JP2000046884A - Method for correcting charge density in space charge measurement - Google Patents

Method for correcting charge density in space charge measurement

Info

Publication number
JP2000046884A
JP2000046884A JP10213188A JP21318898A JP2000046884A JP 2000046884 A JP2000046884 A JP 2000046884A JP 10213188 A JP10213188 A JP 10213188A JP 21318898 A JP21318898 A JP 21318898A JP 2000046884 A JP2000046884 A JP 2000046884A
Authority
JP
Japan
Prior art keywords
dielectric
space charge
measurement sample
charge density
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10213188A
Other languages
Japanese (ja)
Inventor
Suguru Ri
英 李
Junichi Shinagawa
潤一 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP10213188A priority Critical patent/JP2000046884A/en
Publication of JP2000046884A publication Critical patent/JP2000046884A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease a correction error to a change density in a space charge measurement for a dielectric object having two different permittivities. SOLUTION: A high voltage pulse Vp(t) of a narrow pulse width is applied to both ends of a measurement sample 50 which is a dielectric object having two different permittivities #11, #12 via electrodes 4, 5. A detection voltage signal V(0), V(D) corresponding to a pressure wave generated at an interface between the measurement sample 50 and the electrode 4, 5 is operated by a preliminarily determined operation element of a deconvolution process, thereby correcting a space change density of the measurement sample. At this time, a proportional constant (k) of the preliminarily measured two permittivities of the measurement sample is obtained, and multiplied by the low permittivity #12 which is the preliminarily determined operation element of the deconvolution process, thereby obtaining an operation element of the deconvolution process. Since the thus-obtained operation element is applied, the space charge density of a part of the dielectric object having the low permittivity can be corrected with a small error.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は異なる誘電率を有
する誘電体の空間電荷測定における電荷密度校正方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating charge density in measuring space charge of dielectrics having different dielectric constants.

【0002】[0002]

【従来の技術】従来より、PEA法(パルス静電応力
法)などの非破壊的な空間電荷測定方法においては、弾
性波を利用しているので、測定試料の音速、音響インピ
ーダンス、誘電率などを考慮して校正する必要がある。
例えば、PEA法の場合には、パルス電圧を測定試料に
印加することによって測定試料の誘電体中の電荷にパル
ス静電気力を作用させ、当該誘電体中に圧力波を発生さ
せる。そして、この圧力波の時間変化を圧電素子で検出
し、この検出電圧信号をデジタルオシロスコープによっ
て演算部に所定のサンプリング速度で送り込む。演算部
は、予め定められた回数だけ加算平均した後、デコンボ
リューション処理を行って空間電荷密度を校正してい
る。
2. Description of the Related Art Conventionally, in a nondestructive space charge measurement method such as a PEA method (pulse electrostatic stress method), since an elastic wave is used, a sound velocity, an acoustic impedance, a dielectric constant, etc. of a measurement sample are used. It is necessary to calibrate in consideration of.
For example, in the case of the PEA method, a pulse voltage is applied to a measurement sample to cause a pulse electrostatic force to act on a charge in a dielectric of the measurement sample to generate a pressure wave in the dielectric. Then, the time change of the pressure wave is detected by the piezoelectric element, and the detected voltage signal is sent to the arithmetic unit by the digital oscilloscope at a predetermined sampling rate. After calculating and averaging a predetermined number of times, the arithmetic unit performs deconvolution processing to calibrate the space charge density.

【0003】具体的には、図2に示すように、主に直流
発生器12、パルス電圧発生器13、電極14、15、
圧電素子16、信号検出部17および演算部18から構
成される空間電荷測定装置10の電極14、15で、平
行平板の測定試料60を挟み込み、この測定試料60に
パルス電圧発生器13にてパルス幅の狭い高電圧パルス
P(t)を印加する。これにより両電極界面にパルス状の
マックスウェル応力f(x、t)が働くことになる。このマッ
クスウェル応力f(x、t)は、測定試料60の誘電体と電極
14、15の誘電率の差に起因した応力で、圧電素子1
6にて検出される検出電圧信号VS(t)と空間電荷密度ρ
(x)との関係を導くことができる。
More specifically, as shown in FIG. 2, mainly a DC generator 12, a pulse voltage generator 13, electrodes 14, 15,
A parallel plate measurement sample 60 is sandwiched between the electrodes 14 and 15 of the space charge measurement device 10 including the piezoelectric element 16, the signal detection unit 17, and the calculation unit 18, and the pulse voltage generator 13 applies a pulse to the measurement sample 60. A high-voltage pulse V P (t) having a small width is applied. As a result, a pulse-like Maxwell stress f (x, t) acts on the interface between both electrodes. The Maxwell stress f (x, t) is a stress resulting from a difference between the dielectric constant of the measurement sample 60 and the dielectric constant of the electrodes 14 and 15, and the piezoelectric element 1
6. The detected voltage signal VS (t) detected at 6 and the space charge density ρ
The relationship with (x) can be derived.

【0004】以下、検出電圧信号VS(t)と空間電荷密度
ρ(x)との関係について説明する。なお、簡単のため
に、測定試料60、電極14、15が十分大きいものと
して、単位面積当たりの大きさを導くこととする。ま
ず、接地電極14および測定試料60の界面に働くマッ
クスウェル応力をf(0、t)とすると、
Hereinafter, the relationship between the detection voltage signal VS (t) and the space charge density ρ (x) will be described. For simplicity, it is assumed that the measurement sample 60 and the electrodes 14 and 15 are sufficiently large, and the size per unit area is derived. First, assuming that the Maxwell stress acting on the interface between the ground electrode 14 and the measurement sample 60 is f (0, t),

【0005】[0005]

【数2】 (Equation 2)

【0006】となる。但し、Eは界面電界強度、ePは界
面電圧パルス電界、εは測定試料60の誘電体の誘電率
である。また、eP(t)=VP(t)/dで、VPは印加パルス電
圧、dは試料厚である。このとき接地電極14および測
定試料60の界面に発生する圧力波p1(図2(c))
は、E(0)>>ePならば式11の第2項のみとなるので、
[0006] Here, E is the interface electric field strength, e P is the interface voltage pulse electric field, and ε is the dielectric constant of the dielectric of the measurement sample 60. Further, in e P (t) = V P (t) / d, V P is the applied pulse voltage, d is the sample thickness. At this time, a pressure wave p 1 generated at the interface between the ground electrode 14 and the measurement sample 60 (FIG. 2C)
Is, E (0) so >> becomes only the second term of e P If equation 11,

【0007】[0007]

【数3】 (Equation 3)

【0008】となる。但し、Cは測定試料60の音響的
性質によって決まる定数、ε0は真空誘電率、εrは測定
試料60の比誘電率である。したがって、得られた圧力
波p1の大きさと極性は、接地電極14および測定試料6
0の界面の電界強度E(0)に比例することになる。同様
に、電極15および測定試料60の界面に発生する圧力
波p3(図2(c))は、電極15および測定試料60の
界面の電界強度E(d)に比例する。なお、圧力波p3は測定
試料60内部を伝搬する時間だけ遅れて圧電素子16に
到着することになる。
[0008] Here, C is a constant determined by the acoustic properties of the measurement sample 60, ε 0 is the vacuum dielectric constant, and ε r is the relative dielectric constant of the measurement sample 60. Therefore, the magnitude and the polarity of the obtained pressure wave p 1 depend on the ground electrode 14 and the measurement sample 6.
It is proportional to the electric field strength E (0) at the interface of 0. Similarly, the pressure wave p 3 (FIG. 2C) generated at the interface between the electrode 15 and the measurement sample 60 is proportional to the electric field strength E (d) at the interface between the electrode 15 and the measurement sample 60. Incidentally, it will arrive at the piezoelectric element 16 with a delay time pressure wave p 3 propagating inside the measurement sample 60.

【0009】これらの圧力波p1、p3は、圧電素子16で
検出電圧信号VS1、vs3(図2(d))として検出するこ
とができるので、両電極界面の電界強度がわかる。次
に、測定試料60内部の位置xPにあるシート状の電荷σ
2(図2(b))に働くマックスウェル応力をf(xP、t)と
すると、
Since these pressure waves p 1 and p 3 can be detected by the piezoelectric element 16 as detection voltage signals VS 1 and vs 3 (FIG. 2D), the electric field strength at the interface between both electrodes can be known. Next, a sheet-like charge on the sample 60 inside of the position x P sigma
When 2 Maxwell stress acting on (FIG. 2 (b)) and f (x P, t),

【0010】[0010]

【数4】 (Equation 4)

【0011】となる。これは、マックスウェル応力f
(xP、t)がクーロン力だからである。したがって、測定試
料60内部の位置xPに発生する圧力波p2は、
## EQU1 ## This is the Maxwell stress f
This is because (x P , t) is Coulomb force. Therefore, the pressure wave p 2 generated at the position x P inside the measurement sample 60 is

【0012】[0012]

【数5】 (Equation 5)

【0013】となり、圧電素子16で検出電圧信号VS2
(図2(d))として検出することができる。なお、空
間電荷がシート状でない場合には、このようなシート状
電荷の重ね合せとして扱うことができるため、測定試料
60内部の電荷分布については一般に式14が成り立つ
ので、検出電圧信号VS1に対する検出電圧信号VS2、VS3
の伝搬遅れ時間が位置を表し、大きさが電荷密度を表す
ことになる。
Then, the detection voltage signal VS 2
(FIG. 2D). When the space charge is not in the form of a sheet, it can be handled as such a superposition of the sheet-like charges. Since the charge distribution inside the measurement sample 60 generally satisfies the expression 14, the detection voltage signal VS 1 Detection voltage signal VS 2 , VS 3
Represents the position, and the magnitude represents the charge density.

【0014】ここで、接地電極14および測定試料60
の界面の電界強度E(0)に比例する検出電圧信号VS1と、
測定試料60内部のシート状の電荷σ2に比例する検出
電圧信号VS2とを比較する。空間電荷測定装置10の電
極14、15に挟み込まれた測定試料60は平行平板誘
電体なので、接地電極14および測定試料60の界面の
電界強度E(0)と、この界面の誘導電荷σ1とは、次式の
関係がある。
Here, the ground electrode 14 and the measurement sample 60
Detection voltage signal VS 1 proportional to the electric field strength E (0) at the interface of
The detection voltage signal VS 2 which is proportional to the sheet-like charge σ 2 inside the measurement sample 60 is compared. Since the measurement sample 60 sandwiched between the electrodes 14 and 15 of the space charge measurement device 10 is a parallel plate dielectric, the electric field strength E (0) at the interface between the ground electrode 14 and the measurement sample 60, the induced charge σ 1 at this interface, and Has the following relationship:

【0015】[0015]

【数6】 (Equation 6)

【0016】したがって、式12は次のように書換える
ことができる。
Therefore, Equation 12 can be rewritten as follows.

【0017】[0017]

【数7】 (Equation 7)

【0018】これは測定試料60内部のシート状の電荷
σ2により発生する圧力波p2とまったく同じ式であるか
ら、一般に、
This equation is exactly the same as the pressure wave p 2 generated by the sheet-like charge σ 2 inside the measurement sample 60.

【0019】[0019]

【数8】 (Equation 8)

【0020】となるので、測定試料60の界面電荷
σ1、σ3も含め全て共通の式で取扱えることがわかる。
次に、測定試料60の界面の面電荷密度σ(x)と空間電
荷密度ρ(x)との関係を導く。式17で示したように、
測定試料60の界面の面電荷密度σ(x)と空間電荷密度
ρ(x)とが同じ式で表される場合、単位が異なるといっ
た矛盾が生じる。これは、PEA法に限らず、PWA法
(圧力波法)にも共通の現象であるが、次のように解決
される。
Therefore, it can be understood that all the equations including the interface charges σ 1 and σ 3 of the measurement sample 60 can be handled by a common equation.
Next, the relationship between the surface charge density σ (x) at the interface of the measurement sample 60 and the space charge density ρ (x) will be derived. As shown in Equation 17,
When the surface charge density σ (x) and the space charge density ρ (x) of the interface of the measurement sample 60 are represented by the same formula, a contradiction occurs in which units are different. This phenomenon is a common phenomenon not only in the PEA method but also in the PWA method (pressure wave method), but is solved as follows.

【0021】これらの測定法においては、検出電圧信号
はデジタルオシロスコープによって測定され、その時点
で離散化されたデータ列となる。各データはデジタルオ
シロスコープのサンプリング間隔に応じて、測定試料6
0を厚さ方向に分割した各層の電荷量を示すことにな
る。例えば、測定試料60中の音速を2000m/s、サ
ンプリング間隔を1GHz/sとすると、1サンプルは2
μmの厚さに相当する。したがって、各層の電荷が界面
の蓄積電荷のようなシート状の場合には、2μmの厚さ
に均一に分布する体積電荷と等しくなる。
In these measuring methods, the detected voltage signal is measured by a digital oscilloscope, and becomes a data string discretized at that time. Each data is measured according to the sampling interval of the digital oscilloscope.
0 indicates the charge amount of each layer divided in the thickness direction. For example, if the sound velocity in the measurement sample 60 is 2000 m / s and the sampling interval is 1 GHz / s, one sample is 2
It corresponds to a thickness of μm. Therefore, when the electric charge of each layer is in the form of a sheet like the accumulated electric charge at the interface, it becomes equal to the volume electric charge uniformly distributed over a thickness of 2 μm.

【0022】このようにして、すべての電荷を2μmの
厚さのシート状電荷の集りと考えると、式17は次のよ
うな空間電荷分布の式に変換することができる。
As described above, when all the charges are considered as a collection of sheet-like charges having a thickness of 2 μm, Equation 17 can be converted into the following equation of space charge distribution.

【0023】[0023]

【数9】 (Equation 9)

【0024】このような検出電圧信号VS(t)と空間電荷
密度ρ(x)との関係から、演算部18におけるデコンボ
リューション処理のための式が導き出される。PEA法
で実際に測定される検出電圧信号VS(t)は、静電気力に
より発生した圧力波p(t)を圧電素子16で検出した電圧
波形である。したがって、測定試料60の音速をVsamp
とすると、測定試料60中の位置xをx=Vsamp×tの関係
から時間tに変換できるので、空間電荷分布を時間の関
数ρ(t)とすると空間電荷分布は、
From the relationship between the detected voltage signal VS (t) and the space charge density ρ (x), an equation for the deconvolution processing in the arithmetic section 18 is derived. The detection voltage signal VS (t) actually measured by the PEA method is a voltage waveform obtained by detecting the pressure wave p (t) generated by the electrostatic force with the piezoelectric element 16. Therefore, the sound speed of the measurement sample 60 is set to Vsamp
Then, since the position x in the measurement sample 60 can be converted into time t from the relationship of x = V samp × t, if the space charge distribution is a function of time ρ (t), the space charge distribution becomes

【0025】[0025]

【数10】 (Equation 10)

【0026】というようなデコンボリューションにな
る。但し、VS1(f)はVS1、VS(f)はVS(t)、R(f)はρ(t)を
それぞれフーリエ変換したものである。また、R1(f)は
測定試料60の界面電荷σ1を空間電荷密度に換算し、
フーリエ変換したものである。したがって、界面電荷σ
1の大きさとこれを測定した検出電圧信号VS1が得られれ
ば、電荷密度を校正することができる。
The deconvolution is as follows. Here, VS 1 (f) is the result of Fourier transform of VS 1 , VS (f) is VS (t), and R (f) is ρ (t). R1 (f) is obtained by converting the interface charge σ 1 of the measurement sample 60 into a space charge density,
This is the result of Fourier transform. Therefore, the interface charge σ
If the magnitude of 1 and the detection voltage signal VS1 obtained by measuring the magnitude of 1 are obtained, the charge density can be calibrated.

【0027】なお、界面電荷密度が既知の測定材料は一
般には存在しないことから、式19をそのまま適用する
ことはできないので、例えば、測定試料60に直流電圧
Vdcを印加することによって界面の電荷量σ1を任意の値
にすることができる。したがって、測定試料60の厚さ
をdとすると、電荷量σ1は、
Since there is generally no measurement material whose interface charge density is known, Equation 19 cannot be applied as it is.
By applying V dc , the charge amount σ 1 at the interface can be set to an arbitrary value. Therefore, assuming that the thickness of the measurement sample 60 is d, the charge amount σ 1 is

【0028】[0028]

【数11】 [Equation 11]

【0029】となる。また、先に述べたように検出電圧
信号は離散化されているので、電荷量σ1を体積電荷密
度に変換すると、サンプリング間隔をτとして
## EQU1 ## Further, since the detection voltage signal is discretized as described above, when the charge amount σ 1 is converted into the volume charge density, the sampling interval is set to τ.

【0030】[0030]

【数12】 (Equation 12)

【0031】となる。ここで、ρ(0)は位置x=0におけ
る空間電荷密度であり、離散フーリエ変換では高さρ
(0)のインパルスに等しい。したがって、これをフーリ
エ変換したR1(f)は周波数に依らない定数ρ(0)となる。
よってデコンボリューション処理の式19は、
## EQU1 ## Here, ρ (0) is the space charge density at the position x = 0, and the height ρ in the discrete Fourier transform
Equal to the impulse of (0). Therefore, R1 (f) obtained by Fourier-transforming this becomes a constant ρ (0) independent of frequency.
Therefore, Expression 19 of the deconvolution processing is

【0032】[0032]

【数13】 (Equation 13)

【0033】となる。したがって、直流電圧Vdcを印加
したときに得られる検出電圧信号VS1を基準波形として
求めておけば、未知の空間電荷を持った測定試料の検出
電圧信号VS(t)から空間電荷分布のフーリエ変換R(f)が
求められる。そして、これを逆フーリエ変換して空間電
荷密度ρ(x)を得ることができる。
## EQU1 ## Therefore, if seeking detection voltage signal VS 1 obtained when applying a DC voltage V dc as the reference waveform, the Fourier space charge distribution from the detection voltage signal VS of the measurement sample having an unknown space charge (t) The transformation R (f) is determined. Then, this is subjected to an inverse Fourier transform to obtain a space charge density ρ (x).

【0034】[0034]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空間電荷測定における電荷密度校正方法で
は、誘電体の誘電率が均一と仮定して校正を行っている
ので、電力ケーブル接続部、電力機器等の二層誘電体
や、電力ケーブル、電力機器等の絶縁材料内の水トリー
劣化部および健全部など、異なる誘電率を有する誘電体
に適用すると、一つの測定試料に異なる誘電率を持つこ
とになるので、校正誤差が大きくなる難点があった。
However, in such a conventional charge density calibration method in space charge measurement, since the calibration is performed on the assumption that the dielectric constant of the dielectric is uniform, the power cable connection portion and the power When applied to dielectrics with different dielectric constants, such as two-layer dielectrics for equipment and water-tree degraded parts and healthy parts in insulating materials such as power cables and power equipment, one sample has a different dielectric constant. Therefore, there was a problem that the calibration error became large.

【0035】本発明はこのような従来の難点を解決する
ためになされたもので、電力ケーブル接続部、電力機器
等の二層誘電体や、電力ケーブル、電力機器等の絶縁材
料内の水トリー劣化部および健全部など、異なる誘電率
を有する誘電体に適用しても校正誤差を小さくすること
ができる空間電荷測定における電荷密度校正方法を提供
することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and includes a water cable in a double-layer dielectric such as a power cable connection portion and a power device, and an insulating material such as a power cable and a power device. An object of the present invention is to provide a charge density calibration method in space charge measurement that can reduce a calibration error even when applied to dielectrics having different dielectric constants such as a deteriorated part and a healthy part.

【0036】[0036]

【発明を解決するための手段】このような目的を達成す
る本発明の空間電荷測定における電荷密度校正方法は、
異なる2つの誘電率を有する誘電体の両端に電極を介し
てパルス幅の狭い高電圧パルスを印加することにより誘
電体および電極の界面に発生する圧力波に応じた検出電
圧信号を、予め決定されたデコンボリューション処理の
演算要素によって演算処理して当該誘電体の空間電荷密
度を校正する空間電荷測定における電荷密度校正方法に
おいて、2つの誘電率のうちの低い誘電率を有する誘電
体の部位の空間電荷密度を予め決定されたデコンボリュ
ーション処理の演算要素で校正する場合には、誘電体の
予め測定されている2つの誘電率の比例定数を求め、当
該比例定数を予め決定されたデコンボリューション処理
の演算要素となる低い誘電率に乗じたデコンボリューシ
ョン処理の演算要素を適用するものである。
The charge density calibration method in space charge measurement of the present invention that achieves the above object is as follows.
By applying a high-voltage pulse having a narrow pulse width to both ends of a dielectric having two different dielectric constants via electrodes, a detection voltage signal corresponding to a pressure wave generated at an interface between the dielectric and the electrode is determined in advance. In the charge density calibration method in the space charge measurement in which the space charge density of the dielectric is calibrated by performing arithmetic processing by an arithmetic element of the deconvolution processing, the space of the dielectric part having the lower dielectric constant of the two dielectric constants is calculated. When the charge density is calibrated by a predetermined operation element of the deconvolution processing, a proportional constant of two previously measured dielectric constants of the dielectric is obtained, and the proportional constant is determined by the predetermined deconvolution processing. The operation element of the deconvolution process multiplied by the low dielectric constant as the operation element is applied.

【0037】この空間電荷測定における電荷密度校正方
法によれば、各部位の誘電率に応じた空間電荷密度を得
ることができるので、校正誤差の小さい高精度な空間電
荷測定を行うことができる。また、本発明の空間電荷測
定における電荷密度校正方法において、空間電荷測定が
PEA法の場合における予め決定されたデコンボリュー
ション処理の演算要素は、
According to the charge density calibration method in the space charge measurement, a space charge density corresponding to the dielectric constant of each part can be obtained, so that a highly accurate space charge measurement with a small calibration error can be performed. Further, in the charge density calibration method in the space charge measurement of the present invention, when the space charge measurement is the PEA method, a predetermined operation element of the deconvolution processing is:

【0038】[0038]

【数14】 [Equation 14]

【0039】(但し、R(f)は空間電荷分布ρ(t)をフー
リエ変換した値、ρ(0)は位置x=0における空間電荷密
度、VS(f)は検出電圧信号V(t)をフーリエ変換した値、V
S1(f)は検出電圧信号V(0)をフーリエ変換した値、Vdc
誘電体に印加する直流電圧、Vsa mpは誘電体の音速、τ
はサンプリング間隔とする。また、kε2=ε1で、ε2
低い誘電率を有する誘電体の部位の誘電率、ε1は高い
誘電率を有する誘電体の部位の誘電率、kは比例定数と
する。また、ε2=ε0εrで、ε0は真空誘電率、εr
低い誘電率を有する誘電体の部位の比誘電率とする。)
である。これにより、ε0εrに2つの誘電率の比例定数
を乗ずれば、低い誘電率を有する誘電体の部位の空間電
荷密度を、小さい誤差で校正することができる。
(Where R (f) is the Fourier-transformed value of the space charge distribution ρ (t), ρ (0) is the space charge density at position x = 0, and VS (f) is the detected voltage signal V (t) Is the value obtained by Fourier transform of V
S 1 (f) is a value obtained by Fourier-transforming the detection voltage signal V (0), V dc is a DC voltage applied to the dielectric, V sa mp is the sound velocity of the dielectric, τ
Is the sampling interval. In addition, kε 2 = ε 1 , ε 2 is a dielectric constant of a dielectric part having a low dielectric constant, ε 1 is a dielectric constant of a dielectric part having a high dielectric constant, and k is a proportional constant. Also, ε 2 = ε 0 ε r , ε 0 is the vacuum permittivity, and ε r is the relative permittivity of a portion of the dielectric material having a low permittivity. )
It is. Thus, by multiplying ε 0 ε r by the proportional constant of the two dielectric constants, it is possible to calibrate the space charge density of the portion of the dielectric having a low dielectric constant with a small error.

【0040】[0040]

【発明の実施の形態】以下、本発明の空間電荷測定にお
ける電荷密度校正方法の実施の一形態について、図面を
参照して説明する。なお、測定試料は、異なる誘電率を
有する二層誘電体とする。本発明の空間電荷測定におけ
る電荷密度校正方法が適用される測定装置は、例えば図
1に示すように、基本的構成は従来のPEA法(パルス
静電応力法)による測定装置と同じで、主に直流発生器
2、パルス電圧発生器3、電極4、5、圧電素子6、信
号検出部7および演算部8から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a charge density calibration method in space charge measurement according to the present invention will be described with reference to the drawings. Note that the measurement sample is a two-layer dielectric having different dielectric constants. The measurement apparatus to which the charge density calibration method in the space charge measurement of the present invention is applied, for example, as shown in FIG. 1, has the same basic configuration as the conventional measurement apparatus based on the PEA method (pulse electrostatic stress method). A DC generator 2, a pulse voltage generator 3, electrodes 4 and 5, a piezoelectric element 6, a signal detector 7, and a calculator 8 are provided.

【0041】直流発生器2は+側が保護抵抗Rの一端
に、−側がアースにそれぞれ接続され、保護抵抗Rの他
端は電極5に接続されている。この保護抵抗Rの他端と
電極5との接続点はコンデンサCを介してパルス電圧発
生器3の一端に接続され、パルス電圧発生器3の他端は
接地電極4に接続されている。このパルス電圧発生器3
の他端と接地電極4との接続点はアースに接続されてい
る。なお、接地電極4は二層誘電体である測定試料50
の高い誘電率ε1(図1(a))を有する一方の層50
aの端面に、電極5は測定試料50の低い誘電率ε
2(図1(a))を有する他方の層50bの端面にそれ
ぞれ面接着される。
The DC generator 2 has the + side connected to one end of the protection resistor R, the − side connected to the ground, and the other end of the protection resistor R connected to the electrode 5. The connection point between the other end of the protection resistor R and the electrode 5 is connected to one end of the pulse voltage generator 3 via the capacitor C, and the other end of the pulse voltage generator 3 is connected to the ground electrode 4. This pulse voltage generator 3
The connection point between the other end and the ground electrode 4 is connected to the ground. The ground electrode 4 is a measurement sample 50 made of a two-layer dielectric.
Layer 50 having a high dielectric constant ε 1 (FIG. 1 (a))
a, the electrode 5 has a low dielectric constant ε of the measurement sample 50.
2 (FIG. 1 (a)) is surface bonded to the end face of the other layer 50b.

【0042】したがって、測定試料50に直流発生器2
で直流電圧Vdcを印加することができるので、接地電極
4および一方の層50aの界面の電荷量σ(0)(図1
(c))と、電極5および他方の層50bの界面の電荷
量σ(D)(図1(c))とを任意の値に設定することが
できる。また、界面電荷σ(0)、σ(D)が発生した測定試
料50にパルス電圧発生器3でパルス幅の狭い高電圧パ
ルスVP(t)を印加することができるので、接地電極4お
よび一方の層50aの界面にパルス状のマクスウェル応
力f(0)(図1(d))が、電極5および他方の層50b
の界面にパルス状のマクスウェル応力f(D)(図1
(d))がそれぞれ働くことになる。
Therefore, the DC generator 2
To apply the DC voltage Vdc , the charge amount σ (0) at the interface between the ground electrode 4 and one of the layers 50a (FIG. 1)
(C)) and the charge amount σ (D) (FIG. 1 (c)) at the interface between the electrode 5 and the other layer 50b can be set to arbitrary values. Further, the pulse voltage generator 3 can apply a high-voltage pulse V P (t) having a narrow pulse width to the measurement sample 50 in which the interface charges σ (0) and σ (D) have been generated. Pulse-like Maxwell stress f (0) (FIG. 1 (d)) is applied to the interface between one layer 50a and the electrode 5 and the other layer 50b.
Maxwell stress f (D) at the interface of
(D)) will work respectively.

【0043】圧電素子6は接地電極4の一端4aに固着
されている。なお、接地電極4の他端4bは測定試料5
0の検出部となる。このような圧電素子6はデジタルオ
シロスコープを備えた信号検出部7に接続され、この信
号検出部7は演算部8に接続されている。信号検出部7
は、圧電素子6で検出された検出電圧信号V(t)をデジタ
ルオシロスコープによって演算部8に所定のサンプリン
グ速度で送り込むものである。また、演算部8は、信号
検出部7から送出される検出電圧信号V(t)を予め定めら
れた回数だけ加算平均した後、デコンボリューション処
理を行って空間電荷密度を校正するものである。
The piezoelectric element 6 is fixed to one end 4a of the ground electrode 4. The other end 4b of the ground electrode 4 is
0 is the detection unit. Such a piezoelectric element 6 is connected to a signal detecting section 7 provided with a digital oscilloscope, and the signal detecting section 7 is connected to an arithmetic section 8. Signal detector 7
Is for sending the detected voltage signal V (t) detected by the piezoelectric element 6 to the arithmetic unit 8 at a predetermined sampling rate by a digital oscilloscope. The arithmetic unit 8 performs addition and averaging of the detection voltage signal V (t) sent from the signal detection unit 7 a predetermined number of times, and then performs deconvolution processing to calibrate the space charge density.

【0044】この演算部8におけるデコンボリューショ
ン処理の演算要素は、異なる誘電率ε1、ε2を有する測
定試料50中の空間電荷密度を小さい校正誤差で演算処
理することができるもので、測定試料50の高い誘電率
ε1を有する一方の層50aの空間電荷密度を校正する
第1のデコンボリューション処理の演算要素は、
The operation element of the deconvolution processing in the operation unit 8 is an element capable of calculating the space charge density in the measurement sample 50 having different dielectric constants ε 1 and ε 2 with a small calibration error. The operation element of the first deconvolution process for calibrating the space charge density of one layer 50a having a high dielectric constant ε 1 of 50 is as follows:

【0045】[0045]

【数15】 (Equation 15)

【0046】で、従来の予め決定されたデコンボリュー
ション処理の演算要素が適用される。但し、R(f)は空間
電荷分布ρ(t)をフーリエ変換した値、ρ(0)は位置x=0
における空間電荷密度、VS(f)は検出電圧信号V(t)をフ
ーリエ変換した値、VS1(f)は検出電圧信号V(0)をフーリ
エ変換した値、Vsampは測定試料50の第1の層50a
の音速、τはサンプリング間隔とする。また、ε1=ε0
εrで、ε0は真空誘電率、εrは測定試料50の第1の
層50aの比誘電率とする。
Then, the operation element of the conventional predetermined deconvolution processing is applied. Here, R (f) is a value obtained by Fourier-transforming the space charge distribution ρ (t), and ρ (0) is a position x = 0.
, VS (f) is a value obtained by Fourier-transforming the detected voltage signal V (t), VS 1 (f) is a value obtained by performing a Fourier transform on the detected voltage signal V (0), and V samp is the fourth value of the measurement sample 50. One layer 50a
Τ is a sampling interval. Also, ε 1 = ε 0
ε r , ε 0 is the vacuum dielectric constant, and ε r is the relative dielectric constant of the first layer 50 a of the measurement sample 50.

【0047】一方、測定試料50の低い誘電率ε2を有
する他方の層50bの空間電荷密度を校正する第2のデ
コンボリューション処理の演算要素は、
On the other hand, the operation element of the second deconvolution processing for calibrating the space charge density of the other layer 50b having the low dielectric constant ε 2 of the measurement sample 50 is as follows:

【0048】[0048]

【数16】 (Equation 16)

【0049】で、誘電体50の予め測定されている2つ
の誘電率ε1、ε2の比例定数kを求めると共に、第1の
デコンボリューション処理の演算要素の高い誘電率ε1
を低い誘電率ε2に置換して、求めた比例定数kを第1の
デコンボリューション処理の演算要素となる低い誘電率
ε2に乗じたものである。但し、ε2=ε0εrで、εr
測定試料50の第2の層50bの比誘電率、Vsampは測
定試料50の第2の層50bの音速とする。
Then, the proportional constant k of the two previously measured dielectric constants ε 1 and ε 2 of the dielectric 50 is determined, and the high dielectric constant ε 1 of the operation element of the first deconvolution processing is calculated.
Is replaced by a low dielectric constant ε 2 , and the obtained constant of proportionality k is multiplied by a low dielectric constant ε 2 which is an operation element of the first deconvolution processing. Here, ε 2 = ε 0 ε r , ε r is the relative dielectric constant of the second layer 50b of the measurement sample 50, and V samp is the sound velocity of the second layer 50b of the measurement sample 50.

【0050】したがって、直流電圧Vdcを印加したとき
に得られる検出電圧信号V(0)を基準波形として求めてお
けば、未知の空間電荷を持った測定試料50の検出電圧
信号V(t)から空間電荷分布のフーリエ変換R(f)が求めら
れる。そして、これを逆フーリエ変換して空間電荷密度
ρ(x)を得ることができる。ここで、測定試料50の低
い誘電率ε2を有する他方の層50bの空間電荷密度
を、第2のデコンボリューション処理の演算要素で校正
する場合に、比例定数kを低い誘電率ε2に乗じなければ
ならない理由について説明する。なお、簡単のために、
測定試料50、電極4、5が十分大きなものとして空間
電荷密度について導くこととする。
Therefore, if the detection voltage signal V (0) obtained when the DC voltage Vdc is applied is determined as a reference waveform, the detection voltage signal V (t) of the measurement sample 50 having an unknown space charge can be obtained. , The Fourier transform R (f) of the space charge distribution is obtained. Then, this is subjected to an inverse Fourier transform to obtain a space charge density ρ (x). Here, the space charge density of the other layer 50b having a low dielectric constant epsilon 2 of the measurement sample 50, when the calibration operation elements of the second deconvolution processing, multiplied by a proportional constant k to the lower dielectric constant epsilon 2 Explain why you must do so. For simplicity,
The measurement sample 50 and the electrodes 4 and 5 are assumed to be sufficiently large to guide the space charge density.

【0051】異なる誘電率ε1、ε2を有する二層誘電体
の測定試料50にパルス電圧発生器3にてパルス幅の狭
い高電圧パルスVP(t)を印加すると、両電極界面にパル
ス状のマクスウェル応力f(0)、f(D)(図1(d))が働
くことになる。このマクスウェル応力f(0)、f(D)は、測
定試料50の各誘電体と電極4、5の誘電率の差に起因
した応力である。
When a high-voltage pulse V P (t) having a narrow pulse width is applied to the two-layer dielectric measurement sample 50 having different dielectric constants ε 1 and ε 2 by the pulse voltage generator 3, the pulse is applied to the interface between both electrodes. Maxwell stresses f (0) and f (D) (FIG. 1 (d)) work. The Maxwell stresses f (0) and f (D) are stresses caused by the difference between the dielectric constant of each dielectric of the measurement sample 50 and the electrodes 4 and 5.

【0052】接地電極4および測定試料50の界面の電
圧パルス電界をeP(0)、電極5および測定試料50の界
面の電圧パルス電界をeP(D)とすると、
If the voltage pulse electric field at the interface between the ground electrode 4 and the measurement sample 50 is e P (0), and the voltage pulse electric field at the interface between the electrode 5 and the measurement sample 50 is e P (D),

【0053】[0053]

【数17】 [Equation 17]

【0054】[0054]

【数18】 (Equation 18)

【0055】となる。但し、x1は測定試料50の第1の
層50aの厚さ、x2は測定試料50の第2の層50bの
厚さ、Dは測定試料50の全体の厚さとする。これらの
式から、
Is as follows. However, x 1 is the thickness of the first layer 50a of the sample 50, x 2 is the thickness of the second layer 50b of the measurement sample 50, D is the total thickness of the measurement sample 50. From these equations,

【0056】[0056]

【数19】 [Equation 19]

【0057】[0057]

【数20】 (Equation 20)

【0058】の関係が成り立つので、測定試料50の第
1の層50aと第2の層50bとの誘電率が同じ場合に
は(ε1=ε2)、
When the first layer 50a and the second layer 50b of the measurement sample 50 have the same dielectric constant (ε 1 = ε 2 ),

【0059】[0059]

【数21】 (Equation 21)

【0060】となり、測定試料50の第1の層50aと
第2の層50bとの誘電率が異なる場合には(ε1=kε
2)、
When the dielectric constants of the first layer 50a and the second layer 50b of the measurement sample 50 are different, (ε 1 = kε
2 ),

【0061】[0061]

【数22】 (Equation 22)

【0062】となる。したがって、図1(b)に示すよ
うに、誘電率ε1が高い測定試料50の第1の層50a
の界面電圧パルス電界Ep(0)は、誘電率ε2が低い測定試
料50の第2の層50bの界面電圧パルス電界Ep(D)よ
りk倍低くなることが分かる。これにより、例えば、図
1(c)に示すように、界面の面電荷密度σ(0)、σ(D)
が同じ場合であっても、
Is obtained. Accordingly, as shown in FIG. 1 (b), a first layer 50a of the high measurement sample 50 is the dielectric constant epsilon 1
It can be seen that the interface voltage pulse electric field E p (0) is k times lower than the interface voltage pulse electric field E p (D) of the second layer 50b of the measurement sample 50 having a low dielectric constant ε 2 . Thereby, for example, as shown in FIG. 1C, the surface charge densities σ (0), σ (D)
Are the same,

【0063】[0063]

【数23】 (Equation 23)

【0064】[0064]

【数24】 (Equation 24)

【0065】となるので、界面電圧パルス電界ep(0)に
働くマクスウェル応力f(0)と、界面電圧パルス電界e
p(D)に働くマクスウェル応力f(D)との間には、k倍の差
が生じることになる。これにより、測定した検出電圧信
号v(0)、v(D)から真の面電荷密度σ(0)、σ(D)を校正す
る際に、誘電率のk倍の差を考慮して校正すれば、正確
な空間電荷密度ρ(0)、ρ(D)を求めることができる(図
1(e)、(f))。
Thus, the Maxwell stress f (0) acting on the interface voltage pulse electric field e p (0) and the interface voltage pulse electric field e p (0)
There will be a k-fold difference from the Maxwell stress f (D) acting on p (D). Thus, when calibrating the true surface charge densities σ (0) and σ (D) from the measured detection voltage signals v (0) and v (D), the calibration takes into account the difference of k times the dielectric constant. Then, accurate space charge densities ρ (0) and ρ (D) can be obtained (FIGS. 1E and 1F).

【0066】このようなデコンボリューション処理を演
算要素とする演算部8を備えた空間電荷測定装置1で、
異なる誘電率ε1、ε2を有する二層誘電体50a、50
bから成る測定試料50の空間電荷を測定する方法につ
いて説明する。まず、空間電荷測定装置1の圧電素子6
が固着された接地電極4を測定試料50の高い誘電率ε
1を有する第1の層50aに、電極5を測定試料50の
低い誘電率ε2を有する第2の層50bにそれぞれ面接
着させておく。この状態で、直流発生器2で測定試料5
0に直流電圧Vdcを印加すると、接地電極4および一方
の層50aの界面と、電極5および他方の層50bの界
面とに、それぞれ任意の値の表面電荷σ(0)、σ(D)が誘
導される。そして、表面電荷σ(0)、σ(D)が誘導された
測定試料50に、パルス電圧発生器3で高電圧の幅の狭
いパルス電圧VPを印加すると、圧電素子6が接地電極4
および測定試料50の一方の層50aに発生する圧力波
に応じた検出電圧信号V(0)と、電極5および測定試料5
0の他方の層50bに発生する圧力波に応じた検出電圧
信号V(D)とを検出する。
In the space charge measuring device 1 provided with the operation unit 8 having such a deconvolution process as an operation element,
Two-layer dielectrics 50a, 50 having different dielectric constants ε 1 , ε 2
A method for measuring the space charge of the measurement sample 50 composed of b will be described. First, the piezoelectric element 6 of the space charge measuring device 1
Is fixed to the ground electrode 4 having the high dielectric constant ε of the measurement sample 50.
The first layer 50a having 1, keep each interview is dressed electrode 5 to the second layer 50b having a low dielectric constant epsilon 2 of the measurement sample 50. In this state, the measurement sample 5 is
When a DC voltage Vdc is applied to 0, an arbitrary value of surface charge σ (0), σ (D) is applied to the interface between the ground electrode 4 and one layer 50a and the interface between the electrode 5 and the other layer 50b, respectively. Is induced. The surface charge σ (0), σ the measurement sample 50 (D) is derived, when a pulse voltage generator 3 applies a narrow pulse voltage V P of the width of the high voltage, the piezoelectric element 6 is the ground electrode 4
And a detection voltage signal V (0) corresponding to a pressure wave generated in one layer 50a of the measurement sample 50, the electrode 5 and the measurement sample 5
And a detection voltage signal V (D) corresponding to the pressure wave generated in the other layer 50b.

【0067】この検出電圧信号V(0)および検出電圧信号
V(D)は、信号検出部7のデジタルオシロスコープによっ
て演算部8に所定のサンプリング速度で送り込まれる。
演算部8は、検出電圧信号V(0)および検出電圧信号V(D)
を予め定められた回数だけ加算平均した後、第1のデコ
ンボリューション処理の演算要素、
The detection voltage signal V (0) and the detection voltage signal
V (D) is sent to the calculation unit 8 by the digital oscilloscope of the signal detection unit 7 at a predetermined sampling rate.
The calculation unit 8 includes a detection voltage signal V (0) and a detection voltage signal V (D).
Is added and averaged a predetermined number of times, and then the arithmetic elements of the first deconvolution processing are:

【0068】[0068]

【数25】 (Equation 25)

【0069】と、第2のデコンボリューション処理の演
算要素、
An operation element of the second deconvolution processing,

【0070】[0070]

【数26】 (Equation 26)

【0071】とによって、測定試料50の一方の層50
aおよび他方の層50bの空間電荷密度をそれぞれ校正
する。これにより、測定試料50の各層50a、50b
の誘電率ε1、ε2に応じた空間電荷密度を得ることがで
きるので、校正誤差の小さい高精度な空間電荷測定を行
うことができる。
Thus, one layer 50 of the measurement sample 50 is
a and the space charge density of the other layer 50b are respectively calibrated. Thereby, each layer 50a, 50b of the measurement sample 50 is
Since the space charge density according to the dielectric constants ε 1 and ε 2 can be obtained, space charge measurement with a small calibration error and high accuracy can be performed.

【0072】なお、本発明の実施の一形態においては電
荷密度校正方法をPEA法に適用させていたが、これに
限らず、PWP法(圧力波法)にも適用させることがで
きる。また、本発明の実施の一形態においては二層誘電
体を測定していたが、これに限らず、異なる2つの誘電
率を有する誘電体ならばどのような誘電体でも正確に空
間電荷密度を測定することができる。例えば、1つの絶
縁材料内の水トリー劣化部および健全部の場合には、本
出願人が出願済の水トリー劣化部の誘電率測定方法(特
願平10−57257号)によって水トリー劣化部の誘
電率を測定すれば、より正確な空間電荷測定における電
荷密度校正を行うことができる。
In the embodiment of the present invention, the charge density calibration method is applied to the PEA method. However, the present invention is not limited to this, and may be applied to the PWP method (pressure wave method). In the embodiment of the present invention, a two-layer dielectric is measured. However, the present invention is not limited to this. Any dielectric having two different dielectric constants can accurately measure the space charge density. Can be measured. For example, in the case of a water tree deteriorated part and a sound part in one insulating material, the water tree deteriorated part is measured by a method of measuring the permittivity of the water tree deteriorated part (Japanese Patent Application No. 10-57257) filed by the present applicant. By measuring the dielectric constant of the above, it is possible to perform more accurate charge density calibration in space charge measurement.

【0073】具体的には、水トリー劣化部測定装置(図
示せず)の各測定端子を絶縁材料の水トリー劣化部およ
び健全部にそれぞれ接続させておく。そして演算処理部
で異なる周波数ω1、ω2を設定し、交流発生器で絶縁材
料に印加した異なる周波数ω 1、ω2での電圧VeJK(但
し、K=θとする。)および電流IeJQ(但し、Q=θ+φ
とする。)を測定し、各周波数ω1、ω2ごとの複素イン
ピーダンスZを演算処理し、この各複素インピーダンスZ
から各周波数ω1、ω2ごとのキャパシタンスC1、C2およ
びコンダクタンスG1、G2を予め決定された演算要素、
Specifically, a water tree deterioration measuring device (see FIG.
(Not shown) are connected to the water tree deterioration part of the insulating material and
And sound parts. And arithmetic processing unit
At different frequencies ω1, ΩTwoSet the insulation with AC generator
Different frequencies ω applied to the sample 1, ΩTwoVoltage Ve atJK(However
And K = θ. ) And current IeJQ(However, Q = θ + φ
And ) And measure each frequency ω1, ΩTwoComplex in per
Operate the impedance Z and calculate the complex impedance Z
From each frequency ω1, ΩTwoCapacitance C1, C2 and
And the conductances G1 and G2 are predetermined arithmetic elements,

【0074】[0074]

【数27】 [Equation 27]

【0075】[0075]

【数28】 [Equation 28]

【0076】[0076]

【数29】 (Equation 29)

【0077】[0077]

【数30】 [Equation 30]

【0078】に代入して演算処理することにより、正確
な絶縁材料の水トリー劣化部の誘電率εWを測定でき
る。なお、CPは健全部のキャパシタンス、CWは水トリー
劣化部のキャパシタンス、lWは水トリー劣化部の水トリ
ー長、ε0は真空誘電率、εPは絶縁材料の比誘電率、S
は水トリーの発生面積とする。これにより、絶縁材料の
水トリー劣化部および健全部の正確な各誘電率を、本発
明の空間電荷測定における電荷密度校正方法の演算デー
タとして用いることができるので、より正確な電荷密度
校正を行うことができる。
By substituting the values into the arithmetic processing, the dielectric constant ε W of the water tree deteriorated portion of the insulating material can be accurately measured. Note that C P is the capacitance of the healthy part, C W is the capacitance of the water tree deteriorated part, l W is the water tree length of the water tree deteriorated part, ε 0 is the vacuum permittivity, ε P is the relative permittivity of the insulating material, S
Is the area where water trees are generated. With this, accurate dielectric constants of the water tree deteriorated portion and sound portion of the insulating material can be used as calculation data of the charge density calibration method in the space charge measurement of the present invention, so that more accurate charge density calibration is performed. be able to.

【0079】[0079]

【発明の効果】以上、説明したように、本発明の空間電
荷測定における電荷密度校正方法によれば、異なる2つ
の誘電率を有する誘電体の各誘電率に応じたデコンボリ
ューション処理で校正を行うので、電力ケーブル接続
部、電力機器等の二層誘電体や、電力ケーブル、電力機
器等の絶縁材料内の水トリー劣化部および健全部など、
不均質な誘電体に適用しても校正誤差を小さくすること
ができる。これにより、校正誤差の小さい高精度な空間
電荷測定を行うことができる。
As described above, according to the charge density calibration method for space charge measurement of the present invention, calibration is performed by deconvolution processing according to each dielectric constant of a dielectric having two different dielectric constants. Therefore, power cable connection, double-layer dielectrics for power equipment, etc., water tree deterioration parts and sound parts in insulating materials for power cables, power equipment, etc.
Even when applied to an inhomogeneous dielectric, the calibration error can be reduced. Thereby, highly accurate space charge measurement with a small calibration error can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の空間電荷測定における電荷密度校正方
法の実施の一形態を示す図で、(a)は空間電荷測定装
置を示す回路図、(b)はパルス電圧印加による電界分
布を示す図、(c)は表面電荷密度を示す図、(d)は
電極−測定試料界面に働く力を示す図、(e)は圧電素
子で検出した電圧波形を示す図、(f)は表面電荷密度
を示す図。
FIG. 1 is a diagram showing an embodiment of a charge density calibration method in space charge measurement according to the present invention, wherein (a) is a circuit diagram showing a space charge measuring device, and (b) shows an electric field distribution by applying a pulse voltage. FIG. 3C is a diagram showing a surface charge density, FIG. 4D is a diagram showing a force acting on an interface between an electrode and a measurement sample, FIG. 5E is a diagram showing a voltage waveform detected by a piezoelectric element, and FIG. The figure which shows a density.

【図2】従来の空間電荷測定における電荷密度校正方法
を示す図で、(a)は空間電荷測定装置を示す回路図、
(b)は表面電荷密度および空間電荷密度を示す図、
(c)は圧力波を示す図、(d)は圧電素子で検出した
電圧波形を示す図。
FIG. 2 is a diagram showing a charge density calibration method in a conventional space charge measurement, in which (a) is a circuit diagram showing a space charge measurement device,
(B) is a diagram showing surface charge density and space charge density,
(C) is a diagram showing a pressure wave, and (d) is a diagram showing a voltage waveform detected by a piezoelectric element.

【符号の説明】[Explanation of symbols]

4・・・・・接地電極 5・・・・・電極 ε1・・・・・高い誘電率 ε2・・・・・低い誘電率 VP・・・・・パルス幅の狭い高電圧パルス V(t)、V(0)、V(D)・・・・・検出電圧信号4 ..... ground electrode 5 ----- electrode epsilon 1 ..... high dielectric constant epsilon 2 ----- low dielectric constant V P ----- narrow pulse width high voltage pulse V (t), V (0), V (D) ..... Detection voltage signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】異なる2つの誘電率を有する誘電体の両端
に電極を介してパルス幅の狭い高電圧パルスを印加する
ことにより前記誘電体および前記電極の界面に発生する
圧力波に応じた検出電圧信号を、予め決定されたデコン
ボリューション処理の演算要素によって演算処理して当
該誘電体の空間電荷密度を校正する空間電荷測定におけ
る電荷密度校正方法において、 前記2つの誘電率のうちの低い誘電率を有する前記誘電
体の部位の前記空間電荷密度を前記予め決定されたデコ
ンボリューション処理の演算要素で校正する場合には、
前記誘電体の予め測定されている前記2つの誘電率の比
例定数を求め、当該比例定数を前記予め決定されたデコ
ンボリューション処理の演算要素となる前記低い誘電率
に乗じたデコンボリューション処理の演算要素を適用す
ることを特徴とする空間電荷測定における電荷密度校正
方法。
1. Detection according to a pressure wave generated at an interface between the dielectric and the electrode by applying a high-voltage pulse having a narrow pulse width to both ends of a dielectric having two different dielectric constants via electrodes. A charge density calibration method in space charge measurement for calibrating a space charge density of the dielectric by performing arithmetic processing on a voltage signal by a predetermined operation element of deconvolution processing, wherein a low dielectric constant of the two dielectric constants is used. When calibrating the space charge density of the part of the dielectric having the predetermined deconvolution processing operation element,
An arithmetic element for deconvolution processing in which a proportional constant of the two previously measured dielectric constants of the dielectric is obtained, and the proportional constant is multiplied by the low dielectric constant to be an arithmetic element for the predetermined deconvolution processing A charge density calibration method in space charge measurement, characterized in that:
【請求項2】空間電荷測定がPEA法の場合における前
記予め決定されたデコンボリューション処理の演算要素
は、 【数1】 (但し、R(f)は空間電荷分布ρ(t)をフーリエ変換した
値、ρ(0)は位置x=0における空間電荷密度、VS(f)は検
出電圧信号V(t)をフーリエ変換した値、VS1(f)は検出電
圧信号V(0)をフーリエ変換した値、Vdcは前記誘電体に
印加する直流電圧、Vsampは前記誘電体の音速、τはサ
ンプリング間隔とする。また、kε2=ε1で、ε2は前記
低い誘電率を有する誘電体の部位の誘電率、ε1は高い
誘電率を有する誘電体の部位の誘電率、kは比例定数と
する。また、ε2=ε0εrで、ε0は真空誘電率、εr
前記低い誘電率を有する誘電体の部位の比誘電率とす
る。)であることを特徴とする請求項1記載の空間電荷
測定における電荷密度校正方法。
2. The arithmetic element of the predetermined deconvolution processing when the space charge measurement is the PEA method is as follows: (However, R (f) is a value obtained by performing a Fourier transform on the space charge distribution ρ (t), ρ (0) is a space charge density at the position x = 0, and VS (f) is a Fourier transform of the detected voltage signal V (t). VS 1 (f) is a value obtained by Fourier transforming the detection voltage signal V (0), V dc is a DC voltage applied to the dielectric, V samp is the sound speed of the dielectric, and τ is a sampling interval. Also, kε 2 = ε 1 , ε 2 is the dielectric constant of the dielectric part having the low dielectric constant, ε 1 is the dielectric constant of the dielectric part having the high dielectric constant, and k is the proportional constant. , Ε 2 = ε 0 ε r , ε 0 is the vacuum dielectric constant, and ε r is the relative dielectric constant of the portion of the dielectric material having the low dielectric constant.) Charge density calibration method for space charge measurement.
JP10213188A 1998-07-28 1998-07-28 Method for correcting charge density in space charge measurement Withdrawn JP2000046884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213188A JP2000046884A (en) 1998-07-28 1998-07-28 Method for correcting charge density in space charge measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213188A JP2000046884A (en) 1998-07-28 1998-07-28 Method for correcting charge density in space charge measurement

Publications (1)

Publication Number Publication Date
JP2000046884A true JP2000046884A (en) 2000-02-18

Family

ID=16635004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213188A Withdrawn JP2000046884A (en) 1998-07-28 1998-07-28 Method for correcting charge density in space charge measurement

Country Status (1)

Country Link
JP (1) JP2000046884A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155519A (en) * 2004-12-01 2006-06-15 National Institute Of Information & Communication Technology Similarity decision method and similarity decision device between multilayer dielectrics, and multilayer dielectric allowing decision of identity
CN102944763A (en) * 2012-11-20 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 System and method for in-situ testing of internal electric charge and electric field distribution of dielectric material
CN103543339A (en) * 2013-10-31 2014-01-29 国家电网公司 Method and device for analyzing alternating current-and-direct current space charge test data of dielectric sample
CN104833865A (en) * 2015-04-30 2015-08-12 南京南瑞集团公司 Flat sample space charge distribution measuring apparatus capable of preventing electromagnetic interference and method thereof
JP2015219116A (en) * 2014-05-19 2015-12-07 株式会社ビスキャス Calibration method of electric charge density in space-charge distribution measurement
CN106443216A (en) * 2016-09-05 2017-02-22 西安交通大学 Multilayer solid composite dielectric material space charge measurement method
CN110515021A (en) * 2019-08-29 2019-11-29 西安交通大学 A kind of bearing calibration of free voltage waveform effect down space charge test
CN111781433A (en) * 2020-06-03 2020-10-16 清华大学 Tapered double-layer medium interface charge measuring device and method
WO2020239002A1 (en) * 2019-05-29 2020-12-03 同济大学 Two-sided in-situ measurement system and method for charge distribution in thin dielectric film
CN112649676A (en) * 2020-12-18 2021-04-13 国网西藏电力有限公司电力科学研究院 Calculation method of high-altitude area mixed field intensity considering wind speed influence
CN113255190A (en) * 2021-06-07 2021-08-13 西安电子科技大学 Method for calculating radar scattering cross section of irregular non-uniform dielectric body
CN113533870A (en) * 2021-06-23 2021-10-22 国网山东省电力公司青岛供电公司 Method and system for correcting space charge density prediction in corona cage by considering environmental factors
IT202000026957A1 (en) * 2020-11-11 2022-05-11 Univ Bologna Alma Mater Studiorum METHOD OF DECONVOLUTION AND AUTOMATIC CALIBRATION OF ELECTROACOUSTIC SIGNALS
CN114895112A (en) * 2022-07-13 2022-08-12 华北电力大学 Electric field and charge measurement system and method for solid-liquid composite medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719934B2 (en) * 2004-12-01 2011-07-06 独立行政法人情報通信研究機構 Similarity determination method and similarity determination device between multilayer dielectrics, and multilayer dielectric capable of determining identity
JP2006155519A (en) * 2004-12-01 2006-06-15 National Institute Of Information & Communication Technology Similarity decision method and similarity decision device between multilayer dielectrics, and multilayer dielectric allowing decision of identity
CN102944763A (en) * 2012-11-20 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 System and method for in-situ testing of internal electric charge and electric field distribution of dielectric material
CN103543339A (en) * 2013-10-31 2014-01-29 国家电网公司 Method and device for analyzing alternating current-and-direct current space charge test data of dielectric sample
JP2015219116A (en) * 2014-05-19 2015-12-07 株式会社ビスキャス Calibration method of electric charge density in space-charge distribution measurement
CN104833865A (en) * 2015-04-30 2015-08-12 南京南瑞集团公司 Flat sample space charge distribution measuring apparatus capable of preventing electromagnetic interference and method thereof
CN104833865B (en) * 2015-04-30 2017-09-26 南京南瑞集团公司 Prevent the plane plate specimen distribution of space charge measurement apparatus and method of electromagnetic interference
CN106443216A (en) * 2016-09-05 2017-02-22 西安交通大学 Multilayer solid composite dielectric material space charge measurement method
WO2020239002A1 (en) * 2019-05-29 2020-12-03 同济大学 Two-sided in-situ measurement system and method for charge distribution in thin dielectric film
CN110515021A (en) * 2019-08-29 2019-11-29 西安交通大学 A kind of bearing calibration of free voltage waveform effect down space charge test
CN110515021B (en) * 2019-08-29 2020-08-18 西安交通大学 Correction method for space charge test under action of arbitrary voltage waveform
CN111781433A (en) * 2020-06-03 2020-10-16 清华大学 Tapered double-layer medium interface charge measuring device and method
CN111781433B (en) * 2020-06-03 2021-09-10 清华大学 Tapered double-layer medium interface charge measuring device and method
IT202000026957A1 (en) * 2020-11-11 2022-05-11 Univ Bologna Alma Mater Studiorum METHOD OF DECONVOLUTION AND AUTOMATIC CALIBRATION OF ELECTROACOUSTIC SIGNALS
CN112649676A (en) * 2020-12-18 2021-04-13 国网西藏电力有限公司电力科学研究院 Calculation method of high-altitude area mixed field intensity considering wind speed influence
CN112649676B (en) * 2020-12-18 2024-04-09 国网西藏电力有限公司电力科学研究院 Calculation method of mixed field intensity of high-altitude area considering wind speed influence
CN113255190A (en) * 2021-06-07 2021-08-13 西安电子科技大学 Method for calculating radar scattering cross section of irregular non-uniform dielectric body
CN113533870A (en) * 2021-06-23 2021-10-22 国网山东省电力公司青岛供电公司 Method and system for correcting space charge density prediction in corona cage by considering environmental factors
CN113533870B (en) * 2021-06-23 2024-03-22 国网山东省电力公司青岛供电公司 Prediction method and system for correcting space charge density in corona cage by considering environmental factors
CN114895112A (en) * 2022-07-13 2022-08-12 华北电力大学 Electric field and charge measurement system and method for solid-liquid composite medium

Similar Documents

Publication Publication Date Title
JP4611774B2 (en) Non-contact voltage detection method and non-contact voltage detection device
EP0736776B1 (en) Non-contact voltage probe apparatus
JP2000046884A (en) Method for correcting charge density in space charge measurement
CN110470879A (en) Contactless DC voltage measurement equipment with osciducer
JP6284425B2 (en) Calibration method of charge density in space charge distribution measurement
JPS6253762B2 (en)
EP2481074B1 (en) Apparatus and method for measuring plasma parameters
Zahra et al. Space charge measurement equipment for full-scale HVDC cables using electrically insulating polymeric acoustic coupler
Maeno Calibration of the pulsed electroacoustic method for measuring space charge density
Imburgia et al. Pulsed Electro-Acoustic Method for specimens and cables employed in HVDC systems: Some feasibility considerations
Hole Behind space charge distribution measurements
Andrade et al. Interpretation of PEA Output Signal in a Multilayer Specimen
Xu et al. Enhanced accuracy in dielectric response material characterization by air reference method
KR101116002B1 (en) Plasma diagnosis apparatus and the signal processing method of the same
JP3250849B2 (en) Surface acoustic wave device for measuring liquid properties.
Hole et al. Measurement of space-charge distributions in insulators under very rapidly varying voltage
JPH09211046A (en) Method and apparatus for non-contact detection of potential
Gallot-Lavallée et al. Space charge measurement in solid dielectrics by the pulsed electro-acoustic technique
JP3446918B2 (en) Cable length detection circuit and cable length detection method
Mier-Escurra et al. Influence of Electrode Material in Acoustic Attenuation Factors Calculation in Space Charge Measurements
CN110515021B (en) Correction method for space charge test under action of arbitrary voltage waveform
US20200319236A1 (en) Sensing over a shared physical channel
Takashima et al. Measurement of electric charges at the interface between two dielectric layers using an electro-acoustic transducer technique
Jung et al. Automatic measurement system of the space charge distribution by a two-step deconvolution
Pujol et al. PSpice modelling of the Pulsed Electro Acoustic device: A new approach to account attenuation, dispersion and reflection phenomena

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004