と凹部36の底面積の和である。また、Aは材料定数であり、例えば、36度Y板X伝搬LiTaO3では、A=5.249×10-9ωとなる。 From the sensor sensitivity equation for mass load, the velocity change (ΔV / V) m at the convex portion 34 and the propagation velocity change (ΔV / V) l at the concave portion 36 are expressed by equations (1) and (2). Is done. Here, the subscript m corresponds to the convex portion 34, the subscript l corresponds to the concave portion 36, ρ is the density of the load film, μ is the Lame constant, S m is the cross-sectional area of the convex portion 34, and S l is the concave portion 36. , S is the sum of the cross-sectional area of the projection 34 parallel to the metal film 44 and the bottom area of the recess 36. Further, A is a material constant. For example, in 36-degree Y-plate X-propagating LiTaO 3 , A = 5.249 × 10 −9 Ω.

Figure 0004950752
Figure 0004950752

Figure 0004950752
Figure 0004950752

液体の場合には、ρl>>μl/V2であるので、式(2)は、次式の式(3)となる。 In the case of a liquid, since ρ l >> μ l / V 2 , the equation (2) becomes the following equation (3).

Figure 0004950752
Figure 0004950752

次に、第1弾性表面波素子10における速度変化(ΔV/V)s、第2弾性表面波素子20における速度変化(ΔV/V)gは、式(4)、式(5)で表される。ここで、(ΔV/V)liquidは、ニュートン流体による摂動を表している。 Next, the speed change (ΔV / V) s in the first surface acoustic wave element 10 and the speed change (ΔV / V) g in the second surface acoustic wave element 20 are expressed by equations (4) and (5). The Here, (ΔV / V) liquid represents perturbation by Newtonian fluid.

Figure 0004950752
Figure 0004950752

Figure 0004950752
Figure 0004950752

被測定物46における速度変化を’をつけて表すと、式(4)、式(5)として表される。   If the speed change in the measured object 46 is expressed with ', it is expressed as Expression (4) and Expression (5).

Figure 0004950752
Figure 0004950752

Figure 0004950752
Figure 0004950752

式(6)を式(7)に代入すると、式(8)となる。ここで、ρlは標準溶液の負荷膜の密度、ρl’は被測定物46の負荷膜の密度である。 Substituting equation (6) into equation (7) yields equation (8). Here, ρ l is the density of the loaded film of the standard solution, and ρ l ′ is the density of the loaded film of the object to be measured 46.

Figure 0004950752
Figure 0004950752

従って、被測定物46の密度の関係式は式(9)となる。   Accordingly, the relational expression of the density of the object to be measured 46 is the expression (9).

Figure 0004950752
Figure 0004950752

式(9)の(ΔV/V)g−(ΔV/V)sに、位相差検出器52で検出した出力信号の位相差を代入することにより、被測定物46の密度ρl’を求めることができる。 By substituting the phase difference of the output signal detected by the phase difference detector 52 into (ΔV / V) g − (ΔV / V) s in Expression (9), the density ρ l ′ of the object to be measured 46 is obtained. be able to.

また、図2Bに示す第2弾性表面波素子20では、X方向に凸部34及び凹部36から構成される凹凸構造38が形成されているが、さらに、X方向に対して垂直な方向に凹凸構造を追加した市松格子状伝搬路54としてもよい。   In the second surface acoustic wave element 20 shown in FIG. 2B, the concavo-convex structure 38 composed of the convex portions 34 and the concave portions 36 is formed in the X direction. It is good also as the checkered lattice-shaped propagation path 54 which added the structure.

市松格子状伝搬路54としては、図3Aに示すように凹部36Aの金属膜44に平行な断面を四角形状にし、凸部34Aと凹部36Aから凹凸構造38Aとしてもよい。また、図3Bに示すように凹部36Bの金属膜44に平行な断面を円形状にし、凸部34Bと凹部36Bから凹凸構造38Bとしてもよい。さらに、図3Cに示すように凹部36Cの金属膜44に平行な断面を菱形状にし、凸部34Cと凹部36Cから凹凸構造38Cとしてもよい。なお、凹部の金属膜44に平行な断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。   As shown in FIG. 3A, the checkered lattice-shaped propagation path 54 may have a quadrangular cross section parallel to the metal film 44 of the recess 36A, and the projecting portion 34A and the recess 36A may be used as an uneven structure 38A. Further, as shown in FIG. 3B, the cross section of the recess 36B parallel to the metal film 44 may be circular, and the concavo-convex structure 38B may be formed from the protrusion 34B and the recess 36B. Furthermore, as shown in FIG. 3C, the cross section of the concave portion 36C parallel to the metal film 44 may be formed in a rhombus shape so that the concave and convex structure 38C is formed from the convex portion 34C and the concave portion 36C. The shape of the cross section of the recess parallel to the metal film 44 is not limited to these shapes as long as a checkered lattice propagation path can be formed.

市松格子状伝搬路54では、X方向に対して水平及び垂直方向に凹凸構造が形成されているために、X方向の伝搬路の電気長が等しくなる。従って、格子状伝搬路32と同様に、出力電極24で受信された弾性表面波同士が互いに打ち消し合うのを防ぐことができる。   In the checkered lattice-shaped propagation path 54, since the uneven structure is formed in the horizontal and vertical directions with respect to the X direction, the electrical lengths of the propagation paths in the X direction are equal. Therefore, similarly to the lattice-shaped propagation path 32, the surface acoustic waves received by the output electrode 24 can be prevented from canceling each other.

第2弾性表面波素子20に形成する伝搬路を市松格子状にした場合には、格子状伝搬路32を比較して、被測定物46を凹部36A〜凹部36Cに閉じこめる効果が高まり、被測定物46の密度の測定精度をさらに上げることができる。   When the propagation path formed in the second surface acoustic wave element 20 is a checkered lattice, the lattice propagation path 32 is compared, and the effect of confining the object to be measured 46 in the recesses 36A to 36C increases. The measurement accuracy of the density of the object 46 can be further increased.

以上説明したように、この実施態様に係る密度測定装置40は、入力電極12と出力電極14との間に電気的に短絡した短絡伝搬路16を有する第1弾性表面波素子10と、入力電極22と出力電極24との間に入力電極22から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造38が形成され電気的に短絡した格子状伝搬路32を有する第2弾性表面波素子20とを備えている。第1弾性表面波素子10と第2弾性表面波素子20とを並列に配し、短絡伝搬路16及び格子状伝搬路32に被測定物46を負荷した状態において、入力電極12、22に同一の信号を入力し、出力電極14、24から出力された各出力信号の位相差から、被測定物46の密度を求めることができる。   As described above, the density measuring apparatus 40 according to this embodiment includes the first surface acoustic wave element 10 having the short-circuit propagation path 16 that is electrically short-circuited between the input electrode 12 and the output electrode 14, and the input electrode. A second surface acoustic wave having a lattice-shaped propagation path 32 in which a concavo-convex structure 38 is formed in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode 22 between the output electrode 24 and the output electrode 24. The device 20 is provided. In the state where the first surface acoustic wave element 10 and the second surface acoustic wave element 20 are arranged in parallel and the object to be measured 46 is loaded on the short-circuit propagation path 16 and the lattice-shaped propagation path 32, the same as the input electrodes 12 and 22. The density of the DUT 46 can be obtained from the phase difference between the output signals output from the output electrodes 14 and 24.

密度測定装置40では、弾性表面波の伝搬方向と平行な方向に凹凸構造38が形成され電気的に短絡した格子状伝搬路32を設けることにより、出力電極24における弾性表面波のベクトル合成に起因する測定誤差の発生を防ぎ、被測定物46の密度を正確に測定することができる。   In the density measuring apparatus 40, the concave-convex structure 38 is formed in a direction parallel to the propagation direction of the surface acoustic wave, and the lattice-shaped propagation path 32 that is electrically short-circuited is provided, thereby causing the vector synthesis of the surface acoustic wave at the output electrode 24. It is possible to prevent the occurrence of measurement error and to accurately measure the density of the object to be measured 46.

また、この実施態様に係る密度測定装置40では、入力電極12と出力電極14との間に電気的に短絡した短絡伝搬路16を有する第1弾性表面波素子10と、入力電極22と出力電極24との間に凹凸構造38A(凹凸構造38B、38C)が形成され電気的に短絡した市松格子状伝搬路54を有する第2弾性表面波素子20とを備えるようにしてもよい。   In the density measuring apparatus 40 according to this embodiment, the first surface acoustic wave element 10 having the short-circuit propagation path 16 electrically short-circuited between the input electrode 12 and the output electrode 14, the input electrode 22, and the output electrode And a second surface acoustic wave element 20 having a checkered lattice-shaped propagation path 54 in which a concavo-convex structure 38 </ b> A (concavo-convex structure 38 </ b> B, 38 </ b> C) is formed and electrically short-circuited.

密度測定装置40では、弾性表面波の伝搬方向に凹凸構造38A(凹凸構造38B、38C)が形成され電気的に短絡した市松格子状伝搬路54を設けることにより、出力電極24における弾性表面波のベクトル合成に起因する測定誤差の発生を防ぎ、被測定物46の密度を正確に測定することができる。   In the density measuring apparatus 40, by providing the checkered lattice-shaped propagation path 54 in which the concavo-convex structure 38 </ b> A (concavo-convex structure 38 </ b> B, 38 </ b> C) is formed in the propagation direction of the surface acoustic wave and is electrically short-circuited, It is possible to prevent measurement errors due to vector synthesis and accurately measure the density of the object to be measured 46.

次に、本発明の第2実施形態について図面を参照して説明する。図4は、本発明の第2実施形態に係る密度測定装置40Aの構成の説明図である。また、図5A、図5Cは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Cは、被測定物を負荷した後の状態を示す図である。さらに、図5B、図5Dは、図4のVB−VB端面図であって、図5Bは、被測定物を負荷する前の状態を示す図であり、図5Dは、被測定物を負荷した後の状態を示す図である。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is an explanatory diagram of a configuration of a density measuring apparatus 40A according to the second embodiment of the present invention. 5A and 5C are VA-VA end views of FIG. 4, and FIG. 5A is a diagram showing a state before the object to be measured is loaded, and FIG. 5C is a state in which the object to be measured is loaded. It is a figure which shows a back state. 5B and 5D are VB-VB end views of FIG. 4, FIG. 5B is a diagram showing a state before loading the object to be measured, and FIG. 5D is a state in which the object to be measured is loaded. It is a figure which shows a back state.

密度測定装置40Aは、前記の密度測定装置40と同様に第1弾性表面波素子10Aと、第2弾性表面波素子20Aを有し、密度測定装置40に対して、第1弾性表面波素子10中の短絡伝搬路16が開放伝搬路60に、第2弾性表面波素子20中の格子状伝搬路32が格子状伝搬路70となっている。なお、密度測定装置40と同一の構成要素には同一の符号を付している。   The density measuring device 40 </ b> A includes a first surface acoustic wave element 10 </ b> A and a second surface acoustic wave element 20 </ b> A as in the case of the density measuring device 40, and the first surface acoustic wave element 10 with respect to the density measuring device 40. The short propagation path 16 in the inside is an open propagation path 60, and the lattice propagation path 32 in the second surface acoustic wave element 20 is a lattice propagation path 70. In addition, the same code | symbol is attached | subjected to the component same as the density measuring apparatus 40. FIG.

開放伝搬路60は、開放領域62と凸部64を備え、開放領域62は金属膜44を剥離した領域であり、凸部64は金属膜44で剥離せずに残存する部分である。   The open propagation path 60 includes an open region 62 and a convex portion 64. The open region 62 is a region where the metal film 44 is peeled off, and the convex portion 64 is a portion that remains without being peeled off by the metal film 44.

格子状伝搬路70には、X方向に対して垂直な方向に金属膜44の一部を剥離して圧電基板42が露出するように形成された凹部72がX方向に等間隔に設けられ、隣接する凹部72の間に凸部74が形成されている。つまり、格子状伝搬路70には、X方向に凹部72及び凸部74から構成される凹凸構造76が形成されて、圧電基板42が露出している凹部72は電気的に開放状態となっている。   The lattice-shaped propagation path 70 is provided with recesses 72 formed at regular intervals in the X direction so that the piezoelectric substrate 42 is exposed by peeling a part of the metal film 44 in a direction perpendicular to the X direction. A convex portion 74 is formed between adjacent concave portions 72. In other words, the lattice-shaped propagation path 70 is formed with a concavo-convex structure 76 composed of a concave portion 72 and a convex portion 74 in the X direction, and the concave portion 72 where the piezoelectric substrate 42 is exposed is in an electrically open state. Yes.

開放領域62を構成する領域62aと領域62bとの面積の和は、凹凸構造76中のすべての凹部72の底面積の総和に等しくなるように形成されている。   The sum of the areas of the regions 62 a and 62 b constituting the open region 62 is formed to be equal to the sum of the bottom areas of all the recesses 72 in the concavo-convex structure 76.

凸部74は、金属膜44の一部と形成されているが、金属に限定されるものではなく、SiO2等の絶縁膜や樹脂であってもよい。 The protrusion 74 is formed as a part of the metal film 44, but is not limited to a metal, and may be an insulating film such as SiO 2 or a resin.

次に、密度測定装置40Aを用いた被測定物46の密度測定について説明する。基本的には、密度測定装置40での密度測定と同様である。   Next, density measurement of the measurement object 46 using the density measuring device 40A will be described. Basically, this is the same as the density measurement by the density measuring device 40.

まず、測定の対象である被測定物46を開放伝搬路60及び格子状伝搬路70に負荷する。開放伝搬路60では、開放領域62に負荷され(図5C参照)、格子状伝搬路70では、凹部72に負荷される(図5D参照)。   First, the measurement object 46 to be measured is loaded on the open propagation path 60 and the lattice propagation path 70. In the open propagation path 60, the load is applied to the open area 62 (see FIG. 5C), and in the lattice-shaped propagation path 70, the load is applied to the recess 72 (see FIG. 5D).

次いで、発振器48より、電気信号を分配器50で分配して、入力電極12及び22へ同一信号を入力する。入力電極12では、入力された信号に基づいて弾性表面波が励振され、開放伝搬路60上を伝搬して、出力電極14で受信される。同様に、入力電極22では、入力された信号に基づいて弾性表面波が励振され、格子状伝搬路70上を伝搬して、出力電極24で受信される。   Next, the electric signal is distributed by the distributor 50 from the oscillator 48, and the same signal is input to the input electrodes 12 and 22. In the input electrode 12, a surface acoustic wave is excited based on the input signal, propagates on the open propagation path 60, and is received by the output electrode 14. Similarly, at the input electrode 22, a surface acoustic wave is excited based on the input signal, propagates on the lattice propagation path 70, and is received by the output electrode 24.

出力電極14と24で受信した弾性表面波から取り出された両出力信号を位相差検出器52で比較し位相差を検出する。出力電極14からの出力信号には、電気的特性及び密度粘度積に基づく信号成分が含まれ、出力電極24からの出力信号には、電気的特性、密度粘度積及び質量負荷効果に基づく信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、質量負荷効果に基づく信号であり、この信号から検出した位相差に基づいて、被測定物46の密度が算出される。   Both output signals extracted from the surface acoustic waves received by the output electrodes 14 and 24 are compared by a phase difference detector 52 to detect a phase difference. The output signal from the output electrode 14 includes a signal component based on the electrical characteristics and the density viscosity product, and the output signal from the output electrode 24 includes the signal component based on the electrical characteristics, the density viscosity product, and the mass load effect. It is included. Therefore, the difference signal detected from both the output signals is a signal based on the mass load effect, and the density of the DUT 46 is calculated based on the phase difference detected from this signal.

ここで、前記電気的特性は、電気的な開放に基づく特性であり、電気的に開放された領域の面積に対応して現れる。従って、開放領域62の面積とすべての凹部72の底面積の総和を等しくすることにより、両出力信号から検出した差分の信号から電気的特性を排除している。具体的な密度の算出は、密度測定装置40と同様に式(1)〜(9)に基づいて算出される。   Here, the electrical characteristics are characteristics based on electrical opening and appear corresponding to the area of the electrically opened area. Therefore, by making the sum of the area of the open region 62 and the bottom area of all the recesses 72 equal, the electrical characteristics are excluded from the difference signal detected from both output signals. The specific density is calculated based on the formulas (1) to (9) in the same manner as the density measuring device 40.

また、図5Bに示す第2弾性表面波素子20Aでは、X方向に凹部72及び凸部74から構成される凹凸構造76が形成されているが、さらに、X方向に対して垂直な方向に凹凸構造を追加した市松格子状伝搬路78としてもよい。   In the second surface acoustic wave element 20A shown in FIG. 5B, the concavo-convex structure 76 composed of the concave portions 72 and the convex portions 74 is formed in the X direction. It is good also as the checkered lattice-shaped propagation path 78 which added the structure.

市松格子状伝搬路78としては、図6Aに示すように凹部72Aの金属膜44に平行な断面を四角形状にし、凹部72Aと凸部74Aから凹凸構造76Aとしてもよい。また、図6Bに示すように凹部72Bの金属膜44に平行な断面を円形状にし、凹部72Bと凸部74Bから凹凸構造76Bとしてもよい。さらに、図6Cに示すように凹部72Cの金属膜44に平行な断面を菱形状にし、凹部72Cと凸部74Cから凹凸構造76Cとしてもよい。なお、凹部の金属膜44に平行な断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。   As the checkered lattice-shaped propagation path 78, as shown in FIG. 6A, the cross section parallel to the metal film 44 of the concave portion 72A may be a square shape, and the concave and convex structure 76A may be formed from the concave portion 72A and the convex portion 74A. Further, as shown in FIG. 6B, the cross section of the recess 72B parallel to the metal film 44 may be circular, and the recess / protrusion 72B and the protrusion 74B may be a concavo-convex structure 76B. Further, as shown in FIG. 6C, the cross section of the recess 72C parallel to the metal film 44 may be formed in a rhombus shape so that the recess / protrusion 72C and the protrusion 74C form a concavo-convex structure 76C. The shape of the cross section of the recess parallel to the metal film 44 is not limited to these shapes as long as a checkered lattice propagation path can be formed.

以上説明したように、この実施態様に係る密度測定装置40Aは、入力電極12と出力電極14との間に電気的に開放した開放伝搬路60を有する第1弾性表面波素子10Aと、入力電極22と出力電極24との間に入力電極22から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造76が形成され電気的に開放した格子状伝搬路70を有する第2弾性表面波素子20Aとを備えている。第1弾性表面波素子10Aと第2弾性表面波素子20Aとを並列に配し、開放伝搬路60及び格子状伝搬路70に被測定物46を負荷した状態において、入力電極12、22に同一の信号を入力し、出力電極14、24から出力された各出力信号の位相差から、被測定物46の密度を求めることができる。   As described above, the density measuring apparatus 40A according to this embodiment includes the first surface acoustic wave element 10A having the open propagation path 60 that is electrically opened between the input electrode 12 and the output electrode 14, and the input electrode. A second surface acoustic wave having a lattice-shaped propagation path 70 in which a concavo-convex structure 76 is formed in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode 22 between the output electrode 24 and the output electrode 24. The device 20A is provided. In the state where the first surface acoustic wave element 10A and the second surface acoustic wave element 20A are arranged in parallel and the object to be measured 46 is loaded on the open propagation path 60 and the lattice propagation path 70, they are the same as the input electrodes 12 and 22. The density of the DUT 46 can be obtained from the phase difference between the output signals output from the output electrodes 14 and 24.

また、この実施態様に係る密度測定装置40Aでは、入力電極12と出力電極14との間に電気的に開放した開放伝搬路60を有する第1弾性表面波素子10Aと、入力電極22と出力電極24との間に凹凸構造76A(凹凸構造76B、76C)が形成され電気的に開放した市松格子状伝搬路78を有する第2弾性表面波素子20Aとを備えているようにしてもよい。   Further, in the density measuring apparatus 40A according to this embodiment, the first surface acoustic wave element 10A having the open propagation path 60 opened electrically between the input electrode 12 and the output electrode 14, the input electrode 22 and the output electrode 24 may be provided with a second surface acoustic wave element 20A having a checkered lattice-shaped propagation path 78 in which a concavo-convex structure 76A (concavo-convex structure 76B, 76C) is formed and electrically opened.

なお、凹凸構造76は、質量負荷効果を検出することができれば、図5Bに示すように圧電基板42上に凹凸構造76を形成する場合に限定されるものではない。   The uneven structure 76 is not limited to the case where the uneven structure 76 is formed on the piezoelectric substrate 42 as shown in FIG. 5B as long as the mass load effect can be detected.

図7は、本発明の第2実施形態に係る密度測定装置40Aの変形例である密度測定装置40Bの構成の説明図である。また、図8A、図8Cは、図7のVIIIA−VIIIA端面図であって、図8Aは、被測定物を負荷する前の状態を示す図であり、図8Cは、被測定物を負荷した後の状態を示す図である。さらに、図8B、図8Dは、図7のVIIIB−VIIIB端面図であって、図8Bは、被測定物を負荷する前の状態を示す図であり、図8Dは、被測定物を負荷した後の状態を示す図である。   FIG. 7 is an explanatory diagram of a configuration of a density measuring device 40B that is a modification of the density measuring device 40A according to the second embodiment of the present invention. 8A and 8C are end views of VIIIA-VIIIA in FIG. 7, and FIG. 8A is a diagram showing a state before loading the object to be measured, and FIG. 8C is a state in which the object to be measured is loaded. It is a figure which shows a back state. 8B and 8D are end views of VIIIB-VIIIB in FIG. 7, FIG. 8B is a diagram showing a state before loading the object to be measured, and FIG. 8D is loaded with the object to be measured. It is a figure which shows a back state.

密度測定装置40Bは、前記の密度測定装置40Aと同様に第1弾性表面波素子10Bと、第2弾性表面波素子20Bを有し、密度測定装置40Aに対して、第1弾性表面波素子10A中の開放伝搬路60が開放伝搬路80に、第2弾性表面波素子20B中の格子状伝搬路70が格子状伝搬路84となっている。なお、密度測定装置40Aと同一の構成要素には同一の符号を付している。   The density measuring device 40B includes a first surface acoustic wave element 10B and a second surface acoustic wave element 20B as in the case of the density measuring device 40A, and the first surface acoustic wave element 10A is different from the density measuring device 40A. The open propagation path 60 in the middle is an open propagation path 80, and the lattice-shaped propagation path 70 in the second surface acoustic wave element 20 </ b> B is a lattice-shaped propagation path 84. In addition, the same code | symbol is attached | subjected to the component same as the density measuring apparatus 40A.

図8Aに示すように、開放伝搬路80は、圧電基板42が露出した平坦な開放領域82を備える。また、図8Bに示すように、格子状伝搬路84は、圧電基板42の表面にX方向に対して垂直な方向に形成された凹部86をX方向に等間隔に設け、隣接する凹部86の間に凸部88を形成し、凹部86と凸部88から構成される凹凸構造90を備える。   As shown in FIG. 8A, the open propagation path 80 includes a flat open region 82 where the piezoelectric substrate 42 is exposed. Further, as shown in FIG. 8B, the lattice-shaped propagation path 84 is provided with recesses 86 formed in the direction perpendicular to the X direction on the surface of the piezoelectric substrate 42 at equal intervals in the X direction. A convex part 88 is formed therebetween, and a concave-convex structure 90 composed of a concave part 86 and a convex part 88 is provided.

また、測定対象の液体状の被測定物は、特に限定されるものではなく、純液、混合液のいずれであってもよく、メタノール、エタノール等のアルコールの密度を測定する場合に特に有効である。   The liquid object to be measured is not particularly limited, and may be either a pure solution or a mixed solution, and is particularly effective when measuring the density of alcohol such as methanol and ethanol. is there.

なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

本発明の第1実施形態に係る密度測定装置の構成の説明図である。It is explanatory drawing of a structure of the density measuring apparatus which concerns on 1st Embodiment of this invention. 図2A、図2Cは、図1のIIA−IIA端面図であって、図2Aは、被測定物を負荷する前の状態を示す図であり、図2Cは、被測定物を負荷した後の状態を示す図であり、また、図2B、図2Dは、図1のIIB−IIB端面図であって、図2Bは、被測定物を負荷する前の状態を示す図であり、図2Dは、被測定物を負荷した後の状態を示す図である。2A and 2C are end views of IIA-IIA in FIG. 1, and FIG. 2A is a diagram illustrating a state before loading the object to be measured, and FIG. 2C is a diagram after loading the object to be measured. 2B and FIG. 2D are end views of IIB-IIB in FIG. 1, and FIG. 2B is a diagram showing a state before loading the object to be measured. It is a figure which shows the state after loading a to-be-measured object. 図3A〜図3Cは、市松格子状伝搬路の説明図である。3A to 3C are explanatory diagrams of a checkered lattice-shaped propagation path. 本発明の第2実施形態に係る密度測定装置の構成の説明図である。It is explanatory drawing of a structure of the density measuring apparatus which concerns on 2nd Embodiment of this invention. 図5A、図5Cは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Cは、被測定物を負荷した後の状態を示す図であり、また、図5B、図5Dは、図4のVB−VB端面図であって、図5Bは、被測定物を負荷する前の状態を示す図であり、図5Dは、被測定物を負荷した後の状態を示す図である。5A and 5C are VA-VA end views of FIG. 4, and FIG. 5A is a diagram illustrating a state before loading the object to be measured, and FIG. 5C is a diagram after loading the object to be measured. FIG. 5B and FIG. 5D are VB-VB end views of FIG. 4, and FIG. 5B is a diagram showing a state before loading the object to be measured, and FIG. It is a figure which shows the state after loading a to-be-measured object. 図6A〜図6Cは、市松格子状伝搬路の説明図である。6A to 6C are explanatory diagrams of a checkered lattice-shaped propagation path. 図7は、第2実施形態に係る変形例の構成の説明図である。FIG. 7 is an explanatory diagram of a configuration of a modified example according to the second embodiment. 図8A、図8Cは、図7のVIIIA−VIIIA端面図であって、図8Aは、被測定物を負荷する前の状態を示す図であり、図8Cは、被測定物を負荷した後の状態を示す図であり、また、図8B、図8Dは、図7のVIIIB−VIIIB端面図であって、図8Bは、被測定物を負荷する前の状態を示す図であり、図8Dは、被測定物を負荷した後の状態を示す図である。8A and 8C are end views of VIIIA-VIIIA in FIG. 7, in which FIG. 8A is a diagram showing a state before loading the object to be measured, and FIG. 8C is a view after loading the object to be measured. 8B and FIG. 8D are end views of VIIIB-VIIIB in FIG. 7, and FIG. 8B is a diagram showing a state before loading the object to be measured, and FIG. It is a figure which shows the state after loading a to-be-measured object. 図9Aは、従来の密度測定装置の説明図であり、図9Bは、図9AのIXB−IXB端面図である。FIG. 9A is an explanatory diagram of a conventional density measuring device, and FIG. 9B is an end view of IXB-IXB in FIG. 9A.

符号の説明Explanation of symbols

10、10A、10B、…第1弾性表面波素子 12、22…入力電極
14、24…出力電極 16…短絡伝搬路
20、20A、20B…第2弾性表面波素子 26…伝搬路
28、34、34A〜34C、64、74、74A〜74C、88…凸部
30、36、36A〜36C、72、72A〜72C、86…凹部
32、70、84…格子状伝搬路
38、38A〜38C、76、76A〜76C、90…凹凸構造
40、40A、40B、100…密度測定装置
42…圧電基板 44…金属膜
46…被測定物 48…発振器
50…分配器 52…位相差検出器
54、78…市松格子状伝搬路 60、80…開放伝搬路
62、82…開放領域 62a、62b…領域
DESCRIPTION OF SYMBOLS 10, 10A, 10B ... 1st surface acoustic wave element 12, 22 ... Input electrode 14, 24 ... Output electrode 16 ... Short-circuit propagation path 20, 20A, 20B ... 2nd surface acoustic wave element 26 ... Propagation paths 28, 34, 34A to 34C, 64, 74, 74A to 74C, 88 ... convex portions 30, 36, 36A to 36C, 72, 72A to 72C, 86 ... concave portions 32, 70, 84 ... lattice-like propagation paths 38, 38A to 38C, 76 , 76A to 76C, 90 ... Uneven structure 40, 40A, 40B, 100 ... Density measuring device 42 ... Piezoelectric substrate 44 ... Metal film 46 ... Object to be measured 48 ... Oscillator 50 ... Distributor 52 ... Phase difference detector 54, 78 ... Checkered propagation path 60, 80 ... Open propagation path 62, 82 ... Open area 62a, 62b ... Area

Claims (5)

入力電極と出力電極との間に電気的に短絡した短絡伝搬路を有する第1弾性表面波素子と、
入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成され電気的に短絡した格子状伝搬路を有する第2弾性表面波素子とを備え、
前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、
前記短絡伝搬路及び前記格子状伝搬路に液体状の被測定物を負荷した状態において、
前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求める
ことを特徴とする密度測定装置。
A first surface acoustic wave device having a short-circuit propagation path electrically short-circuited between the input electrode and the output electrode;
A second surface acoustic wave element having a lattice-shaped propagation path in which a concavo-convex structure is formed between the input electrode and the output electrode in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode and electrically short-circuited; With
The first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel,
In a state where a liquid measurement object is loaded on the short-circuit propagation path and the lattice-shaped propagation path,
A density measuring apparatus, wherein the same signal is input to each input electrode, and the density of the object to be measured is obtained from the phase difference between the output signals output from the output electrodes.
入力電極と出力電極との間に電気的に開放した開放伝搬路を有する第1弾性表面波素子と、
入力電極と出力電極との間に前記入力電極から出力される弾性表面波の伝搬方向と平行な方向に凹凸構造が形成され電気的に開放した格子状伝搬路を有する第2弾性表面波素子とを備え、
前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、
前記開放伝搬路及び前記格子状伝搬路に液体状の被測定物を負荷した状態において、
前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求める
ことを特徴とする密度測定装置。
A first surface acoustic wave device having an open propagation path electrically opened between the input electrode and the output electrode;
A second surface acoustic wave element having a lattice-shaped propagation path in which an uneven structure is formed between the input electrode and the output electrode in a direction parallel to the propagation direction of the surface acoustic wave output from the input electrode, With
The first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel,
In a state where a liquid measurement object is loaded on the open propagation path and the lattice propagation path,
A density measuring apparatus, wherein the same signal is input to each input electrode, and the density of the object to be measured is obtained from the phase difference between the output signals output from the output electrodes.
入力電極と出力電極との間に電気的に短絡した短絡伝搬路を有する第1弾性表面波素子と、
入力電極と出力電極との間に市松格子状の凹凸構造が形成され電気的に短絡した市松格子状伝搬路を有する第2弾性表面波素子とを備え、
前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、
前記短絡伝搬路及び前記市松格子状伝搬路に液体状の被測定物を負荷した状態において、
前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求める
ことを特徴とする密度測定装置。
A first surface acoustic wave device having a short-circuit propagation path electrically short-circuited between the input electrode and the output electrode;
A second surface acoustic wave device having a checkered lattice-shaped propagation path in which a checkered lattice-shaped uneven structure is formed between the input electrode and the output electrode and is electrically short-circuited,
The first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel,
In a state where a liquid object to be measured is loaded on the short-circuit propagation path and the checkered lattice propagation path,
A density measuring apparatus, wherein the same signal is input to each input electrode, and the density of the object to be measured is obtained from the phase difference between the output signals output from the output electrodes.
入力電極と出力電極との間に電気的に開放した開放伝搬路を有する第1弾性表面波素子と、
入力電極と出力電極との間に市松格子状の凹凸構造が形成され電気的に開放した市松格子状伝搬路を有する第2弾性表面波素子とを備え、
前記第1弾性表面波素子と前記第2弾性表面波素子とは並列に配され、
前記開放伝搬路及び前記市松格子状伝搬路に液体状の被測定物を負荷した状態において、
前記各入力電極に同一の信号を入力し、前記各出力電極から出力される各出力信号の位相差から、前記被測定物の密度を求める
ことを特徴とする密度測定装置。
A first surface acoustic wave device having an open propagation path electrically opened between the input electrode and the output electrode;
A second surface acoustic wave element having a checkered lattice-shaped propagation path in which a checkered lattice-shaped uneven structure is formed between the input electrode and the output electrode,
The first surface acoustic wave element and the second surface acoustic wave element are arranged in parallel,
In a state where a liquid object to be measured is loaded on the open propagation path and the checkered lattice propagation path,
A density measuring apparatus, wherein the same signal is input to each input electrode, and the density of the object to be measured is obtained from the phase difference between the output signals output from the output electrodes.
請求項1〜4のいずれか1項に記載の密度測定装置において、
前記被測定物がアルコールであることを特徴とする密度測定装置。
In the density measuring device according to any one of claims 1 to 4,
The density measuring apparatus, wherein the object to be measured is alcohol.
JP2007120902A 2007-05-01 2007-05-01 Density measuring device Active JP4950752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120902A JP4950752B2 (en) 2007-05-01 2007-05-01 Density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120902A JP4950752B2 (en) 2007-05-01 2007-05-01 Density measuring device

Publications (2)

Publication Number Publication Date
JP2008275503A JP2008275503A (en) 2008-11-13
JP4950752B2 true JP4950752B2 (en) 2012-06-13

Family

ID=40053622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120902A Active JP4950752B2 (en) 2007-05-01 2007-05-01 Density measuring device

Country Status (1)

Country Link
JP (1) JP4950752B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333538B2 (en) 2011-07-27 2013-11-06 株式会社デンソー Surface acoustic wave sensor
JP2019090742A (en) * 2017-11-16 2019-06-13 日立金属株式会社 Solid particles mass measurement device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250849B2 (en) * 1992-09-28 2002-01-28 マルヤス工業株式会社 Surface acoustic wave device for measuring liquid properties.
JP3248683B2 (en) * 1998-01-20 2002-01-21 富士工業株式会社 Method and apparatus for separating and measuring liquid density and viscosity
DE19850803A1 (en) * 1998-11-04 2000-05-11 Bosch Gmbh Robert Sensor arrangement and a method for determining the density and viscosity of a liquid

Also Published As

Publication number Publication date
JP2008275503A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US5283037A (en) Chemical sensor utilizing a surface transverse wave device
US6293136B1 (en) Multiple mode operated surface acoustic wave sensor for temperature compensation
JP5956901B2 (en) Device measurement device
JP6042774B2 (en) Sample sensor and sample sensing method
JP6975828B2 (en) Sensor device
JP2008267968A (en) Measurement target characteristic measuring apparatus
JP6043061B2 (en) Surface acoustic wave sensor
JP4950752B2 (en) Density measuring device
JP6018352B1 (en) Sensor device
JP5431687B2 (en) Device measurement device
JP2008298768A (en) Device for measuring relative permittivity
JP5123046B2 (en) Relative permittivity / conductivity measuring apparatus and measuring method thereof
JP2010032245A (en) Relative permittivity/conductivity measuring apparatus
JP2009031233A (en) Multi-channel qcm sensor
Lucklum et al. Towards a SAW based phononic crystal sensor platform
JP2010107485A (en) Relative permittivity-conductivity measuring device
JP2009281975A (en) Surface acoustic wave device and sensor
JP6300145B2 (en) Surface acoustic wave sensor and measuring apparatus
JP5154304B2 (en) Device measurement device
JP2006258768A (en) Elastic wave sensor
Luschi et al. Design of MEMS mass sensors based of flexural phononic crystals
Seidel et al. Multimode and multifrequency gigahertz surface acoustic wave sensors
JP6284220B2 (en) Surface acoustic wave sensor and surface acoustic wave sensor device
CN102798663A (en) SAW gas sensor applying dispersion interdigital transducer
JP6391653B2 (en) Sample sensor and sample sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150