JP3488554B2 - Solution sensor system - Google Patents

Solution sensor system

Info

Publication number
JP3488554B2
JP3488554B2 JP25951195A JP25951195A JP3488554B2 JP 3488554 B2 JP3488554 B2 JP 3488554B2 JP 25951195 A JP25951195 A JP 25951195A JP 25951195 A JP25951195 A JP 25951195A JP 3488554 B2 JP3488554 B2 JP 3488554B2
Authority
JP
Japan
Prior art keywords
sensor
solution
electrode
liquid
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25951195A
Other languages
Japanese (ja)
Other versions
JPH0980035A (en
Inventor
祥子 塩川
淳 近藤
秀幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Industrial Co Ltd
Original Assignee
Fuji Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Industrial Co Ltd filed Critical Fuji Industrial Co Ltd
Priority to JP25951195A priority Critical patent/JP3488554B2/en
Publication of JPH0980035A publication Critical patent/JPH0980035A/en
Application granted granted Critical
Publication of JP3488554B2 publication Critical patent/JP3488554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶液の粘性、導電
率及び比誘電率を同時計測する溶液センサシステムに係
り、特にすべり弾性表面波(SH−SAW)を用いた溶
液センサシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solution sensor system for simultaneously measuring the viscosity, conductivity and relative permittivity of a solution, and more particularly to a solution sensor system using a sliding surface acoustic wave (SH-SAW).

【0002】[0002]

【従来の技術】すべり弾性表面波を用いて液体の力学量
(粘性)や電気量(導電率及び比誘電率)を計測する超
音波計測センサが提案されている。
2. Description of the Related Art An ultrasonic measurement sensor has been proposed which measures mechanical quantity (viscosity) and electric quantity (conductivity and relative permittivity) of a liquid by using a surface acoustic wave.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術に
係る力学量や電気量の計測センサはそれぞれ個別のセン
サセルを用いるものであるため、同時にそれらの両物理
量を計測することができなかった。また従来技術の測定
系は、信号発生器とベクトルボルトメータの組み合せか
らなるものであるため、高価格に加えて計測に長時間を
要した。
However, since the mechanical quantity and electric quantity measuring sensors according to the prior art use individual sensor cells, it is not possible to measure both physical quantities at the same time. Further, since the conventional measuring system is composed of a combination of a signal generator and a vector voltmeter, it requires a long time for measurement in addition to high cost.

【0004】本発明の課題は、溶液センサシステムにお
いて、力学量と電気量の同時計測を可能とするととも
に、安価な自動計測システムを提供することにある。
An object of the present invention is to provide an inexpensive automatic measuring system which enables simultaneous measurement of a mechanical quantity and an electric quantity in a solution sensor system.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の本発明
に係る溶液センサシステムは、単一の圧電素子の表面に
構成された第1〜第3の3チャンネルのそれぞれに、液
体の貯溜可能な第1〜第3の3センサセルが並設され、
該第3チャンネルには、センサセル内に圧電素子を露出
した開口窓が形成され、各センサセルの両側に1組の送
信電極及び受信電極が上記圧電素子に直接固着され、上
記送信電極に、共通の高周波発振器がセンサセルに対応
して選別接続されるとともに、上記送信電極と受信電極
に、共通の伝搬特性計測器が高周波発振器とこれに選別
接続されたセンサセルとの結合からなる計測システムの
形成と連動して選別接続可能に構成されたものである。
A solution sensor system according to the present invention as set forth in claim 1 stores a liquid in each of the first to third channels formed on the surface of a single piezoelectric element. Possible first to third three sensor cells are arranged in parallel,
An opening window exposing the piezoelectric element is formed in the sensor cell in the third channel, and a pair of transmitting electrode and receiving electrode is directly fixed to the piezoelectric element on both sides of each sensor cell, and is common to the transmitting electrode. The high-frequency oscillator is selectively connected corresponding to the sensor cell, and a common propagation characteristic measuring instrument is connected to the transmitting electrode and the receiving electrode together with the formation of a measurement system including a combination of the high-frequency oscillator and the sensor cell selectively connected to the high-frequency oscillator. It is configured so that it can be selectively connected.

【0006】請求項2に記載の本発明は、請求項1に記
載の本発明において更に、前記第1、第2センサセルの
何れかに参照液を貯溜し、残りの2センサセルに測定液
を負荷して、各センサセルの送信電極と受信電極の間を
伝搬するすべり弾性表面波の発振周波数の変化と振幅の
それぞれを計測し、参照液と測定液のそれぞれについて
得た測定データの比較から測定液の粘性、導電率及び比
誘電率を同時計測可能に構成されたものである。
According to the present invention of claim 2, in addition to the invention of claim 1, the reference liquid is further stored in any one of the first and second sensor cells, and the remaining two sensor cells are loaded with the measurement liquid. Then, each change and amplitude of the oscillation frequency of the slip surface acoustic wave propagating between the transmitting electrode and the receiving electrode of each sensor cell is measured, and the measured liquid is compared from the measured data obtained for the reference liquid and the measured liquid. The viscosity, conductivity and relative permittivity of are simultaneously measured.

【0007】請求項3に記載の本発明は、請求項1又は
2に記載の本発明において更に、信号増幅器、すべり弾
性表面波センサ及び自動利得制御回路で帰還発振ループ
を形成し、常に送信電極に一定電圧を印加した状態で受
信電圧と発振周波数を計測し、すべり弾性表面波の減衰
と音速の連続計測が可能な回路構成としたものである。
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, a feedback oscillation loop is formed by a signal amplifier, a slip surface acoustic wave sensor, and an automatic gain control circuit, and a transmission electrode is always provided. The circuit configuration is such that the received voltage and the oscillation frequency are measured while a constant voltage is applied to, and the slip surface acoustic wave can be attenuated and the sound velocity can be continuously measured.

【0008】請求項4に記載の本発明は、請求項1〜3
のいずれかに記載の本発明において更に、前記圧電素子
が36度回転Y板X伝搬Li Ta O3 から構成されたもの
である。
The present invention according to claim 4 provides the invention according to claims 1 to 3.
In any one of the present inventions, the piezoelectric element is composed of a 36-degree rotating Y plate X propagating Li Ta O 3 .

【0009】請求項1に記載の本発明によれば下記の
作用効果がある。 単一の圧電素子の表面に構成された第1〜第3の3チ
ャンネルのそれぞれに、第1〜第3の3センサセルが並
設されて、各センサセル内に液体が貯溜可能とされ、該
第3チャンネルには、対応する第3センサセル内に圧電
素子を露出した開口窓が形成される。
The present invention according to claim 1 has the following effects. The first to third three sensor cells are arranged in parallel in each of the first to third three channels formed on the surface of a single piezoelectric element, and the liquid can be stored in each sensor cell. An opening window exposing the piezoelectric element is formed in the corresponding third sensor cell in each of the three channels.

【0010】すべり弾性表面波(SAW)は、センシン
グ面(SAW伝搬面)の状態により、測定される物理量
を変えることが可能で、第1、第2センサセル(第1、
第2チャンネル)のように伝搬面が電気的に短絡の場合
は力学量が、第3センサセル(第3チャンネル)のよう
に電気的に開放(開口窓があって圧電素子に直接接続さ
れる)の場合は電気量が計測される。
The slip surface acoustic wave (SAW) can change the physical quantity to be measured depending on the state of the sensing surface (SAW propagation surface), and the first and second sensor cells (first,
When the propagation surface is electrically short-circuited as in the second channel), the mechanical quantity is electrically opened like in the third sensor cell (third channel) (there is an opening window and is directly connected to the piezoelectric element). In the case of, the amount of electricity is measured.

【0011】請求項2に記載の本発明によれば下記の
作用効果がある。 第1(もしくは第2)チャンネルのセンサセルに貯溜
した参照液(標準液)と第2(もしくは第1)、第3チ
ャンネルに貯溜した測定液のそれぞれのすべり弾性表面
波の伝搬特性を同一測定回路で切換比較計測して、測定
液の力学量と電気量の同時計測を可能とする。
According to the second aspect of the present invention, the following operational effects are obtained. The reference liquid (standard liquid) stored in the sensor cell of the first (or second) channel and the propagation characteristics of the slipping surface acoustic waves of the measurement liquid stored in the second (or first) and third channels have the same measurement circuit. Enables simultaneous measurement of the mechanical quantity and the electric quantity of the measurement liquid by switching and comparing with.

【0012】請求項3に記載の本発明によれば下記の
作用効果がある。 測定回路に、すべり弾性表面波の伝搬経路を含めた帰
還発振回路を用いたことにより、計測の自動化と低価格
化が達成できる。
The present invention according to claim 3 has the following operational effects. By using a feedback oscillation circuit including the propagation path of the slip surface acoustic wave in the measurement circuit, automation of measurement and cost reduction can be achieved.

【0013】請求項4に記載の本発明によれば下記の
作用効果がある。 センサ基板に36度回転Y板X伝搬LiTaO3 を用
いると、目的とするすべり弾性表面波以外の不要弾性波
(縦液等のスプリアス振動)が発生せず、他の素子に比
較して電気機械結合係数が大きいので高感度のセンサが
実現できる。
According to the present invention described in claim 4, there are the following operational effects. When the 36-degree rotating Y-plate X-propagation LiTaO 3 is used for the sensor substrate, unnecessary acoustic waves (spurious vibrations of longitudinal liquid, etc.) other than the target slip surface acoustic wave do not occur, and compared with other elements Since the coupling coefficient is large, a highly sensitive sensor can be realized.

【0014】[0014]

【発明の実施の形態】図1は本発明に係る溶液センサの
システムの一実施形態を示す模式図、図2は本発明に係
る溶液センサシステムの測定系統図、図3は水溶液の音
速及び減衰の測定例を示す図、図4は水溶液の濃度に対
する電気特性による速度変化の測定例を示す図、図5は
電気量による変化の例を比誘電率−導電率図表に示した
図である。
1 is a schematic diagram showing an embodiment of a solution sensor system according to the present invention, FIG. 2 is a measurement system diagram of the solution sensor system according to the present invention, and FIG. 3 is a sound velocity and attenuation of an aqueous solution. FIG. 4 is a diagram showing a measurement example of velocity change due to electric characteristics with respect to the concentration of an aqueous solution, and FIG. 5 is a diagram showing a relative permittivity-conductivity diagram as an example of change due to an electric quantity.

【0015】図1に示すように、溶液センサ40は単一
の圧電素子41の表面に、3チャンネルの送・受信セン
サ(10、20、30)を有して構成される。
As shown in FIG. 1, the solution sensor 40 comprises a single piezoelectric element 41 having three channels of transmission / reception sensors (10, 20, 30).

【0016】図1で11、21、31は送信電極、1
2、22、32は短絡電極、13、23、33は受信電
極、14、24、34はセンサセル、35は短絡電極3
4の一部の貫通孔で圧電素子41が露出するようにした
開口窓である。断面図にある42、43はセンサセルの
プール外壁である。
In FIG. 1, reference numerals 11, 21, and 31 are transmission electrodes, and 1
2, 22, 32 are short-circuit electrodes, 13, 23, 33 are receiving electrodes, 14, 24, 34 are sensor cells, and 35 is a short-circuit electrode 3.
4 is an opening window in which the piezoelectric element 41 is exposed through a part of the through holes. Reference numerals 42 and 43 in the sectional view are pool outer walls of the sensor cell.

【0017】各電極(送・受信電極及び短絡電極)は、
36度回転Y板X伝搬Li Ta O3 の圧電素子41の表面
(センシング面)にCu/Au蒸着膜によって形成され
る。
Each electrode (sending / receiving electrode and short-circuit electrode) is
It is formed by a Cu / Au vapor deposition film on the surface (sensing surface) of the piezoelectric element 41 of the 36-degree rotating Y plate X propagation Li Ta O 3 .

【0018】第1チャンネルのセンサセル14に参照用
の標準液を負荷し、第2、第3チャンネルのセンサセル
24、34に測定液を負荷すると、第1、第2チャンネ
ルの測定量のコンピュータ処理により測定液の力学量、
第1、第3チャンネルの測定量のコンピュータ処理によ
り測定液の電気量が計測できる。
When the standard solution for reference is loaded into the sensor cell 14 of the first channel and the measurement fluid is loaded into the sensor cells 24 and 34 of the second and third channels, the measured amounts of the first and second channels are processed by computer. The mechanical quantity of the measured liquid,
The amount of electricity of the measurement liquid can be measured by computer processing of the measured amounts of the first and third channels.

【0019】この場合は、第2、第3チャンネルのセン
サセル24、34に同一測定液を負荷するため、センサ
セル24及び34は、図1に破線で示したように共通の
プールにすることもできる。
In this case, since the same measurement liquid is loaded on the sensor cells 24 and 34 of the second and third channels, the sensor cells 24 and 34 can be a common pool as shown by the broken line in FIG. .

【0020】図2は第1チャンネル(Ch.1)測定の
場合を示し、溶液センサ40の第1チャンネル対応送信
電極11は、自動利得制御回路52により送信電圧が印
加される。送信電極11には中心周波数50.2 MHzのすべ
り弾性表面波が発生し、対応するセンサセル14内を伝
搬し、標準液の情報を対応する受信電極13に伝える。
受信信号は、信号増幅器51により増幅されて、自動利
得制御回路52に帰還される。
FIG. 2 shows the case of the first channel (Ch.1) measurement, and the transmission voltage is applied to the first channel corresponding transmission electrode 11 of the solution sensor 40 by the automatic gain control circuit 52. A slip surface acoustic wave having a center frequency of 50.2 MHz is generated in the transmitting electrode 11, propagates in the corresponding sensor cell 14, and transmits information on the standard solution to the corresponding receiving electrode 13.
The received signal is amplified by the signal amplifier 51 and fed back to the automatic gain control circuit 52.

【0021】自動利得制御回路52→溶液センサ40→
信号増幅器51→自動利得制御回路52の閉回路によっ
て構成される測定系は、発信ループを形成し、溶液の音
速に対応した繰り返し周波数で発振し、送信電圧は一定
振幅に制御される。このため、信号増幅器51の出力を
検波回路53で検波すると、標準液の振幅がデジタルマ
ルチメータ54によって計測されコンピュータ55に入
力される。
Automatic gain control circuit 52 → solution sensor 40 →
The measurement system configured by the closed circuit of the signal amplifier 51 → the automatic gain control circuit 52 forms an oscillation loop, oscillates at a repetition frequency corresponding to the sound velocity of the solution, and the transmission voltage is controlled to a constant amplitude. Therefore, when the output of the signal amplifier 51 is detected by the detection circuit 53, the amplitude of the standard solution is measured by the digital multimeter 54 and input to the computer 55.

【0022】一方、発振ループの発振周波数は、水晶発
振器56の基準周波数とミキサ回路57によってミキシ
ングされ、その差周波数が周波数カウンタ58により計
測され、標準液の音速特性に対応した周波数をコンピュ
ータ55に入力される。以上の計測からコンピュータ入
力までの一連の動作は全て自動的に行なわれる。
On the other hand, the oscillation frequency of the oscillation loop is mixed with the reference frequency of the crystal oscillator 56 by the mixer circuit 57, and the difference frequency is measured by the frequency counter 58, and the frequency corresponding to the sound velocity characteristic of the standard liquid is stored in the computer 55. Is entered. All the series of operations from the above measurement to computer input are automatically performed.

【0023】同様の測定を自動的に第2、第2チャンネ
ル(Ch.2、Ch.3)で繰り返し実施し、コンピュ
ータ55に入力された、(a) 第1、第2チャンネルの振
幅と周波数のそれぞれの比較から測定液の力学量、同じ
く(b) 第1、第3チャンネルの振幅と周波数のそれぞれ
の比較から測定液の電気量が算出される。
The same measurement is automatically and repeatedly carried out on the second and second channels (Ch.2, Ch.3), and the amplitude and frequency of the (a) first and second channels input to the computer 55. The mechanical quantity of the measurement liquid is calculated from each of the above, and the electric quantity of the measurement liquid is calculated from the comparison of each of the amplitudes and frequencies of the first and third channels (b).

【0024】具体例として、グリセリンと4種のアルコ
ールについての測定例を示す。各試料は市販のJIS特
級試薬を100 %として、グリセリンは10〜88wt%、アル
コールは10〜100vol%を蒸留水により希釈したものを使
用した。
As specific examples, measurement examples of glycerin and four kinds of alcohols will be shown. Each sample was prepared by diluting 10% to 88% by weight of glycerin and 10% to 100% by volume of alcohol with distilled water, using a commercially available JIS special grade reagent as 100%.

【0025】図3にグリセリンとメタノールの各水溶液
の測定例を示す。同図で、横軸は周波数変化により得ら
れた伝搬速度変化ΔV/V、縦軸は減衰変化Δα/kで
ある。
FIG. 3 shows an example of measurement of each aqueous solution of glycerin and methanol. In the figure, the horizontal axis is the propagation velocity change ΔV / V obtained by the frequency change, and the vertical axis is the attenuation change Δα / k.

【0026】図3(a)はグリセリン水溶液の特性で、
61は電気量、62は力学量である。図3(b)はメタ
ノール水溶液の特性で、63は電気量、64は力学量で
ある。
FIG. 3 (a) shows the characteristics of an aqueous glycerin solution.
61 is an electric quantity and 62 is a mechanical quantity. FIG. 3B shows the characteristics of the aqueous methanol solution, where 63 is an electric quantity and 64 is a mechanical quantity.

【0027】図3から力学量(粘性)の変化(62、6
4)は、グリセリンが左上がり、メタノールが右下がり
となっている。これは蒸留水からの粘性の変化に一致す
る。電気量による変化(61、63)からは、誘電率が
大きく変化していることがわかる。
From FIG. 3, the change of the mechanical quantity (viscosity) (62, 6)
In 4), glycerin goes up to the left and methanol goes down to the right. This is consistent with the change in viscosity from distilled water. From the changes (61, 63) depending on the amount of electricity, it can be seen that the permittivity greatly changes.

【0028】図4は4種のアルコールについての濃度・
速度変化(電気量に対応した)特性である。
FIG. 4 shows the concentrations of the four alcohols.
This is a speed change (corresponding to the amount of electricity) characteristic.

【0029】同図で71はメタノール、72はエタノー
ル、73は1プロパノール、74は2プロパノールであ
る。分子構造が似た1プロパノール73と2プロパノー
ル74にははっきりとした違いはみられないが、それら
とエタノール72、メタノール71には違いがみられ
る。
In the figure, 71 is methanol, 72 is ethanol, 73 is 1 propanol, and 74 is 2 propanol. There is no clear difference between 1-propanol 73 and 2-propanol 74, which have similar molecular structures, but there is a difference between them and ethanol 72 and methanol 71.

【0030】図5は上述の5種の試料の電気量による変
化を、比誘電率−導電率図表上に示したものである。
FIG. 5 is a graph showing the changes in the above-mentioned five types of samples depending on the amount of electricity on the relative permittivity-conductivity chart.

【0031】同図から各試料とも導電率の変化(σ/f
×10-8s・m-12 -1 )は微小で比誘電率(εr')が大
きく変わっている。
From the figure, the change in conductivity (σ / f) is obtained for each sample.
× 10 -8 s · m -1 H 2 -1 ) is minute and the relative permittivity (ε r ') is greatly changed.

【0032】[0032]

【発明の効果】以上のように、本発明に係る溶液センサ
システムによれば、溶液の力学量(粘性)と電気量(導
電率と比誘電率)を、高精度に同時測定することができ
る。
As described above, according to the solution sensor system of the present invention, the mechanical quantity (viscosity) and the electric quantity (conductivity and relative permittivity) of the solution can be simultaneously measured with high accuracy. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明に係る溶液センサのシステムの一
実施形態を示す模式図である。
FIG. 1 is a schematic diagram showing an embodiment of a solution sensor system according to the present invention.

【図2】図2は本発明に係る溶液センサシステムの測定
系統図である。
FIG. 2 is a measurement system diagram of a solution sensor system according to the present invention.

【図3】図3は水溶液の音速及び減衰の測定例を示す図
である。
FIG. 3 is a diagram showing a measurement example of sound velocity and attenuation of an aqueous solution.

【図4】図4は水溶液の濃度に対する電気特性による速
度変化の測定例を示す図である。
FIG. 4 is a diagram showing an example of measurement of velocity change due to electrical characteristics with respect to the concentration of an aqueous solution.

【図5】図5は電気量による変化の例を比誘電率−導電
率図表に示した図である。
FIG. 5 is a diagram showing an example of a change with an electric quantity in a relative permittivity-conductivity diagram.

【符号の説明】[Explanation of symbols]

10、20、30 送・受信センサ 11、21、31 送信電極 12、22、32 短絡電極 13、23、33 受信電極 14、24、34 センサセル 35 開口窓 40 溶液センサ 52 自動利得制御回路 54 デジタルマルチメータ 55 コンピュータ 58 周波数カウンタ 10, 20, 30 Send / receive sensors 11, 21, 31 Transmitting electrode 12, 22, 32 short-circuit electrodes 13, 23, 33 receiving electrodes 14, 24, 34 sensor cells 35 open window 40 Solution sensor 52 Automatic gain control circuit 54 Digital Multimeter 55 Computer 58 frequency counter

フロントページの続き (56)参考文献 特開 平6−109710(JP,A) 特開 平6−194346(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 G01N 11/00 - 11/16 JICSTファイル(JOIS)Front page continuation (56) References JP-A-6-109710 (JP, A) JP-A-6-194346 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 29 / 00-29 / 28 G01N 11 / 00-11 / 16 JISST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単一の圧電素子の表面に構成された第1
〜第3の3チャンネルのそれぞれに、液体の貯溜可能な
第1〜第3の3センサセルが並設され、 該第3チャンネルには、センサセル内に圧電素子を露出
した開口窓が形成され、 各センサセルの両側に1組の送信電極及び受信電極が上
記圧電素子に直接固着され、 上記送信電極に、共通の高周波発振器がセンサセルに対
応して選別接続されるとともに、上記送信電極と受信電
極に、共通の伝搬特性計測器が高周波発振器とこれに選
別接続されたセンサセルとの結合からなる計測システム
の形成と連動して選別接続可能に構成された溶液センサ
システム。
1. A first piezoelectric device formed on the surface of a single piezoelectric element.
To each of the third to third channels, first to third sensor cells capable of storing liquid are arranged in parallel, and an opening window exposing the piezoelectric element in the sensor cell is formed in the third channel, A pair of transmitting electrode and receiving electrode is directly fixed to the piezoelectric element on both sides of the sensor cell, and a common high-frequency oscillator is selectively connected to the transmitting electrode corresponding to the sensor cell, and the transmitting electrode and the receiving electrode are connected to each other. A solution sensor system configured so that a common propagation characteristic measuring device can be selectively connected in conjunction with the formation of a measuring system including a high frequency oscillator and a sensor cell selectively connected to the high frequency oscillator.
【請求項2】 前記第1、第2センサセルの何れかに参
照液を貯溜し、残りの2センサセルに測定液を負荷し
て、各センサセルの送信電極と受信電極の間を伝搬する
すべり弾性表面波の発振周波数の変化と振幅のそれぞれ
を計測し、参照液と測定液のそれぞれについて得た測定
データの比較から測定液の粘性、導電率及び比誘電率を
同時計測可能に構成された請求項1に記載の溶液センサ
システム。
2. A slip elastic surface which stores a reference liquid in one of the first and second sensor cells and loads the remaining two sensor cells with a measurement liquid to propagate between a transmission electrode and a reception electrode of each sensor cell. Claims configured to measure the change and amplitude of the oscillating frequency of the wave respectively and to simultaneously measure the viscosity, conductivity and relative permittivity of the measurement liquid by comparing the measurement data obtained for each of the reference liquid and the measurement liquid. 1. The solution sensor system according to 1.
【請求項3】 信号増幅器、すべり弾性表面波センサ及
び自動利得制御回路で帰還発振ループを形成し、常に送
信電極に一定電圧を印加した状態で受信電圧と発振周波
数を計測し、すべり弾性表面波の減衰と音速の連続計測
が可能な回路構成とした請求項1又は2に記載の溶液セ
ンサシステム。
3. A slipping surface acoustic wave is formed by forming a feedback oscillation loop with a signal amplifier, a slipping surface acoustic wave sensor, and an automatic gain control circuit, and measuring a reception voltage and an oscillation frequency with a constant voltage constantly applied to the transmission electrode. 3. The solution sensor system according to claim 1, wherein the solution sensor system has a circuit configuration capable of continuously measuring attenuation of sound and sound velocity.
【請求項4】 前記圧電素子が36度回転Y板X伝搬Li
Ta O3 から構成された請求項1〜3のいずれかに記載
の溶液センサシステム。
4. The Y-plate X-propagation Li of the Y-plate rotated by 36 degrees.
The solution sensor system according to any one of claims 1 to 3, which is composed of Ta O 3 .
JP25951195A 1995-09-13 1995-09-13 Solution sensor system Expired - Lifetime JP3488554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25951195A JP3488554B2 (en) 1995-09-13 1995-09-13 Solution sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25951195A JP3488554B2 (en) 1995-09-13 1995-09-13 Solution sensor system

Publications (2)

Publication Number Publication Date
JPH0980035A JPH0980035A (en) 1997-03-28
JP3488554B2 true JP3488554B2 (en) 2004-01-19

Family

ID=17335127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25951195A Expired - Lifetime JP3488554B2 (en) 1995-09-13 1995-09-13 Solution sensor system

Country Status (1)

Country Link
JP (1) JP3488554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141972A1 (en) * 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Method for detecting substance in liquid and sensor for detecting substance in liquid
WO2007145108A1 (en) * 2006-06-16 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
WO2007145011A1 (en) * 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2008267968A (en) * 2007-04-19 2008-11-06 Japan Radio Co Ltd Measurement target characteristic measuring apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366384B (en) * 2000-08-30 2005-03-02 Christopher Barnes A visco-dielectric sensing method and device
JP2006047229A (en) * 2004-08-06 2006-02-16 River Eletec Kk Surface acoustic wave device sensor
JP4618492B2 (en) * 2004-12-24 2011-01-26 セイコーエプソン株式会社 Surface acoustic wave sensor
JP5154304B2 (en) * 2008-05-21 2013-02-27 日本無線株式会社 Device measurement device
JP5313583B2 (en) * 2008-07-30 2013-10-09 日本無線株式会社 Cell characteristic measuring device
JP2010101624A (en) * 2008-10-21 2010-05-06 Riso Kagaku Corp Saw sensor solution measuring system and display method of the same
JP5136594B2 (en) 2010-05-21 2013-02-06 株式会社デンソー Surface acoustic wave oscillator
JP6492376B2 (en) * 2014-04-23 2019-04-03 日本無線株式会社 Surface acoustic wave sensor
JP6604602B2 (en) * 2015-03-02 2019-11-13 日本無線株式会社 Surface acoustic wave sensor
EP3441755A4 (en) 2016-04-06 2019-11-06 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method, and aircraft structure
JP2019074434A (en) * 2017-10-17 2019-05-16 日本無線株式会社 Specimen diagnosing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141972A1 (en) * 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Method for detecting substance in liquid and sensor for detecting substance in liquid
US7803632B2 (en) 2006-06-08 2010-09-28 Murata Manufacturing Co., Ltd Method for detecting substance in liquid and sensor for detecting substance in liquid
WO2007145011A1 (en) * 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
US7762124B2 (en) 2006-06-15 2010-07-27 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP4702452B2 (en) * 2006-06-15 2011-06-15 株式会社村田製作所 Submerged substance detection sensor
WO2007145108A1 (en) * 2006-06-16 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
US8658097B2 (en) 2006-06-16 2014-02-25 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2008267968A (en) * 2007-04-19 2008-11-06 Japan Radio Co Ltd Measurement target characteristic measuring apparatus

Also Published As

Publication number Publication date
JPH0980035A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP3488554B2 (en) Solution sensor system
Jakoby et al. Viscosity sensing using a Love-wave device
US6293136B1 (en) Multiple mode operated surface acoustic wave sensor for temperature compensation
CN101458230A (en) Multichannel surface acoustic wave chemical sensing system
Kondoh et al. Development of methanol sensor using a shear horizontal surface acoustic wave device for a direct methanol fuel cell
Ferrari et al. Development and application of mass sensors based on flexural resonances in alumina beams
Kondoh et al. Development of a shear horizontal surface acoustic wave sensor system for liquids with a floating electrode unidirectional transducer
JPH03209157A (en) Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JP3481298B2 (en) Solution sensor
JP3250849B2 (en) Surface acoustic wave device for measuring liquid properties.
JPH06133759A (en) Elastic surface wave biosensor
Shiokawa et al. Surface acoustic wave sensor for liquid-phase application
Kondoh et al. Multichannel shear horizontal surface acoustic wave microsensor for liquid characterization
JP5123046B2 (en) Relative permittivity / conductivity measuring apparatus and measuring method thereof
Nakajima et al. New instrument for rapid and accurate measurement of ultrasonic velocity and attenuation using a minicomputer system
Josse et al. Electrical surface perturbation of a piezoelectric acoustic plate mode by a conductive liquid loading
Nomura et al. Liquid sensor probe using reflecting SH-SAW delay line
JP5647852B2 (en) Concentration sensor
Baer et al. Phase noise measurements of flexural plate wave ultrasonic sensors
JP2008298768A (en) Device for measuring relative permittivity
Kondoh et al. Shear horizontal surface acoustic wave sensor measurement system for liquid toward wireless and passive applications
Shiokawa et al. Surface acoustic wave microsensors
JP2010032245A (en) Relative permittivity/conductivity measuring apparatus
Weaver et al. On the linewidth of the ultrasonic Larsen effect in a reverberant body
Jeutter et al. Design of a portable guided SH-SAW chemical sensor system for liquid environments

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term