JP2006047229A - Surface acoustic wave device sensor - Google Patents

Surface acoustic wave device sensor Download PDF

Info

Publication number
JP2006047229A
JP2006047229A JP2004231655A JP2004231655A JP2006047229A JP 2006047229 A JP2006047229 A JP 2006047229A JP 2004231655 A JP2004231655 A JP 2004231655A JP 2004231655 A JP2004231655 A JP 2004231655A JP 2006047229 A JP2006047229 A JP 2006047229A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
saw
device sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231655A
Other languages
Japanese (ja)
Inventor
Yasubumi Furuya
泰文 古屋
Sadako Okazaki
禎子 岡崎
Toru Nomura
徹 野村
Yasutaka Saegusa
康孝 三枝
Yoshihisa Hagiwara
義久 萩原
Hirotake Kon
大健 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
River Eletec Corp
Original Assignee
River Eletec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by River Eletec Corp filed Critical River Eletec Corp
Priority to JP2004231655A priority Critical patent/JP2006047229A/en
Publication of JP2006047229A publication Critical patent/JP2006047229A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Measurement Of Radiation (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device sensor, capable of simultaneously and precisely detecting environmental variable factors represented by physicochemical parameters (temperature, humidity, load, atmospheric pressure, gas component, magnetism, material damages, biological sample microanalysis and the like) resulting from various environmental information and biological medical factors, based on changes in a surface acoustic wave propagation properties, by making a surface acoustic wave (SAW) multichanneled and multifunctional which is generated on a piezo-electric type substrate. <P>SOLUTION: In the surface acoustic wave (SAW) device sensor 1, high-frequency current or high-frequency voltage is applied to an element made up by bonding an IDT 3 to the piezo-electric type substrate 2, whereby the surface acoustic wave (SAW) 5 is generated near the surface of the piezo-electric type substrate 2, and an environmental variable factor is detected on the basis of the propagation property of the SAW 5. A SAW propagating path 4, made up of a plurality of functional thin films 6, is formed to be multichanneled on the piezo-electric type substrate 2, thereby simultaneously detecting the plurality of environmental variable factors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性体の表面付近にエネルギーを集中させて伝搬する表面弾性波(Surface Acoustic Wave,以下SAW)デバイスにおいて、SAW伝播経路上に複数の環境変化因子に反応する特殊な機能材を付加させ多機能化を図り、SAWの伝搬特性の変化に着目し、それを通して、身の周りの環境や生体(健康)問題に関連する様々な物理化学量(温度、応力、ひずみ、湿度、微量ガス、イオン化濃度、生体成分微量分析等)を高感度で計測できる無給電方式かつワイヤレスに特徴を有する多機能化SAWデバイスセンシングシステム開発への基盤技術に関する。   The present invention adds a special functional material that reacts to multiple environmental change factors on the SAW propagation path in a surface acoustic wave (SAW) device that propagates energy concentrated near the surface of the elastic body. Multi-functionalization, focusing on changes in the propagation characteristics of SAW, through which various physical and chemical quantities (temperature, stress, strain, humidity, trace gas) related to the surrounding environment and biological (health) problems The present invention relates to a basic technology for the development of a multifunctional SAW device sensing system characterized by a non-power-feeding method and wireless that can measure ionization concentration, biological component microanalysis, etc.) with high sensitivity.

現在、工学および医学分野において利用されている超音波は、水中あるいは固体中を伝わる弾性波動(バルク波)が主体である。これに対し、弾性体の表面付近にエネルギーを集中させて伝搬する表面弾性波(SAW)も近年、電子・通信機器用素子として活用され、この方面の進展に重要な役割を受け持つに至っている。   The ultrasonic waves currently used in the engineering and medical fields are mainly elastic waves (bulk waves) that propagate in water or solids. On the other hand, surface acoustic waves (SAW) that propagate by concentrating energy near the surface of an elastic body have recently been utilized as elements for electronic / communication equipment and have played an important role in the progress of this direction.

このようなSAWデバイスの機能発現の基本となっている関連技術の一つに圧電効果がある。この圧電効果は、ひずみまたは応力を加えると電荷が誘起され(順効果)、逆に電圧を加えると歪または応力が生ずる(逆効果)現象を総称して圧電効果(piezoelectric effect)といい、歴史的には電気石について順効果がキュリー兄弟(J.Curie,P.Curie,1880)により発見され、翌年リップマン(G.Lippmann)によって逆効果が見出されている。結晶が圧電効果を示すか否かは、結晶の点群対称性によって決まり、32晶族のうち圧電効果を示すものは20晶族である。   One of the related technologies that are the basis for the development of functions of such SAW devices is the piezoelectric effect. This piezoelectric effect is generally referred to as a piezoelectric effect, where a charge or a stress is induced when a strain or stress is applied (forward effect), and a strain or stress is generated when a voltage is applied (reverse effect). In particular, the forward effect was discovered by Curie brothers (J. Curie, P. Curie, 1880) for tourmaline, and the reverse effect was found the following year by G. Lippmann. Whether or not the crystal exhibits a piezoelectric effect is determined by the point group symmetry of the crystal, and among the 32 crystal groups, the crystal effect is the 20 crystal group.

上記圧電効果を利用した電気機械変換素子は、現在の超音波応用部品の主流となっている。圧電素子には単結晶として水晶,ロッシェル塩(酒石酸カリソーダ),LiTaO3,LiNbO3など、また、多結晶体としてチタン酸バリウム(BaTiO3),ジルコチタン酸鉛(PbZrO3,PbTiO3),ニオブ酸塩などが代表的なものである。圧電振動子は、電極を有する圧電体をその全体または一部分に用いて構成された一つの弾性振動体であり、それ自体の弾性振動を圧電変換により電気的に励振、検出する機能をもっている。 Electromechanical transducers using the piezoelectric effect are the mainstream of current ultrasonic application parts. Piezoelectric elements include single crystals such as quartz, Rochelle salt (calcium sodium tartrate), LiTaO 3 , LiNbO 3, etc., and polycrystals such as barium titanate (BaTiO 3 ), lead zirconate titanate (PbZrO 3 , PbTiO 3 ), niobic acid Typical examples are salt. The piezoelectric vibrator is one elastic vibration body configured by using a piezoelectric body having electrodes as a whole or a part thereof, and has a function of electrically exciting and detecting its own elastic vibration by piezoelectric conversion.

表1に前述した圧電基本式を示す。圧電は、電気系と機械系の線形相互作用であり、エネルギー変換の一種である。その形式の分類で、物理的変数の変化を通じて行われる変換のうち、変化がゆっくりと(熱平衡に近い形で)行われる準静的変換に入る。その物理的変数は、電気系では電界Eと電束密度D(または分極P)、機械系(力学系)では応力TとひずみSである。この相互作用を扱うにあたっては、示強(内包的)変数と示量(外包的)変数とを区別することが必要である。ここでは、EとTが前者、D(またはP)とSが後者である。   Table 1 shows the piezoelectric basic formula described above. Piezoelectricity is a linear interaction between electrical and mechanical systems, and is a type of energy conversion. In that type of classification, of the transformations that occur through changes in physical variables, it enters a quasi-static transformation in which the changes occur slowly (in a form close to thermal equilibrium). The physical variables are an electric field E and an electric flux density D (or polarization P) in an electrical system, and a stress T and a strain S in a mechanical system (dynamic system). In dealing with this interaction, it is necessary to distinguish between strong (inclusive) variables and explanatory (external) variables. Here, E and T are the former, and D (or P) and S are the latter.

表面弾性波(SAW)は、当方体や圧電性媒質などを伝搬するが、等方体表面を伝搬するレイリー波が基本である。1885年にLord Rayleighによって導かれたレイリー波(Rayleigh wave)は、半無限弾性体の自由表面(十分に厚い板の表面)に沿って伝搬するため、波の波動の様子は水面の波と類似している。すなわち、まず、波のエネルギーは表面近くに集中しており、表面から深さ1波長以内に90%以上が含まれている。また、変位部分は、波の進行方向と深さ方向だけを持ち、両者の成分の位相差は90°であるため、各点は楕円軌道を描く。図13に水の表面波とレイリー波の変位分布の状態を模式的に示す。水の場合と異なるのは、表面においては進行方向に対し後方楕円運動をし、約1/5波長の位置で深さ方向だけの変位になり、それより深いところでは前方楕円回転をしていることである。   A surface acoustic wave (SAW) propagates in a rectangular parallelepiped or a piezoelectric medium, but is basically a Rayleigh wave that propagates on the surface of an isotropic body. The Rayleigh wave guided by Lord Rayleigh in 1885 propagates along the free surface of a semi-infinite elastic body (the surface of a sufficiently thick plate), so the wave behavior is similar to that of the water surface. is doing. That is, first, wave energy is concentrated near the surface, and 90% or more is included within one wavelength from the surface. Further, the displacement portion has only the wave traveling direction and the depth direction, and the phase difference between the two components is 90 °, so each point draws an elliptical orbit. FIG. 13 schematically shows the state of the displacement distribution of the surface wave and Rayleigh wave of water. The difference from the case of water is that the surface has a backward elliptical motion in the direction of travel, the displacement is only in the depth direction at a position of about 1/5 wavelength, and the forward elliptical rotation is made deeper than that. That is.

さらに、水の場合では伝搬速度が周波数の関数であったのに対し、レイリー波においては周波数に無関係にいつも一定である。このように、速度が一定であることを速度分散性がない(nondispersive)というが、これはレイリー波の大きな特徴である。また、等方体の場合と同じように、異方性媒質である圧電媒質の表面にもレイリー波が伝搬するが、一般にはすべての変位成分を持つ。ただし、速度が周波数特性を持たないのは同じである。   Further, in the case of water, the propagation speed is a function of frequency, whereas in Rayleigh waves it is always constant regardless of frequency. Thus, the fact that the velocity is constant is said to be nondispersive, which is a major feature of Rayleigh waves. As in the case of an isotropic body, a Rayleigh wave propagates to the surface of a piezoelectric medium that is an anisotropic medium, but generally has all displacement components. However, it is the same that speed does not have frequency characteristics.

圧電型基板を伝搬する表面弾性波の伝搬特性には、伝搬速度v,電気機械結合係数K2,遅延時間温度係数TCD,パワーフロー角PFAなどの値がある。表面弾性波を利用したSAWデバイスの特性は、用いる圧電型基板に大きく依存する。そこで、より優れた圧電型基板に要求される特性を列挙すると次のようになる。
(1) 電気機械結合係数(K2)が大きいこと。
(2) 温度特性(TCD)が良いこと。
(3) スプリアス応答が小さいこと。
(4) パワーフロー角(PFA)が零であること。
(5) 伝搬損失が小さいこと。
The propagation characteristics of surface acoustic waves propagating through a piezoelectric substrate include values such as propagation velocity v, electromechanical coupling coefficient K2, delay time temperature coefficient TCD, and power flow angle PFA. The characteristics of a SAW device using surface acoustic waves largely depend on the piezoelectric substrate used. Therefore, the characteristics required for a better piezoelectric substrate are listed as follows.
(1) The electromechanical coupling coefficient (K2) is large.
(2) Good temperature characteristics (TCD).
(3) Spurious response is small.
(4) The power flow angle (PFA) is zero.
(5) Propagation loss is small.

電気機械結合係数は、電気エネルギーから表面波エネルギーへの変換効率を示す値である。TCDは表面波の速度あるいは遅延時間の温度による変動係数を示す。スプリアス応答は、不用振動モードにより、減衰量が劣化してしまう現象のことである。パワーフロー角は櫛型電極にSAWが励振されたときに、伝搬する位相速度の方向と群速度の方向の違いを表す角度である。なお、伝搬速度Vが速ければ高周波用に有利であり、遅ければ遅延線用に有利である。   The electromechanical coupling coefficient is a value indicating the conversion efficiency from electric energy to surface wave energy. TCD indicates the coefficient of variation of surface wave velocity or delay time with temperature. The spurious response is a phenomenon in which the attenuation amount deteriorates due to the unnecessary vibration mode. The power flow angle is an angle representing the difference between the direction of the phase velocity that propagates and the direction of the group velocity when SAW is excited in the comb-shaped electrode. If the propagation velocity V is high, it is advantageous for high frequencies, and if it is slow, it is advantageous for delay lines.

上記圧電効果及び表面弾性波を応用したSAWデバイスは、近年の携帯電話に代表される移動体通信市場の急速な拡大と共に、それら移動体通信端末に用いられるデバイスの技術的革新に寄与している。このようなSAWデバイスは、移動体通信端末の小型化、高機能化を実現するためのキーパーツの1つと目され、主にRF及びIF段の帯域通過フィルタとして用いられ、フォトリソグラフィプロセスによって作製されるために、微細加工が可能であり、現在では数GHz帯で実用化されている。   SAW devices using the piezoelectric effect and surface acoustic waves contribute to technological innovation of devices used in mobile communication terminals along with the rapid expansion of the mobile communication market represented by mobile phones in recent years. . Such a SAW device is regarded as one of key parts for realizing miniaturization and high functionality of mobile communication terminals, and is mainly used as a band pass filter for RF and IF stages, and is manufactured by a photolithography process. Therefore, microfabrication is possible, and now it is put into practical use in several GHz band.

SAWデバイスでは、SAWを励振し、且つ、受信するために圧電体が基板として用いられる。圧電体としては、弾性波の波長であるμmオーダーの平滑性と、数100ppm以下の周波数の再現性を要求されることから、材料定数のばらつきが小さい圧電性単結晶や単結晶上に形成した圧電性薄膜などが使用される。SAWを励振する手段としては、図14に示すようなプラスとマイナスが交差した電極、いわゆるIDT(Interdigital Transducer)と呼ばれる櫛型電極が用いられる。このIDTが周波数特性を持つことから、フィルタや共振子を構成することができる。   In the SAW device, a piezoelectric body is used as a substrate for exciting and receiving SAW. The piezoelectric body is required to have a smoothness of the order of μm, which is the wavelength of the elastic wave, and a reproducibility of a frequency of several hundred ppm or less, so that it was formed on a piezoelectric single crystal or a single crystal with small variations in material constants. A piezoelectric thin film or the like is used. As means for exciting the SAW, an electrode in which plus and minus intersect as shown in FIG. 14, that is, a so-called IDT (Interdigital Transducer) comb-shaped electrode is used. Since this IDT has frequency characteristics, a filter or a resonator can be formed.

図15に前記SAWデバイスを利用したSAWフィルタの原理を示す。このSAWフィルタは、一般的に圧電型基板と送受信用IDTによって構成される。フィルタの中心周波数fは、SAWの音速をV,IDTピッチによって決まる波長をλとすると、f=V/λで表せる。したがって、この中心周波数帯が最もよく励振されるため、この値を制御することにより、任意の周波数帯を取り出すことが可能となる。このとき、さらに精度よく任意の周波数を得るためには、フィルタを数段使用する。図16に前記SAWフィルタを用いた携帯電話機の受信ブロックの一例を示す。アンテナから取り込まれた電波は、初段のフィルタを通過した後に、ミキサを通して周波数を落とし、最終的にベースバンド部に送られる。SAWフィルタは、カバーする周波数範囲が数10MHz〜数GHzであるため、例えば、1.5GHzのデジタル携帯電話では、RFの1.5GHz及び130MHzの初段IFフィルタとして利用されている。
T.Nomura,A.Saitoh,and S.Furukawa,Proceedings of 1999 IEEE Ultrasonics Symposium,pp477-480(1999)2) 藤吉 敏生,新非破壊検査便覧(日本非破壊検査協会),19923 柴山乾夫,弾性波素子ハンドブック(日本学術振興協会編),19914 T.Nomura,A.Saitoh,Wireless acoustic wave sensor system(JTTAS研究会編),20025 柴山乾夫,弾性表面波工学,19836 V.K.Varadan et al.,Microsencors,MEMS and Smart Devices(John Willey&Sons,Ltd出版)20017 田中喜久昭,宮崎修一,形状記憶合金の機械的性質(養賢堂出版),pp31-33,44-45
FIG. 15 shows the principle of a SAW filter using the SAW device. This SAW filter is generally composed of a piezoelectric substrate and a transmission / reception IDT. The center frequency f of the filter can be expressed as f = V / λ where V is the SAW sound velocity and λ is the wavelength determined by the IDT pitch. Therefore, since this center frequency band is excited most, it is possible to take out an arbitrary frequency band by controlling this value. At this time, in order to obtain an arbitrary frequency with higher accuracy, several stages of filters are used. FIG. 16 shows an example of a reception block of a mobile phone using the SAW filter. The radio wave taken in from the antenna passes through the first-stage filter, drops the frequency through the mixer, and is finally sent to the baseband unit. Since the SAW filter covers a frequency range of several tens of MHz to several GHz, for example, in a 1.5 GHz digital mobile phone, it is used as a first-stage IF filter of RF 1.5 GHz and 130 MHz.
T. Nomura, A. Saitoh, and S. Furukawa, Proceedings of 1999 IEEE Ultrasonics Symposium, pp477-480 (1999) 2) Toshio Fujiyoshi, New Nondestructive Inspection Handbook (Japan Nondestructive Inspection Association), 19923 Shibayama Inui, Acoustic Wave Device Handbook (Japan Society for the Promotion of Science), 19914 T.Nomura, A.Saitoh, Wireless acoustic wave sensor system (JTTAS Study Group), 20025 Shibayama Inui, SAW Engineering, 19836 VKVaradan et al., Microsencors, MEMS and Smart Devices (published by John Willey & Sons, Ltd) 20017 Yoshihisa Tanaka, Shuichi Miyazaki, Mechanical properties of shape memory alloys (Yokendo Publishing), pp31-33, 44-45

圧電材料と櫛型電極(IDT)から構成される高周波表面弾性波(SAW)デバイスにおいて、従来は、テレビや携帯電話等電波受信機器内に組み込まれた共振現象を利用した電波フィルタとして多くの開発実績があった。しかし、逆に、外的環境変化に伴うSAW基板材料自体の音弾性特性(伝播する弾性波の変性(位相、振幅、減衰等))を抽出し、それを無給電・ワイヤレスセンシングデバイスとしての先端計測分析技術・手法として発展させ、IT技術社会への基盤要素技術として発展活用する研究例はほとんどないのが現状である。   In a high-frequency surface acoustic wave (SAW) device composed of a piezoelectric material and a comb-shaped electrode (IDT), many developments have been made as a radio wave filter using a resonance phenomenon incorporated in a radio wave receiver such as a television or a cellular phone. There was a track record. However, conversely, the acoustoelastic properties of the SAW substrate material itself accompanying changes in the external environment (deformation (phase, amplitude, attenuation, etc.) of the propagating elastic wave) are extracted and used as the leading-edge of a non-powered and wireless sensing device. At present, there are few research examples that can be developed as measurement and analysis techniques and methods, and developed and utilized as basic elemental technologies for the IT technology society.

上記の圧電(PZT例、水晶素子、LiNbO3など)基板材料のみのSAWデバイスからでは、圧電材料自体の温度係数、応力音弾性効果による温度、応力(ひずみ)が主に計測可能パラメータとなるのみで、環境因子を計測するためのセンサ用デバイスとしては応用範囲や拡張性が狭い欠点がある。このようなことから、同時に多パラメータの環境変化因子を計測できるシステムも必要となってきている。 From the above-mentioned SAW device using only the piezoelectric (PZT example, crystal element, LiNbO 3 etc.) substrate material, the temperature coefficient of the piezoelectric material itself, the temperature and stress (strain) due to the stress acoustoelastic effect are only the measurable parameters. As a sensor device for measuring environmental factors, there is a drawback that its application range and expandability are narrow. For this reason, there is a need for a system that can simultaneously measure multi-parameter environmental change factors.

さらに、圧電型基板に接合させたIDTからなる従来のSAWデバイスでは、IDTとPZT基盤との不完全接合部分や伝播経路上のPZT不均質性や表面仕上げの悪さ(不連続性)が影響して、その入出力時に電気的ノイズ(外乱)が入り込み、環境変化因子(温度、応力(ひずみ)など)からのセンシング信号の分離抽出が困難な場合もあり、定量的センシングシステム構築上の技術的問題となることもあった。   Furthermore, in the conventional SAW device consisting of IDT bonded to a piezoelectric substrate, incompletely bonded portions of IDT and PZT substrate, PZT inhomogeneity on the propagation path, and poor surface finish (discontinuity) are affected. In addition, electrical noise (disturbance) may enter during input and output, and it may be difficult to separate and extract sensing signals from environmental change factors (temperature, stress (strain), etc.). Sometimes it became a problem.

以上のSAWデバイスを環境変化因子検出用のセンサとして発展・応用させる上での技術課題から、本発明では、SAW伝播経路上に複数の環境変化因子に反応する特殊な機能膜状材を付加させ、環境変化因子との相互作用を通して、伝搬特性の変化に着目し、さらには、IDT多チャンネル化も行い、それらを通して、身の周りの環境や生体(健康)問題に関連する様々な物理化学量(温度、応力、ひずみ、湿度、微量ガス、イオン化濃度、生体成分微量分析等)を感度良く計測できる多機能化SAWデバイスによるセンシングシステム開発への基盤技術を得ることが発明の課題である。   Due to the technical problems in developing and applying the above SAW device as a sensor for detecting environmental change factors, in the present invention, a special functional film material that reacts to multiple environmental change factors is added to the SAW propagation path. Focus on changes in propagation characteristics through interaction with environmental change factors, and also make IDT multi-channel, through which various physical stoichiometry related to the environment and living body (health) problems It is an object of the invention to obtain a basic technology for developing a sensing system using a multifunctional SAW device capable of measuring (temperature, stress, strain, humidity, trace gas, ionization concentration, biological component trace analysis, etc.) with high sensitivity.

そして、圧電型基板材料の選択、IDT高密度化を一層進めて、GHz以上の極短波長域でのSAW伝播高周波化、多チャンネル化、小型マイクロデバイス化、無線送受信システム改善、信号送受信解析ソフトウェア開発などを行い、国際的に独自で優位なIT、ユビキタス社会への先端計測分析技術、手法として発展・確立させることを目的とする。   And further selection of piezoelectric substrate material and IDT densification, SAW propagation high frequency in ultra short wavelength range above GHz, multi-channel, miniaturization of micro device, wireless transmission / reception system improvement, signal transmission / reception analysis software The purpose is to develop and establish it as an internationally unique and superior IT, advanced measurement and analysis technology and technique for ubiquitous society.

本発明では、弾性体の表面付近にエネルギーを集中させて伝搬する表面弾性波(Surface Acoustic Wave,以下SAW)デバイスにおいて、SAW伝播経路上に環境変化因子に反応する特殊な機能材を付加させて多機能化を図り、SAWの伝搬特性の変化に着目し、それを通して、身の周りの環境や生体(健康)問題に関連する様々な物理化学量(温度、応力、ひずみ、湿度、微量ガス、イオン化濃度、生体成分微量分析等)を高感度で計測できるSAWデバイスセンサを提供するものである。   In the present invention, in a surface acoustic wave (hereinafter referred to as SAW) device that propagates energy concentrated near the surface of an elastic body, a special functional material that reacts to an environmental change factor is added to the SAW propagation path. Multifunctionalization, focusing on changes in the propagation characteristics of SAW, through which various physical and chemical quantities (temperature, stress, strain, humidity, trace gas, etc.) related to the surrounding environment and biological (health) problems It is an object of the present invention to provide a SAW device sensor capable of measuring ionization concentration, biological component microanalysis, etc.) with high sensitivity.

上記課題を解決するために、本発明の表面弾性波デバイスセンサは、圧電型基板に接合させた櫛型電極からなる素子に高周波電流または高周波電圧を印加し、前記圧電型基板の表面近傍に表面弾性波を発生させ、この表面弾性波の伝播特性によって、環境変化因子を検出することを特徴とする。   In order to solve the above-described problems, the surface acoustic wave device sensor of the present invention applies a high-frequency current or a high-frequency voltage to an element composed of comb-shaped electrodes bonded to a piezoelectric substrate, and has a surface near the surface of the piezoelectric substrate. An elastic wave is generated, and an environment change factor is detected by the propagation characteristic of the surface acoustic wave.

また、本発明の表面弾性波デバイスセンサは、圧電型基板に接合させた櫛型電極からなる素子の伝搬面を導電性金属により電気的に短絡してアースすることにより、電気的なノイズを低減化させる自由表面型の表面弾性波伝播経路と、アースされていない表面弾性波伝播経路とを備え、前記両表面弾性波伝播経路における信号受信を同時に抽出することによって、検出感度を向上させたことを特徴とする。   In addition, the surface acoustic wave device sensor of the present invention reduces electrical noise by electrically short-circuiting the propagation surface of an element composed of comb-shaped electrodes joined to a piezoelectric substrate with a conductive metal and grounding it. The detection sensitivity has been improved by extracting the signal reception in both the surface acoustic wave propagation paths at the same time. It is characterized by.

そのために、SAWデバイス上に複数のIDTを設置したパラメータセンシングを可能するように設計する。また、その各チャンネルでの伝播経路上に機能性薄膜を成膜させることにより、環境変化因子と成膜間での物理化学反応を起こさせて、その際に変性する成膜特性を間接的にSAWの変化として捉えられれば、同時に様々な物理化学的な環境変化因子を計測できることが可能となる。   Therefore, it is designed to enable parameter sensing in which a plurality of IDTs are installed on a SAW device. In addition, by forming a functional thin film on the propagation path of each channel, the physicochemical reaction between the environmental change factor and the film formation is caused, and the film formation characteristics denatured at that time are indirectly determined. If captured as a change in SAW, various physicochemical environmental change factors can be measured simultaneously.

さらに、無給電方式かつワイヤレスに特徴を有する多機能化した小型SAWチップをネット配置させた無給電方式のワイヤレス多機能化SAWセンシングシステムへの基盤技術に発展させることができる。国際的に独自で優位なIT、ユビキタス社会への先端計測分析技術、手法として発展できるといった技術優位性がある。   Furthermore, it can be developed as a basic technology for a wireless multi-functional SAW sensing system of a non-power-feed type in which a small-sized SAW chip having a multi-functionality and a characteristic of wireless is arranged on the net. It has technological advantages such as internationally unique and superior IT, advanced measurement and analysis technology and techniques for ubiquitous society.

圧電材料とIDTから構成される高周波SAWの伝播特性変化に着目したSAWデバイスは、わが国では携帯電話等電波受信機器内に組み込まれたフィルタとして多くの実績があるが、逆に、それを無給電・ワイヤレスセンシングデバイスとしての先端計測分析技術・手法として発展させ、IT技術社会への基盤要素技術として発展活用する研究例はほとんどないのが現状である。   SAW devices that focus on changes in the propagation characteristics of high-frequency SAWs composed of piezoelectric materials and IDTs have many achievements as filters built into radio wave receivers such as mobile phones in Japan.・ Currently, there are almost no research examples that have been developed as advanced measurement analysis technology / methods as wireless sensing devices and developed and utilized as fundamental elemental technologies for the IT technology society.

本発明では、このSAWの伝搬特性の変化に着目し、表面弾性波伝播経路(以下、SAW伝播経路という)上に機能性薄膜を成膜させて、様々な物理化学的な環境変化因子を同時にリモート計測できる小型SAWチップをネット配置させた無給電方式のワイヤレス多機能化SAWセンシングシステムへの基盤技術に発展させることができる。図1は、本発明のSAWデバイスセンサの概略構成図を示したものである。   In the present invention, paying attention to the change in propagation characteristics of SAW, a functional thin film is formed on a surface acoustic wave propagation path (hereinafter referred to as SAW propagation path), and various physicochemical environmental change factors are simultaneously applied. It can be developed as a basic technology for a wireless multi-function SAW sensing system of a non-powered system in which small SAW chips capable of remote measurement are arranged on the net. FIG. 1 is a schematic configuration diagram of a SAW device sensor according to the present invention.

このSAWデバイスセンサ1は、圧電型基板2上に櫛型電極(IDT)3を形成し、このIDT3に外部から高周波電流または高周波電圧を印加させることによって、圧電型基板2上に表面弾性波(SAW)を生じさせる。また、前記圧電型基板2には、複数の機能性薄膜6が成膜され、この機能性薄膜6に対応してSAW伝播経路4が設定される。前記機能性薄膜6は、環境変化因子(微量ガス、湿度、光、温度、応力(ひずみ)、電磁気、放射能、イオン濃度、液体粘性、生体反応、病原菌など)と反応して、電気抵抗の変化、分極化、重量変化、残留応力等を起こし、それを通して、一度に複数の外部環境情報の検知(センシング)を行うことが可能となる。本実施形態のSAWデバイスセンサ1は、前記機能性薄膜6からなるSAW伝播経路4を3チャネル(Ch.1〜Ch.3)備えているが、これには限定されず、さらにチャネル数を増やすことによって、1チップで多機能センシングを実現することが可能である。   In this SAW device sensor 1, a comb-shaped electrode (IDT) 3 is formed on a piezoelectric substrate 2, and a high-frequency current or a high-frequency voltage is applied to the IDT 3 from the outside, whereby surface acoustic waves ( SAW). A plurality of functional thin films 6 are formed on the piezoelectric substrate 2, and a SAW propagation path 4 is set corresponding to the functional thin film 6. The functional thin film 6 reacts with environmental change factors (trace gas, humidity, light, temperature, stress (strain), electromagnetic, radioactivity, ion concentration, liquid viscosity, biological reaction, pathogen, etc.) Changes, polarization, weight changes, residual stresses, etc. are caused, and through this, a plurality of external environment information can be detected (sensing) at a time. The SAW device sensor 1 of the present embodiment includes three channels (Ch. 1 to Ch. 3) of the SAW propagation path 4 made of the functional thin film 6, but is not limited to this, and further increases the number of channels. Thus, it is possible to realize multi-function sensing with a single chip.

図2は、前記SAWデバイスセンサ1を無給電・ワイヤレス化した場合の回路構成例を示したものである。ここで示した無線機能を用いることにより、そのセンサとしての使用環境は大きな広がりを持たせることができる。また、前記SAWデバイスセンサ1は、フォトリソグラフィ工程によって作製されるため、小型化が容易で安価であり、その周波数特性はIDT3の線状電極の間隔によって決定される。このため、微細加工技術の発達とともに高周波化され、バイオ因子分析用センサといったより高度なセンシング機能を持たせることが可能となる。   FIG. 2 shows a circuit configuration example when the SAW device sensor 1 is made non-powered and wireless. By using the wireless function shown here, the use environment as the sensor can be greatly expanded. Further, since the SAW device sensor 1 is manufactured by a photolithography process, the SAW device sensor 1 is easily reduced in size and is inexpensive, and the frequency characteristic thereof is determined by the interval between the linear electrodes of the IDT 3. For this reason, the frequency becomes higher with the development of the microfabrication technology, and it becomes possible to have a more advanced sensing function such as a bio-factor analysis sensor.

前記SAWデバイスセンサ1の設計・試作には、寸法20mm×35mmの水晶(STカット)、LiNbO3(128°Y−Xカット)の2種類の圧電型基板2を用いた。以下に示す表2に、使用した圧電型基板(水晶,LiNbO3)の基本特性を示す。IDT3にはAuを用い、P(ピッチ)20μm、交差幅3mm、伝搬長L=16mmとなるように設計を行った。また、それぞれの中心周波数をオシロスコープで測定したところ、水晶基板では39.8MHz、LiNbO3基板では66.82MHzであった。図3に実際に設計を行ったSAWデバイスセンサの形状及び各部の寸法を示す。 For the design and trial manufacture of the SAW device sensor 1, two types of piezoelectric substrates 2 of quartz (ST cut) and LiNbO 3 (128 ° YX cut) having dimensions of 20 mm × 35 mm were used. Table 2 below shows the basic characteristics of the used piezoelectric substrate (quartz, LiNbO 3 ). The IDT 3 was designed using Au and P (pitch) 20 μm, crossing width 3 mm, and propagation length L = 16 mm. Further, when the respective center frequencies were measured with an oscilloscope, it was 39.8 MHz for the quartz substrate and 66.82 MHz for the LiNbO 3 substrate. FIG. 3 shows the shape of the SAW device sensor actually designed and the dimensions of each part.

次に、圧電型基板2のSAW伝搬経路4上に機能性薄膜6の形成を行った。図4にその際用いたマグネトロンスパッタ装置の基本構成を示す。マグネトロンスパッタ法は、ターゲット(薄膜材料)を貼り付けた陰極裏面に、中心を外周が互いに逆極性に励磁された同心的な磁石を設置し、ターゲット表面に中心と外周を結ぶ漏れ磁界を発生させる。チャンバ及び基板ホルダを陽極とし、例えば、0.01Torr程度となるようにArガスなどの不活性ガスを入れ、数百ボルトの電圧を加えてグロー放電を発生させる。正にイオン化したArガスは陰極降下電圧によって加速され、運動エネルギーを得て陰極に衝突する。そこで正イオンと運動量を交換したターゲット材の一部が陰極を飛び出し、陽極上の基板に達し膜が堆積する。   Next, the functional thin film 6 was formed on the SAW propagation path 4 of the piezoelectric substrate 2. FIG. 4 shows the basic configuration of the magnetron sputtering apparatus used at that time. In the magnetron sputtering method, a concentric magnet whose center and outer periphery are excited with opposite polarities is installed on the backside of the cathode to which the target (thin film material) is attached, and a leakage magnetic field connecting the center and the outer periphery is generated on the target surface. . Using the chamber and the substrate holder as an anode, for example, an inert gas such as Ar gas is introduced so as to be about 0.01 Torr, and a voltage of several hundred volts is applied to generate glow discharge. The positively ionized Ar gas is accelerated by the cathode fall voltage, obtains kinetic energy, and collides with the cathode. Therefore, a part of the target material exchanging momentum with positive ions jumps out of the cathode, reaches the substrate on the anode, and deposits a film.

ターゲット材には、磁性形状記憶材料(Ferromagnetic shape memory alloy,FSMA)であるFe-Pdを用い、スパッタ装置のチャンバ内をロータリポンプとターボポンプを用いて真空状態(4×10-4Pa)にし、アルゴン圧3.0Pa,成膜時間3h,基板温度100℃にてマグネトロンスパッタ法を用いてSAW伝搬経路4の中間部に成膜を行った。また、薄膜寸法は、3mm×6mm,厚さ3μmとなるようにマスクを用いて成膜を行った。 The target material is Fe-Pd, which is a magnetic shape memory alloy (FSMA), and the chamber of the sputtering apparatus is evacuated (4 × 10 -4 Pa) using a rotary pump and a turbo pump. Film formation was performed on the intermediate portion of the SAW propagation path 4 using a magnetron sputtering method at an argon pressure of 3.0 Pa, a film formation time of 3 hours, and a substrate temperature of 100 ° C. In addition, the film was formed using a mask so that the thin film dimensions were 3 mm × 6 mm and the thickness was 3 μm.

形成した機能性薄膜の変態点の有無をするために、アルミ基板上に同スパッタ条件で作製した同じ組成のFe-Pd薄膜を示差走査型熱量計(DSC)にて測定を行い比較の対象とした。DSCは、物質及び基準物質(今回はアルミナ)の温度を調節されたプログラムに従って等しい熱量を与えつつ同時に昇温させるとき、融解や相転移が起こると試料は融解熱や転移熱を吸収するため、その温度上昇が遅れて参照物質との間に温度差が生じようとする。その温度差をゼロに保つに必要な電気エネルギーの記録が示差熱量曲線である。融解や相転移はその曲線上のピークとして現れ、ピーク面積がその熱量に相当する。また、ピークの形の解析から試料純度が決定される。基線の位置から参照物質との相対的な値として熱容量が決定される。   In order to confirm the presence or absence of the transformation point of the formed functional thin film, the Fe-Pd thin film of the same composition prepared on the aluminum substrate under the same sputtering conditions was measured with a differential scanning calorimeter (DSC) and compared. did. When DSC raises the temperature of a substance and a reference material (in this case alumina) simultaneously while applying the same amount of heat according to a controlled program, the sample absorbs the heat of fusion and heat of transition when melting and phase transition occur, The temperature rise is delayed and a temperature difference is generated between the reference material and the reference material. A record of the electrical energy required to keep the temperature difference at zero is a differential calorimetric curve. Melting and phase transitions appear as peaks on the curve, and the peak area corresponds to the amount of heat. The sample purity is determined from the analysis of the peak shape. The heat capacity is determined as a value relative to the reference substance from the position of the baseline.

なお、各種の測定の際には、SAWデバイスセンサをポリマー基板上に貼り付け、結線を行ったものを使用した。図5に結線後のSAWデバイスセンサ1の外観を示す。図中左はLiNbO3基板によるもので、図中右は水晶基板によるものである。結線方法は、まず、ポリマー基板上に銅箔を貼り付けたものにエッチングを行い、銅箔を任意の形にした。次に、試作したSAWデバイスセンサをポリマー基板中央に固定し、銅テープにてポリマー基板上の銅箔とSAWデバイスの配線を行い、それぞれの結合部は、電気の流れを良くするために導電性接着剤(ドウタイト等)で接着する。 In various measurements, a SAW device sensor attached to a polymer substrate and connected was used. FIG. 5 shows the external appearance of the SAW device sensor 1 after connection. The left in the figure is based on the LiNbO 3 substrate, and the right in the figure is based on the quartz substrate. In the connection method, first, a copper substrate attached to a polymer substrate was etched, and the copper foil was formed into an arbitrary shape. Next, the prototype SAW device sensor is fixed to the center of the polymer substrate, and the copper foil on the polymer substrate and the SAW device are wired with copper tape, and each joint is conductive to improve the flow of electricity. Glue with an adhesive (doutite etc.).

(温度変化試験条件)
上記SAWデバイスを温度センサ、相変態のセンシングとして利用できるかを検証するため、温度を変化させた場合のSAW抽出信号の振幅、位相の変化を計測した。図6にその実験システムの構成図を示す。実験では試作した2種類のSAWデバイスを用い、それぞれの中心周波数は、水晶基板:39.8MHz,LiNbO3基板:66.82MHzとして測定を行った。また、測定機器には入出力の電位差から振幅や位相の変化を計測できるベクトルボルトメータを用いて行った。まず、試作したSAWデバイスセンサを温度コントロールチャンバ内に設置し、ファンクションジェネレータを用いてそれぞれの中心周波数のパルス電圧を印加し、SAWを発生させる。このときの室温での振幅や位相をリファレンスとし、温度を室温から90℃まで変化させた場合の位相差、振幅比をベクトルボルトメータによって測定した。なお、温度の測定にはSAWデバイスセンサに近づけたデジタル温度計を用いて行った。
(Temperature change test conditions)
In order to verify whether the SAW device can be used as a temperature sensor or phase transformation sensing, the amplitude and phase change of the SAW extraction signal when the temperature was changed were measured. FIG. 6 shows a configuration diagram of the experimental system. In the experiment, two types of prototyped SAW devices were used, and the respective center frequencies were measured with a quartz substrate: 39.8 MHz and a LiNbO 3 substrate: 66.82 MHz. The measuring instrument was a vector voltmeter capable of measuring changes in amplitude and phase from the input / output potential difference. First, a prototype SAW device sensor is installed in a temperature control chamber, and a pulse voltage of each center frequency is applied using a function generator to generate SAW. Using the amplitude and phase at room temperature as a reference at this time, the phase difference and amplitude ratio when the temperature was changed from room temperature to 90 ° C. were measured with a vector voltmeter. The temperature was measured using a digital thermometer close to the SAW device sensor.

SAWデバイスを応力(ひずみ)、内部損傷センサとして利用可能であるかの検証のために荷重を負荷した場合のSAWの振幅、位相の変化を計測した。計測は試作した2種類の基板を用いて行い、それぞれの中心周波数は水晶基板:39.8MHz,LiNbO3基板:66.82MHzとして測定を行った。また、振幅、位相の測定には先の実験同様にベクトルボルトメータを用いて行った。 In order to verify whether the SAW device can be used as a stress (strain) or internal damage sensor, changes in the amplitude and phase of the SAW were measured when a load was applied. The measurement was performed using two types of prototyped substrates, and the respective center frequencies were measured with a quartz substrate: 39.8 MHz and a LiNbO 3 substrate: 66.82 MHz. The amplitude and phase were measured using a vector voltmeter as in the previous experiment.

図7に負荷荷重による実験システムの構成図を示す。片持ち梁の方式でSAWデバイスを載置したポリマー基板の一端を固定し、ファンクションジェネレータにて中心周波数のパルス電圧を印加し、SAWを発生させる。このとき(荷重なし)の振幅、位相をリファレンスとし、おもりを600gまで負荷させていった場合の位相及び振幅の変化をベクトルボルトメータで計測した。また、ひずみの計測には、Fe-Pd薄膜付近に取り付けたひずみゲージを用いて行った。なお、前記ポリマー基板の寸法は、45mm×70mm,厚み1mmで、SAWデバイスを構成する圧電型基板の寸法は、20mm×35mm,厚み0.5mmに設定した。   FIG. 7 shows a configuration diagram of an experimental system using a load. One end of a polymer substrate on which a SAW device is mounted is fixed in a cantilever manner, and a pulse voltage having a center frequency is applied by a function generator to generate SAW. The amplitude and phase at this time (no load) were used as a reference, and changes in the phase and amplitude when the weight was loaded up to 600 g were measured with a vector voltmeter. The strain was measured using a strain gauge attached near the Fe-Pd thin film. The dimensions of the polymer substrate were 45 mm × 70 mm and thickness 1 mm, and the dimensions of the piezoelectric substrate constituting the SAW device were 20 mm × 35 mm and thickness 0.5 mm.

ここでは、試作したSAWデバイスでの温度変化、荷重負荷によるSAWの伝搬特性の変化を計測し、温度センサ、応力(ひずみ)センサとしての計測を試みる。さらに、デバイス上に機能膜(磁性形状記憶合金,Ferromagnetic SMA)を形成させ、FSMA材料の大きな特徴である温度変化に伴う熱誘起相変態現象を利用した結晶相変態・物性変化のセンシング、応力誘起相変態を通した力学的内部損傷度合いの評価センサとしての可能性の検証を行う。   Here, temperature changes in the prototyped SAW device and changes in SAW propagation characteristics due to load are measured, and measurement as a temperature sensor and a stress (strain) sensor is attempted. Furthermore, a functional film (magnetic shape memory alloy, Ferromagnetic SMA) is formed on the device, and sensing of crystal phase transformation / physical property change using stress-induced phase transformation phenomenon accompanying temperature change, which is a major feature of FSMA materials, stress induction To verify the possibility as an evaluation sensor of the degree of mechanical internal damage through phase transformation.

水晶(STカット)基板では、ノイズの影響が大きく、各種の測定が不可能であった。これはエネルギー変換効率を実質意味する電気機械結合係数が小さく、感度が弱いため、SAW自体の励起信号が弱く、外乱(ノイズ)レベルの中に埋まってしまい、ばらつきも大きく現れて計測結果の定量的評価ができないためである。したがって、SAWデバイスをセンサとして使用するには、電気機械結合係数の大きい材料・カット方向を使用することにより、主信号を大きくしてノイズの影響を受けにくくすることが必要である。   Quartz (ST cut) substrates are greatly affected by noise, and various measurements are impossible. This means that the electromechanical coupling coefficient, which means energy conversion efficiency, is small and the sensitivity is weak. Therefore, the excitation signal of the SAW itself is weak and buried in the disturbance (noise) level. This is because it cannot be evaluated. Therefore, in order to use the SAW device as a sensor, it is necessary to increase the main signal and make it less susceptible to noise by using a material / cut direction having a large electromechanical coupling coefficient.

(温度センサについて)
図8にLiNbO3基板での温度変化に対する位相の変化のグラフを示す。このグラフから温度変化に対して位相は、略線形的な変化を示し、また、温度によるヒステリシスは殆どないことがわかる。位相はθ=2πfL/v(f:周波数,L:伝播距離,v:SAW伝搬速度)で表されるため、この場合、熱膨張による伝搬距離Lの変化が非常に小さいため、位相が変化している主たる原因は伝搬速度vの変化であると考えられる。
(About temperature sensor)
FIG. 8 shows a graph of the phase change with respect to the temperature change in the LiNbO 3 substrate. From this graph, it can be seen that the phase shows a substantially linear change with respect to the temperature change, and there is almost no hysteresis due to the temperature. Since the phase is expressed by θ = 2πfL / v (f: frequency, L: propagation distance, v: SAW propagation velocity), in this case, the change in propagation distance L due to thermal expansion is very small, so the phase changes. The main cause is considered to be a change in the propagation velocity v.

弾性波の速度は材料の硬さの差から想像するほど、物質の種類には強く依存しない。これは密度Pと圧縮率Ksの状態依存性が、結果としてほとんど打ち消しあうためである。物質の差は、音速度の温度依存性等に現れる。ここで、音波の基本式を次項に示す。   The velocity of elastic waves is not as strongly dependent on the type of material as you can imagine from the difference in material hardness. This is because the state dependence of the density P and the compression rate Ks almost cancels each other as a result. Differences in materials appear in the temperature dependence of sound speed. Here, the basic equation of sound waves is shown in the next section.

例えば、大抵の固体は温めれば軟らかくなる。つまり、温度が上昇すると圧縮率が増加し、音速度は小さくなる。気体と対照的なこの傾向は、実際に多くの固体が示す性質である。したがって、温度センサとして用いるには、温度による位相、伝搬速度の変化、または、波の伝わる時間の変化を計測することにより可能である。   For example, most solids become softer when warmed. That is, as the temperature rises, the compression rate increases and the sound speed decreases. This tendency, in contrast to gases, is actually a property of many solids. Therefore, it can be used as a temperature sensor by measuring a change in phase, propagation speed, or wave propagation time due to temperature.

(相変態センシングについて)
図9に温度変化に対する振幅及び位相の変化のグラフを示す。また、表3にDSC測定の結果を示す。振幅、位相ともに加熱時では、50〜60℃、冷却時では40〜50℃に大きな変化がみられる。ここでは、DSC測定を行った試料がアルミ基板に成膜したものであるが、内部応力の違いによる変態点のずれを考慮に入れても、現れた変化に関係する温度は、DSC測定の結果と略一致していることがわかる。圧電型基板に成膜したFe-Pd薄膜が温度変化とともに熱誘起相変態を起こし、薄膜の弾性率が大きく変化したため振幅、位相に変化が起こったと考えられる。
(About phase transformation sensing)
FIG. 9 shows a graph of changes in amplitude and phase with respect to temperature changes. Table 3 shows the results of DSC measurement. A large change is seen in both amplitude and phase at 50-60 ° C. during heating and at 40-50 ° C. during cooling. Here, the sample subjected to DSC measurement is a film formed on an aluminum substrate, but even if the shift of the transformation point due to the difference in internal stress is taken into consideration, the temperature related to the change that appears is the result of the DSC measurement. It turns out that it is substantially in agreement. The Fe-Pd thin film deposited on the piezoelectric substrate undergoes a heat-induced phase transformation with temperature change, and the elastic modulus of the thin film has changed significantly.

しかし、振幅の変化においては冷却時、マルテンサイト変態を起こしているにもかかわらず元の振幅値レベルに戻っていない。これは冷却過程では、十分に低温側マルテンサイト相変態が終了しておらず、高温側残留オーステナイトの影響が出てきているものと思われる。したがって、これを改善するには冷却の際、もっと低い温度まで冷却する必要があるといえる。以上より、変態によるSAWの位相の変化に注目することにより、さらに明白に相変態のセンシングの可能性がみられる。   However, the change in amplitude does not return to the original amplitude value level even though martensitic transformation occurs during cooling. This is probably because the low temperature side martensitic phase transformation has not been sufficiently completed in the cooling process, and the influence of the high temperature side retained austenite has come out. Therefore, in order to improve this, it can be said that it is necessary to cool to a lower temperature when cooling. From the above, the possibility of sensing the phase transformation can be seen more clearly by paying attention to the change in the phase of the SAW due to the transformation.

(応力(ひずみ)センサ,内部損傷センサについて)
図10に応力による振幅及び位相の変化のグラフを示す。このグラフから位相はひずみに対してほぼ線形的に変化し、振幅には変化がみられないことがわかる。このひずみによる位相の変化は音弾性効果によるものと考えられる。この音弾性効果は、応力によって異方性となった弾性体が、音波に対して複屈折性を示し、2つの成分波の音速差が主応力に比例することである。つまり、音速は弾性率と関係があり、SAW速度Vは、V≒Vs(0.87+1.12σ)/1+σ(Vsは横波の速度,σはポアソン比)で与えられる。したがって、ひずみによる位相の変化は、SAWの伝搬経路における深さ約一波長にかかる平均した応力によって、音弾性効果によりSAWが複屈折性を示し、さらに基板の弾性率がわずかに変化したためにSAW速度が変化したと考えられる。
(About stress (strain) sensors and internal damage sensors)
FIG. 10 shows a graph of changes in amplitude and phase due to stress. From this graph, it can be seen that the phase changes almost linearly with respect to the distortion and the amplitude does not change. This change in phase due to strain is considered to be due to the acoustoelastic effect. This acoustoelastic effect is that an elastic body that has become anisotropic due to stress exhibits birefringence with respect to sound waves, and the difference in sound speed between the two component waves is proportional to the main stress. That is, the sound velocity is related to the elastic modulus, and the SAW velocity V is given by V≈Vs (0.87 + 1.12σ) / 1 + σ (Vs is the velocity of the transverse wave and σ is the Poisson's ratio). Therefore, the phase change due to strain is caused by the SAW exhibiting birefringence due to the acoustoelastic effect due to the average stress applied to about one wavelength in the SAW propagation path, and the elastic modulus of the substrate slightly changed. It is thought that the speed has changed.

この音弾性によるSAW速度の変化を利用することにより、応力(ひずみ)センサとしての利用が可能である。さらに、内部残留応力についても原理的には音弾性効果が適用できるわけで、SAW速度が変化することから内部損傷センサへの利用も可能であると考えられる。   By using the change in SAW speed due to this acoustic elasticity, it can be used as a stress (strain) sensor. Furthermore, in principle, the acoustoelastic effect can also be applied to the internal residual stress, and the SAW speed changes, so that it can be used for an internal damage sensor.

(疲労寿命非破壊推定・評価について)
一般に機械・構造物は、繰り返し負荷荷重範囲(△P)の回数(N)と内部発生・蓄積する力学的損傷(Df:破壊損傷、疲労荷重一回ごとの損傷蓄積度=1/N線形加算則(1/Nf=1で最終破壊が成立)の相互関係、いわゆる、疲労におけるマイナー線形損傷蓄積破壊則で寿命予測(Nf)できる。
(About fatigue life nondestructive estimation and evaluation)
In general, for machines and structures, the number of repeated load ranges (△ P) (N) and mechanical damage that occurs and accumulates internally (Df: Destruction damage, damage accumulation per fatigue load = 1 / N linear addition) Life prediction (Nf) can be made by the mutual relation of the law (final fracture is established at 1 / Nf = 1), that is, the so-called minor linear damage accumulation fracture law in fatigue.

そこで、疲労寿命予測ができるSAW多機能化応用の実証を試みた。まず、多チャンネル構成のSAW伝播経路上に、そのSAWを設置した母材側部材が受けた最大応力(ひずみ)を記憶する、図11に示すような、負荷応力に対して非線形特性を有する形状記憶合金(低温側マルテンサイトM相、例えば、Ti50Ni40Cu10原子%組成形状記憶合金)と、線形型の超弾性材料からなる合金(高温側オーステナイトA相、例えば、Ti50Ni47Co3原子%組成合金)とを蒸着させた多機能化SAWデバイスセンサを設計・試作した。   Therefore, we tried to demonstrate SAW multifunctional application that can predict fatigue life. First, a shape having non-linear characteristics with respect to a load stress as shown in FIG. 11 that stores the maximum stress (strain) received by the base material side member on which the SAW is installed on the SAW propagation path having a multi-channel configuration. Memory alloy (low temperature side martensite M phase, for example, Ti50Ni40Cu10 atomic% composition shape memory alloy) and an alloy made of linear superelastic material (high temperature side austenite A phase, for example, Ti50Ni47Co3 atomic% composition alloy) are vapor-deposited. A multifunctional SAW device sensor was designed and prototyped.

ここで、前記多機能化SAWデバイスセンサにおける相変態のセンシング機能、力学的損傷のメモリ機能を図12に基づいて説明する。この図12は、SAWデバイス上に成膜した機能膜(FSMA)の温度や応力変化に伴う相変態挙動の概念を示したものである。形状記憶合金は、形状記憶効果によって形状を元の形に回復させる形状回復挙動を備えている。形状記憶効果は、ある形状の試料を臨界温度より高温から急冷して低温相(マルテンサイト相)を形成させ、これを変形した後再び加熱するとき、その臨界温度を超えると逆変態が起こり同時に形状も回復する現象をいう。形状記憶効果は、マルテンサイト変態によって発生する。形状記憶合金がマルテンサイト変態する前の相、つまり高温時の相は、オーステナイト相と呼ばれる。オーステナイト相の形状記憶合金を高温から冷却するとある温度を越えた時点でマルテンサイト変態がはじまる。この温度をMs(マルテンサイト開始温度)という。   Here, a phase transformation sensing function and a mechanical damage memory function in the multifunctional SAW device sensor will be described with reference to FIG. FIG. 12 shows the concept of the phase transformation behavior accompanying the change in temperature and stress of the functional film (FSMA) formed on the SAW device. Shape memory alloys have a shape recovery behavior that restores the shape to its original shape by the shape memory effect. The shape memory effect is that when a sample of a certain shape is rapidly cooled from a temperature higher than the critical temperature to form a low-temperature phase (martensite phase), and this is deformed and then heated again, when the critical temperature is exceeded, reverse transformation occurs simultaneously. The phenomenon that the shape also recovers. The shape memory effect occurs due to martensitic transformation. The phase before the shape memory alloy undergoes martensitic transformation, that is, the phase at high temperature is called the austenite phase. When the shape memory alloy of the austenite phase is cooled from a high temperature, the martensitic transformation starts when a certain temperature is exceeded. This temperature is referred to as Ms (martensite start temperature).

冷却を続けると変態は進行し、温度低下を止めると変態は停止する。つまり、マルテンサイトの生成は時間に寄らず、温度だけで決まる。温度を下げていったとき、最初にマルテンサイトが生成する温度がMs点で、更に温度を下げるとマルテンサイト変態が活発になりマルテンサイト量は急激に増加する。その後、変態の進行は緩やかになり、最後は合金全体がマルテンサイト相になる。全体がマルテンサイト相になった合金を加熱すると、今度はマルテンサイト相から体心立方のオーステナイト相への逆変態が起こる。加熱を続けると、冷却時と同じような曲線に従ってマルテンサイト相が減少し、その分だけオーステナイト相が増加する。逆変態の終了温度をAf(オーステナイト終了温度)という。   If the cooling is continued, the transformation proceeds, and if the temperature drop is stopped, the transformation stops. In other words, the formation of martensite is determined only by temperature, not time. When the temperature is lowered, the temperature at which martensite is first generated is the Ms point. When the temperature is further lowered, the martensite transformation becomes active and the amount of martensite increases rapidly. Thereafter, the progress of the transformation becomes gradual, and finally the entire alloy becomes a martensite phase. When an alloy that is entirely in the martensite phase is heated, a reverse transformation from the martensite phase to the body-centered cubic austenite phase occurs. When heating is continued, the martensite phase decreases according to a curve similar to that during cooling, and the austenite phase increases accordingly. The end temperature of the reverse transformation is called Af (austenite end temperature).

相変態のセンシング機能は、前記FSMAの変態に伴う物性の変化(弾性率等)によるSAWの伝搬特性の変化を計測することにより可能となる。力学的損傷のメモリ機能は、 低温側マルテンサイト相(Ms)の温度において応力を負荷し、FSMA内に応力誘起相変態を起こすことにより、双晶の増加や相互にずれを発生させる。このとき、応力を除荷しても機能膜内部には不連続的な双晶が残り、残留ひずみとして蓄積される。音弾性法を用いてこの残留ひずみ(損傷)の蓄積によるSAWの伝搬特性の変化を計測していくことにより可能となる。また、高温側オーステナイト終了(Af)点以上に加熱することにより内部残留ひずみは消失し、A相に回復されることから、表面皮膜相を初期状態に戻す(リセット)ことも可能である。   The phase transformation sensing function is enabled by measuring changes in SAW propagation characteristics due to changes in physical properties (such as elastic modulus) associated with the transformation of the FSMA. The memory function of mechanical damage causes an increase in twins and a mutual shift by applying stress at the temperature of the low-temperature martensite phase (Ms) and causing a stress-induced phase transformation in the FSMA. At this time, even if the stress is removed, discontinuous twins remain in the functional film and accumulate as residual strain. This can be achieved by measuring changes in SAW propagation characteristics due to accumulation of residual strain (damage) using the acoustoelastic method. Further, the internal residual strain disappears by heating to the end of the high temperature side austenite (Af) or higher, and is recovered to the A phase, so that the surface film phase can be returned to the initial state (reset).

上記より、今回の実験では、室温レベルで、
1)負荷荷重に対して非線形型履歴が特徴の低温側マルテンサイトM相(Mf以下温度状態)を有するTi50Ni40Cu10原子%組成形状記憶合金の薄膜付着経路から、機械構造物が受けた最大応力履歴(σmax=記憶された最大ひずみレベル)度合いを推定し、
2)負荷荷重に対して線形型履歴が特徴の高温側オーステナイトA相(Af以上温度状態)を有するTi50Ni47Co3原子%組成超弾性合金の薄膜付着経路から、機械構造物が受ける荷重レベル(応力)の回数(Δσ=負荷応力レベルの回数-頻度)を常時監視するシステムを組むことで、疲労破壊寿命(繰り替え負荷回数Nf)を推定・評価する。実際、Al板試料を用いた、ゼロ荷重以上での引張り・圧縮繰り返しの片振り疲労負荷条件(R=Pmin/Pmax=0)で、上記の多機能化SAWデバイスセンサ信号とマイナー線形疲労損傷則から推測した試料破断回数(Npf、Nf=1200回)は、実寿命(Nf,Nf=1450回)となり、30%以下の寿命予測が可能なことが明らかになり、多機能化SAWデバイスセンサの有効性が確認された。
From the above, in this experiment, at room temperature level,
1) Maximum stress history experienced by a mechanical structure from the thin film adhesion path of a Ti50Ni40Cu10 atomic% composition shape memory alloy having a low-temperature martensite M phase (temperature state below Mf) characterized by nonlinear hysteresis with respect to applied load ( σmax = stored maximum strain level) degree,
2) The load level (stress) that the mechanical structure receives from the thin film adhesion path of the Ti50Ni47Co3 atomic% composition superelastic alloy having the high temperature side austenite A phase (temperature state above Af) characterized by a linear hysteresis with respect to the applied load. Establish and evaluate the fatigue failure life (number of repeated loads Nf) by building a system that constantly monitors the number of times (Δσ = number of load stress levels−frequency). Actually, the above-mentioned multifunctional SAW device sensor signal and the minor linear fatigue damage law with a single swing fatigue load condition (R = Pmin / Pmax = 0) of tension / compression repeated at zero load or more using an Al plate sample The number of sample breaks estimated from (Npf, Nf = 1200 times) is the actual life (Nf, Nf = 1450 times), and it is clear that 30% or less life prediction is possible. The effectiveness was confirmed.

本発明の多機能化SAWデバイスセンサシステムを一層発展させ、センサデバイスとしての信頼性、汎用性を高めるには、基板となる高感度で低温度係数の圧電材料の選択、IDT高密度化を一層進めて、GHz以上の極短波長域でのSAW伝播高周波化、多チャンネル化、小型マイクロデバイス化、無線送受信システム改善、信号送受信解析ソフトウェア開発などを行うことが必要である。具体的には、1)高密度多チャンネル化SAWセンサの開発、2)遠距離用無給電式ワイヤレスセンサシステムへの技術革新、3)SAW多機能・複合機能化材料プロセス安定生産化技術の発達、4)超マイクロ加工基礎技術・製品化などが挙げられる。   In order to further develop the multi-functional SAW device sensor system of the present invention and improve the reliability and versatility of the sensor device, it is necessary to select a high-sensitivity, low-temperature coefficient piezoelectric material to be used as a substrate and to increase the IDT density. It is necessary to go ahead and increase the SAW propagation frequency in the ultrashort wavelength range of GHz or higher, increase the number of channels, make a micro device, improve the radio transmission / reception system, and develop signal transmission / reception analysis software. Specifically, 1) Development of high-density, multi-channel SAW sensors, 2) Technological innovations for long-distance, non-feedless wireless sensor systems, 3) Development of SAW multi-function / multi-functional materials process stable production technology 4) Fundamental technology for ultra-micro machining and commercialization.

それらの技術課題を改善できれば、我々日常での身の周りの環境や生体(健康)問題に関連する物理化学量(温度、応力、ひずみ、湿度、微量ガス、生体成分微量分析等)を高感度でリモート計測させて、無給電方式かつワイヤレスに特徴を有するSAWデバイスセンサによるセンシングシステムの基盤技術を調査・研究開発し、小型・モバイル性を高めたSAWデバイスシステムを将来の先端分析・計測機器に組み込むシステムに発展させることで技術的寄与度が実現できる。   If these technical issues can be improved, we will have high sensitivity to physical chemical quantities (temperature, stress, strain, humidity, trace gas, trace analysis of biological components, etc.) related to our everyday environment and biological (health) problems. Investigate and research the basic technology of sensing systems using SAW device sensors that are characterized by wireless power and wireless characteristics, and make SAW device systems that are small and highly mobile as future advanced analysis and measurement equipment. Technological contribution can be realized by developing into an embedded system.

本発明の技術的及び社会的意義、活用分野は以下の通りである。
(1)無給電式ワイヤレスセンシング技術の発展
(2)多チャンネルSAWデバイス提案
(3)多機能・複合機能化SAW作成用薄膜作製プロセス技術
(4)小型埋め込みアンテナ技術
(5)製造ライン常時監視(プロセスモニター)技術発展
(6)自動車・航空機等のワイヤレスモニター技術(ITS関連)
(7)構造物健全性評価(ヘルスモニターリング)
(8)その場(In-situ)非破壊検査、メンテナンスコスト軽減
(9)安心・安全社会(Security)への寄与
そして、国際的に独自で優位なIT、ユビキタス社会への先端計測分析技術・手法として発展・確立させることができる。
The technical and social significance and application fields of the present invention are as follows.
(1) Development of non-powered wireless sensing technology (2) Proposal of multi-channel SAW device (3) Thin film fabrication process technology for multi-function / complex functional SAW creation (4) Small embedded antenna technology (5) Continuous monitoring of production line ( Process monitor) Technology development (6) Wireless monitoring technology for automobiles, aircraft, etc. (ITS related)
(7) Structural health assessment (health monitoring)
(8) In-situ non-destructive inspection and maintenance cost reduction (9) Contribution to a safe and secure society (Security) and internationally unique IT and advanced measurement and analysis technology for ubiquitous society It can be developed and established as a method.

本発明のSAWデバイスセンサの具体的適用分野としては、以下に示すようなものが考えられる。
(1)動力機械部品の負荷応力・ひずみのワイヤレス(無線)計測・タービン動翼(飛行機、発電所)や回転機械部品(自動車トルクセンサ)
(2)・工場生産プロセスでの化学反応、溶液、ガス反応状態の計測
・石油プラントや化学的合成装置内部のガス発生・成分分析
・合成プロセス・加工ライン状の温度・ガス圧などのモニター管理
(3)ドア開閉センサ(磁歪膜複合化による磁場に反応するSAWセンサ)
(4)ビル・病院・住居内での環境(温度、照明度、湿度・状態、火災)センシング・省エネ管理
(5)建設・橋梁などの残留応力(ひずみ)モニター、内部損傷・残存寿命等のその場評価
(6)トンネル・岩盤(地すべり区域)などのゆがみ・クリープ伸びの連続計測
(7)ガスパイプライン状でのガス漏れ検出
(8)セキュリテイセンサ(赤外線(焦電)感応膜との複合機能化で不審進入者管理)
(9)バイオセンサ(SAW伝播経路上での各種生化学反応膜との複合機能化、そのイオン分極化、粘性変化、減衰性変化を利用して、生体酵素反応、細菌・各種ウイルス相互反応を検知可能)
(10)多機能化・多チャンネル化SAWデバイスセンサネットワーク配置による地域安全・省エネ等の一括管理システム
The following can be considered as specific application fields of the SAW device sensor of the present invention.
(1) Load stress / strain wireless (wireless) measurement of power machine parts, turbine blades (airplanes, power plants) and rotating machine parts (automotive torque sensors)
(2) ・ Measurement of chemical reaction, solution and gas reaction state in factory production process ・ Gas generation and component analysis inside petroleum plant and chemical synthesizer ・ Monitoring management of temperature, gas pressure, etc. of synthesis process and processing line (3) Door open / close sensor (SAW sensor that reacts to magnetic field by magnetostrictive film composite)
(4) Environmental (temperature, lighting, humidity, condition, fire) sensing, energy-saving management in buildings, hospitals, and residences (5) Residual stress (strain) monitoring for construction, bridges, internal damage, remaining life, etc. In-situ evaluation (6) Continuous measurement of distortion and creep elongation of tunnel, bedrock (landslide area), etc. (7) Gas leak detection in gas pipeline (8) Security sensor (combined function with infrared (pyroelectric) sensitive film (Management of suspicious intruders by conversion)
(9) Biosensor (using biofunctional reaction membranes on SAW propagation pathways, ion polarization, viscosity change, attenuation change, bioenzyme reaction, bacteria / virus interaction) Detectable)
(10) Multi-functional and multi-channel SAW device sensor network placement for integrated management system for regional safety and energy saving

本発明の多機能化SAWデバイスセンサの構成図である。It is a block diagram of the multifunctional SAW device sensor of this invention. 前記SAWデバイスセンサをワイヤレス化した回路構成図である。It is the circuit block diagram which made the said SAW device sensor wireless. 試作した2チャンネルSAW(LiNbO3基盤,Pt蒸着)を示す図である。2-channel SAW (LiNbO 3 base, Pt deposition) the prototype is a diagram showing a. マグネトロンスパッタの基本構成図である。It is a basic lineblock diagram of magnetron sputtering. 結線後のSAWデバイスを示す図(左:LiNbO3基板、右:水晶基板)である。It is a figure (left: LiNbO 3 substrate, right: quartz substrate) showing the SAW device after connection. 温度に対するSAW伝播特性の変化を計測するための実験システムの構成図である。It is a block diagram of the experimental system for measuring the change of the SAW propagation characteristic with respect to temperature. 負荷荷重によるSAW伝播特性の変化を計測するための実験システムの構成図である。It is a block diagram of the experimental system for measuring the change of the SAW propagation characteristic by a load. 温度によるSAWの位相変化を示した図である。It is the figure which showed the phase change of SAW by temperature. SAW伝播経路上に蒸着したFePd磁性形状記憶合金薄膜の相変態に伴う振幅及び位相の変化を示した図である。It is the figure which showed the change of the amplitude and phase accompanying the phase transformation of the FePd magnetic shape memory alloy thin film vapor-deposited on the SAW propagation path. ひずみに対するSAWの振幅及び位相の変化を示した図である。It is the figure which showed the change of the amplitude and phase of SAW with respect to distortion. 形状記憶合金系引張り試験における形状記憶効果及び超弾性現象を示す模式図である。It is a schematic diagram which shows the shape memory effect and superelasticity phenomenon in a shape memory alloy system tensile test. 形状記憶合金系における形状記憶効果及び超弾性出現条件とその原子相変態を示す模型図である。It is a model figure which shows the shape memory effect in a shape memory alloy system, superelastic appearance conditions, and its atomic phase transformation. 水とレイリー波の変位分布を示す図である。It is a figure which shows the displacement distribution of water and a Rayleigh wave. 櫛型電極(IDT)によるSAWの励振状態を示す図である。It is a figure which shows the excitation state of SAW by an interdigital electrode (IDT). SAWフィルタの原理図である。It is a principle diagram of a SAW filter. SAWフィルタを使用した携帯電話の受信機能のブロック図である。It is a block diagram of the reception function of the mobile phone using a SAW filter.

符号の説明Explanation of symbols

1 SAWデバイスセンサ(表面弾性波デバイスセンサ)
2 圧電型基板
3 IDT(櫛型電極)
4 SAW伝播経路(表面弾性波伝播経路)
5 SAW(表面弾性波)
6 機能性薄膜
7 チャネル
1 SAW device sensor (surface acoustic wave device sensor)
2 Piezoelectric substrate 3 IDT (comb electrode)
4 SAW propagation path (surface acoustic wave propagation path)
5 SAW (surface acoustic wave)
6 Functional thin film 7 channels

Claims (9)

圧電型基板に接合させた櫛型電極からなる素子に高周波電流または高周波電圧を印加し、前記圧電型基板の表面近傍に表面弾性波を発生させ、この表面弾性波の伝播特性によって、環境変化因子を検出することを特徴とする表面弾性波デバイスセンサ。 A high-frequency current or high-frequency voltage is applied to an element composed of comb-shaped electrodes joined to a piezoelectric substrate, and a surface acoustic wave is generated near the surface of the piezoelectric substrate. A surface acoustic wave device sensor characterized by detecting the above. 圧電型基板に接合させた櫛型電極からなる素子の伝搬面を導電性金属により電気的に短絡してアースすることにより、電気的なノイズを低減化させる自由表面型の表面弾性波伝播経路と、アースされていない表面弾性波伝播経路とを備え、前記両表面弾性波伝播経路における信号受信を同時に抽出することによって、検出感度を向上させた表面弾性波デバイスセンサ。 A free-surface-type surface acoustic wave propagation path that reduces electrical noise by electrically short-circuiting the propagation surface of an element composed of comb-shaped electrodes bonded to a piezoelectric substrate with a conductive metal and grounding And a surface acoustic wave propagation path that is not grounded, and simultaneously detecting signal reception in both surface acoustic wave propagation paths to improve detection sensitivity. 前記表面弾性波伝播経路上に形状記憶効果、超弾性効果、磁歪機構からなる高機能材料を用いた機能性薄膜を成膜させ、この機能性薄膜が環境変化因子と反応して、電気抵抗の変化、分極化、重量変化、残留応力を引き起こし、それを通して、前記環境変化因子を複数検出できるように構成された請求項2記載の表面弾性波デバイスセンサ。 A functional thin film using a high-functional material composed of a shape memory effect, a super elastic effect, and a magnetostrictive mechanism is formed on the surface acoustic wave propagation path, and this functional thin film reacts with an environmental change factor to cause an electric resistance. 3. The surface acoustic wave device sensor according to claim 2, configured to cause a change, polarization, weight change, and residual stress, and to detect a plurality of the environmental change factors therethrough. 前記表面弾性波伝播経路上に磁気に応答する磁歪材料や磁性形状記憶材料を成膜させ、外部磁場変化に伴う磁歪現象を介して、位相、電圧、減衰度のいずれかに基づいた表面弾性波伝播特性を変化させることによって、外部磁場を検出する請求項2記載の表面弾性波デバイスセンサ。 A magnetostrictive material or a magnetic shape memory material that responds to magnetism is formed on the surface acoustic wave propagation path, and a surface acoustic wave based on one of phase, voltage, and attenuation is obtained through a magnetostriction phenomenon caused by an external magnetic field change. The surface acoustic wave device sensor according to claim 2, wherein an external magnetic field is detected by changing propagation characteristics. 前記表面弾性波伝播経路上に形状記憶材料を成膜させて、外部応力や温度変化による形状記憶効果に伴う結晶相変態の発生や、それに伴う非線形的な形状回復挙動を介して、外部温度変化、材料損傷度合いを間接的に非破壊検査する請求項2記載の表面弾性波デバイスセンサ。 By forming a shape memory material on the surface acoustic wave propagation path, the external temperature change through the generation of crystal phase transformation accompanying the shape memory effect due to external stress and temperature change, and the accompanying nonlinear shape recovery behavior 3. The surface acoustic wave device sensor according to claim 2, wherein the degree of material damage is indirectly nondestructively inspected. 前記表面弾性波伝播経路上にTiNiCu、または、TiNiCoからなる超弾性材料を成膜させ、外部応力負荷・除荷に伴う線形的な結晶相変態の発生・消滅を介して、外的な負荷荷重を間接的に非破壊検査する請求項2記載の表面弾性波デバイスセンサ。 A superelastic material made of TiNiCu or TiNiCo is formed on the surface acoustic wave propagation path, and an external load is applied through the occurrence and extinction of a linear crystal phase transformation accompanying external stress loading / unloading. The surface acoustic wave device sensor according to claim 2, wherein the surface acoustic wave device sensor is indirectly nondestructively inspected. 複数の櫛型電極を有する表面弾性波伝播経路上に、形状記憶材料及び前記超弾性材料を成膜させて、外的な負荷荷重と圧電型基板側の残留損傷を間接的に非破壊検査する請求項5または6記載の表面弾性波デバイスセンサ。 A shape memory material and the superelastic material are deposited on a surface acoustic wave propagation path having a plurality of comb-shaped electrodes, and an external load load and residual damage on the piezoelectric substrate side are indirectly inspected nondestructively. The surface acoustic wave device sensor according to claim 5 or 6. 前記環境変化因子が、微量ガス、湿度、光、温度、ひずみ、電磁気、放射能、イオン濃度、液体粘性、生体反応因子、病原菌のいずれかである請求項1または3記載の表面弾性波デバイスセンサ。 The surface acoustic wave device sensor according to claim 1 or 3, wherein the environmental change factor is any one of a trace gas, humidity, light, temperature, strain, electromagnetics, radioactivity, ion concentration, liquid viscosity, biological reaction factor, and pathogen. . 前記表面弾性波伝播経路を複数備えることによって、多チャンネル構成にした請求項2乃至7のいずれかに記載の表面弾性波デバイスセンサ。 The surface acoustic wave device sensor according to any one of claims 2 to 7, wherein a multichannel configuration is provided by providing a plurality of the surface acoustic wave propagation paths.
JP2004231655A 2004-08-06 2004-08-06 Surface acoustic wave device sensor Pending JP2006047229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231655A JP2006047229A (en) 2004-08-06 2004-08-06 Surface acoustic wave device sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231655A JP2006047229A (en) 2004-08-06 2004-08-06 Surface acoustic wave device sensor

Publications (1)

Publication Number Publication Date
JP2006047229A true JP2006047229A (en) 2006-02-16

Family

ID=36025928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231655A Pending JP2006047229A (en) 2004-08-06 2004-08-06 Surface acoustic wave device sensor

Country Status (1)

Country Link
JP (1) JP2006047229A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304087A (en) * 2006-04-12 2007-11-22 Nissan Motor Co Ltd Wireless surface acoustic wave sensor
WO2007141972A1 (en) * 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Method for detecting substance in liquid and sensor for detecting substance in liquid
WO2007145011A1 (en) * 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2007333483A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Sensor
KR100833884B1 (en) 2006-12-27 2008-06-02 오재근 Sensing apparatus and sensing method using surface acoustic wave
WO2009020377A2 (en) * 2007-08-09 2009-02-12 Mdt Co.Ltd Saw sensor
JP2010510526A (en) * 2006-11-22 2010-04-02 スリーエム イノベイティブ プロパティズ カンパニー Method for capturing whole bacterial cells and method for analyzing samples for bacteria
JP2011180036A (en) * 2010-03-02 2011-09-15 Japan Radio Co Ltd Surface acoustic wave sensor
KR101526576B1 (en) * 2008-11-28 2015-06-08 엘지이노텍 주식회사 semiconductor gas sensor
CN105403449A (en) * 2015-11-03 2016-03-16 石家庄铁道大学 Base of rock mechanics testing machine
JP2017020937A (en) * 2015-07-13 2017-01-26 株式会社デンソー Sensing system
CN107015048A (en) * 2017-04-21 2017-08-04 中国科学院声学研究所 A kind of surface acoustic wave current sensor based on magnetostrictive effect
CN107449955A (en) * 2017-07-11 2017-12-08 中国科学院声学研究所 A kind of surface acoustic wave current sensor based on graphical magnetostrictive thin film
JP2020532091A (en) * 2017-08-23 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Flexible substrate and its manufacturing method, bending detection method and flexible display device
JP2021032676A (en) * 2019-08-23 2021-03-01 国立大学法人静岡大学 Recognition signal generation element and element recognition system
CN112649287A (en) * 2021-01-18 2021-04-13 大连理工大学 External excitation test device, test system and method for measuring shear wave velocity of soil body in large-scale triaxial test
JPWO2020136876A1 (en) * 2018-12-28 2021-09-09 Tdk株式会社 Elastic wave modulation element and physical quantity sensor
CN117676853A (en) * 2024-02-01 2024-03-08 成都天传科技有限公司 Passive wireless dense sensing time-sharing data acquisition method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185419A (en) * 1984-03-05 1985-09-20 Hitachi Ltd Surface acoustic wave device
JPH0980035A (en) * 1995-09-13 1997-03-28 Fuji Kogyo Kk Solution sensor system
JP3146610B2 (en) * 1991-03-25 2001-03-19 富士ゼロックス株式会社 Gas detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185419A (en) * 1984-03-05 1985-09-20 Hitachi Ltd Surface acoustic wave device
JP3146610B2 (en) * 1991-03-25 2001-03-19 富士ゼロックス株式会社 Gas detector
JPH0980035A (en) * 1995-09-13 1997-03-28 Fuji Kogyo Kk Solution sensor system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304087A (en) * 2006-04-12 2007-11-22 Nissan Motor Co Ltd Wireless surface acoustic wave sensor
US7803632B2 (en) 2006-06-08 2010-09-28 Murata Manufacturing Co., Ltd Method for detecting substance in liquid and sensor for detecting substance in liquid
WO2007141972A1 (en) * 2006-06-08 2007-12-13 Murata Manufacturing Co., Ltd. Method for detecting substance in liquid and sensor for detecting substance in liquid
JP4760906B2 (en) * 2006-06-08 2011-08-31 株式会社村田製作所 Liquid substance detection method and liquid substance detection sensor
JP2007333483A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Sensor
US7762124B2 (en) 2006-06-15 2010-07-27 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP4702452B2 (en) * 2006-06-15 2011-06-15 株式会社村田製作所 Submerged substance detection sensor
WO2007145011A1 (en) * 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2010510526A (en) * 2006-11-22 2010-04-02 スリーエム イノベイティブ プロパティズ カンパニー Method for capturing whole bacterial cells and method for analyzing samples for bacteria
KR100833884B1 (en) 2006-12-27 2008-06-02 오재근 Sensing apparatus and sensing method using surface acoustic wave
KR100889044B1 (en) * 2007-08-09 2009-03-19 주식회사 엠디티 SAW sensor
WO2009020377A3 (en) * 2007-08-09 2009-04-16 Mdt Co Ltd Saw sensor
WO2009020377A2 (en) * 2007-08-09 2009-02-12 Mdt Co.Ltd Saw sensor
CN101933230A (en) * 2007-08-09 2010-12-29 株式会社Mdt Saw sensor
KR101526576B1 (en) * 2008-11-28 2015-06-08 엘지이노텍 주식회사 semiconductor gas sensor
JP2011180036A (en) * 2010-03-02 2011-09-15 Japan Radio Co Ltd Surface acoustic wave sensor
JP2017020937A (en) * 2015-07-13 2017-01-26 株式会社デンソー Sensing system
CN105403449A (en) * 2015-11-03 2016-03-16 石家庄铁道大学 Base of rock mechanics testing machine
CN107015048A (en) * 2017-04-21 2017-08-04 中国科学院声学研究所 A kind of surface acoustic wave current sensor based on magnetostrictive effect
CN107015048B (en) * 2017-04-21 2019-08-30 中国科学院声学研究所 A kind of surface acoustic wave current sensor based on magnetostrictive effect
CN107449955A (en) * 2017-07-11 2017-12-08 中国科学院声学研究所 A kind of surface acoustic wave current sensor based on graphical magnetostrictive thin film
JP7238247B2 (en) 2017-08-23 2023-03-14 京東方科技集團股▲ふん▼有限公司 FLEXIBLE SUBSTRATE, MANUFACTURING METHOD THEREOF, BENDING DETECTION METHOD, AND FLEXIBLE DISPLAY DEVICE
JP2020532091A (en) * 2017-08-23 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Flexible substrate and its manufacturing method, bending detection method and flexible display device
JPWO2020136876A1 (en) * 2018-12-28 2021-09-09 Tdk株式会社 Elastic wave modulation element and physical quantity sensor
JP2021032676A (en) * 2019-08-23 2021-03-01 国立大学法人静岡大学 Recognition signal generation element and element recognition system
JP7351508B2 (en) 2019-08-23 2023-09-27 国立大学法人静岡大学 Recognition signal generation element and element recognition system
CN112649287A (en) * 2021-01-18 2021-04-13 大连理工大学 External excitation test device, test system and method for measuring shear wave velocity of soil body in large-scale triaxial test
CN117676853A (en) * 2024-02-01 2024-03-08 成都天传科技有限公司 Passive wireless dense sensing time-sharing data acquisition method and system
CN117676853B (en) * 2024-02-01 2024-04-26 成都天传科技有限公司 Passive wireless dense sensing time-sharing data acquisition method and system

Similar Documents

Publication Publication Date Title
JP2006047229A (en) Surface acoustic wave device sensor
Rathod et al. Characterization of a large-area PVDF thin film for electro-mechanical and ultrasonic sensing applications
Di Pietrantonio et al. Guided lamb wave electroacoustic devices on micromachined AlN/Al plates
Nirwal et al. Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect
US20090309453A1 (en) Electro acoustic sensor for high pressure environments
US8258674B2 (en) Surface acoustic wave sensor and system
Wang et al. Enhanced sensitivity of temperature-compensated SAW-based current sensor using the magnetostrictive effect
Moran et al. Electromagnetic generation of electronically steered ultrasonic bulk waves
US20120256522A1 (en) Magnetic sensor device, method of manufacturing the same, and magnetic sensor apparatus
JP5087964B2 (en) Wireless surface acoustic wave sensor
US20240062739A1 (en) Magnetic field sensor using acoustically driven ferromagnetic resonance
Yen et al. Characterization of aluminum nitride Lamb wave resonators operating at 600 C for harsh environment RF applications
Floer et al. SAW RFID devices using connected IDTs as an alternative to conventional reflectors for harsh environments
Singh et al. Enhanced sensitivity of SAW-based Pirani vacuum pressure sensor
JP2009002677A (en) Surface acoustic wave device biosensor
Elhosni et al. Experimental study of multilayer piezo-magnetic SAW delay line for magnetic sensor
Huang et al. MEMS surface acoustic wave resonator based on AlN/Si/Fe–Co–Si–B structure for magnetic field sensing
JP2020112411A (en) Acoustic wave modulation element and physical quantity sensor system
Fan et al. Theoretical optimizations of acoustic wave gas sensors with high conductivity sensitivities
Gachon et al. Prediction and measurement of boundary waves at the interface between LiNbO3 and silicon
Mengue et al. Temperature and strain SAW/BAW sensors on metallic substrates with RFID capability
JP2010066194A (en) Dissolved hydrogen sensor
US11835414B2 (en) Passive pressure sensor with a piezoelectric diaphragm and a non-piezoelectric substrate
Kohler et al. Flexible Surface Acoustic Wave (SAW) Sensors for Cryogenic Sensing Application
Chin A fabrication study of surface acoustic wave devices for magnetic field detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070802

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601