JP2015219116A - Calibration method of electric charge density in space-charge distribution measurement - Google Patents

Calibration method of electric charge density in space-charge distribution measurement Download PDF

Info

Publication number
JP2015219116A
JP2015219116A JP2014103050A JP2014103050A JP2015219116A JP 2015219116 A JP2015219116 A JP 2015219116A JP 2014103050 A JP2014103050 A JP 2014103050A JP 2014103050 A JP2014103050 A JP 2014103050A JP 2015219116 A JP2015219116 A JP 2015219116A
Authority
JP
Japan
Prior art keywords
voltage
voltage signal
space charge
measurement
measurement sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103050A
Other languages
Japanese (ja)
Other versions
JP6284425B2 (en
Inventor
直登 茂森
Naoto Shigemori
直登 茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscas Corp
Original Assignee
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viscas Corp filed Critical Viscas Corp
Priority to JP2014103050A priority Critical patent/JP6284425B2/en
Publication of JP2015219116A publication Critical patent/JP2015219116A/en
Application granted granted Critical
Publication of JP6284425B2 publication Critical patent/JP6284425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibration method of electric charge density in a space-charge distribution measurement capable of highly accurately performing calibration even when a space charge is generated by application of a DC voltage when calibrating the electric charge density in the space-charge distribution measurement of the inside of an insulation material.SOLUTION: The calibration method includes the steps of: when a voltage signal measured from a measurement sample 2 to which only a pulse voltage is applied, is defined as V1, a voltage signal measured from the measurement sample to which a pulse voltage is applied with a DC voltage applied thereto, is defined as V2, and, immediately after the step-down of the DC voltage, a voltage signal measured from the measurement sample 2 to which a pulse voltage is applied with it connected to ground, is defined as V3, acquiring a voltage signal V4 calculated by V2-V3+V1; and calibrating the charge density obtained from the voltage signal V2 using the voltage signal V4.

Description

本発明は、空間電荷分布測定において電荷密度を校正する、空間電荷分布測定における電荷密度の校正方法に関する。   The present invention relates to a method for calibrating charge density in space charge distribution measurement, wherein the charge density is calibrated in space charge distribution measurement.

一般に直流の外部電場が与えられた絶縁材料内部には、比較的短時間または長時間にわたって存在する電荷が認められることがある。このような絶縁材料内部に存在する電荷は、空間電荷と呼ばれ、媒質中を極めて短時間内に電流として流れる電荷、媒質を構成する原子または分子に含まれる局所的に電気的中性を維持している電荷とは異なる。   In general, an electric charge existing for a relatively short time or a long time may be recognized inside an insulating material to which a direct external electric field is applied. Such electric charge existing inside the insulating material is called space charge, and the electric charge that flows in the medium as an electric current within a very short time and the local electric neutrality contained in the atoms or molecules constituting the medium are maintained. The charge is different.

空間電荷の存在は、材料内部の電界を歪め、局所的な高電界部を生じさせることから、絶縁材料の絶縁性能に影響を及ぼす。したがって、絶縁材料内部に発生する空間電荷の電荷量、位置、時間変化を正確に評価することが絶縁設計をする上で非常に重要となる。   The presence of the space charge distorts the electric field inside the material and creates a local high electric field portion, which affects the insulating performance of the insulating material. Therefore, it is very important for the insulation design to accurately evaluate the charge amount, position, and time change of the space charge generated in the insulating material.

非特許文献1には、絶縁材料内部の空間電荷分布を測定する方法として、パルス静電応力法(以下、PEA法と称す)が記載されている。PEA法による空間電荷分布測定の原理は、例えば非特許文献1において、次のように説明される。つまり、空間電荷を蓄積する絶縁材料にパルス電圧を印加すると、蓄積した電荷に静電応力が働くことで、各電荷から圧力波が発生する。PEA法では、絶縁材料内部を伝搬して表面に到達した圧力波を、圧電素子を用いて電圧信号に変換することにより測定し、測定した電圧信号に基づいて空間電荷分布の情報を得るというものである。   Non-Patent Document 1 describes a pulse electrostatic stress method (hereinafter referred to as PEA method) as a method for measuring a space charge distribution inside an insulating material. The principle of space charge distribution measurement by the PEA method is described as follows in Non-Patent Document 1, for example. That is, when a pulse voltage is applied to an insulating material that accumulates space charges, an electrostatic stress acts on the accumulated charges, and pressure waves are generated from the charges. In the PEA method, pressure waves that reach the surface after propagating through an insulating material are measured by converting them into voltage signals using piezoelectric elements, and space charge distribution information is obtained based on the measured voltage signals. It is.

実際の測定においては、圧力波の減衰や反射、測定回路の電気的特性に起因するひずみ等の影響から、得られた電圧信号がそのまま電荷信号を表すわけではなく、それを適正な電荷密度情報に変換するための校正が必要となる。   In actual measurement, due to the effects of pressure wave attenuation and reflection, distortion caused by the electrical characteristics of the measurement circuit, etc., the obtained voltage signal does not directly represent a charge signal. Calibration to convert to is required.

非特許文献1に記載された校正方法では、絶縁材料内部に空間電荷が発生せず、絶縁材料表面の誘導電荷のみ現れるような低い直流電圧を絶縁材料に印加し、その際に得られる圧電素子の出力信号が、理論的に導出される表面電荷、材料内部の電界及び電位に基づくものであるとして校正している。   In the calibration method described in Non-Patent Document 1, a piezoelectric element obtained by applying a low DC voltage to the insulating material so that no space charge is generated inside the insulating material and only the induced charge on the surface of the insulating material appears. Is calibrated on the basis of the theoretically derived surface charge, electric field and potential inside the material.

具体的には、まず校正のための直流電圧を印加しない状態(測定試料は短絡状態)でパルス電圧のみを印加して圧電素子の電圧信号V1を取得し、続いて校正のための直流電圧を印加した状態でパルス電圧を印加して圧電素子の電圧信号V2を取得し、最後に再び校正のための直流電圧を印加しない状態(測定試料は短絡状態)でパルス電圧のみを印加して圧電素子の電圧信号V3を取得する。   Specifically, first, a voltage signal V1 of the piezoelectric element is obtained by applying only a pulse voltage in a state where a DC voltage for calibration is not applied (measurement sample is short-circuited), and then a DC voltage for calibration is obtained. Apply the pulse voltage in the applied state to obtain the voltage signal V2 of the piezoelectric element, and finally apply only the pulse voltage in the state where the DC voltage for calibration is not applied again (the measurement sample is short-circuited). Voltage signal V3 is obtained.

校正のための直流電圧印加によって測定試料内部に空間電荷が発生していないことの確認は、直流電圧を印加する前後で取得した電圧信号V1とV3を比較し、両者に違いがなく略一致することを確認することで行われる。   Confirmation that the space charge is not generated in the measurement sample by applying the DC voltage for calibration is performed by comparing the voltage signals V1 and V3 obtained before and after applying the DC voltage, and there is no difference between them. It is done by confirming that.

電気学会、電気規格調査会テクニカルレポート「パルス静電応力法による空間電荷分布測定の校正法」(JEC-TR-61004-2012)Technical report of the Institute of Electrical Engineers of Japan, Technical Report of the Electrotechnical Standards “Calibration Method of Space Charge Distribution Measurement by Pulsed Electrostatic Stress Method” (JEC-TR-61004-2012)

非特許文献1に記載された電荷密度の校正では、校正を行うために直流電圧を絶縁材料に印加する時に、絶縁材料内部に空間電荷が発生しないことが前提条件となる。しかし、絶縁材料によっては、測定条件において下限値となるような非常に低い直流電圧を印加しても、材料内部に空間電荷が発生してしまうため、正確に校正することができない場合があった。   In the charge density calibration described in Non-Patent Document 1, it is a precondition that no space charge is generated in the insulating material when a DC voltage is applied to the insulating material for calibration. However, depending on the insulating material, even if a very low DC voltage that is the lower limit value in the measurement conditions is applied, space charge may be generated inside the material, so that accurate calibration may not be possible. .

本発明の目的は、上述した課題に鑑みてなされたものであり、絶縁材料内部の空間電荷分布測定における電荷密度を精度良く校正することが可能な空間電荷分布測定における電荷密度の校正方法を提供することを目的とする。   The object of the present invention has been made in view of the above-mentioned problems, and provides a charge density calibration method in space charge distribution measurement that can accurately calibrate the charge density in space charge distribution measurement inside an insulating material. The purpose is to do.

本発明に係る空間電荷分布測定における電荷密度の校正方法は、パルス電圧のみが印加された測定試料から測定された電圧信号をV1とし、直流電圧が印加された状態で前記パルス電圧が印加された前記測定試料から測定された電圧信号をV2とし、及び前記直流電圧を降圧直後に接地した状態で前記パルス電圧が印加された前記測定試料から測定された電圧信号をV3とした場合、V2―V3+V1により算出される電圧信号V4を取得するステップと、電圧信号V4を用いて、電圧信号V2から得られる電荷密度を校正するステップと、を有することを特徴とする。   In the charge density calibration method in the space charge distribution measurement according to the present invention, a voltage signal measured from a measurement sample to which only a pulse voltage is applied is V1, and the pulse voltage is applied in a state where a DC voltage is applied. When V2 is a voltage signal measured from the measurement sample and V3 is a voltage signal measured from the measurement sample to which the pulse voltage is applied with the DC voltage grounded immediately after stepping down, V2−V3 + V1 A step of obtaining a voltage signal V4 calculated by the step of calibrating a charge density obtained from the voltage signal V2 using the voltage signal V4.

また、本発明に係る空間電荷分布測定における電荷密度の校正方法は、測定試料が電線またはケーブルであることを特徴とする。   The charge density calibration method in the space charge distribution measurement according to the present invention is characterized in that the measurement sample is an electric wire or a cable.

本発明によれば、絶縁材料内部の空間電荷分布測定における電荷密度校正の際に、測定条件において下限値となるような低い直流電圧を印加しても材料内部に空間電荷が発生してしまう場合においても精度の良い校正が可能となる。   According to the present invention, when charge density calibration is performed in space charge distribution measurement inside an insulating material, space charge is generated inside the material even when a low DC voltage that is a lower limit value under measurement conditions is applied. Can be calibrated with high accuracy.

空間電荷分布測定装置の概要を示す図である。It is a figure which shows the outline | summary of a space charge distribution measuring apparatus. パルス電圧のみを印加時した時に得られる電圧信号V1を示す図である。It is a figure which shows the voltage signal V1 obtained when only a pulse voltage is applied. 直流電圧を印加した状態でパルス電圧を重畳させて印加した時に得られる電圧信号V2を示す図である。It is a figure which shows the voltage signal V2 obtained when a pulse voltage is superimposed and applied in the state which applied the DC voltage. 直流電圧を降圧後に接地した状態でパルス電圧を印加した時に得られる電圧信号V3を示す図である。It is a figure which shows the voltage signal V3 obtained when a pulse voltage is applied in the state which earth | grounded DC voltage after pressure | voltage reduction. 電圧信号V2と電圧信号V4の比較結果を示す図である。It is a figure which shows the comparison result of the voltage signal V2 and the voltage signal V4. 電圧信号V2に基づいて校正した電圧信号V2に対応する空間電荷密度を示す図である。It is a figure which shows the space charge density corresponding to the voltage signal V2 calibrated based on the voltage signal V2. 電圧信号V4で校正した後に、電圧信号V2を信号処理して得た空間電荷密度を示す図である。It is a figure which shows the space charge density obtained by performing signal processing of the voltage signal V2 after calibrating with the voltage signal V4. 電線またはケーブルを測定対象とした空間電荷分布測定装置の概要を示す図である。It is a figure which shows the outline | summary of the space charge distribution measuring apparatus which made the measurement object the electric wire or the cable.

本発明を実施するための形態(以下、本実施形態という。)について具体例を示して説明する。本実施形態は、空間電荷分布測定において電荷密度を校正する、空間電荷分布測定における電荷密度の校正方法に関する。   A mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described with a specific example. The present embodiment relates to a charge density calibration method in space charge distribution measurement, in which charge density is calibrated in space charge distribution measurement.

1.空間電荷分布測定装置の全体構成
図1は、本発明が適用された校正方法を行う空間電荷分布測定装置1の全体構成と、測定対象となる測定試料とを示した図である。
1. Overall Configuration of Space Charge Distribution Measuring Device FIG. 1 is a diagram showing an overall configuration of a space charge distribution measuring device 1 that performs a calibration method to which the present invention is applied and a measurement sample to be measured.

本実施形態では、測定試料の具体例として、厚さ3mm、幅50mm×50mmのシート状にプレス成形した架橋ポリエチレンシートを用いる。   In the present embodiment, as a specific example of the measurement sample, a cross-linked polyethylene sheet press-molded into a sheet shape having a thickness of 3 mm and a width of 50 mm × 50 mm is used.

空間電荷分布測定装置1は、上部電極11と、半導体シート12と、下部電極13と、圧電素子14と、電源回路15と、測定処理部16と、を備える。   The space charge distribution measuring apparatus 1 includes an upper electrode 11, a semiconductor sheet 12, a lower electrode 13, a piezoelectric element 14, a power supply circuit 15, and a measurement processing unit 16.

このような構成からなる空間電荷分布測定装置1では、上部電極11、半導電シート12、測定試料2、下部電極13の順番となるように、測定試料2を挟む。   In the space charge distribution measuring apparatus 1 having such a configuration, the measurement sample 2 is sandwiched in the order of the upper electrode 11, the semiconductive sheet 12, the measurement sample 2, and the lower electrode 13.

電源回路15は、上部電極11と下部電極13との間に電圧を印加する回路である。具体的に、電源回路15は、直流電源151とパルスジェネレータ152とが、上部電極11と下部電極13とを結ぶ経路上に並列接続された回路構成からなる。このような回路構成により、電源回路15は、直流電源151により直流電圧を測定試料2に印加し、パルスジェネレータ152によりパルス電圧を測定試料2に印加する。なお、図1に示すように、電源回路15は、直流電源151に抵抗素子153が直列接続され、パルスジェネレータ152にハイパス用コンデンサ154が直列接続されることが好ましい。   The power supply circuit 15 is a circuit that applies a voltage between the upper electrode 11 and the lower electrode 13. Specifically, the power supply circuit 15 has a circuit configuration in which a DC power supply 151 and a pulse generator 152 are connected in parallel on a path connecting the upper electrode 11 and the lower electrode 13. With such a circuit configuration, the power supply circuit 15 applies a DC voltage to the measurement sample 2 from the DC power supply 151, and applies a pulse voltage to the measurement sample 2 from the pulse generator 152. As shown in FIG. 1, in the power supply circuit 15, it is preferable that a resistance element 153 is connected in series to a DC power supply 151, and a high-pass capacitor 154 is connected in series to a pulse generator 152.

測定処理部は、アンプ161と、オシロスコープ162と、校正用電圧信号算出部163と、空間電荷密度情報変換部164と、校正部165と、を備える。このような構成からなる測定処理部16では、圧電素子14により測定される電圧信号をアンプ11で増幅し、オシロスコープ162により表示する。校正用電圧信号算出部163は、アンプ11で増幅した電圧信号を用いて、後述する校正用電圧信号を算出する。空間電荷密度情報変換部164は、校正用電圧信号に信号処理を施して空間電荷密度に変換する。校正部165は、校正用電圧信号から変換された空間電荷密度を校正する。   The measurement processing unit includes an amplifier 161, an oscilloscope 162, a calibration voltage signal calculation unit 163, a space charge density information conversion unit 164, and a calibration unit 165. In the measurement processing unit 16 having such a configuration, the voltage signal measured by the piezoelectric element 14 is amplified by the amplifier 11 and displayed by the oscilloscope 162. The calibration voltage signal calculation unit 163 calculates a calibration voltage signal to be described later using the voltage signal amplified by the amplifier 11. The space charge density information conversion unit 164 performs signal processing on the calibration voltage signal to convert it to space charge density. The calibration unit 165 calibrates the space charge density converted from the calibration voltage signal.

2.電荷密度の校正方法
次に、空間電荷分布測定装置1を用いた空間電荷分布測定における電荷密度の校正方法について具体的に説明する。
2. Next, a method for calibrating the charge density in the space charge distribution measurement using the space charge distribution measuring apparatus 1 will be described in detail.

(ステップ1)
直流電圧を印加しない状態、具体的には測定試料2を短絡状態で、パルス電圧のみを測定試料に印加して電圧信号V1を測定する。具体例として、パルスジェネレータ152を駆動して10nsecで−250Vのパルス電圧を測定試料に印加した時に、オシロスコープ162により測定した電圧信号V1を図2に示す。
(Step 1)
In a state where no DC voltage is applied, specifically, the measurement sample 2 is short-circuited, and only the pulse voltage is applied to the measurement sample to measure the voltage signal V1. As a specific example, FIG. 2 shows the voltage signal V1 measured by the oscilloscope 162 when the pulse generator 152 is driven and a pulse voltage of −250 V is applied to the measurement sample at 10 nsec.

(ステップ2)
直流電圧を測定試料2に印加した状態で、パルス電圧を測定試料2に印加して電圧信号V2を測定する。具体例として、直流電源151を駆動して−2kVの直流電圧を印加した状態でパルスジェネレータ152を駆動して10nsecで−250Vのパルス電圧を測定試料2に印加した時に、オシロスコープ162により測定した電圧信号V2を図3に示す。
(Step 2)
With the DC voltage applied to the measurement sample 2, a pulse voltage is applied to the measurement sample 2 to measure the voltage signal V2. As a specific example, the voltage measured by the oscilloscope 162 when the pulse generator 152 is driven and the pulse voltage of −250 V is applied to the measurement sample 2 at 10 nsec with the DC power supply 151 being driven and the DC voltage of −2 kV being applied. The signal V2 is shown in FIG.

(ステップ3)
ステップ2で印加した直流電圧を降圧した後に、直流電圧を測定試料2に印加しない状態、具体的には測定試料2を短絡状態で、パルス電圧のみを測定試料2に印加して電圧信号V3を測定する。具体例として、電圧信号V2の取得後に直流電圧を降圧させて接地した状態で、パルスジェネレータ162を駆動して10nsecで−250Vのパルス電圧を測定試料2に印加した時に、オシロスコープ162により測定した電圧信号V3を図4に示す。
(Step 3)
After stepping down the DC voltage applied in step 2, the DC voltage is not applied to the measurement sample 2, specifically, the measurement sample 2 is short-circuited, and only the pulse voltage is applied to the measurement sample 2 to generate the voltage signal V3. taking measurement. As a specific example, the voltage measured by the oscilloscope 162 when the pulse generator 162 is driven and a pulse voltage of −250 V is applied to the measurement sample 2 at 10 nsec in a state where the DC voltage is stepped down after the voltage signal V2 is acquired and grounded. The signal V3 is shown in FIG.

ステップ3において得られる電圧信号V3は、測定試料2の接地特性を表し、電圧信号V3を信号処理することで測定試料2内部に電荷が蓄積されたか否かを知ることができる。架橋ポリエチレンシートのような電荷が蓄積しやすい測定試料では、図2及び図4の結果から明らかなように、電圧信号V3が、測定試料2内部に電荷が存在しない電圧信号V1と一致しないため、測定試料2内部に電荷が蓄積されたものと判断できる。つまり、電圧信号V2を基準波形として校正することができないため、本実施形態では次のステップ4を行う。   The voltage signal V3 obtained in step 3 represents the ground characteristic of the measurement sample 2, and it is possible to know whether or not electric charges are accumulated in the measurement sample 2 by performing signal processing on the voltage signal V3. In a measurement sample such as a cross-linked polyethylene sheet in which charges are likely to accumulate, the voltage signal V3 does not coincide with the voltage signal V1 in which no charge exists in the measurement sample 2 as is apparent from the results of FIGS. It can be determined that charge has accumulated in the measurement sample 2. That is, since the voltage signal V2 cannot be calibrated as a reference waveform, the following step 4 is performed in the present embodiment.

(ステップ4)
V2−V3+V1を電圧信号V4として、これを基準波形、つまり、校正用電圧信号として校正を行う。
(Step 4)
Calibration is performed using V2−V3 + V1 as a voltage signal V4 and using it as a reference waveform, that is, a calibration voltage signal.

まず、校正用電圧信号算出部163により、V2−V3+V1を電圧信号V4として算出して、これを校正用電圧信号とする。ここで、電圧信号V4は、電荷を蓄積した情報を含んだ電圧信号V2から、蓄積された電荷分である電圧信号V3を減算して、ゼロ電位を決めるために電圧信号V1を加算した電圧信号である。図5は、電圧信号V2と電圧信号V4の比較を示している。図5から明らかなように、電圧信号V4は、電圧信号V2と異なり、測定試料2内部に電荷が蓄積されていない電圧信号となるため、基準波形として校正することができる。   First, the calibration voltage signal calculation unit 163 calculates V2−V3 + V1 as a voltage signal V4, which is used as a calibration voltage signal. Here, the voltage signal V4 is a voltage signal obtained by subtracting the voltage signal V3, which is the accumulated charge, from the voltage signal V2 including information on accumulated charges, and adding the voltage signal V1 to determine the zero potential. It is. FIG. 5 shows a comparison between the voltage signal V2 and the voltage signal V4. As is apparent from FIG. 5, the voltage signal V4 is different from the voltage signal V2 and is a voltage signal in which no charge is accumulated in the measurement sample 2, and can be calibrated as a reference waveform.

そこで、空間電荷密度情報変換部164により、校正用電圧信号V4に信号処理を施して空間電荷密度に変換する。具体的に、空間電荷密度情報変換部164は、電圧信号V4をフーリエ変換して周波数領域で歪みの影響などを除去し、その後逆フーリエ変換を行うことで空間電荷密度に変換する。   Therefore, the space charge density information conversion unit 164 performs signal processing on the calibration voltage signal V4 to convert it to space charge density. Specifically, the space charge density information conversion unit 164 performs Fourier transform on the voltage signal V4 to remove the influence of distortion in the frequency domain, and then performs inverse Fourier transform to convert the voltage signal V4 into space charge density.

さらに、校正部165により、校正用電圧信号から変換された空間電荷密度を校正する。具体的に、校正部165は、校正用電圧信号から変換された空間電荷密度を積分することで電界分布を得て、さらに電界分布を積分して電位分布を得る。そして、校正部165は、得られた電界分布と電位分布を実験条件に応じた理論電界と電位にフィッティングさせることで校正し、校正に関する処理を終了する。   Further, the calibration unit 165 calibrates the space charge density converted from the calibration voltage signal. Specifically, the calibration unit 165 obtains an electric field distribution by integrating the space charge density converted from the calibration voltage signal, and further integrates the electric field distribution to obtain a potential distribution. Then, the calibration unit 165 calibrates the obtained electric field distribution and potential distribution by fitting them to the theoretical electric field and potential corresponding to the experimental conditions, and ends the processing related to the calibration.

(比較例)
比較例として、電圧信号V2に電荷が蓄積していないものとみなして校正した結果について説明する。具体的に、電圧信号V2から空間電荷密度を得て、空間電荷密度を積分して得られた電界分布と電位分布に基づいて校正した時の、電圧信号V2に対応する空間電荷密度を図6に示す。図6に示す空間電荷密度は、上述の通り、電圧信号V1、V3が一致せず測定試料内部に電荷が蓄積されているので、この校正結果は間違っている。
(Comparative example)
As a comparative example, a description will be given of the result of calibration assuming that no charge is accumulated in the voltage signal V2. Specifically, the space charge density corresponding to the voltage signal V2 when the space charge density is obtained from the voltage signal V2 and calibrated based on the electric field distribution and potential distribution obtained by integrating the space charge density is shown in FIG. Shown in The space charge density shown in FIG. 6 is incorrect because the voltage signals V1 and V3 do not match and charges are accumulated in the measurement sample as described above.

一方、電圧信号V4に基づいて校正した後に、電圧信号V2に対応する空間電荷密度を図7に示す。図6と図7とを比較すると、図7に示す空間電荷密度では、陰極側にプラスの電荷が蓄積されていることを示している。   On the other hand, after calibration based on the voltage signal V4, the space charge density corresponding to the voltage signal V2 is shown in FIG. Comparing FIG. 6 and FIG. 7, the space charge density shown in FIG. 7 indicates that positive charges are accumulated on the cathode side.

上記の図6及び図7から明らかなように、本実施形態では、ステップ1〜4による処理を実行することで、絶縁材料内部、つまり測定試料2内部の空間電荷分布測定における電荷密度校正の際に、非常に低い直流電圧を印加することで測定試料2内部に空間電荷が発生してしまう場合においても精度の良い校正が可能となる。   As apparent from FIGS. 6 and 7, in the present embodiment, by performing the processing in steps 1 to 4, the charge density calibration in the space charge distribution measurement inside the insulating material, that is, inside the measurement sample 2 is performed. In addition, even when a space charge is generated in the measurement sample 2 by applying a very low DC voltage, calibration with high accuracy is possible.

なお、本実施形態では、測定試料2として架橋ポリエチレンシートを用いたが、これに限定されず、測定試料2内部に空間電荷が発生しやすい材料を用いても、精度の良い校正が可能となる。特にポリエチレンは電荷の蓄積が早く校正が難しい材料であり有効だが、たとえば、エチレンプロピレンゴム、シリコンゴムなどでもよく、これ以外にも下記に示す他の実施形態のように、例えばCVケーブルなどの電線又はケーブルを測定試料として適用することができる。   In this embodiment, a cross-linked polyethylene sheet is used as the measurement sample 2. However, the present invention is not limited to this, and even if a material that easily generates space charge is used in the measurement sample 2, accurate calibration is possible. . In particular, polyethylene is effective because it is a material that accumulates charges quickly and is difficult to calibrate. For example, ethylene propylene rubber, silicon rubber, etc. may be used. Alternatively, a cable can be applied as a measurement sample.

3.電線またはケーブルを測定対象とした空間電荷分布測定装置の全体構成
他の実施形態として、以下では、電線またはケーブルを測定対象とした空間電荷分布測定装置の全体構成について、図8を参照して説明する。
3. Overall Configuration of Space Charge Distribution Measuring Device with Wire or Cable as Measurement Object As another embodiment, the overall configuration of the space charge distribution measuring device with a wire or cable as a measurement object will be described below with reference to FIG. To do.

空間電荷分布測定装置5は、上部電極11と、下部電極13と、圧電素子14と、電源回路15と、測定処理部16と、を備える。また、電源回路15は、直流電源151と、パルスジェネレータ152と、を備える。また、測定処理部16は、アンプ161と、オシロスコープ162と、校正用電圧信号算出部163と、空間電荷密度情報変換部164と、校正部165と、を備える。上述した空間電荷分布測定装置1と同様の構成については、同様の符号を付してその説明を省略する。   The space charge distribution measuring device 5 includes an upper electrode 11, a lower electrode 13, a piezoelectric element 14, a power supply circuit 15, and a measurement processing unit 16. The power supply circuit 15 includes a DC power supply 151 and a pulse generator 152. The measurement processing unit 16 includes an amplifier 161, an oscilloscope 162, a calibration voltage signal calculation unit 163, a space charge density information conversion unit 164, and a calibration unit 165. About the structure similar to the space charge distribution measuring apparatus 1 mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

測定対象である電線またはケーブルの具体例として次のような構造を有するCVケーブルを用いる。つまり、導体を、内部半導体層、絶縁体(例えば架橋ポリエチレン)、外部半導体層、金属遮蔽層の順で被覆したケーブル20を用いる。ここで、ケーブル20の空間電荷分布を測定可能にするため、ケーブル20の一の端部21と他の端部22とにおいて、ケーブル20内部の導体を、電源回路15の直流電源151に接続する。また、ケーブル20の測定部位200については、ケーブル20表面から金属遮蔽層及び内部半導体層を剥がして絶縁体20bを露出させ、露出させた絶縁体20bに下部電極13を取り付ける。また、測定部位200の両端側の部位250、250、つまり金属スクリーン20aで覆われている部位250、250には、上部電極11をそれぞれ取り付けて、パルスジェネレータ152からパルス電圧を印加する。   A CV cable having the following structure is used as a specific example of the electric wire or cable to be measured. That is, the cable 20 in which a conductor is coated in the order of an internal semiconductor layer, an insulator (for example, cross-linked polyethylene), an external semiconductor layer, and a metal shielding layer is used. Here, in order to be able to measure the space charge distribution of the cable 20, the conductor inside the cable 20 is connected to the DC power supply 151 of the power supply circuit 15 at one end 21 and the other end 22 of the cable 20. . For the measurement site 200 of the cable 20, the metal shielding layer and the internal semiconductor layer are peeled off from the surface of the cable 20 to expose the insulator 20b, and the lower electrode 13 is attached to the exposed insulator 20b. In addition, the upper electrode 11 is attached to the parts 250 and 250 on both ends of the measurement part 200, that is, the parts 250 and 250 covered with the metal screen 20 a, and a pulse voltage is applied from the pulse generator 152.

上記のようにして、ケーブル20に上部電極11と下部電極13とを接続し、下部電極13に接続された圧電素子14からの検出結果を利用することにより、測定処理部16は、空間電荷分布を測定することが可能となる。また、上述したシート状の測定試料2に比べてケーブル20はノイズが大きいことから、圧電素子14からの電圧信号が複雑になるが、測定処理部16では、上述した空間電荷分布測定装置1と同様にして、校正部165により、校正用電圧信号から変換された空間電荷密度を精度よく校正することができる。   As described above, by connecting the upper electrode 11 and the lower electrode 13 to the cable 20 and using the detection result from the piezoelectric element 14 connected to the lower electrode 13, the measurement processing unit 16 performs space charge distribution. Can be measured. In addition, since the cable 20 is noisy compared to the sheet-shaped measurement sample 2 described above, the voltage signal from the piezoelectric element 14 is complicated, but the measurement processing unit 16 is connected to the space charge distribution measuring device 1 described above. Similarly, the calibration unit 165 can calibrate the space charge density converted from the calibration voltage signal with high accuracy.

1 空間電荷分布測定装置
11 上部電極
12 半導体シート
13 下部電極
14 圧電素子14
15 電源回路
16 測定処理部
2 測定試料
DESCRIPTION OF SYMBOLS 1 Space charge distribution measuring apparatus 11 Upper electrode 12 Semiconductor sheet 13 Lower electrode 14 Piezoelectric element 14
15 Power Supply Circuit 16 Measurement Processing Unit 2 Measurement Sample

Claims (2)

パルス電圧のみが印加された測定試料から測定された電圧信号をV1とし、直流電圧が印加された状態で前記パルス電圧が印加された前記測定試料から測定された電圧信号をV2とし、及び前記直流電圧を降圧直後に接地した状態で前記パルス電圧が印加された前記測定試料から測定された電圧信号をV3とした場合、V2―V3+V1により算出される電圧信号V4を取得するステップと、
電圧信号V4に基づいて、空間電荷分布測定における電荷密度を校正するステップと、
を有することを特徴とする空間電荷分布測定における電荷密度の校正方法。
A voltage signal measured from a measurement sample to which only a pulse voltage is applied is V1, a voltage signal measured from the measurement sample to which the pulse voltage is applied in a state where a DC voltage is applied is V2, and the DC Obtaining a voltage signal V4 calculated by V2−V3 + V1, where V3 is a voltage signal measured from the measurement sample to which the pulse voltage is applied with the voltage grounded immediately after stepping down;
Calibrating the charge density in the space charge distribution measurement based on the voltage signal V4;
A charge density calibration method in space charge distribution measurement.
測定試料が電線またはケーブルであることを特徴とする請求項1記載の空間電荷分布測定における電荷密度の校正方法。   2. The charge density calibration method in space charge distribution measurement according to claim 1, wherein the measurement sample is an electric wire or a cable.
JP2014103050A 2014-05-19 2014-05-19 Calibration method of charge density in space charge distribution measurement Active JP6284425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103050A JP6284425B2 (en) 2014-05-19 2014-05-19 Calibration method of charge density in space charge distribution measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103050A JP6284425B2 (en) 2014-05-19 2014-05-19 Calibration method of charge density in space charge distribution measurement

Publications (2)

Publication Number Publication Date
JP2015219116A true JP2015219116A (en) 2015-12-07
JP6284425B2 JP6284425B2 (en) 2018-02-28

Family

ID=54778604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103050A Active JP6284425B2 (en) 2014-05-19 2014-05-19 Calibration method of charge density in space charge distribution measurement

Country Status (1)

Country Link
JP (1) JP6284425B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738714A (en) * 2016-04-05 2016-07-06 国网重庆市电力公司电力科学研究院 Deduction method and device of space charge distribution of transformer major insulation system
CN106443217A (en) * 2016-09-13 2017-02-22 中国电力科学研究院 Space charge density measuring apparatus
CN106569161A (en) * 2016-10-12 2017-04-19 中国电力科学研究院 Calibration device for space charge density measuring instrument
CN106646015A (en) * 2016-09-20 2017-05-10 国网天津市电力公司 Insulating tube type bus major insulation material space charge characteristic test system
CN107561375A (en) * 2017-08-15 2018-01-09 南方电网科学研究院有限责任公司 A kind of computational methods and device of liquid medium distribution of space charge
CN109142895A (en) * 2018-07-05 2019-01-04 清华大学 The easy measuring device of DC wire space potential and total electric field distribution
CN113671275A (en) * 2021-07-09 2021-11-19 深圳供电局有限公司 Multilayer oiled paper insulation space charge prediction method and equipment
CN114137281A (en) * 2021-11-25 2022-03-04 北京交通大学 Space charge evaluation method based on conductive current
IT202000026957A1 (en) * 2020-11-11 2022-05-11 Univ Bologna Alma Mater Studiorum METHOD OF DECONVOLUTION AND AUTOMATIC CALIBRATION OF ELECTROACOUSTIC SIGNALS
CN114895112A (en) * 2022-07-13 2022-08-12 华北电力大学 Electric field and charge measurement system and method for solid-liquid composite medium
CN115453301A (en) * 2022-08-15 2022-12-09 山东大学 Coupling circuit for space charge test and space charge test system
CN115856456A (en) * 2023-02-27 2023-03-28 国网山东省电力公司广饶县供电公司 Cable charge test data transmission method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669082A (en) * 2019-01-28 2019-04-23 国网天津市电力公司电力科学研究院 Cable body space charge test macro based on temperature gradient field and alternating voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452566A (en) * 1990-06-20 1992-02-20 Fujikura Ltd Space charge distribution measuring device of cable insulator
JPH09311122A (en) * 1996-05-22 1997-12-02 Fujikura Ltd Standard sample for measuring space charge, and method of measuring space charge
JP2000046884A (en) * 1998-07-28 2000-02-18 Showa Electric Wire & Cable Co Ltd Method for correcting charge density in space charge measurement
JP2010530530A (en) * 2007-06-20 2010-09-09 サントル・ナシオナル・デチューデ・スパシアル System for transmitting electrical pulses and capacitive decoupling device for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452566A (en) * 1990-06-20 1992-02-20 Fujikura Ltd Space charge distribution measuring device of cable insulator
JPH09311122A (en) * 1996-05-22 1997-12-02 Fujikura Ltd Standard sample for measuring space charge, and method of measuring space charge
JP2000046884A (en) * 1998-07-28 2000-02-18 Showa Electric Wire & Cable Co Ltd Method for correcting charge density in space charge measurement
JP2010530530A (en) * 2007-06-20 2010-09-09 サントル・ナシオナル・デチューデ・スパシアル System for transmitting electrical pulses and capacitive decoupling device for the same
US20110102097A1 (en) * 2007-06-20 2011-05-05 Denis Payan System for transmitting an electric pulse and device for capacitive disconnection for such a system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福永 香: ""CVケーブル絶縁体中の空間電荷分布の測定"", 電気学会論文誌A, vol. 111, no. 11, JPN6017005646, November 1991 (1991-11-01), JP, pages 988 - 992 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738714A (en) * 2016-04-05 2016-07-06 国网重庆市电力公司电力科学研究院 Deduction method and device of space charge distribution of transformer major insulation system
CN106443217A (en) * 2016-09-13 2017-02-22 中国电力科学研究院 Space charge density measuring apparatus
CN106443217B (en) * 2016-09-13 2020-10-09 中国电力科学研究院 Space charge density measuring device
CN106646015A (en) * 2016-09-20 2017-05-10 国网天津市电力公司 Insulating tube type bus major insulation material space charge characteristic test system
CN106569161A (en) * 2016-10-12 2017-04-19 中国电力科学研究院 Calibration device for space charge density measuring instrument
CN107561375A (en) * 2017-08-15 2018-01-09 南方电网科学研究院有限责任公司 A kind of computational methods and device of liquid medium distribution of space charge
CN109142895A (en) * 2018-07-05 2019-01-04 清华大学 The easy measuring device of DC wire space potential and total electric field distribution
IT202000026957A1 (en) * 2020-11-11 2022-05-11 Univ Bologna Alma Mater Studiorum METHOD OF DECONVOLUTION AND AUTOMATIC CALIBRATION OF ELECTROACOUSTIC SIGNALS
CN113671275A (en) * 2021-07-09 2021-11-19 深圳供电局有限公司 Multilayer oiled paper insulation space charge prediction method and equipment
CN114137281A (en) * 2021-11-25 2022-03-04 北京交通大学 Space charge evaluation method based on conductive current
CN114895112A (en) * 2022-07-13 2022-08-12 华北电力大学 Electric field and charge measurement system and method for solid-liquid composite medium
CN115453301A (en) * 2022-08-15 2022-12-09 山东大学 Coupling circuit for space charge test and space charge test system
CN115856456A (en) * 2023-02-27 2023-03-28 国网山东省电力公司广饶县供电公司 Cable charge test data transmission method
CN115856456B (en) * 2023-02-27 2023-06-23 国网山东省电力公司广饶县供电公司 Cable charge test data transmission method

Also Published As

Publication number Publication date
JP6284425B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6284425B2 (en) Calibration method of charge density in space charge distribution measurement
JP4797175B2 (en) Method and apparatus for measuring partial discharge charge
JP7182510B2 (en) Non-contact DC voltage measuring device with vibration sensor
US10942210B2 (en) Reflected-wave processing apparatus
US11125802B2 (en) Method and testing device for measuring partial discharge pulses of a shielded cable
EP3567394B1 (en) Position dependent non-contact voltage and current measurement
WO2013111445A1 (en) Non-contact discharge evaluation method and non-contact discharge evaluation apparatus
Zahra et al. Space charge measurement equipment for full-scale HVDC cables using electrically insulating polymeric acoustic coupler
JP2023052672A (en) Multi-sensor scanner configuration for non-contact voltage measurement device
JP2020528153A (en) Non-contact voltage converter
JP2018151345A (en) Partial discharge detection method and partial discharge detection device
Xu et al. Loss current studies of partial discharge activity
KR101130260B1 (en) System for measuring ground impedance in high frequency band
KR20100036567A (en) Apparatus for detecting partial discharging signal and method for driving the same
CN114002475A (en) Lightning arrester resistive current on-line monitoring method
Xu et al. Enhanced accuracy in dielectric response material characterization by air reference method
Fujii et al. Highly sensitive partial discharge detection by TEV method under severe noise conditions
KR102028287B1 (en) Apparatus for estimating space charge, system comprising the apparatus and method for using the same
CN108957097A (en) Method for measuring resistive current fundamental wave of metal oxide arrester
JP6230367B2 (en) Calibration sample for space charge measurement and calibration method using the same
Soltani et al. Compensation of the effects of electrical sensors in measuring partial discharge signals
KR101145267B1 (en) System and method for measuring impedance and noise characteristic simultaneously, and a medium having computer readable program for executing the method
CN111398697A (en) Space charge test system and test method under periodic pulse electric field
KR102015727B1 (en) Method for estimating space charge and thickness or temperature of an insulating layer
Jung et al. Automatic measurement system of the space charge distribution by a two-step deconvolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180130

R151 Written notification of patent or utility model registration

Ref document number: 6284425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350