JP3250849B2 - Surface acoustic wave device for measuring liquid properties. - Google Patents

Surface acoustic wave device for measuring liquid properties.

Info

Publication number
JP3250849B2
JP3250849B2 JP25827192A JP25827192A JP3250849B2 JP 3250849 B2 JP3250849 B2 JP 3250849B2 JP 25827192 A JP25827192 A JP 25827192A JP 25827192 A JP25827192 A JP 25827192A JP 3250849 B2 JP3250849 B2 JP 3250849B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
thin film
conductive thin
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25827192A
Other languages
Japanese (ja)
Other versions
JPH06109710A (en
Inventor
初 佐藤
Original Assignee
マルヤス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス工業株式会社 filed Critical マルヤス工業株式会社
Priority to JP25827192A priority Critical patent/JP3250849B2/en
Publication of JPH06109710A publication Critical patent/JPH06109710A/en
Application granted granted Critical
Publication of JP3250849B2 publication Critical patent/JP3250849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波を利用して
液体の粘性率、導電率、誘電率などの液体の特性を測定
するための弾性表面波装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device for measuring characteristics of a liquid, such as viscosity, conductivity, and dielectric constant, of the liquid using the surface acoustic wave.

【0002】[0002]

【従来の技術】従来、この種の装置は、例えば図2に示
すように、圧電基板10上に第1及び第2の弾性表面波
伝搬路10a,10bをそれぞれ形成する櫛歯状の入力
電極11,12及び出力電極13,14をそれぞれ相対
向して2組設けるとともに、第1及び第2の弾性表面波
伝搬路10a,10bであって入力電極11,12及び
出力電極13,14の各間にて圧電基板10上の各所定
領域にそれらの全体を短絡する方形の導電性薄膜15,
16をそれぞれ設けるようにしている。そして、この装
置を用いた液体の特性の測定に際しては、合成樹脂性で
方形に形成した枠体17をシリコンゴムなどで一方の導
電性薄膜15上に固着してその内部にプールを形成する
とともに同プール内に被測定用の液体を満たし、入力電
極11,12に発振器18からの高周波信号を印加する
とともに出力電極13,14から出力される信号をベク
トルボルトメータ19に供給して、液体の有無に起因し
た第1及び第2の弾性表面波伝搬路10a,10b上に
おける弾性表面波の伝搬速度の差をベクトルボルトメー
タ19で検出して液体の粘性率を測定するようにしてい
る。
2. Description of the Related Art Conventionally, this type of device has a comb-shaped input electrode for forming first and second surface acoustic wave propagation paths 10a and 10b on a piezoelectric substrate 10, as shown in FIG. 11 and 12 and two sets of output electrodes 13 and 14 are provided so as to face each other, and the first and second surface acoustic wave propagation paths 10a and 10b, which are input electrodes 11 and 12 and output electrodes 13 and 14, respectively. A rectangular conductive thin film 15, which short-circuits the entirety thereof to each predetermined region on the piezoelectric substrate 10,
16 are provided. When measuring the characteristics of the liquid using this apparatus, a rectangular frame 17 made of synthetic resin is fixed on one conductive thin film 15 with silicon rubber or the like to form a pool therein. The pool is filled with a liquid to be measured, a high-frequency signal from an oscillator 18 is applied to the input electrodes 11 and 12, and a signal output from the output electrodes 13 and 14 is supplied to a vector volt meter 19, so that The difference in the propagation speed of the surface acoustic wave on the first and second surface acoustic wave propagation paths 10a and 10b due to the presence or absence is detected by the vector voltmeter 19 to measure the viscosity of the liquid.

【0003】また、この種の他の従来装置は、例えば図
3に示すように、圧電基板20上に第1及び第2の弾性
表面波伝搬路20a,20bをそれぞれ形成する櫛歯状
の入力電極21,22及び出力電極23,24をそれぞ
れ相対向して2組設けるとともに、第1の弾性表面波伝
搬路20aであって入力電極21及び出力電極23の間
にて圧電基板20上の所定領域にその全体を短絡する方
形の導電性薄膜25を設け、また第2の弾性表面波伝搬
路20bであって入力電極22及び出力電極24の間に
て圧電基板20上の所定領域にその周囲のみを短絡する
方形の導電性薄膜26を設けるようにしている。そし
て、この装置を用いた液体の特性の測定に際しては、合
成樹脂性で方形に形成した枠体27をシリコンゴムなど
で両導電性薄膜25,26上に固着してその内部にプー
ルを形成するとともに同プール内に被測定用の液体を満
たし、入力電極21,22に発振器28からの高周波信
号を印加するとともに出力電極23,24から出力され
る信号をベクトルボルトメータ29に供給して、導電性
薄膜25,26の差に起因した第1及び第2の弾性表面
波伝搬路10a,10b上における弾性表面波の伝搬速
度及び伝搬損失の差をベクトルボルトメータ19でそれ
ぞれ検出して、液体の導電率及び誘電率をそれぞれ測定
するようにしている。
[0003] Another conventional device of this kind is a comb-shaped input device for forming first and second surface acoustic wave propagation paths 20a and 20b on a piezoelectric substrate 20, for example, as shown in FIG. Two pairs of electrodes 21 and 22 and output electrodes 23 and 24 are provided to face each other, and a predetermined surface of the piezoelectric substrate 20 is provided between the input electrode 21 and the output electrode 23 in the first surface acoustic wave propagation path 20a. A rectangular conductive thin film 25 that short-circuits the entire surface is provided in the region, and a second surface acoustic wave propagation path 20 b is provided between the input electrode 22 and the output electrode 24 in a predetermined region on the piezoelectric substrate 20. A rectangular conductive thin film 26 that short-circuits only the conductive thin film 26 is provided. When measuring the characteristics of the liquid using this apparatus, a rectangular frame 27 made of synthetic resin is fixed on the conductive thin films 25 and 26 with silicon rubber or the like to form a pool therein. At the same time, the pool is filled with a liquid to be measured, a high-frequency signal from an oscillator 28 is applied to the input electrodes 21 and 22, and a signal output from the output electrodes 23 and 24 is supplied to a vector volt meter 29. The difference between the propagation speed and the propagation loss of the surface acoustic wave on the first and second surface acoustic wave propagation paths 10a and 10b due to the difference between the conductive thin films 25 and 26 is detected by the vector voltmeter 19, respectively, and The conductivity and the dielectric constant are respectively measured.

【0004】[0004]

【発明が解決しようとする課題】しかし、液体の粘性
率、導電率及び誘電率を測定しようとする場合、液体の
粘性率に関しては前記従来の前者の弾性表面波装置を利
用する必要があり、液体の導電率及び誘電率に関しては
前記従来の後者の弾性表面波装置を利用する必要があっ
た。したがって、従来の装置にあっては、液体の粘性
率、導電率及び誘電率を同一条件下で測定することが難
しく、測定された粘性率と導電率及び誘電率との間に測
定条件の差異による誤差が含まれていた。また、この場
合、液体の粘性率の測定と液体の導電率及び誘電率の測
定とを分けて行わなければならず、測定に手間がかかっ
た。本発明は上記問題に対処するためになされたもの
で、その目的は、測定条件の差異による誤差を含まない
でかつ簡単に液体の粘性率、導電率及び誘電率を測定で
きるようにした液体の特性を測定するための弾性表面波
装置を提供しようとするものである。
However, when the viscosity, conductivity, and dielectric constant of a liquid are to be measured, it is necessary to use the above-mentioned conventional surface acoustic wave device for the viscosity of the liquid. With respect to the conductivity and permittivity of the liquid, it was necessary to use the latter conventional surface acoustic wave device. Therefore, in the conventional apparatus, it is difficult to measure the viscosity, conductivity, and dielectric constant of the liquid under the same condition, and the difference in the measurement conditions between the measured viscosity and the conductivity and dielectric constant is difficult. Error was included. In this case, the measurement of the viscosity of the liquid and the measurement of the conductivity and the dielectric constant of the liquid must be performed separately, and the measurement is troublesome. SUMMARY OF THE INVENTION The present invention has been made to address the above-described problems, and has as its object to reduce the viscosity, conductivity, and permittivity of a liquid without including errors due to differences in measurement conditions. An object of the present invention is to provide a surface acoustic wave device for measuring characteristics.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、圧電基板上に並列に蒸着した第1及び第
2の導電性薄膜と、これら導電性薄膜の一側にそれぞれ
櫛歯状に設けた第1及び第2の入力電極と、前記圧電基
板上に前記導電性薄膜の他側にそれぞれ櫛歯状に設けた
第1及び第2の出力電極とにより構成され、前記第1及
び第2の導電性薄膜の各領域全体が前記第1及び第2入
力電極と第1及び第2出力電極の間をそれぞれ短絡する
ようにした第1及び第2の弾性表面波伝搬路を備えると
共に、前記圧電基板上に前記第2の導電性薄膜と並列に
蒸着した第3の導電性薄膜の一側に櫛歯状に設けた第3
の入力電極と同第3の導電性薄膜の他側に櫛歯状に設け
た第3の出力電極とにより構成され、前記第3の導電性
薄膜がその周囲にて前記第3の入力電極と出力電極の間
を短絡するようにした第3の弾性表面波伝搬路を備え、
かつ前記第1の弾性表面波伝搬路と第2の弾性表面波伝
搬路の間並びに前記第2の弾性表面波伝搬路と第3の弾
性表面波伝搬路の間に位置する仕切り溝を前記圧電基板
上に設けてなり、前記第2の導電性薄膜と第3の導電性
薄膜の上に測定すべき液体が満たされるプールを形成す
る枠体を固着して使用するようにしたことを特徴とする
液体の粘性率、導電率、誘電率等の特性を測定するため
の弾性表面波装置を提供するものである。
In order to achieve the above-mentioned object, the present invention provides a first and a second method in which a first and a second layers are deposited in parallel on a piezoelectric substrate .
2 conductive thin films and one side of each of these conductive thin films
First and second input electrodes provided in a comb shape;
Provided on the plate in a comb shape on the other side of the conductive thin film, respectively.
A first output electrode and a second output electrode.
And the entire area of the second conductive thin film is covered by the first and second conductive films.
Short-circuit between the force electrode and the first and second output electrodes respectively
The first and second surface acoustic wave propagation paths
In both cases, in parallel with the second conductive thin film on the piezoelectric substrate
A third comb-like shape provided on one side of the deposited third conductive thin film
Provided in a comb shape on the other side of the third conductive thin film with the input electrode of
A third output electrode, the third conductive
Between the third input electrode and the output electrode around the thin film
A third surface acoustic wave propagation path configured to short-circuit
And the first surface acoustic wave propagation path and the second surface acoustic wave
Between the transport path and the second surface acoustic wave propagation path and the third bullet
A partition groove located between the conductive surface wave propagation paths and the piezoelectric substrate
The second conductive thin film and the third conductive thin film.
Form a pool on the membrane that is filled with the liquid to be measured
The frame is fixed and used
To measure liquid viscosity, conductivity, dielectric constant, etc.
And a surface acoustic wave device.

【0006】[0006]

【作用】上記のように構成した本発明においては、同一
の圧電基板上に第1〜第3の弾性表面波伝搬路が形成さ
れ、第1及び第2の弾性表面波伝搬路には入力電極と出
力電極との間にて領域全体を短絡した導電性薄膜がそれ
ぞれ設けられるとともに、第3の弾性表面波伝搬路には
入力電極と出力電極との間にて領域周囲のみを短絡した
導電性薄膜が設けられているので、第2及び第3の弾性
表面波伝搬路の導電薄膜上に枠体でプールを形成すると
ともに同プール内に被測定用の液体を満たせば、第1及
び第2の弾性表面波伝搬路上の弾性表面波の伝搬速度の
差により液体の粘性率が測定されると同時に、第2及び
第3の弾性表面波伝搬路上の弾性表面波の伝搬速度及び
伝搬損失の差により液体の導電率及び誘電率が測定され
得る。また、第1〜3の弾性表面波伝搬路間の各仕切り
溝は、各弾性表面伝搬路上を伝搬する弾性表面波が他の
伝搬路に侵入することを阻止する。
According to the present invention, the first to third surface acoustic wave propagation paths are formed on the same piezoelectric substrate, and the first and second surface acoustic wave propagation paths have input electrodes. A conductive thin film whose entire area is short-circuited is provided between the first electrode and the output electrode, and the third surface acoustic wave propagation path has a conductive thin-film short-circuited only around the area between the input electrode and the output electrode. Since the thin film is provided, if a pool is formed with a frame on the conductive thin film of the second and third surface acoustic wave propagation paths and the pool is filled with the liquid to be measured, the first and second layers are formed. The viscosity of the liquid is measured by the difference in the propagation speed of the surface acoustic wave on the surface acoustic wave propagation path, and the difference between the propagation velocity and the propagation loss of the surface acoustic wave on the second and third surface acoustic wave propagation paths. Can measure the conductivity and permittivity of the liquid. Each partition between the first to third surface acoustic wave propagation paths prevents surface acoustic waves propagating on each surface acoustic wave propagation path from invading another propagation path.

【0007】[0007]

【発明の効果】上記作用説明から理解できるとおり、本
発明によれば、同一条件下で同時に液体の粘性率、導電
率及び誘電率を測定できるので、測定条件の差異による
誤差を含まないでかつ簡単に液体の粘性率、導電率及び
誘電率を測定できるようになる。また、各仕切り溝が弾
性表面波の他の伝搬路への侵入を阻止するので、前記測
定結果の精度が高くなるとともに、各弾性表面波伝搬路
の幅を狭くすることができて本発明による装置を小型に
構成できる。
As can be understood from the above description of the operation, according to the present invention, the viscosity, conductivity and dielectric constant of a liquid can be measured simultaneously under the same conditions, so that errors due to differences in measurement conditions are not included, and The viscosity, conductivity, and dielectric constant of a liquid can be easily measured. Further, since each partition groove prevents entry of the surface acoustic wave into another propagation path, the accuracy of the measurement result is increased, and the width of each surface acoustic wave propagation path can be reduced. The device can be made compact.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を用いて説明
すると、図1は同実施例に係る弾性表面波装置を示した
平面図である。この弾性表面波装置は、LiNbO3,LiTaO3,
水晶などの圧電材料を直方体状に形成した圧電基板30
(例えば、1辺の長さが約20mm程度で厚さが約0,5〜1.0
mm程度である)を備えている。圧電基板30上には、第
1〜第3の弾性表面波伝搬路30a,30b,30cを
それぞれ形成する櫛歯状の入力電極31,32,33及
び出力電極34,35,36がそれぞれ相対向して設け
られている。第1及び第2の弾性表面波伝搬路30a,
30bには、入力電極31,32及び出力電極34,3
5の間にて圧電基板30上に方形に蒸着した金薄膜3
7,38が設けられている。この金薄膜37,38は導
電性薄膜として機能するもので、圧電基板30上であっ
て弾性表面波伝搬路30a,30bの入力電極31,3
2及び出力電極34,35の間にて所定領域を全体的に
短絡する。第3の弾性表面波伝搬路30cには、入力電
極33及び出力電極36の間にて圧電基板30上に中央
を方形に囲んで蒸着した金薄膜39が設けられている。
この金薄膜39は導電性薄膜として機能するもので、圧
電基板30上であって弾性表面波伝搬路30cの入力電
極33及び出力電極36の間にて所定領域の周囲のみを
短絡する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing a surface acoustic wave device according to an embodiment of the present invention. This surface acoustic wave device is composed of LiNbO 3 , LiTaO 3 ,
Piezoelectric substrate 30 formed of a piezoelectric material such as quartz in a rectangular parallelepiped shape
(For example, the length of one side is about 20 mm and the thickness is about 0.5 to 1.0
mm). On the piezoelectric substrate 30, comb-shaped input electrodes 31, 32, 33 and output electrodes 34, 35, 36 which form first to third surface acoustic wave propagation paths 30a, 30b, 30c respectively face each other. It is provided. The first and second surface acoustic wave propagation paths 30a,
30b, input electrodes 31, 32 and output electrodes 34, 3
5, a thin gold film 3 deposited on the piezoelectric substrate 30 in a rectangular shape
7, 38 are provided. The gold thin films 37 and 38 function as conductive thin films, and are formed on the piezoelectric substrate 30 and the input electrodes 31 and 3 of the surface acoustic wave propagation paths 30a and 30b.
A predetermined area is entirely short-circuited between the second electrode 2 and the output electrodes 34 and 35. In the third surface acoustic wave propagation path 30c, a gold thin film 39 is provided between the input electrode 33 and the output electrode 36 and is deposited on the piezoelectric substrate 30 so as to surround the center in a rectangular shape.
The gold thin film 39 functions as a conductive thin film, and short-circuits only around a predetermined area on the piezoelectric substrate 30 between the input electrode 33 and the output electrode 36 of the surface acoustic wave propagation path 30c.

【0009】なお、この圧電基板30上には前記のよう
に構成した第1〜第3の弾性表面波伝搬路30a〜30
cを繰り返し設けるようにしてもよいし、異なる種類の
弾性表面波伝搬路を設けてもよい。また、圧電基板30
上には、前述した第1〜第3の弾性表面波伝搬路30a
〜30cのみを設けて他の弾性表面波伝搬路を設けなく
てもよい。
On the piezoelectric substrate 30, the first to third surface acoustic wave propagation paths 30a to 30
c may be provided repeatedly, or different types of surface acoustic wave propagation paths may be provided. Also, the piezoelectric substrate 30
On the top, the above-described first to third surface acoustic wave propagation paths 30a
It is not necessary to provide only the surface acoustic wave propagation path 30c and another surface acoustic wave propagation path.

【0010】圧電基板30上の第1〜第3の弾性表面波
伝搬路30a〜30cの各間には仕切り溝41a,41
b,41c…が形成されている。この仕切り溝41a,
41b,41c…の深さは0.2〜0.3mm程度であり、50MH
z の弾性表面波の2〜3波長に相当する。
[0010] Partition grooves 41a and 41 are provided between the first to third surface acoustic wave propagation paths 30a to 30c on the piezoelectric substrate 30.
are formed. This partition groove 41a,
The depth of 41b, 41c ... is about 0.2-0.3mm, and 50MHZ
This corresponds to 2 to 3 wavelengths of the surface acoustic wave of z.

【0011】上記のように構成した弾性表面波装置を用
いて被測定液の粘性率(厳密にいえば、粘性率に密度を
乗算した値)、導電率及び誘電率を測定するためには、
測定に先立ち、金薄膜38,39の上面に合成樹脂で成
形した高さ1〜数mmの方形の枠体42をシリコンゴムな
どを用いて金薄膜38,39の上面に固着し、両金薄膜
38,39上に液体を収容可能なプールを形成する。な
お、この場合、枠体42の約半分の大きさを有する2つ
の枠体を金薄膜38,39の上面にそれぞれ設けるよう
にしてもよい。
In order to measure the viscosity of the liquid to be measured (strictly speaking, the value obtained by multiplying the viscosity by the density), the conductivity and the dielectric constant using the surface acoustic wave device configured as described above,
Prior to the measurement, a rectangular frame 42 having a height of 1 to several mm formed of a synthetic resin is fixed to the upper surfaces of the gold thin films 38 and 39 using silicon rubber or the like. A pool capable of containing a liquid is formed on 38 and 39. In this case, two frames having a size approximately half the size of the frame 42 may be provided on the upper surfaces of the gold thin films 38 and 39, respectively.

【0012】測定に際しては、まず枠体42によって形
成されたプール内に被測定用の液体(溶液)を満たさな
い状態で、入力電極31〜33に共通に高周波発振器4
3を接続するとともに出力電極34〜36にベクトルボ
ルトメータ44を共通に接続して、入力電極31〜33
に高周波信号を印加して出力電極34〜36にて受信し
た高周波信号をベクトルボルトメータ44に供給する。
ベクトルボルトメータ44においては、出力電極34,
35からそれぞれ入力される各弾性表面波の伝搬速度差
を測定して同差を基準値として憶えておく。また、出力
電極35,36からそれぞれ入力される各弾性表面波の
伝搬速度差及び伝搬損失差をそれぞれ測定して、各差を
基準値としてそれぞれ憶えておく。
At the time of measurement, first, the high-frequency oscillator 4 is shared by the input electrodes 31 to 33 in a state where the liquid to be measured is not filled in the pool formed by the frame 42.
3, and the vector electrodes 44 to 36 are commonly connected to the output electrodes 34 to 36, and the input electrodes 31 to 33 are connected.
And supplies the high-frequency signal received by the output electrodes 34 to 36 to the vector voltmeter 44.
In the vector voltmeter 44, the output electrodes 34,
The difference between the propagation velocities of the surface acoustic waves respectively input from 35 is measured and the difference is stored as a reference value. Further, the propagation velocity difference and the propagation loss difference of each of the surface acoustic waves input from the output electrodes 35 and 36 are measured, and each difference is stored as a reference value.

【0013】次に、前記プール内に被測定用の液体(溶
液)を満たし、前記と同様に、出力電極34,35から
それぞれベクトルボルトメータ44に入力される各弾性
表面波の伝搬速度差を測定するとともに、出力電極3
5,36からそれぞれ入力される各弾性表面波の伝搬速
度差及び伝搬損失差をそれぞれ測定する。これらの測定
結果から前記各基準値を減算することにより、液体の粘
性率、導電率及び誘電率が算出される。このようにして
液体の粘性率、導電率及び誘電率が測定される理由につ
いて下記に簡単に説明しておく。
Next, the pool is filled with a liquid to be measured (solution), and the propagation velocity difference of each surface acoustic wave input from the output electrodes 34 and 35 to the vector voltmeter 44 is determined in the same manner as described above. Measure and output electrode 3
The propagation velocity difference and the propagation loss difference of each of the surface acoustic waves input from 5 and 36 are measured. The viscosity, conductivity, and dielectric constant of the liquid are calculated by subtracting each of the reference values from these measurement results. The reason why the viscosity, conductivity, and dielectric constant of the liquid are measured in this manner will be briefly described below.

【0014】粘性率について 液体をプールに満たさなければ、第1及び第2の弾性表
面波伝搬路30a,30bを伝搬する弾性表面の伝搬速
度差は本来的には「0」である。一方、液体をプールに
満たすと、第2の弾性表面波伝搬路30bは金薄膜38
によって電気的に短絡されているために液体の電気的性
質(導電率及び誘電率)の影響を受けないが、液体の機
械的性質(粘性率及び密度)の影響を受け、その音響イ
ンピーダンスが液体の機械的性質(粘性率及び密度)に
よって変化する。これにより、第2の弾性表面伝搬路3
0b上の弾性表面波の伝搬速度が液体の機械的性質(粘
性率及び密度)によって変化し、第1の弾性表面波伝搬
路30a上の弾性表面波の伝搬速度との間に下記数1で
示されるような変化が生じる。そして、前記測定結果及
び数1に基づくマップにより液体の粘性率(厳密には密
度を乗算した値)が導出される。
Regarding Viscosity If the liquid is not filled in the pool, the difference in propagation speed between the elastic surfaces propagating through the first and second surface acoustic wave propagation paths 30a and 30b is essentially "0". On the other hand, when the pool is filled with the liquid, the second surface acoustic wave propagation path 30b becomes the gold thin film 38.
Is not affected by the electrical properties (conductivity and permittivity) of the liquid because it is electrically short-circuited, but is affected by the mechanical properties (viscosity and density) of the liquid and its acoustic impedance is Varies depending on the mechanical properties (viscosity and density). Thereby, the second elastic surface propagation path 3
The propagation velocity of the surface acoustic wave on the first surface acoustic wave propagation path 30a varies according to the mechanical properties (viscosity and density) of the liquid. The change occurs as shown. Then, the viscosity of the liquid (a value strictly multiplied by the density) is derived from the map based on the measurement result and Equation 1.

【0015】[0015]

【数1】 (Equation 1)

【0016】ただし、ΔVは検出される弾性表面波の伝
搬速度差、Vは圧電基板30の材料により決定される弾
性表面波伝搬速度(定数)、ωは発振器43から発生さ
れる高周波信号の角周波数(定数)、Pは入力電極3
1,32に入力される入力電力量、ρは測定される液体
の密度、ηは測定される液体の粘性、υは圧電基板30
の材料により決定される粒子変位速度である。
Here, ΔV is the difference between the propagation speeds of the detected surface acoustic waves, V is the surface acoustic wave propagation speed (constant) determined by the material of the piezoelectric substrate 30, and ω is the angle of the high-frequency signal generated from the oscillator 43. Frequency (constant), P is input electrode 3
1, 32, ρ is the density of the liquid to be measured, η is the viscosity of the liquid to be measured, and υ is the piezoelectric substrate 30.
Is the particle displacement velocity determined by the material of

【0017】導電率及び誘電率について 液体をプールに満たさなければ、第2及び第3の弾性表
面波伝搬路30b,30cを伝搬する弾性表面波の伝搬
速度差及び伝搬損失差は本来的には「0」である。液体
をプールに満たした場合でも、第2及び第3の弾性表面
波伝搬路30b,30c上には平等に液体が存在するた
めに、両伝搬路30b,30cに対する液体の機械的性
質(粘性率及び密度)の影響は相殺される。一方、この
場合、第3の弾性表面波伝搬路30c上の金薄膜39は
周囲のみ短絡されていてその中央部はオープンになって
いるので、圧電基板30内の粒子変位による電界が液体
中に漏れる。したがって、第3の弾性表面波伝搬路30
cは液体の電気的性質(導電率及び誘電率)の影響を受
け、同伝搬路30cの音響インピーダンスが液体の電気
的性質(導電率及び誘電率)によって変化する。これに
より、第3の弾性表面伝搬路30c上の弾性表面波の伝
搬速度及び伝搬損失が液体の電気的性質(導電率及び誘
電率)によって変化し、第2の弾性表面波伝搬路30b
上の弾性表面波の伝搬速度及び伝搬損失との間に下記数
2,3で示されるような変化が生じる。そして、前記測
定結果及びこれらの数2,3に基づくマップを参照して
液体の導電率及び誘電率が導出される。
Unless the pool is filled with the liquid, the difference in the propagation velocity and the difference in the propagation loss of the surface acoustic waves propagating through the second and third surface acoustic wave propagation paths 30b and 30c are essentially different from each other. It is "0". Even when the pool is filled with the liquid, since the liquid exists evenly on the second and third surface acoustic wave propagation paths 30b and 30c, the mechanical properties (viscosity of the liquid) for both propagation paths 30b and 30c And density) are offset. On the other hand, in this case, since the gold thin film 39 on the third surface acoustic wave propagation path 30c is short-circuited only at the periphery and is open at the center, the electric field due to the particle displacement in the piezoelectric substrate 30 is generated in the liquid. Leak. Therefore, the third surface acoustic wave propagation path 30
c is affected by the electrical properties (conductivity and dielectric constant) of the liquid, and the acoustic impedance of the propagation path 30c changes depending on the electrical properties (conductivity and dielectric constant) of the liquid. Accordingly, the propagation speed and propagation loss of the surface acoustic wave on the third surface acoustic wave path 30c change depending on the electrical properties (conductivity and dielectric constant) of the liquid, and the second surface acoustic wave path 30b
A change as shown in the following Expressions 2 and 3 occurs between the propagation speed and the propagation loss of the above surface acoustic wave. Then, the conductivity and the dielectric constant of the liquid are derived with reference to the measurement result and a map based on these Equations 2 and 3.

【0018】[0018]

【数2】 (Equation 2)

【0019】[0019]

【数3】 (Equation 3)

【0020】ただし、ΔVは検出される弾性表面波の伝
搬速度差、Δαは検出される弾性表面波の伝搬損失差、
Vは圧電基板30の材料により決定される弾性表面波伝
搬速度(定数)、(ΔV/V0LSCは液体として水を選
定した場合における弾性表面波伝搬速度Vに対する伝搬
速度差の比(事前に測定されている定数)、ωは発振器
43から発生される高周波信号の角周波数(定数)、ε
Lは測定される液体の誘電率、εWは水の誘電率(定
数)、εPは圧電基板30の材料により決定される同基
板30の誘電率(定数)、σは測定される液体の導電率
である。
Here, ΔV is the difference in the propagation velocity of the detected surface acoustic wave, Δα is the difference in the propagation loss of the detected surface acoustic wave,
V is the surface acoustic wave propagation velocity (constant) determined by the material of the piezoelectric substrate 30, (ΔV / V 0 ) LSC is the ratio of the propagation velocity difference to the surface acoustic wave propagation velocity V when water is selected as the liquid Ω is the angular frequency (constant) of the high-frequency signal generated from the oscillator 43, ε
L is the dielectric constant of the liquid to be measured, ε W is the dielectric constant (constant) of water, ε P is the dielectric constant (constant) of the substrate 30 determined by the material of the piezoelectric substrate 30, and σ is the dielectric constant of the liquid to be measured. Conductivity.

【0021】上記測定方法の説明からも理解できるとお
り、上記実施例によれば、同一の圧電基板30上に設け
た第1〜第3の弾性表面波伝搬路30a〜30cを用い
て被測定用の液体の粘性率、導電率及び誘電率を測定で
きるので、同一条件下で同時に液体の粘性率、導電率及
び誘電率を測定できる。したがって、測定条件の差異に
よる誤差を含まないでかつ簡単に液体の粘性率、導電率
及び誘電率を測定できるようになる。また、前記測定
中、弾性表面波は圧電基板30の上面から2波長以内程
度にほとんどのエネルギーが集中しているので、上記仕
切り溝41a〜41cにより、各弾性表面波伝播路30
a〜30c上を伝搬する弾性表面波は他の伝搬路に侵入
しなくなり、前記測定結果の精度が高くなるとともに、
各弾性表面波伝搬路の幅を狭くすることができて圧電基
板30を小型に構成できる。
As can be understood from the above description of the measuring method, according to the above-described embodiment, the measuring object is measured by using the first to third surface acoustic wave propagation paths 30a to 30c provided on the same piezoelectric substrate 30. Since the viscosity, conductivity, and dielectric constant of the liquid can be measured, the viscosity, conductivity, and dielectric constant of the liquid can be measured simultaneously under the same conditions. Therefore, the viscosity, conductivity, and dielectric constant of the liquid can be easily measured without including an error due to a difference in measurement conditions. During the measurement, most of the energy of the surface acoustic wave is concentrated within about two wavelengths from the upper surface of the piezoelectric substrate 30. Therefore, each of the surface acoustic wave propagation paths 30a is formed by the partition grooves 41a to 41c.
The surface acoustic waves propagating on a to 30c do not enter other propagation paths, and the accuracy of the measurement result is increased.
The width of each surface acoustic wave propagation path can be reduced, and the size of the piezoelectric substrate 30 can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る弾性表面波装置の概
略平面図である。
FIG. 1 is a schematic plan view of a surface acoustic wave device according to one embodiment of the present invention.

【図2】 従来の弾性表面波装置の概略平面図である。FIG. 2 is a schematic plan view of a conventional surface acoustic wave device.

【図3】 従来の他の弾性表面波装置の概略平面図であ
る。
FIG. 3 is a schematic plan view of another conventional surface acoustic wave device.

【符号の説明】[Explanation of symbols]

30…圧電基板、30a〜30c…弾性表面波伝搬路、
31〜33…入力電極、34〜36…出力電極、37〜
39…金薄膜、41a〜41c…仕切り溝、42…枠
体。
30: piezoelectric substrate, 30a to 30c: surface acoustic wave propagation path,
31 to 33 ... input electrodes, 34 to 36 ... output electrodes, 37 to
39: gold thin film, 41a to 41c: partition groove, 42: frame.

フロントページの続き (56)参考文献 特開 平2−227661(JP,A) 特開 昭62−190905(JP,A) 特開 昭61−128138(JP,A) 特開 平5−256753(JP,A) 特開 平5−322736(JP,A) 特開 平3−209157(JP,A) 特開 平3−140838(JP,A) 塩川祥子,SH−SAWデバイスを用 いた溶液系センサ,電子情報通信学会論 文誌,日本,社団法人 電子情報通信学 会,1992年5月25日,Vol.75,N o.5,Page.224−234 (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 G01N 5/02 G01N 11/00 - 11/16 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-2-227661 (JP, A) JP-A-62-190905 (JP, A) JP-A-61-128138 (JP, A) JP-A-5-275653 (JP, A) JP-A-5-322736 (JP, A) JP-A-3-209157 (JP, A) JP-A-3-140838 (JP, A) Shoko Shiokawa, Solution-based sensor using SH-SAW device, IEICE bibliography, Japan, The Institute of Electronics, Information and Communication Engineers, May 25, 1992, Vol. 75, No. 5, Page. 224-234 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 29/00-29/28 G01N 5/02 G01N 11/00-11/16 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧電基板上に並列に蒸着した第1及び第
2の導電性薄膜と、これら導電性薄膜の一側にそれぞれ
櫛歯状に設けた第1及び第2の入力電極と、前記圧電基
板上に前記導電性薄膜の他側にそれぞれ櫛歯状に設けた
第1及び第2の出力電極とにより構成され、前記第1及
び第2の導電性薄膜の各領域全体が前記第1及び第2入
力電極と第1及び第2出力電極の間をそれぞれ短絡する
ようにした第1及び第2の弾性表面波伝搬路を備えると
共に、前記圧電基板上に前記第2の導電性薄膜と並列に
蒸着した第3の導電性薄膜の一側に櫛歯状に設けた第3
の入力電極と同第3の導電性薄膜の他側に櫛歯状に設け
た第3の出力電極とにより構成され、前記第3の導電性
薄膜がその周囲にて前記第3の入力電極と出力電極の間
を短絡するようにした第3の弾性表面波伝搬路を備え、
かつ前記第1の弾性表面波伝搬路と第2の弾性表面波伝
搬路の間並びに前記第2の弾性表面波伝搬路と第3の弾
性表面波伝搬路の間に位置する仕切り溝を前記圧電基板
上に設けてなり、前記第2の導電性薄膜と第3の導電性
薄膜の上に測定すべき液体が満たされるプールを形成す
る枠体を固着して使用するようにしたことを特徴とする
液体の粘性率、導電率、誘電率等の特性を測定するため
の弾性表面波装置。
1. A first and a second vapor deposition method, which are deposited in parallel on a piezoelectric substrate .
2 conductive thin films and one side of each of these conductive thin films
First and second input electrodes provided in a comb shape;
Provided on the plate in a comb shape on the other side of the conductive thin film, respectively.
A first output electrode and a second output electrode.
And the entire area of the second conductive thin film is covered by the first and second conductive films.
Short-circuit between the force electrode and the first and second output electrodes respectively
The first and second surface acoustic wave propagation paths
In both cases, in parallel with the second conductive thin film on the piezoelectric substrate
A third comb-like shape provided on one side of the deposited third conductive thin film
Provided in a comb shape on the other side of the third conductive thin film with the input electrode of
A third output electrode, the third conductive
Between the third input electrode and the output electrode around the thin film
A third surface acoustic wave propagation path configured to short-circuit
And the first surface acoustic wave propagation path and the second surface acoustic wave
Between the transport path and the second surface acoustic wave propagation path and the third bullet
A partition groove located between the conductive surface wave propagation paths and the piezoelectric substrate
The second conductive thin film and the third conductive thin film.
Form a pool on the membrane that is filled with the liquid to be measured
Surface acoustic wave device for measuring characteristics such as viscosity, conductivity, and dielectric constant of a liquid, wherein the surface of the frame is fixed and used .
JP25827192A 1992-09-28 1992-09-28 Surface acoustic wave device for measuring liquid properties. Expired - Fee Related JP3250849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25827192A JP3250849B2 (en) 1992-09-28 1992-09-28 Surface acoustic wave device for measuring liquid properties.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25827192A JP3250849B2 (en) 1992-09-28 1992-09-28 Surface acoustic wave device for measuring liquid properties.

Publications (2)

Publication Number Publication Date
JPH06109710A JPH06109710A (en) 1994-04-22
JP3250849B2 true JP3250849B2 (en) 2002-01-28

Family

ID=17317928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25827192A Expired - Fee Related JP3250849B2 (en) 1992-09-28 1992-09-28 Surface acoustic wave device for measuring liquid properties.

Country Status (1)

Country Link
JP (1) JP3250849B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417170C1 (en) * 1994-05-17 1995-10-05 Karlsruhe Forschzent Gas sensor using surface wave components
DE4431617A1 (en) * 1994-09-05 1996-03-07 Siemens Ag Chemical sensor
WO1998057163A1 (en) * 1997-06-13 1998-12-17 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Measurement of physical or technical values of viscous media by means of rayleigh waves
JPH11118774A (en) * 1997-10-14 1999-04-30 Toyota Motor Corp Oil deterioration sensor
JP2001153781A (en) * 1999-11-26 2001-06-08 Maruyasu Industries Co Ltd Surface acoustic wave apparatus for measuring characteristic value of liquid
JP4950752B2 (en) * 2007-05-01 2012-06-13 日本無線株式会社 Density measuring device
JP5098817B2 (en) 2008-05-29 2012-12-12 ソニー株式会社 Physical property measuring apparatus and physical property measuring method
JP5431687B2 (en) * 2008-06-16 2014-03-05 日本無線株式会社 Device measurement device
JP2010107485A (en) * 2008-10-31 2010-05-13 Japan Radio Co Ltd Relative permittivity-conductivity measuring device
DE102008062177A1 (en) 2008-12-13 2010-07-08 Alzchem Trostberg Gmbh Process for producing high purity silicon nitride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
塩川祥子,SH−SAWデバイスを用いた溶液系センサ,電子情報通信学会論文誌,日本,社団法人 電子情報通信学会,1992年5月25日,Vol.75,No.5,Page.224−234

Also Published As

Publication number Publication date
JPH06109710A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
Auld et al. Normal mode theory for acoustic waves and its application to the interdigital transducer
US5455475A (en) Piezoelectric resonant sensor using the acoustoelectric effect
US6186005B1 (en) Surface wave liquid sensor
JP3250849B2 (en) Surface acoustic wave device for measuring liquid properties.
EP1058109A1 (en) Qcm sensor
US10241082B2 (en) Analyte sensor and analyte sensing method
Nomura et al. Measurement of acoustic properties of liquid using liquid flow SH-SAW sensor system
JPH05240762A (en) Surface transverse wave apparatus
JP3488554B2 (en) Solution sensor system
EP1426772A1 (en) Impedance measuring circuit, its method, and capacitance measuring circuit
JP3167053B2 (en) Surface acoustic wave device for measuring liquid properties.
JPH03209157A (en) Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JP2000046884A (en) Method for correcting charge density in space charge measurement
JP3481298B2 (en) Solution sensor
Vellekoop et al. Evaluation of liquid properties using a silicon Lamb wave sensor
Borodina et al. Influence of the conductivity of a liquid contacting with a lateral electric field excited resonator based on PZT ceramics on its characteristics
JPH0545338A (en) Elastic wave element and measuring apparatus of physical property of solution using the element
US4462257A (en) Strain sensitive ultrasonic surface wave detector
US8636953B2 (en) Surface acoustic wave sensing device
EP4206669A1 (en) Method and device for characterising the response of resonant sensors
Josse et al. Electrical surface perturbation of a piezoelectric acoustic plate mode by a conductive liquid loading
Nomura et al. Humidity sensor using surface acoustic waves propagating along polymer/LiNbO 3 structures
Kondoh et al. Multichannel shear horizontal surface acoustic wave microsensor for liquid characterization
JPH026728A (en) Measuring instrument for liquid viscosity by surface acoustic wave
Joshi Surface acoustic‐wave device for measuring high voltages

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees