JPWO2020136876A1 - Elastic wave modulation element and physical quantity sensor - Google Patents

Elastic wave modulation element and physical quantity sensor Download PDF

Info

Publication number
JPWO2020136876A1
JPWO2020136876A1 JP2020562273A JP2020562273A JPWO2020136876A1 JP WO2020136876 A1 JPWO2020136876 A1 JP WO2020136876A1 JP 2020562273 A JP2020562273 A JP 2020562273A JP 2020562273 A JP2020562273 A JP 2020562273A JP WO2020136876 A1 JPWO2020136876 A1 JP WO2020136876A1
Authority
JP
Japan
Prior art keywords
magnetic flux
elastic wave
piezoelectric member
magnetic
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020562273A
Other languages
Japanese (ja)
Other versions
JP6885520B2 (en
Inventor
鈴木 英治
英治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Application granted granted Critical
Publication of JP6885520B2 publication Critical patent/JP6885520B2/en
Publication of JPWO2020136876A1 publication Critical patent/JPWO2020136876A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Abstract

従来よりも感度を向上して被検出体の物理量を精度良く検知することができる弾性波変調素子及び物理量センサを提供する。弾性波変調素子(10)は、圧電部材(11)と、圧電部材(11)に取り付けられ、圧電部材(11)に弾性波を励起する第1電極部(12)と、圧電部材(11)に取り付けられ、弾性波を受信する第2電極部(13)と、弾性波の存在領域またはその近傍に設けられた磁歪材料部(15)とを備える。磁歪材料部(15)は、圧電部材(11)の一方の主面(11a)上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部(15a,15b)と、一方の主面(11a)上において一対の磁束伝搬部(15a,15b)の間に設けられ、弾性波の伝搬路(14)上またはその近傍に配置された集磁部(15c)とを有し、集磁部(15c)の一対の磁束伝搬部(15a,15b)に対向する側面の厚みが、一対の磁束伝搬部(15a)の集磁部(15c)に対向する側面の厚みよりも薄い。Provided are an elastic wave modulation element and a physical quantity sensor capable of accurately detecting a physical quantity of a detected object with improved sensitivity as compared with the conventional case. The elastic wave modulation element (10) is attached to the piezoelectric member (11), the first electrode portion (12) which is attached to the piezoelectric member (11) and excites the elastic wave in the piezoelectric member (11), and the piezoelectric member (11). It is provided with a second electrode portion (13) attached to the elastic wave to receive the elastic wave, and a magnetostrictive material portion (15) provided in or near the region where the elastic wave exists. The magnetostrictive material portion (15) is provided on one main surface (11a) of the piezoelectric member (11), and is a pair of magnetic flux propagation portions (15a, 15b) capable of propagating the magnetic flux of an external magnetic field, and one main surface. (11a) has a magnetic flux collecting portion (15c) provided between a pair of magnetic flux propagating portions (15a, 15b) and arranged on or near the elastic wave propagation path (14), and magnetizes. The thickness of the side surfaces of the pair of magnetic flux propagating portions (15c) facing the pair of magnetic flux propagating portions (15a, 15b) is thinner than the thickness of the side surfaces of the pair of magnetic flux propagating portions (15a) facing the magnetic collecting portion (15c).

Description

本発明は、弾性波変調素子及び物理量センサに関し、特に、表面弾性波の伝搬特性の変化に基づいて被検出体の物理量を検出可能な弾性波変調素子に関する。 The present invention relates to an elastic wave modulation element and a physical quantity sensor, and more particularly to an elastic wave modulation element capable of detecting a physical quantity of an object to be detected based on a change in the propagation characteristics of a surface acoustic wave.

従来、表面弾性波(以下、SAW(Suface Acoustic Wave)ともいう)を用いた遅延線型や共振子型のセンサがある。遅延線型のSAWセンサの構成として、例えば、LiNbO基板と、該基板上に設けられた一対の櫛歯電極部と、該一対の櫛歯電極部間のSAW伝搬領域に配置された非晶質TbFe膜とを備えるSAW遅延線が提案されている(非特許文献1)。Conventionally, there are delayed linear type and resonator type sensors using surface acoustic waves (hereinafter, also referred to as SAW (Soft Acoustic Wave)). As a configuration of the delayed line type SAW sensor, for example, a LiNbO 3 substrate, a pair of comb tooth electrode portions provided on the substrate, and an amorphous material arranged in a SAW propagation region between the pair of comb tooth electrode portions. A SAW delay line including a TbFe 2 film has been proposed (Non-Patent Document 1).

また、遅延線型のSAWセンサとして、圧電基板と櫛歯電極を有する表面弾性波素子とアンテナ手段を備えた応答器と、上記応答器に対して駆動信号を発信すると共に、当該応答器からの応答信号を受信する問い合わせ器とからなるワイヤレスSAWセンサが提案されている。このSAWセンサは、表面弾性波の伝搬方向と一致する辺を有する略矩形状をなし、かつ上記櫛歯電極から離間している磁歪膜を備えており、矩形磁歪膜における櫛歯電極側端部からの反射波に対応するエコーと、この矩形磁歪膜における反櫛歯電極側端部からの反射波に対応するエコーとの時間差に基づいて圧電基板に働く応力を検出している(特許文献1)。 Further, as a delayed line type SAW sensor, a response device provided with a surface acoustic wave element having a piezoelectric substrate and a comb tooth electrode and antenna means, and a drive signal are transmitted to the response device and a response from the response device. A wireless SAW sensor including an inquiry device that receives a signal has been proposed. This SAW sensor has a substantially rectangular shape having a side that coincides with the propagation direction of the surface acoustic wave, and has a magnetostrictive film that is separated from the above-mentioned comb tooth electrode. The stress acting on the piezoelectric substrate is detected based on the time difference between the echo corresponding to the reflected wave from the surface acoustic wave and the echo corresponding to the reflected wave from the anti-comb tooth electrode side end of the rectangular magnetostrictive film (Patent Document 1). ).

この従来技術では、圧電基板に応力が作用することより磁歪膜にも応力が作用すると、磁歪膜における磁化状態が変わり、その結果として磁歪膜と圧電基板の弾性率が変化するΔE効果が生じる。このΔE効果によって、磁歪膜と圧電基板を伝搬する表面弾性波の速度が変化する。よって、上記エコーの時間差を、圧電基板に作用する応力に対して予め校正しておくことで、当該時間差から、圧電基板に働く応力(歪)が計測することができるとされている。 In this conventional technique, when stress acts on the magnetostrictive film due to the stress acting on the piezoelectric substrate, the magnetization state in the magnetostrictive film changes, and as a result, the ΔE effect in which the elastic moduli of the magnetostrictive film and the piezoelectric substrate change occurs. Due to this ΔE effect, the velocity of the surface acoustic wave propagating between the magnetostrictive film and the piezoelectric substrate changes. Therefore, by pre-calibrating the time difference of the echo with respect to the stress acting on the piezoelectric substrate, it is said that the stress (strain) acting on the piezoelectric substrate can be measured from the time difference.

山口、外2名、「非晶質TbFe2膜を用いた可変SAW遅延線(VARIABLE SAW DELAY LINE USING AMORPHOUS TbFe2 FILM)」、第16巻、第5号、1980年9月、アイトリプルイー・トランザクションズ・オン・マグネティックス(IEEE TRANSACTIONS ON MAGNETICS)Yamaguchi, 2 outsiders, "VARIABLE SAW DELAY LINE USING AMORPHOUS TbFe2 FILM", Vol. 16, No. 5, September 1980, Eye Triple E Transactions・ On MAGNETICS 特許第5087964号公報Japanese Patent No. 5087964

しかしながら、磁歪膜のいわゆるΔE効果は、磁歪膜における磁化状態の変化に依存するため、磁化状態の変化量が小さいとΔE効果が生じ難い。よって、圧電基板に働く応力が小さいと、圧電基板に働く応力を十分に検知できず、感度が良好でない場合がある。または、磁歪膜に印加された外部磁界(磁場)が小さい場合は、外部磁界による磁化状態の変化量が小さいためΔE効果も小さくなり、センサとしての磁界感度が良好でない場合がある。 However, since the so-called ΔE effect of the magnetostrictive film depends on the change in the magnetization state of the magnetostrictive film, the ΔE effect is unlikely to occur if the amount of change in the magnetization state is small. Therefore, if the stress acting on the piezoelectric substrate is small, the stress acting on the piezoelectric substrate cannot be sufficiently detected, and the sensitivity may not be good. Alternatively, when the external magnetic field (magnetic field) applied to the magnetostrictive film is small, the ΔE effect is also small because the amount of change in the magnetization state due to the external magnetic field is small, and the magnetic field sensitivity as a sensor may not be good.

本発明の目的は、従来よりも感度を向上して被検出体の物理量を精度良く検知することができる弾性波変調素子及び物理量センサを提供することにある。 An object of the present invention is to provide an elastic wave modulation element and a physical quantity sensor capable of accurately detecting a physical quantity of a detected object with higher sensitivity than before.

上記目的を達成するために、本発明は以下の手段を提供する。
[1]圧電部材と、
前記圧電部材に取り付けられ、前記圧電部材に弾性波を励起する第1電極部と、
前記圧電部材に取り付けられ、前記弾性波を受信する第2電極部と、
前記弾性波の存在領域またはその近傍に設けられた磁歪材料部と、
を備え、
前記磁歪材料部は、
前記圧電部材の一方の主面上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部と、
前記一方の主面上において前記一対の磁束伝搬部の間に設けられ、前記弾性波の伝搬路上またはその近傍に配置された集磁部と、を有し、
前記集磁部の前記磁束伝搬部に対向する側面の厚みが、前記磁束伝搬部の前記集磁部に対向する側面の厚みよりも薄い、
ことを特徴とする弾性波変調素子。
[2]前記一対の磁束伝搬部の各々は、前記集磁部とは反対側の一端部から前記集磁部側の他端部に向かう方向に沿って断面積が小さくなる形状を有する、上記[1]記載の弾性波変調素子。
[3]前記集磁部は、前記圧電部材の厚み方向の投影面において、前記第1電極部と第2電極部との間に配置される、上記[1]または[2]に記載の弾性波変調素子。
[4]前記集磁部における磁束が、前記弾性波の伝搬方向に垂直な方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部は、前記圧電部材の前記一方の主面上に配置されるか、または前記圧電部材の他方の主面上に配置される、上記[3]に記載の弾性波変調素子。
[5]前記集磁部における磁束が、前記弾性波の伝搬方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部は、前記一方の主面上であって前記一対の磁束伝搬部に設けられた一対の開口部に対応する位置に配置されるか、前記一方の主面上であって前記一対の磁束伝搬部の下に配置されるか、または、前記圧電部材の他方の主面上に配置される、上記[3]に記載の弾性波変調素子。
[6]前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記第1電極部及び前記第2電極部を包含する位置に配置される、上記[1]または[2]に記載の弾性波変調素子。
[7]前記集磁部における磁束が、前記弾性波の伝搬方向に垂直な方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置されるか、または前記圧電部材の他方の主面上に配置される、上記[6]に記載の弾性波変調素子。
[8]前記集磁部における磁束が、前記弾性波の伝搬方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置されるか、または、前記圧電部材の他方の主面上に配置される、上記[6]に記載の弾性波変調素子。
[9]前記第1電極部が、互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極で構成され、
前記第2電極部が、互いの歯が交互に並ぶように対向して配置された他の一対の櫛歯電極で構成される、上記[1]〜[8]のいずれかに記載の弾性波変調素子。
[10]前記第1電極部および前記第2電極部が、前記圧電部材に弾性波を励起または受信する一対の櫛歯電極である、上記[1]〜[8]のいずれかに記載の弾性波変調素子。
[11]前記圧電部材に取り付けられ、前記集磁部の一方側に配置された一の反射器を更に備え、
前記第1電極部及び前記第2電極部が、前記圧電部材の一方の主面上であって前記集磁部の他方側に配置されるか、または前記圧電部材の一方の主面上であって前記集磁部の下に配置される、上記[1]〜[10]のいずれかに記載の弾性波変調素子。
[12]前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記一の反射器を包含する位置に配置され、前記一の反射器が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置される、上記[11]に記載の弾性波変調素子。
[13]前記圧電部材に取り付けられ、前記第1電極部及び前記第2電極部の両側に配置された一対の反射器を更に備える、上記[1]〜[10]のいずれか1項に記載の弾性波変調素子。
[14]前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記一対の反射器を包含する位置に配置され、前記一対の反射器が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置される、上記[13]に記載の弾性波変調素子。
[15]前記集磁部の前記磁束伝搬部に対向する側の端部の断面積が、前記の磁束伝搬部の前記集磁部に対向する側の端部の断面積よりも大きい、上記[1]〜[14]のいずれか1項に記載の弾性波変調素子。
[16]上記[1]〜[15]のいずれかに記載の弾性波変調素子と、前記弾性波変調素子の変調を検出する回路部と、を備える物理量センサ。
In order to achieve the above object, the present invention provides the following means.
[1] Piezoelectric member and
A first electrode portion attached to the piezoelectric member and exciting an elastic wave to the piezoelectric member,
A second electrode portion attached to the piezoelectric member and receiving the elastic wave,
A magnetostrictive material portion provided in or near the region where elastic waves exist, and
With
The magnetostrictive material part is
A pair of magnetic flux propagating portions provided on one main surface of the piezoelectric member and capable of propagating the magnetic flux of an external magnetic field.
It has a magnetic collecting portion provided between the pair of magnetic flux propagating portions on one of the main surfaces and arranged on or near the propagation path of the elastic wave.
The thickness of the side surface of the magnetic flux propagating portion facing the magnetic flux propagating portion is thinner than the thickness of the side surface of the magnetic flux propagating portion facing the magnetic flux propagating portion.
An elastic wave modulation element characterized by this.
[2] Each of the pair of magnetic flux propagating portions has a shape in which the cross-sectional area becomes smaller along the direction from one end on the side opposite to the magnetic collecting portion toward the other end on the magnetic collecting portion side. The elastic wave modulation element according to [1].
[3] The elasticity according to the above [1] or [2], wherein the magnetic collecting portion is arranged between the first electrode portion and the second electrode portion on a projection surface in the thickness direction of the piezoelectric member. Wave modulation element.
[4] The magnetic flux in the magnetic collecting portion is formed along the direction perpendicular to the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member or on the other main surface of the piezoelectric member, according to the above [3]. Elastic wave modulation element.
[5] The magnetic flux in the magnetic collecting portion is formed along the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged at positions on the one main surface corresponding to the pair of openings provided in the pair of magnetic flux propagation portions, or the one main electrode portion is arranged. The elastic wave modulation element according to the above [3], which is arranged on a surface and below the pair of magnetic flux propagation portions, or on the other main surface of the piezoelectric member.
[6] The magnetic collecting portion is arranged at a position including the first electrode portion and the second electrode portion on the projection surface projected in the thickness direction of the piezoelectric member, according to the above [1] or [2]. The elastic wave modulation element according to.
[7] The magnetic flux in the magnetic collecting portion is formed along the direction perpendicular to the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion, or are arranged on the other main surface of the piezoelectric member. The elastic wave modulation element according to the above [6].
[8] The magnetic flux in the magnetic collecting portion is formed along the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion, or on the other main surface of the piezoelectric member. The elastic wave modulation element according to the above [6], which is arranged.
[9] The first electrode portion is composed of a pair of comb tooth electrodes arranged so as to face each other so that teeth are alternately arranged.
The elastic wave according to any one of [1] to [8] above, wherein the second electrode portion is composed of another pair of comb tooth electrodes arranged so as to face each other so that the teeth are alternately arranged. Modulation element.
[10] The elasticity according to any one of [1] to [8] above, wherein the first electrode portion and the second electrode portion are a pair of comb tooth electrodes that excite or receive elastic waves in the piezoelectric member. Wave modulation element.
[11] A single reflector attached to the piezoelectric member and arranged on one side of the magnetic collecting portion is further provided.
The first electrode portion and the second electrode portion are arranged on one main surface of the piezoelectric member and on the other side of the magnetic collecting portion, or on one main surface of the piezoelectric member. The elastic wave modulation element according to any one of the above [1] to [10], which is arranged below the magnetic collecting portion.
[12] The magnetic collecting portion is arranged at a position including the one reflector on the projection surface projected in the thickness direction of the piezoelectric member, and the one reflector is the main main component of the piezoelectric member. The elastic wave modulation element according to the above [11], which is on the surface and is arranged below the magnetic collecting portion.
[13] The item according to any one of [1] to [10] above, further comprising a pair of reflectors attached to the piezoelectric member and arranged on both sides of the first electrode portion and the second electrode portion. Elastic wave modulation element.
[14] The magnetic collecting portion is arranged at a position including the pair of reflectors on the projection surface projected in the thickness direction of the piezoelectric member, and the pair of reflectors is the main main component of the piezoelectric member. The elastic wave modulation element according to the above [13], which is on the surface and is arranged below the magnetic collecting portion.
[15] The cross-sectional area of the end of the magnetic flux propagating portion facing the magnetic flux propagating portion is larger than the cross-sectional area of the end of the magnetic flux propagating portion facing the magnetic flux propagating portion. 1] The elastic wave modulation element according to any one of [14].
[16] A physical quantity sensor including the elastic wave modulation element according to any one of [1] to [15] above, and a circuit unit for detecting modulation of the elastic wave modulation element.

本発明によれば、従来よりも感度を向上して被検出体の物理量を精度良く検知することができる。 According to the present invention, the sensitivity can be improved as compared with the conventional case, and the physical quantity of the object to be detected can be detected with high accuracy.

本発明の第1実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す図であり、(a)は平面図、(b)は線I−Iに沿う断面図、(c)は底面図である。It is a figure which shows generally the structure of the physical quantity sensor which includes the elastic wave modulation element which concerns on 1st Embodiment of this invention, (a) is a plan view, (b) is a sectional view along line I-I, (c). ) Is a bottom view. 本発明の第2実施形態に係る弾性波変調素子を備える物理量センサの変形例を示す図であり、(a)は平面図、(b)は線II−IIに沿う断面図、(c)は底面図である。It is a figure which shows the modification of the physical quantity sensor which includes the elastic wave modulation element which concerns on 2nd Embodiment of this invention, (a) is a plan view, (b) is a sectional view along line II-II, (c) is It is a bottom view. (a)は、図1における弾性波変調素子の第1変形例を示す図であり、(b)は、第2変形例を示す図である。FIG. 1A is a diagram showing a first modified example of the elastic wave modulation element in FIG. 1, and FIG. 1B is a diagram showing a second modified example. 図1における弾性波変調素子の第3変形例を示す図であり、(a)は平面図、(b)は線III−IIIに沿う断面図である。It is a figure which shows the 3rd modification of the elastic wave modulation element in FIG. 1, (a) is a plan view, (b) is a cross-sectional view along line III-III. 本発明の第3実施形態に係る弾性波変調素子の構成を概略的に示す図であり、(a)は平面図、(b)は線IV−IVに沿う断面図である。It is a figure which shows schematic structure of the elastic wave modulation element which concerns on 3rd Embodiment of this invention, (a) is a plan view, (b) is a sectional view along the line IV-IV. (a)は、本発明の第4実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す平面図であり、(b)は、第4実施形態の変形例を示す平面図である。(A) is a plan view schematically showing the configuration of a physical quantity sensor including an elastic wave modulation element according to a fourth embodiment of the present invention, and (b) is a plan view showing a modified example of the fourth embodiment. Is. 本発明の第5実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the physical quantity sensor which includes the elastic wave modulation element which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す図である。It is a figure which shows typically the structure of the physical quantity sensor which includes the elastic wave modulation element which concerns on 6th Embodiment of this invention.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
[弾性波変調素子及び物理量センサの構成]
図1は、本発明の第1実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す図であり、(a)は平面図、(b)は線I−Iに沿う断面図、(c)は底面図である。本実施形態では、物理量センサが遅延線型である場合を例に挙げて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は図示するものに限らないものとする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Structure of elastic wave modulation element and physical quantity sensor]
FIG. 1 is a diagram schematically showing a configuration of a physical quantity sensor including an elastic wave modulation element according to a first embodiment of the present invention, (a) is a plan view, and (b) is a cross section taken along line I-I. FIG. 3C is a bottom view. In this embodiment, a case where the physical quantity sensor has a delayed linear shape will be described as an example. In addition, in the drawings used in the following description, in order to make the features easy to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component are not limited to those shown in the drawings. do.

図1(a)〜図1(c)に示すように、弾性波変調素子10は、圧電部材11と、圧電部材11に取り付けられ、圧電部材11に弾性波を励起する第1電極部12と、圧電部材11に取り付けられ、弾性波を受信する第2電極部13と、弾性波の存在領域またはその近傍に設けられた磁歪材料部15とを備える。弾性波変調素子10は、該弾性波変調素子10からの信号に基づいて弾性波の変調を検出する不図示の検出回路部に接続されており、弾性波変調素子10及び上記検出回路部が物理量センサ1を構成する。すなわち、物理量センサ1は、弾性波変調素子10及び上記検出回路部を備えており、弾性波の伝搬特性の変化に基づいて被検出体の物理量を検出する。また、物理量センサ1は、圧電部材11上の磁歪材料部15に磁界を印加する磁界印加部16を備えており、磁界印加部16が磁歪材料部15内に磁界を印加することで、磁歪材料部15内に磁界(磁場)が形成される。物理量センサ1は、例えば、圧力センサや、磁気センサなどである。 As shown in FIGS. 1A to 1C, the elastic wave modulation element 10 includes a piezoelectric member 11 and a first electrode portion 12 which is attached to the piezoelectric member 11 and excites elastic waves in the piezoelectric member 11. The second electrode portion 13 attached to the piezoelectric member 11 and receiving the elastic wave, and the magnetostrictive material portion 15 provided in or near the region where the elastic wave exists are provided. The elastic wave modulation element 10 is connected to a detection circuit unit (not shown) that detects the modulation of the elastic wave based on the signal from the elastic wave modulation element 10, and the elastic wave modulation element 10 and the detection circuit unit are physical quantities. The sensor 1 is configured. That is, the physical quantity sensor 1 includes the elastic wave modulation element 10 and the detection circuit unit, and detects the physical quantity of the object to be detected based on the change in the propagation characteristics of the elastic wave. Further, the physical quantity sensor 1 includes a magnetic field application unit 16 that applies a magnetic field to the magnetostrictive material unit 15 on the piezoelectric member 11, and the magnetic field application unit 16 applies a magnetic field into the magnetostrictive material unit 15 to obtain a magnetostrictive material. A magnetic field (magnetic field) is formed in the portion 15. The physical quantity sensor 1 is, for example, a pressure sensor, a magnetic sensor, or the like.

圧電部材11は、SiO、LiNbO、LiTaO、BaTiO、PbTiO、Pb(Zr・Ti)O(チタン酸ジルコン酸鉛)、LaGaSiO14、Li、AlN(窒化アルミニウム)、ZnOおよびダイヤモンドからなる群から選択される少なくとも1つの材料で構成される。圧電部材11が上記群から選択される少なくとも1つの材料で構成されることにより、圧電部材11において弾性波を効率的に発生させることができる。圧電部材11は、例えば、圧電基板や圧電膜で構成されている。Piezoelectric members 11 include SiO 2 , LiNbO 3 , LiTaO 3 , BaTIO 3 , PbTIO 3 , Pb (Zr · Ti) O 3 (lead zirconate titanate), La 3 Ga 5 SiO 14 , Li 2 B 4 O 7 , It is composed of at least one material selected from the group consisting of AlN (aluminum nitride), ZnO and diamond. Since the piezoelectric member 11 is made of at least one material selected from the above group, elastic waves can be efficiently generated in the piezoelectric member 11. The piezoelectric member 11 is made of, for example, a piezoelectric substrate or a piezoelectric film.

第1電極部12は、例えば互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極12a,12bで構成されている(図1(a))。この第1電極部12は、入力部17からの入力信号に基づいて弾性波、特に表面弾性波(SAW)を発生させる入力電極に相当する。第1電極部12を構成する一対の櫛歯電極12a,12bの歯のピッチは、任意に設定可能であるが、例えばλ/4(λはSAWの波長)で一定である。 The first electrode portion 12 is composed of, for example, a pair of comb tooth electrodes 12a and 12b arranged so as to face each other so that their teeth are alternately arranged (FIG. 1A). The first electrode unit 12 corresponds to an input electrode that generates an elastic wave, particularly a surface acoustic wave (SAW), based on an input signal from the input unit 17. The tooth pitch of the pair of comb tooth electrodes 12a and 12b constituting the first electrode portion 12 can be arbitrarily set, but is constant at, for example, λ / 4 (λ is the wavelength of SAW).

また、第2電極部13は、例えば互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極13a,13b(他の一対の櫛歯電極)で構成されている(図1(a))。この第2電極部13は、弾性波、特にSAWを受信して、該弾性波に対応する出力信号を出力部18を介して上記検出回路部に出力する出力電極に相当する。第2電極部13を構成する一対の櫛歯電極13a,13bの歯のピッチも、任意に設定可能であるが、例えば一対の櫛歯電極12a,12bの歯のピッチと同じである。 Further, the second electrode portion 13 is composed of, for example, a pair of comb tooth electrodes 13a and 13b (another pair of comb tooth electrodes) arranged so as to face each other so that the teeth are alternately arranged (FIG. 1). (A)). The second electrode unit 13 corresponds to an output electrode that receives an elastic wave, particularly SAW, and outputs an output signal corresponding to the elastic wave to the detection circuit unit via the output unit 18. The tooth pitches of the pair of comb tooth electrodes 13a and 13b constituting the second electrode portion 13 can be arbitrarily set, but are the same as the tooth pitches of the pair of comb tooth electrodes 12a and 12b, for example.

第1電極部12及び第2電極部13は、電極材料として適していればその材料に特に制限はないが、例えばAl(アルミニウム)、Au(金)、Cu(銅)、Ti(チタン)、Cr(クロム)、あるいはこれらの合金などの材料で構成される。 The first electrode portion 12 and the second electrode portion 13 are not particularly limited as long as they are suitable as electrode materials, but for example, Al (aluminum), Au (gold), Cu (copper), Ti (titanium), and the like. It is composed of a material such as Cr (chromium) or an alloy of these.

磁歪材料部15は、圧電部材11の一方の主面11a上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部15a,15bと、一方の主面11a上において一対の磁束伝搬部15a,15bの間に設けられ、弾性波の伝搬路14上に配置された集磁部15cとを有する。そして、図1(b)に示すように、集磁部15cの磁束伝搬部15a(および/または磁束伝搬部15b)に対向する側面の厚みが、磁束伝搬部15a(および/または磁束伝搬部15b)の集磁部15cに対向する側面の厚みよりも薄い。尚、本実施形態では、集磁部15cは、一対の磁束伝搬部15a,15bと当接した状態で別体で形成されているが、一対の磁束伝搬部15a,15bと一体で形成されていてもよい。上記構成により磁束伝搬部15aまたは磁束伝搬部15bを通過した磁束は、集磁部15cをより密な状態で通過するため、磁束伝搬部15a,15bと比較して集磁部15c内の磁束密度がより大きくなる。また集磁部15cは、第1電極部12と第2電極部13のうちの少なくとも一方の厚みよりも薄くして、より磁束密度を高める構成にしてもよい。 The magnetostrictive material portion 15 is provided on one main surface 11a of the piezoelectric member 11, and is provided with a pair of magnetic flux propagation portions 15a and 15b capable of propagating the magnetic flux of an external magnetic field, and a pair of magnetic flux propagation portions on one main surface 11a. It has a magnetic flux collecting portion 15c provided between 15a and 15b and arranged on the propagation path 14 of the elastic wave. Then, as shown in FIG. 1 (b), the thickness of the side surface of the magnetic collecting portion 15c facing the magnetic flux propagating portion 15a (and / or the magnetic flux propagating portion 15b) is the thickness of the magnetic flux propagating portion 15a (and / or the magnetic flux propagating portion 15b). ) Is thinner than the thickness of the side surface facing the magnetic flux collecting portion 15c. In the present embodiment, the magnetic collecting portion 15c is formed separately in a state of being in contact with the pair of magnetic flux propagating portions 15a and 15b, but is integrally formed with the pair of magnetic flux propagating portions 15a and 15b. You may. With the above configuration, the magnetic flux that has passed through the magnetic flux propagation section 15a or the magnetic flux propagation section 15b passes through the magnetic flux propagation section 15c in a denser state. Becomes larger. Further, the magnetic collecting portion 15c may be made thinner than at least one of the first electrode portion 12 and the second electrode portion 13 to further increase the magnetic flux density.

一対の磁束伝搬部15a,15bの各々は、集磁部15cとは反対側の一端部から集磁部15c側の他端部に向かう方向に沿って断面積が小さくなる形状を有しているのが好ましい。本実施形態では、物理量センサ1の平面視において、一対の磁束伝搬部15a,15bが扁平の台形状を有し、集磁部15cが矩形状を有している(図1(a)。
このように、磁歪材料部15がくびれ形状を有し、幅広な一対の磁束伝搬部15a,15bの間に幅狭な集磁部15cが配置されることで、磁歪材料部15に磁界が印加されたときに集磁部15cで確実に集磁することができる。
Each of the pair of magnetic flux propagation portions 15a and 15b has a shape in which the cross-sectional area becomes smaller along the direction from one end on the side opposite to the magnetic collecting portion 15c toward the other end on the magnetic collecting portion 15c side. Is preferable. In the present embodiment, in the plan view of the physical quantity sensor 1, the pair of magnetic flux propagating portions 15a and 15b have a flat trapezoidal shape, and the magnetic collecting portion 15c has a rectangular shape (FIG. 1A).
As described above, the magnetostrictive material portion 15 has a constricted shape, and the narrow magnetic flux collecting portion 15c is arranged between the pair of wide magnetic flux propagation portions 15a and 15b, so that the magnetic field is applied to the magnetostrictive material portion 15. When this is done, the magnetizing unit 15c can reliably collect the magnetism.

また、集磁部15cの磁束伝搬部15a,15bに対向する側の端部の断面積が、磁束伝搬部15a,15bの集磁部15cに対向する側の端部の断面積よりも小さいことが好ましい。集磁部15cの磁束伝搬部15a,15bに対向する側面の厚みが、磁束伝搬部15a,15bの集磁部15cに対向する側面の厚みよりも薄く、かつ、集磁部15cの上記断面積が、磁束伝搬部15a,15bの上記断面積よりも小さいことで、集磁部15c内の磁束密度を更に大きくすることができる。 Further, the cross-sectional area of the ends of the magnetic flux propagating portions 15c facing the magnetic flux propagating portions 15a and 15b is smaller than the cross-sectional area of the ends of the magnetic flux propagating portions 15a and 15b facing the magnetic flux propagating portions 15c. Is preferable. The thickness of the side surface of the magnetic flux propagating portion 15c facing the magnetic flux propagating portions 15a and 15b is thinner than the thickness of the side surface of the magnetic flux propagating portion 15a and 15b facing the magnetic flux propagating portion 15c, and the cross-sectional area of the magnetic collecting portion 15c. However, since it is smaller than the cross-sectional area of the magnetic flux propagating portions 15a and 15b, the magnetic flux density in the magnetic collecting portion 15c can be further increased.

但し、集磁部15cの磁束伝搬部15a,15bに対向する側の端部の断面積が、磁束伝搬部15a,15bの集磁部15cに対向する側の端部の断面積よりも大きくてもよい。これにより、たとえ集磁部15cの上記断面積が、磁束伝搬部15a,15bの上記断面積よりも大きくても、集磁部15cの厚みが、磁束伝搬部15a,15bの厚みよりも薄いことにより、集磁部15c内の磁束密度を大きくすることが可能となる。 However, the cross-sectional area of the ends of the magnetic flux propagating portions 15c facing the magnetic flux propagating portions 15a and 15b is larger than the cross-sectional area of the ends of the magnetic flux propagating portions 15a and 15b facing the magnetic flux propagating portions 15c. May be good. As a result, even if the cross-sectional area of the magnetic collecting portion 15c is larger than the cross-sectional area of the magnetic flux propagating portions 15a and 15b, the thickness of the magnetic collecting portion 15c is thinner than the thickness of the magnetic flux propagating portions 15a and 15b. This makes it possible to increase the magnetic flux density in the magnetic collecting portion 15c.

集磁部15cは、例えば圧電部材11の厚み方向の投影面において、第1電極部12と第2電極部13との間に配置される(図1(a),(c)参照)。本実施形態では、集磁部15cにおける磁束が、弾性波の伝搬方向に垂直な方向に沿って形成される。この場合において、一対の磁束伝搬部15a,15b及び集磁部15cは、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13も、圧電部材11の一方の主面11a上に配置されている。本構成によれば、磁歪材料部15が、弾性波が伝搬する圧電部材11の一方の主面11aに当接して配置されるので、伝搬路14である一方の主面11aあるいはその近傍で、磁歪による弾性波の伝搬速度の変化をより増大させることができる。 The magnetic collecting portion 15c is arranged between the first electrode portion 12 and the second electrode portion 13 on the projection surface of the piezoelectric member 11 in the thickness direction (see FIGS. 1A and 1C). In the present embodiment, the magnetic flux in the magnetic collecting portion 15c is formed along the direction perpendicular to the propagation direction of the elastic wave. In this case, the pair of magnetic flux propagation portions 15a and 15b and the magnetic collection portion 15c are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are also of the piezoelectric member 11. It is arranged on one of the main surfaces 11a. According to this configuration, the magnetostrictive material portion 15 is arranged in contact with one main surface 11a of the piezoelectric member 11 through which elastic waves propagate. The change in the propagation velocity of elastic waves due to magnetostriction can be further increased.

磁歪材料部15は、Co、Ni、Fe、CoNi、NiFe、CoFe、FeAl、CoPt、NiCoCr、FeB、CoFeB、CoFeSiB、FeBSiP、FeBSiC、NiMnGa、FeCoNiBSi、TbFeCo、Coフェライト、Niフェライト、Cuフェライト、Liフェライト、Mnフェライト、NiCoフェライト、NiCuCoフェライト、FeО、TbFe、DyFe、ErFe、TmFe、SmFe、GaFe、Tb(0.27〜0.3原子組成比率)、Dy(0.7〜0.73原子組成比率)、Fe(1.9〜2.0原子組成比率)からなる群から選択される少なくとも1つの材料で構成される。磁歪材料部15が上記群から選択される少なくとも1つの材料で構成されることにより、磁歪材料部15において磁歪を効率的に発生させることができる。The magnetostrictive material portion 15 includes Co, Ni, Fe, CoNi, NiFe, CoFe, FeAl, CoPt, NiCoCr, FeB, CoFeB, CoFeSiB, FeBSiP, FeBSiC, Ni 2 MnGa, FeCoNiBSi, TbFeCo, Co ferrite, Ni ferrite, Cu ferrite. , Li ferrite, Mn ferrite, NiCo ferrite, NiCuCo ferrite, Fe 3 O 4 , TbFe 2 , DyFe 2 , ErFe 2 , TmFe 2 , SmFe 2 , GaFe, Tb (0.27 to 0.3 atomic composition ratio), Dy It is composed of at least one material selected from the group consisting of (0.7 to 0.73 atomic composition ratio) and Fe (1.9 to 2.0 atomic composition ratio). Since the magnetostrictive material portion 15 is composed of at least one material selected from the above group, the magnetostrictive material portion 15 can efficiently generate magnetostriction.

磁歪材料部15は、例えば磁歪膜で形成されており、その場合、一対の磁束伝搬部15a,15b及び集磁部15cも磁歪膜で形成される。磁歪材料部15の厚さは10nm〜10μmである。磁歪材料部15の形成方法には制限はないが、例えばマグネトロンスパッタリングなどのスパッタリングによって成膜することができる。 The magnetostrictive material portion 15 is formed of, for example, a magnetostrictive film, and in that case, the pair of magnetic flux propagation portions 15a and 15b and the magnetostrictive portion 15c are also formed of the magnetostrictive film. The thickness of the magnetostrictive material portion 15 is 10 nm to 10 μm. The method for forming the magnetostrictive material portion 15 is not limited, but the film can be formed by sputtering such as magnetron sputtering.

磁界印加部16は、磁歪材料部15に磁歪を生じさせるための磁界を磁歪材料部15に印加する。磁歪材料部15に印加される磁界(磁場)は、磁歪効果が得られる静磁場であるのが好ましいが、変動磁場であってもよい。磁歪材料部15に印加される磁界(磁場)が静磁場である場合、磁界印加部16は、例えば永久磁石で構成される。磁界印加部16により、磁化状態を最適な動作原点とするためのバイアス磁界を与えることができる。また、磁歪材料部15の磁界印加部16とは反対側に、他の磁界印加部が設けられるのが好ましい。 The magnetic field application unit 16 applies a magnetic field for causing magnetostriction to the magnetostrictive material unit 15 to the magnetostrictive material unit 15. The magnetic field (magnetic field) applied to the magnetostrictive material portion 15 is preferably a static magnetic field in which the magnetostrictive effect can be obtained, but may be a fluctuating magnetic field. When the magnetic field (magnetic field) applied to the magnetostrictive material unit 15 is a static magnetic field, the magnetic field application unit 16 is composed of, for example, a permanent magnet. The magnetic field application unit 16 can provide a bias magnetic field for setting the magnetized state as the optimum operating origin. Further, it is preferable that another magnetic field applying portion is provided on the side of the magnetostrictive material portion 15 opposite to the magnetic field applying portion 16.

[弾性波変調素子及び物理量センサの動作]
上記のように構成される弾性波変調素子10では、先ず、入力信号が第1電極部12に入力されて一対の櫛歯電極12a,12b間に電位差が生じると、一対の櫛歯電極12a,12bを介して圧電部材11に電位差が生じる。これにより、圧電部材11の表面のうち、第1電極部12が形成された部分で圧電効果によるSAWが発生する。
[Operation of elastic wave modulation element and physical quantity sensor]
In the elastic wave modulation element 10 configured as described above, first, when an input signal is input to the first electrode portion 12 and a potential difference is generated between the pair of comb tooth electrodes 12a and 12b, the pair of comb tooth electrodes 12a, A potential difference is generated in the piezoelectric member 11 via the 12b. As a result, SAW due to the piezoelectric effect is generated on the surface of the piezoelectric member 11 where the first electrode portion 12 is formed.

次に、圧電部材11が、例えば表面弾性波のうちのSH波(以下、SH−SAWともいう)を生じさせる構成である場合、SH−SAWは圧電部材11の主面11a或いはその近傍のうち、第1電極部12と第2電極部13の間の伝搬路14を伝搬して、第2電極部13に到達する。このとき、圧電部材11に応力が生じて、磁歪材料部15にも応力が作用すると、磁歪材料部15の磁化状態が変わり、その結果として磁歪材料部15、特に集磁部15cの弾性率が変わり(ΔE効果)、これにより、伝搬路14を伝搬するSH−SAWの伝搬速度が変わる。あるいは、磁歪材料部15に外部磁界が印加されると、ΔE効果により伝搬路14を伝搬するSH−SAWの伝搬速度が変わる。 Next, when the piezoelectric member 11 is configured to generate, for example, an SH wave (hereinafter, also referred to as SH-SAW) among surface acoustic waves, the SH-SAW is located on or near the main surface 11a of the piezoelectric member 11. , Propagate through the propagation path 14 between the first electrode portion 12 and the second electrode portion 13 to reach the second electrode portion 13. At this time, when stress is generated in the piezoelectric member 11 and stress also acts on the magnetostrictive material portion 15, the magnetization state of the magnetostrictive material portion 15 changes, and as a result, the elastic modulus of the magnetostrictive material portion 15, particularly the magnetostrictive portion 15c, increases. Change (ΔE effect), which changes the propagation velocity of SH-SAW propagating in the propagation path 14. Alternatively, when an external magnetic field is applied to the magnetostrictive material portion 15, the propagation speed of SH-SAW propagating in the propagation path 14 changes due to the ΔE effect.

ここで、上述のように、磁歪材料部のΔE効果は、磁歪材料部における磁化状態の変化に依存するため、磁化状態の変化量が小さいとΔE効果が生じ難い。
一方、本実施形態では、伝搬路14上に配置された集磁部15cに外部磁界の磁束が集められるため、集磁部15cの磁束密度が一対の磁束伝搬部15a,15bの磁束密度よりも高くなる。よって、集磁部15cにおける磁歪が、集磁部15cを設けない場合の非集磁部における磁歪よりも大きくなる。すなわち、集磁部15cにおいて、磁化状態の変化に伴うΔE効果に加えて、集磁に伴う磁歪効果(ΔE効果)の増大により、伝搬路14を伝搬するSH−SAWの伝搬速度が大きく変化する。よって、例えば圧電部材11に小さい応力が生じた場合、磁歪材料部15に集磁部15cを設けない場合と比較して、SH−SAWの伝搬速度の変化を十分に生じさせることができる。よって、例えば物理量センサ1を高感度な圧力センサとして機能させることができる。また、磁歪材料部15に小さい外部磁界が印加された場合にも、SH−SAWの伝搬速度の変化を十分に生じさせることができる。したがって、本実施形態の物理量センサ1を高感度な磁気センサとしても機能させることができる。
Here, as described above, since the ΔE effect of the magnetostrictive material portion depends on the change of the magnetization state in the magnetostrictive material portion, the ΔE effect is unlikely to occur if the amount of change in the magnetization state is small.
On the other hand, in the present embodiment, since the magnetic flux of the external magnetic field is collected in the magnetic flux collecting portion 15c arranged on the propagation path 14, the magnetic flux density of the magnetic collecting portion 15c is higher than the magnetic flux density of the pair of magnetic flux propagating portions 15a and 15b. It gets higher. Therefore, the magnetostriction in the magnetic collecting portion 15c is larger than the magnetostriction in the non-magnetic collecting portion when the magnetic collecting portion 15c is not provided. That is, in the magnetic collecting portion 15c, the propagation speed of SH-SAW propagating in the propagation path 14 changes significantly due to the increase in the magnetostrictive effect (ΔE effect) accompanying the magnetic collection in addition to the ΔE effect due to the change in the magnetization state. .. Therefore, for example, when a small stress is generated in the piezoelectric member 11, the propagation speed of SH-SAW can be sufficiently changed as compared with the case where the magnetostrictive material portion 15 is not provided with the magnetic collecting portion 15c. Therefore, for example, the physical quantity sensor 1 can function as a highly sensitive pressure sensor. Further, even when a small external magnetic field is applied to the magnetostrictive material portion 15, the propagation speed of SH-SAW can be sufficiently changed. Therefore, the physical quantity sensor 1 of the present embodiment can also function as a highly sensitive magnetic sensor.

SAWが第2電極部13に到達すると、SAWに基づく出力信号が第2電極部13から出力される。上記出力信号が検出回路部に入力されると、検出回路部により、SAWの伝搬特性の変化に基づいて、被検出体の物理量が検出される。上記被検出体としては、例えば生体、ビルや橋などの構造物の壁や支柱、コンピューター等の電子機器、テレビや冷蔵庫等の家電製品を挙げることができ、上記物理量としては、例えば磁界、トルク、圧力、温度、ガス量などを挙げることができる。 When the SAW reaches the second electrode unit 13, an output signal based on the SAW is output from the second electrode unit 13. When the output signal is input to the detection circuit unit, the detection circuit unit detects the physical quantity of the object to be detected based on the change in the propagation characteristics of the SAW. Examples of the object to be detected include living organisms, walls and columns of structures such as buildings and bridges, electronic devices such as computers, and home appliances such as televisions and refrigerators. Examples of physical quantities include magnetic fields and torque. , Pressure, temperature, gas quantity, etc.

上述したように、本実施形態によれば、磁歪材料部15が、一方の主面11a上において一対の磁束伝搬部15a,15bの間に設けられ、弾性波の伝搬路14上に配置された集磁部15cを有し、集磁部15cの磁束伝搬部15a(および/または磁束伝搬部15b)に対向する側面の厚みが、磁束伝搬部15a(および/または磁束伝搬部15b)の集磁部15cに対向する側面の厚みよりも薄いので、磁歪材料部15に外部磁界を印加したときに集磁部15cでの磁歪を増大させることができる。よって、伝搬路14を伝搬するSH−SAWの伝搬速度の変化を十分かつ効率的に生じさせることができ、従来よりも感度を向上して圧電部材11に働く磁界または応力を精度良く検知することができる。 As described above, according to the present embodiment, the magnetostrictive material portion 15 is provided between the pair of magnetic flux propagation portions 15a and 15b on one main surface 11a, and is arranged on the propagation path 14 of the elastic wave. The magnetic flux propagating portion 15a (and / or the magnetic flux propagating portion 15b) has a magnetic collecting portion 15c, and the thickness of the side surface of the magnetic collecting portion 15c facing the magnetic flux propagating portion 15a (and / or the magnetic flux propagating portion 15b) is the magnetizing of the magnetic flux propagating portion 15a (and / or the magnetic flux propagating portion 15b). Since it is thinner than the thickness of the side surface facing the portion 15c, the magnetostriction in the magnetic flux collecting portion 15c can be increased when an external magnetic field is applied to the magnetostrictive material portion 15. Therefore, it is possible to sufficiently and efficiently cause a change in the propagation speed of the SH-SAW propagating in the propagation path 14, improve the sensitivity as compared with the conventional case, and accurately detect the magnetic field or stress acting on the piezoelectric member 11. Can be done.

図2は、本発明の第2実施形態に係る弾性波変調素子を備える物理量センサの変形例を示す図であり、(a)は平面図、(b)は線II−IIに沿う断面図、(c)は底面図である。本実施形態では、磁歪材料部15が、圧電部材11の第1電極部12及び第2電極部13とは反対側の主面11bに設けられている点で、上記第1実施形態とは異なる。その他の部分については第1実施形態と同様であるため、以下に第1実施形態と異なる部分を説明する。 2A and 2B are views showing a modified example of a physical quantity sensor including an elastic wave modulation element according to a second embodiment of the present invention, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line II-II. (C) is a bottom view. The present embodiment differs from the first embodiment in that the magnetostrictive material portion 15 is provided on the main surface 11b on the side opposite to the first electrode portion 12 and the second electrode portion 13 of the piezoelectric member 11. .. Since the other parts are the same as those in the first embodiment, the parts different from the first embodiment will be described below.

図2(a)〜(c)に示すように、磁歪材料部21は、圧電部材11の一方の主面11b上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部21a,21bと、一方の主面11b上において一対の磁束伝搬部21a,21bの間に設けられ、弾性波の伝搬路14の近傍(例えば、伝搬路14の直下)に配置された集磁部21cとを有する。 As shown in FIGS. 2A to 2C, the magnetostrictive material portion 21 is provided on one main surface 11b of the piezoelectric member 11, and is a pair of magnetic flux propagation portions 21a, 21b capable of propagating the magnetic flux of an external magnetic field. And the magnetostrictive portion 21c provided between the pair of magnetic flux propagation portions 21a and 21b on one main surface 11b and arranged in the vicinity of the propagation path 14 of the elastic wave (for example, directly below the propagation path 14). Have.

本実施形態では、一対の磁束伝搬部21a,21b及び集磁部21cは、圧電部材11の一方の主面11b上に配置されており、第1電極部12及び前記第2電極部13は、圧電部材11の他方の主面11a上に配置されている。本構成においても、集磁部21cは、圧電部材11の厚み方向の投影面において、第1電極部12と第2電極部13との間に配置されている(図2(a),(c)参照)。 In the present embodiment, the pair of magnetic flux propagation portions 21a and 21b and the magnetic collection portion 21c are arranged on one main surface 11b of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are It is arranged on the other main surface 11a of the piezoelectric member 11. Also in this configuration, the magnetic collecting portion 21c is arranged between the first electrode portion 12 and the second electrode portion 13 on the projection surface in the thickness direction of the piezoelectric member 11 (FIGS. 2A and 2C). )reference).

ここで、圧電部材が、表面弾性波のうちのレイリー波を生じさせる構成である場合、レイリー波は圧電部材の表面に対して垂直な方向の変位を伴う。よって、磁歪材料部が第1,第2電極部と同じ主面上に設けられていると、レイリー波が磁歪材料部に伝搬して減衰が大きくなり、SAWの伝搬速度を十分に検知できない場合がある。 Here, when the piezoelectric member is configured to generate a Rayleigh wave among surface acoustic waves, the Rayleigh wave is accompanied by a displacement in a direction perpendicular to the surface of the piezoelectric member. Therefore, if the magnetostrictive material portion is provided on the same main surface as the first and second electrode portions, the Rayleigh wave propagates to the magnetostrictive material portion and the attenuation becomes large, and the propagation speed of SAW cannot be sufficiently detected. There is.

一方、本第2実施形態では、一対の磁束伝搬部21a,21b及び集磁部21cが、圧電部材11の第1電極部12及び第2電極部13とは反対側の主面11bに設けられているので、レイリー波が、第1電極部12と第2電極部13の間の伝搬路14を伝搬して第2電極部13に到達する際に、圧電部材11の他方の主面11aを伝搬するレイリー波が、磁歪材料部21、特に集磁部21cに伝搬するのを抑制することができる。図2(b)に示すように、集磁部21cの磁束伝搬部21a(および/または磁束伝搬部21b)に対向する側面の厚みが、磁束伝搬部21a(および/または磁束伝搬部21b)の集磁部21cに対向する側面の厚みよりも薄い。尚、本実施形態では、集磁部21cは、一対の磁束伝搬部21a,21bと当接した状態で別体で形成されているが、一対の磁束伝搬部21a,21bと一体で形成されていてもよい。上記構成により、磁束伝搬部21aまたは磁束伝搬部21bを通過した磁束は、集磁部21cをより密な状態で通過するため、磁束伝搬部21a,21bに比較して集磁部21c内の磁束密度がより大きくなる。よって、集磁部21cにおいて、磁化状態の変化に伴うΔE効果に加えて、集磁に伴う磁歪効果(ΔE効果)を増大させることができ、さらに、伝搬路14を伝搬するレイリー波の減衰を抑制することが可能となり、レイリー波の伝搬速度の変化を十分かつ正確に生じさせることができる。 On the other hand, in the second embodiment, the pair of magnetic flux propagating portions 21a and 21b and the magnetic collecting portion 21c are provided on the main surface 11b of the piezoelectric member 11 opposite to the first electrode portion 12 and the second electrode portion 13. Therefore, when the Rayleigh wave propagates through the propagation path 14 between the first electrode portion 12 and the second electrode portion 13 and reaches the second electrode portion 13, the other main surface 11a of the piezoelectric member 11 is pressed. It is possible to suppress the propagating Rayleigh wave from propagating to the magnetic strain material portion 21, particularly the magnetic collecting portion 21c. As shown in FIG. 2B, the thickness of the side surface of the magnetic collecting portion 21c facing the magnetic flux propagating portion 21a (and / or the magnetic flux propagating portion 21b) is that of the magnetic flux propagating portion 21a (and / or the magnetic flux propagating portion 21b). It is thinner than the thickness of the side surface facing the magnetic flux collecting portion 21c. In the present embodiment, the magnetic collecting portion 21c is formed separately in a state of being in contact with the pair of magnetic flux propagating portions 21a and 21b, but is integrally formed with the pair of magnetic flux propagating portions 21a and 21b. You may. With the above configuration, the magnetic flux that has passed through the magnetic flux propagation section 21a or the magnetic flux propagation section 21b passes through the magnetic flux propagation section 21c in a denser state. The density becomes higher. Therefore, in the magnetizing unit 21c, in addition to the ΔE effect due to the change in the magnetization state, the magnetostrictive effect (ΔE effect) due to the magnetizing can be increased, and the Rayleigh wave propagating in the propagation path 14 is attenuated. It is possible to suppress the change in the propagation velocity of the Rayleigh wave sufficiently and accurately.

図3(a)は、図1における弾性波変調素子10の第1変形例を示す図であり、図3(C)は、第2変形例を示す図である。また図3(b)は線III−IIIに沿う断面図である。
上記第1実施形態では、集磁部15cは、一対の磁束伝搬部15a,15bと一体で形成されているが、これに限られず、集磁部は一対の磁束伝搬部と別体で形成されていてもよい。
FIG. 3A is a diagram showing a first modification of the elastic wave modulation element 10 in FIG. 1, and FIG. 3C is a diagram showing a second modification. FIG. 3B is a cross-sectional view taken along the line III-III.
In the first embodiment, the magnetic collecting portion 15c is integrally formed with the pair of magnetic flux propagating portions 15a and 15b, but the present invention is not limited to this, and the magnetic collecting portion is formed separately from the pair of magnetic flux propagating portions. May be.

例えば、図3(a)に示すように、磁歪材料部31の集磁部31cが、一対の磁束伝搬部31a,31bと隙間を有するように離間して配置されてもよい。この場合、圧電部材11の平面視において、集磁部31cは矩形形状であり、一対の磁束伝搬部31a,31bの各々は扁平の台形状である。
また、図3(b)に示すように、集磁部31cの磁束伝搬部31a(および/または磁束伝搬部31b)に対向する側面の厚みが、磁束伝搬部31a(および/または磁束伝搬部31b)の集磁部31cに対向する側面の厚みよりも薄い。本実施形態では、集磁部31cは、一対の磁束伝搬部31a,31bと分離して形成されている。本構成により、磁束伝搬部31aまたは磁束伝搬部31bを通過した磁束は、集磁部31cをより密な状態で通過するため、磁束伝搬部31a,31bに比較して集磁部31c内の磁束密度がより大きくなる。
For example, as shown in FIG. 3A, the magnetizing portion 31c of the magnetostrictive material portion 31 may be arranged apart from the pair of magnetic flux propagating portions 31a and 31b so as to have a gap. In this case, in the plan view of the piezoelectric member 11, the magnetic collecting portion 31c has a rectangular shape, and each of the pair of magnetic flux propagating portions 31a and 31b has a flat trapezoidal shape.
Further, as shown in FIG. 3B, the thickness of the side surface of the magnetic collecting portion 31c facing the magnetic flux propagating portion 31a (and / or the magnetic flux propagating portion 31b) is the thickness of the magnetic flux propagating portion 31a (and / or the magnetic flux propagating portion 31b). ) Is thinner than the thickness of the side surface facing the magnetic collecting portion 31c. In the present embodiment, the magnetic collecting portion 31c is formed separately from the pair of magnetic flux propagating portions 31a and 31b. With this configuration, the magnetic flux that has passed through the magnetic flux propagation section 31a or the magnetic flux propagation section 31b passes through the magnetic flux propagation section 31c in a denser state. The density becomes higher.

また、図3(c)に示すように、磁歪材料部32の集磁部32cが、一対の磁束伝搬部32a,32bと別体であるか或いは離間して配置されてもよい。この場合、圧電部材11の平面視において、集磁部32cは矩形状であり、磁束伝搬部32aは、扁平の矩形状を有する複数の部位32a−1,32a−1,…と、三角形状を有する部位32a−2を有し、磁束伝搬部32bは、扁平の矩形状を有する複数の部位32b−1,32b−1,…と、三角形状を有する部位32b−2を有する。 Further, as shown in FIG. 3C, the magnetizing portion 32c of the magnetostrictive material portion 32 may be separate from or separated from the pair of magnetic flux propagating portions 32a and 32b. In this case, in the plan view of the piezoelectric member 11, the magnetic collecting portion 32c has a rectangular shape, and the magnetic flux propagating portion 32a has a triangular shape with a plurality of portions 32a-1, 32a-1, ... Having a flat rectangular shape. The magnetic flux propagating portion 32b has a plurality of portions 32b-1, 32b-1, ... Having a flat rectangular shape, and a portion 32b-2 having a triangular shape.

本変形例の構成によっても、磁歪材料部31,32に外部磁界を印加したときに集磁部31c,32cでの磁歪を増大させることができる。また、設計の自由度が向上し、更には圧電部材11上に磁歪材料部31,32を容易に形成することができる。 Also with the configuration of this modification, the magnetostriction in the magnetostrictive parts 31c and 32c can be increased when an external magnetic field is applied to the magnetostrictive material parts 31 and 32. Further, the degree of freedom in design is improved, and the magnetostrictive material portions 31 and 32 can be easily formed on the piezoelectric member 11.

図4は、図1における弾性波変調素子10の第3変形例を示す図であり、(a)は平面図、(b)は線IV−IVに沿う断面図である。
上記第1実施形態では、集磁部15cにおける磁束が、弾性波の伝搬方向に垂直な方向に沿って形成されているが、これに限られず、集磁部における磁束が、弾性波の伝搬方向に沿って形成されてもよい。
4A and 4B are views showing a third modification of the elastic wave modulation element 10 in FIG. 1, where FIG. 4A is a plan view and FIG. 4B is a cross-sectional view taken along the line IV-IV.
In the first embodiment, the magnetic flux in the magnetic collecting portion 15c is formed along the direction perpendicular to the propagation direction of the elastic wave, but the magnetic flux in the magnetic collecting portion is not limited to this, and the magnetic flux in the magnetic collecting portion is the propagation direction of the elastic wave. It may be formed along.

例えば、磁歪材料部33の一対の磁束伝搬部33a,33b及び集磁部33cは、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13は、圧電部材11の一方の主面11a上であって、一対の磁束伝搬部33a,33bに設けられた開口部34a,34b(非成膜部)に対応する位置に配置される。
また、図4(b)に示すように、集磁部33cの磁束伝搬部33a(および/または磁束伝搬部33b)に対向する側面の厚みが、磁束伝搬部33a(および/または磁束伝搬部33b)の集磁部33cに対向する側面の厚みよりも薄い。本実施形態では、集磁部33cは、一対の磁束伝搬部33a,33bと当接した状態で別体で形成されているが、一対の磁束伝搬部33a,33bと一体で形成されていてもよい。上記構成により、磁束伝搬部33aまたは磁束伝搬部33bを通過した磁束は、集磁部33cをより密な状態で通過するため、磁束伝搬部33a,33bに比較して集磁部33c内の磁束密度がより大きくなる。また、上記一対の開口部を有さない一対の磁束伝搬部を設け、該一対の磁束伝搬部及び集磁部が、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13が、圧電部材11の一方の主面11a上であって当該一対の磁束伝搬部の下に配置されてもよい。本変形例の構成によっても、磁歪材料部33に外部磁界を印加したときに集磁部33cでの磁歪を増大させることができる。
For example, the pair of magnetic flux propagation portions 33a and 33b and the magnetic collection portion 33c of the magnetostrictive material portion 33 are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are piezoelectric. It is arranged on one main surface 11a of the member 11 at a position corresponding to the openings 34a and 34b (non-deposited portions) provided in the pair of magnetic flux propagation portions 33a and 33b.
Further, as shown in FIG. 4B, the thickness of the side surface of the magnetic collecting portion 33c facing the magnetic flux propagating portion 33a (and / or the magnetic flux propagating portion 33b) is the thickness of the magnetic flux propagating portion 33a (and / or the magnetic flux propagating portion 33b). ) Is thinner than the thickness of the side surface facing the magnetic collecting portion 33c. In the present embodiment, the magnetic collecting portion 33c is formed separately in a state of being in contact with the pair of magnetic flux propagating portions 33a and 33b, but even if it is integrally formed with the pair of magnetic flux propagating portions 33a and 33b. good. With the above configuration, the magnetic flux that has passed through the magnetic flux propagation section 33a or the magnetic flux propagation section 33b passes through the magnetic flux propagation section 33c in a denser state. The density becomes higher. Further, a pair of magnetic flux propagating portions having no pair of openings are provided, and the pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 And the second electrode portion 13 may be arranged on one main surface 11a of the piezoelectric member 11 and below the pair of magnetic flux propagation portions. Also with the configuration of this modification, the magnetostriction in the magnetostrictive portion 33c can be increased when an external magnetic field is applied to the magnetostrictive material portion 33.

また、上記一対の開口部を有さない一対の磁束伝搬部及び集磁部が、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13が、圧電部材11の他方の主面11b上に配置されてもよい。 Further, the pair of magnetic flux propagating portions and magnetic collecting portions having no pair of openings are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are piezoelectric. It may be arranged on the other main surface 11b of the member 11.

更に、集磁部における磁束が、弾性波の伝搬方向(例えば、伝搬方向に平行な方向)に沿って形成され、一対の磁束伝搬部33a,33b及び集磁部33cが、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13が、圧電部材11の一方の主面上であって集磁部33cの下に配置されてもよい。 Further, the magnetic flux in the magnetic collecting portion is formed along the propagation direction of the elastic wave (for example, the direction parallel to the propagation direction), and the pair of magnetic flux propagating portions 33a and 33b and the magnetic collecting portion 33c are one of the piezoelectric members 11. The first electrode portion 12 and the second electrode portion 13 may be arranged on one main surface of the piezoelectric member 11 and below the magnetic flux collecting portion 33c.

図5は、本発明の第3実施形態に係る弾性波変調素子の構成を概略的に示す図であり、(a)は平面図、(b)は線V−Vに沿う断面図である。本第3実施形態では、第1電極部12及び第2電極部13が集磁部の下に設けられている点で、上記第1実施形態と異なる。第1実施形態と同様の構成については、第1実施形態と同一の符号を付してその説明を省略し、異なる部分を以下に説明する。 5A and 5B are views schematically showing the configuration of an elastic wave modulation device according to a third embodiment of the present invention, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along the line VV. The third embodiment is different from the first embodiment in that the first electrode portion 12 and the second electrode portion 13 are provided under the magnetic collecting portion. The same configurations as those of the first embodiment are designated by the same reference numerals as those of the first embodiment, the description thereof will be omitted, and the different parts will be described below.

図5(a)に示すように、磁歪材料部35の集磁部35cが、一対の磁束伝搬部35a,35bと隙間を有するように離間して配置されている。そして、集磁部35cは、圧電部材11の厚み方向に投影した投影面において、第1電極部12及び第2電極部13を包含する位置に配置されている。 As shown in FIG. 5A, the magnetostrictive material portion 35 is arranged so as to have a gap with the pair of magnetic flux propagation portions 35a and 35b. The magnetic collecting portion 35c is arranged at a position including the first electrode portion 12 and the second electrode portion 13 on the projection surface projected in the thickness direction of the piezoelectric member 11.

本実施形態では、第1電極部12及び第2電極部13が、圧電部材11の一方の主面11a上であって集磁部35cの下に設けられているので、集磁部35cの磁歪により、伝搬路を伝搬する弾性波の伝搬速度の変化をより効率的に生じさせることができる。
さらに、先に図示した図3(b)と同様に、集磁部35cの磁束伝搬部35a(および/または磁束伝搬部35b)に対向する側面の厚みが、磁束伝搬部35a(および/または磁束伝搬部35b)の集磁部35cに対向する側面の厚みよりも薄い。本構成により、磁束伝搬部35aまたは磁束伝搬部35bを通過した磁束は、集磁部35cをより密な状態で通過するため、磁束伝搬部35a,35bに比較して集磁部35c内の磁束密度がより大きくなる。よって、例えば本実施形態の構成を共振子型の物理量センサに適用することで、従来よりも感度を向上して圧電部材11に働く応力または磁界を精度良く検知することができる。また、一対の磁束伝搬部35a,35b及び集磁部35cが、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13が、圧電部材11の他方の主面11b上に配置されてもよい。
In the present embodiment, since the first electrode portion 12 and the second electrode portion 13 are provided on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion 35c, the magnetostriction of the magnetic collecting portion 35c Therefore, it is possible to more efficiently change the propagation velocity of the elastic wave propagating in the propagation path.
Further, as in FIG. 3B shown above, the thickness of the side surface of the magnetic collecting portion 35c facing the magnetic flux propagating portion 35a (and / or the magnetic flux propagating portion 35b) is the thickness of the magnetic flux propagating portion 35a (and / or the magnetic flux). It is thinner than the thickness of the side surface of the propagation portion 35b) facing the magnetic flux collecting portion 35c. With this configuration, the magnetic flux that has passed through the magnetic flux propagation section 35a or the magnetic flux propagation section 35b passes through the magnetic flux propagation section 35c in a denser state, so that the magnetic flux in the magnetic flux propagation section 35c is compared with the magnetic flux propagation sections 35a and 35b. The density becomes higher. Therefore, for example, by applying the configuration of the present embodiment to the resonator type physical quantity sensor, the sensitivity can be improved as compared with the conventional case, and the stress or magnetic field acting on the piezoelectric member 11 can be detected with high accuracy. Further, a pair of magnetic flux propagation portions 35a and 35b and a magnetic collection portion 35c are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are the other of the piezoelectric member 11. It may be arranged on the main surface 11b.

尚、図5(b)に示すように、弾性波変調素子の断面視において、集磁部35cの下部が、櫛歯形状を有し、一対の櫛歯電極12a,12b間および一対の櫛歯電極13a,13b間に入り込んでいるのが好ましい。これにより、集磁部35cを圧電部材11により近い位置に配置することができ、弾性波の伝搬速度の変化を更に効率的に生じさせることができる。また、磁歪材料部35(特に集磁部35c)が金属で構成される場合、電極間の短絡防止の観点から、弾性波変調素子は、圧電部材11、第1電極部12および第2電極部13を覆って形成された絶縁層20を更に有するのが好ましい。 As shown in FIG. 5B, in the cross-sectional view of the elastic wave modulation element, the lower part of the magnetic collecting portion 35c has a comb tooth shape, and is between the pair of comb tooth electrodes 12a and 12b and the pair of comb teeth. It is preferable that the electrodes 13a and 13b are inserted between the electrodes 13a and 13b. As a result, the magnetic collecting portion 35c can be arranged at a position closer to the piezoelectric member 11, and the change in the propagation speed of the elastic wave can be generated more efficiently. When the magnetostrictive material portion 35 (particularly the magnetic collecting portion 35c) is made of metal, the elastic wave modulation element includes the piezoelectric member 11, the first electrode portion 12, and the second electrode portion from the viewpoint of preventing short circuits between the electrodes. It is preferable to further have an insulating layer 20 formed so as to cover the 13.

また、本実施形態では、集磁部35cにおける磁束が、弾性波の伝搬方向に垂直な方向に沿って形成されているが、これに限られず、集磁部35cにおける磁束が、弾性波の伝搬方向に沿って形成されてもよい。またこのとき、一対の磁束伝搬部35a,35b及び集磁部35cが、圧電部材11の一方の主面11a上に配置され、第1電極部12及び第2電極部13が、圧電部材11の一方の主面11a上であって集磁部35cの下に配置されるか、圧電部材11の他方の主面11b上に配置されてもよい。 Further, in the present embodiment, the magnetic flux in the magnetic collecting portion 35c is formed along the direction perpendicular to the propagation direction of the elastic wave, but the present invention is not limited to this, and the magnetic flux in the magnetic collecting portion 35c propagates the elastic wave. It may be formed along the direction. At this time, the pair of magnetic flux propagation portions 35a and 35b and the magnetic collection portion 35c are arranged on one main surface 11a of the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 are formed on the piezoelectric member 11. It may be arranged on one main surface 11a and below the magnetic flux collecting portion 35c, or may be arranged on the other main surface 11b of the piezoelectric member 11.

図6(a)は、本発明の第4実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す平面図であり、図6(b)は、第4実施形態の変形例を示す平面図である。本第4実施形態では、物理量センサが共振子型である場合を例に挙げて説明する。物理量センサが共振子型であること以外は第3実施形態と同様であるため、以下に第3実施形態と異なる部分を説明する。 FIG. 6A is a plan view schematically showing the configuration of a physical quantity sensor including an elastic wave modulation element according to a fourth embodiment of the present invention, and FIG. 6B is a modification of the fourth embodiment. It is a top view which shows. In the fourth embodiment, a case where the physical quantity sensor is a resonator type will be described as an example. Since the physical quantity sensor is the same as the third embodiment except that it is a resonator type, a part different from the third embodiment will be described below.

図6(a)に示すように、物理量センサ2の弾性波変調素子40は、圧電部材11に取り付けられ、第1電極部12及び第2電極部13の両側に配置された一対の反射器41a,41bを更に備える。本実施形態では、第1電極部12が、互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極のうちの櫛歯電極42a(一対の櫛歯電極のうちの一方)を構成し、第2電極部13が、上記一対の櫛歯電極のうちの櫛歯電極42b(一対の櫛歯電極のうちの他方)を構成している。櫛歯電極42aと櫛歯電極42bは入出力部18に接続されている。弾性波変調素子40は、いわゆる1ポート共振子を構成している。 As shown in FIG. 6A, the elastic wave modulation element 40 of the physical quantity sensor 2 is attached to the piezoelectric member 11 and is a pair of reflectors 41a arranged on both sides of the first electrode portion 12 and the second electrode portion 13. , 41b are further provided. In the present embodiment, the first electrode portion 12 is a comb tooth electrode 42a (one of a pair of comb tooth electrodes) among a pair of comb tooth electrodes arranged so as to face each other so that the teeth are alternately arranged. The second electrode portion 13 constitutes the comb tooth electrode 42b (the other of the pair of comb tooth electrodes) of the pair of comb tooth electrodes. The comb tooth electrode 42a and the comb tooth electrode 42b are connected to the input / output unit 18. The elastic wave modulation element 40 constitutes a so-called 1-port resonator.

この弾性波変調素子40では、一対の反射器41a,41bが一対の櫛歯電極42a,42bの両側に配置されており、一対の櫛歯電極42a,42bによって励振した弾性波が、一対の反射器41a,41b間に閉じ込められる。このとき、一対の櫛歯電極42a,42bが圧電部材11の一方の主面11a上であって集磁部15cの下に配置されているので、集磁部15cの磁歪により、伝搬路14を伝搬する弾性波(あるいは定在波)の伝搬速度の変化をより効率的に生じさせることができる。よって、本実施形態の構成を1ポート共振子型の物理量センサに適用することで、従来よりも感度を向上して圧電部材11に働く応力または磁界を精度良く検知することができる。 In this elastic wave modulation element 40, a pair of reflectors 41a and 41b are arranged on both sides of a pair of comb tooth electrodes 42a and 42b, and elastic waves excited by the pair of comb tooth electrodes 42a and 42b are reflected by a pair of reflections. It is confined between the vessels 41a and 41b. At this time, since the pair of comb tooth electrodes 42a and 42b are arranged on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion 15c, the propagation path 14 is provided by the magnetostriction of the magnetic collecting portion 15c. Changes in the propagation velocity of propagating elastic waves (or standing waves) can be generated more efficiently. Therefore, by applying the configuration of the present embodiment to the 1-port resonator type physical quantity sensor, the sensitivity can be improved as compared with the conventional case, and the stress or magnetic field acting on the piezoelectric member 11 can be detected with high accuracy.

また、図6(b)に示すように、物理量センサ3の弾性波変調素子50は、いわゆる2ポート共振子を構成してもよい。すなわち、弾性波変調素子50は、圧電部材11に取り付けられ、第1電極部12及び第2電極部13の両側に配置された一対の反射器51a,51bを更に備えてもよい。本変形例では、第1電極部12が、互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極12a,12bで構成され、第2電極部13が、互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極13a,13bで構成されている。一対の櫛歯電極12a,12bは入力部17に接続され、一対の櫛歯電極13a,13bは出力部18に接続されている。また、磁歪材料部15は、圧電部材11の一方の主面11a上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部36a,36bと、一方の主面11a上において一対の磁束伝搬部36a,36bの間に設けられ、弾性波の伝搬路14の近傍に配置された集磁部36cとを有している。 Further, as shown in FIG. 6B, the elastic wave modulation element 50 of the physical quantity sensor 3 may form a so-called two-port resonator. That is, the elastic wave modulation element 50 may further include a pair of reflectors 51a and 51b attached to the piezoelectric member 11 and arranged on both sides of the first electrode portion 12 and the second electrode portion 13. In this modification, the first electrode portion 12 is composed of a pair of comb tooth electrodes 12a and 12b arranged so as to face each other so that the teeth are alternately arranged, and the second electrode portion 13 has the teeth of each other. It is composed of a pair of comb tooth electrodes 13a and 13b arranged so as to be alternately arranged so as to face each other. The pair of comb tooth electrodes 12a and 12b are connected to the input unit 17, and the pair of comb tooth electrodes 13a and 13b are connected to the output unit 18. Further, the magnetostrictive material portion 15 is provided on one main surface 11a of the piezoelectric member 11, and has a pair of magnetic flux propagation portions 36a and 36b capable of propagating the magnetic flux of an external magnetic field and a pair of magnetic fluxes on one main surface 11a. It has a magnetic flux collecting portion 36c provided between the propagation portions 36a and 36b and arranged in the vicinity of the propagation path 14 of the elastic wave.

本変形例では、一対の櫛歯電極12a,12b及び一対の櫛歯電極13a,13bが共に、圧電部材11の一方の主面11a上であって集磁部36cの下に配置されているので、集磁部36cの磁歪により、伝搬路を伝搬する弾性波(あるいは定常波)の伝搬速度の変化をより効率的に生じさせることができる。このように、弾性波変調素子50の構成を2ポート共振子型の物理量センサに適用することによっても、図6(a)の構成の場合と同様のメカニズムにより、従来よりも感度を向上して圧電部材11に働く応力または磁界を精度良く検知することができる。 In this modification, the pair of comb tooth electrodes 12a and 12b and the pair of comb tooth electrodes 13a and 13b are both located on one main surface 11a of the piezoelectric member 11 and below the magnetizing portion 36c. Due to the magnetostriction of the magnetic collecting portion 36c, it is possible to more efficiently change the propagation velocity of the elastic wave (or stationary wave) propagating in the propagation path. In this way, by applying the configuration of the elastic wave modulation element 50 to the 2-port resonator type physical quantity sensor, the sensitivity is improved as compared with the conventional case by the same mechanism as in the configuration of FIG. 6A. The stress or magnetic field acting on the piezoelectric member 11 can be detected with high accuracy.

図7は、本発明の第5実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す平面図である。本第5実施形態では、物理量センサが遅延線型の弾性波変調素子とアンテナ部とを備える場合を例に挙げて説明する。物理量センサが遅延線型の弾性波変調素子とアンテナ部とを備えること以外は第3実施形態(図6(a))と同様であるため、以下に第3実施形態と異なる部分を説明する。 FIG. 7 is a plan view schematically showing the configuration of a physical quantity sensor including an elastic wave modulation element according to a fifth embodiment of the present invention. In the fifth embodiment, a case where the physical quantity sensor includes a delayed linear elastic wave modulation element and an antenna portion will be described as an example. Since the physical quantity sensor is the same as the third embodiment (FIG. 6A) except that the physical quantity sensor includes a delayed linear elastic wave modulation element and an antenna portion, a part different from the third embodiment will be described below.

図7に示すように、物理量センサ4の弾性波変調素子60は、圧電部材11に取り付けられ、圧電部材11に弾性波を励起または受信する第1電極部12および第2電極部13と、圧電部材11に取り付けられ、集磁部15cの一方側に配置された一の反射器61を備える。本実施形態では、第1電極部12および第2電極部が、圧電部材11に弾性波を励起または受信する一対の櫛歯電極43a,43bである。一対の櫛歯電極43a,43bのうちの櫛歯電極43aはアンテナ部19に接続され、櫛歯電極43bは接地されている。そして、第1電極部12及び第2電極部13は、圧電部材11の一方の主面11a上であって集磁部15cの他方側に配置されている。第1電極部12及び第2電極部13は、圧電部材11の一方の主面11a上であって集磁部13cの下に配置されてもよい。 As shown in FIG. 7, the elastic wave modulation element 60 of the physical quantity sensor 4 is attached to the piezoelectric member 11, and the first electrode portion 12 and the second electrode portion 13 that excite or receive the elastic wave in the piezoelectric member 11 and the piezoelectric member 13 are piezoelectric. A single reflector 61 attached to the member 11 and arranged on one side of the magnetic collecting portion 15c is provided. In the present embodiment, the first electrode portion 12 and the second electrode portion are a pair of comb tooth electrodes 43a and 43b that excite or receive elastic waves in the piezoelectric member 11. Of the pair of comb tooth electrodes 43a and 43b, the comb tooth electrode 43a is connected to the antenna portion 19, and the comb tooth electrode 43b is grounded. The first electrode portion 12 and the second electrode portion 13 are arranged on one main surface 11a of the piezoelectric member 11 and on the other side of the magnetic collecting portion 15c. The first electrode portion 12 and the second electrode portion 13 may be arranged on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion 13c.

この弾性波変調素子60では、アンテナ部19で電波を受信すると、一対の櫛歯電極43a,43bによって励振した弾性波が、圧電部材11の伝搬路14を介して反射器61に到達する。その後、反射器61での反射によって生じた反射波が伝搬路14を介して一対の櫛歯電極43a,43bに到達し、アンテナ部19から電波が送信される。このとき、集磁部15cが弾性波の伝搬路14上に配置されているので、集磁部15cの磁歪により、伝搬路を伝搬する弾性波の伝搬速度の変化をより効率的に生じさせることができる。よって、本実施形態の構成を、遅延線型の弾性波変調素子とアンテナ部とを備える物理量センサに適用することで、ワイヤレスで、従来よりも感度を向上して圧電部材11に働く応力または磁界を精度良く検知することが可能となる。 In the elastic wave modulation element 60, when a radio wave is received by the antenna unit 19, the elastic wave excited by the pair of comb tooth electrodes 43a and 43b reaches the reflector 61 via the propagation path 14 of the piezoelectric member 11. After that, the reflected wave generated by the reflection by the reflector 61 reaches the pair of comb tooth electrodes 43a and 43b via the propagation path 14, and the radio wave is transmitted from the antenna unit 19. At this time, since the magnetic collecting portion 15c is arranged on the propagation path 14 of the elastic wave, the magnetostriction of the magnetic collecting portion 15c causes a change in the propagation velocity of the elastic wave propagating in the propagation path more efficiently. Can be done. Therefore, by applying the configuration of the present embodiment to a physical quantity sensor including a delayed linear elastic wave modulation element and an antenna portion, the stress or magnetic field acting on the piezoelectric member 11 can be wirelessly improved in sensitivity as compared with the conventional case. It is possible to detect with high accuracy.

図8は、本発明の第6実施形態に係る弾性波変調素子を備える物理量センサの構成を概略的に示す図である。
図1から図7の弾性変調素子では、圧電部材の平面視において、磁束伝搬部は台形状であるが、これに限らず、矩形状であってもよい。例えば、図8に示すように、弾性波変調素子70の磁歪材料部71が、一対の磁束伝搬部71a,71bおよび集磁部71cを有し、一対の磁束伝搬部71a,71bが、集磁部71cと同様に矩形状であってもよい。一対の磁束伝搬部71a,71bが矩形状であることで、電極からの引出線パターンの設計自由度を大きくすることができる。
FIG. 8 is a diagram schematically showing a configuration of a physical quantity sensor including an elastic wave modulation element according to a sixth embodiment of the present invention.
In the elastic modulation elements of FIGS. 1 to 7, the magnetic flux propagation portion is trapezoidal in the plan view of the piezoelectric member, but the present invention is not limited to this, and may be rectangular. For example, as shown in FIG. 8, the magnetostrictive material portion 71 of the elastic wave modulation element 70 has a pair of magnetic flux propagation portions 71a and 71b and a magnetic collection portion 71c, and the pair of magnetic flux propagation portions 71a and 71b collect magnetism. It may have a rectangular shape as in the portion 71c. Since the pair of magnetic flux propagation portions 71a and 71b have a rectangular shape, the degree of freedom in designing the leader line pattern from the electrode can be increased.

以上、本発明の実施形態について詳述したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. Is possible.

例えば、図7の弾性波変調素子60は、一の反射器を備えているが、これに限らず、1電極部及び第2電極部の両側に配置された一対の反射器を備えていてもよい。またこのとき、第1電極部及び第2電極部は、圧電部材11の一方の主面11a上であって集磁部の下に配置されてもよい(図6(a),(b)参照)。 For example, the elastic wave modulation element 60 of FIG. 7 includes one reflector, but is not limited to this, and may include a pair of reflectors arranged on both sides of the first electrode portion and the second electrode portion. good. At this time, the first electrode portion and the second electrode portion may be arranged on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion (see FIGS. 6A and 6B). ).

また、図6(a)において、一対の反射器41a,41bは、集磁部15cの両側に取り付けられているが、これに限られない。集磁部15cが、圧電部材11の厚み方向に投影した投影面において、一対の反射器41a,41bを包含する位置に配置されてもよい。また、一対の反射器41a,41bが、圧電部材11の一方の主面11a上であって集磁部15cの下に配置されてもよい。
同様に、図6(b)において、一対の反射器51a,51bは、集磁部36cの両側に取り付けられているが、これに限られない。集磁部36cが、圧電部材11の厚み方向に投影した投影面において、一対の反射器51a,51bを包含する位置に配置されてもよい。また、一対の反射器51a,51bが、圧電部材11の一方の主面11a上であって集磁部36cの下に配置されてもよい。
Further, in FIG. 6A, the pair of reflectors 41a and 41b are attached to both sides of the magnetic collecting portion 15c, but the present invention is not limited to this. The magnetic collecting portion 15c may be arranged at a position including the pair of reflectors 41a and 41b on the projection surface projected in the thickness direction of the piezoelectric member 11. Further, the pair of reflectors 41a and 41b may be arranged on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion 15c.
Similarly, in FIG. 6B, the pair of reflectors 51a and 51b are attached to both sides of the magnetic collecting portion 36c, but the present invention is not limited to this. The magnetic collecting portion 36c may be arranged at a position including the pair of reflectors 51a and 51b on the projection surface projected in the thickness direction of the piezoelectric member 11. Further, the pair of reflectors 51a and 51b may be arranged on one main surface 11a of the piezoelectric member 11 and below the magnetic collecting portion 36c.

更に、図7において、反射器61は、集磁部15cの一方側に取り付けられているが、これに限られない。集磁部15cが、圧電部材11の厚み方向に投影した投影面において、一の反射器61を包含する位置に配置され、一の反射器61が、圧電部材11の一方の主面11a上であって集磁部15cの下に配置されてもよい。 Further, in FIG. 7, the reflector 61 is attached to one side of the magnetic collecting portion 15c, but the present invention is not limited to this. The magnetic collecting portion 15c is arranged at a position including one reflector 61 on the projection surface projected in the thickness direction of the piezoelectric member 11, and one reflector 61 is placed on one main surface 11a of the piezoelectric member 11. It may be arranged under the magnetic collecting portion 15c.

本発明の弾性波変調素子は、磁界、トルク、圧力、温度等の各種物理量センサに適用することができる。 The elastic wave modulation element of the present invention can be applied to various physical quantity sensors such as magnetic field, torque, pressure, and temperature.

1 物理量センサ
2 物理量センサ
3 物理量センサ
4 物理量センサ
10 弾性波変調素子
11 圧電部材
11a 主面
11b 主面
12 第1電極部
12a 櫛歯電極
12b 櫛歯電極
13 第2電極部
13a 櫛歯電極
13b 櫛歯電極
14 伝搬路
15 磁歪材料部
15a 磁束伝搬部
15b 磁束伝搬部
15c 集磁部
16 磁界印加部
17 入力部
18 出力部
19 アンテナ部
20 絶縁層
21 磁歪材料部
21a 磁束伝搬部
21b 磁束伝搬部
21c 集磁部
31 磁歪材料部
31a 磁束伝搬部
31b 磁束伝搬部
31c 集磁部
32 磁歪材料部
32a 磁束伝搬部
32a−1 部位
32a−2 部位
32b 磁束伝搬部
32b−1 部位
32b−2 部位
32c 集磁部
33 磁歪材料部
33a 磁束伝搬部
33b 磁束伝搬部
33c 集磁部
34a 開口部
34b 開口部
35 磁歪材料部
35a 磁束伝搬部
35b 磁束伝搬部
35c 集磁部
36a 磁束伝搬部
36b 磁束伝搬部
36c 集磁部
40 弾性波変調素子
41a 反射器
41b 反射器
42a 櫛歯電極
42b 櫛歯電極
43a 櫛歯電極
43b 櫛歯電極
50 弾性波変調素子
51a 反射器
51b 反射器
60 弾性波変調素子
61 反射器
70 弾性波変調素子
71 磁歪材料部
71a 磁束伝搬部
71b 磁束伝搬部
71c 集磁部
1 Physical quantity sensor 2 Physical quantity sensor 3 Physical quantity sensor 4 Physical quantity sensor 10 Elastic wave modulation element 11 Hydraulic member 11a Main surface 11b Main surface 12 First electrode part 12a Comb tooth electrode 12b Comb tooth electrode 13 Second electrode part 13a Comb tooth electrode 13b Comb Tooth electrode 14 Propagation path 15 Magnetic strain material part 15a Magnetic flux propagation part 15b Magnetic flux propagation part 15c Magnetic flux propagation part 16 Magnetic flux application part 17 Input part 18 Output part 19 Antenna part 20 Insulation layer 21 Magnetic strain material part 21a Magnetic flux propagation part 21b Magnetic flux propagation part 21c Magnetic flux propagation part 31 Magnetic flux propagation part 31a Magnetic flux propagation part 31c Magnetic flux propagation part 32 Magnetic strain material part 32a Magnetic flux propagation part 32a-1 Part 32a-2 Part 32b Magnetic flux propagation part 32b-1 Part 32b-2 Part 32c Concentration Part 33 Magnetic flux propagation part 33a Magnetic flux propagation part 33b Magnetic flux propagation part 33c Magnetic flux propagation part 34a Opening part 34b Opening part 35 Magnetic strain material part 35a Magnetic flux propagation part 35b Magnetic flux propagation part 35c Magnetic flux propagation part 36b Magnetic flux propagation part 36c Magnetic flux propagation part 36c Part 40 Elastic wave modulation element 41a Reflector 41b Reflector 42a Comb tooth electrode 42b Comb tooth electrode 43a Comb tooth electrode 43b Comb tooth electrode 50 Elastic wave modulation element 51a Reflector 51b Reflector 60 Elastic wave modulation element 61 Reflector 70 Elastic wave Modulator 71 Magnetic strain material part 71a Magnetic flux propagation part 71b Magnetic flux propagation part 71c Magnetic flux collection part

Claims (16)

圧電部材と、
前記圧電部材に取り付けられ、前記圧電部材に弾性波を励起する第1電極部と、
前記圧電部材に取り付けられ、前記弾性波を受信する第2電極部と、
前記弾性波の存在領域またはその近傍に設けられた磁歪材料部と、
を備え、
前記磁歪材料部は、
前記圧電部材の一方の主面上に設けられ、外部磁界の磁束を伝搬可能な一対の磁束伝搬部と、
前記一方の主面上において前記一対の磁束伝搬部の間に設けられ、前記弾性波の伝搬路上またはその近傍に配置された集磁部とを有し、
前記集磁部の前記磁束伝搬部に対向する側面の厚みが、前記磁束伝搬部の前記集磁部に対向する側面の厚みよりも薄い、
ことを特徴とする弾性波変調素子。
Piezoelectric member and
A first electrode portion attached to the piezoelectric member and exciting an elastic wave to the piezoelectric member,
A second electrode portion attached to the piezoelectric member and receiving the elastic wave,
A magnetostrictive material portion provided in or near the region where elastic waves exist, and
With
The magnetostrictive material part is
A pair of magnetic flux propagating portions provided on one main surface of the piezoelectric member and capable of propagating the magnetic flux of an external magnetic field.
It has a magnetic collecting portion provided between the pair of magnetic flux propagating portions on one of the main surfaces and arranged on or near the propagation path of the elastic wave.
The thickness of the side surface of the magnetic flux propagating portion facing the magnetic flux propagating portion is thinner than the thickness of the side surface of the magnetic flux propagating portion facing the magnetic flux propagating portion.
An elastic wave modulation element characterized by this.
前記一対の磁束伝搬部の各々は、前記集磁部とは反対側の一端部から前記集磁部側の他端部に向かう方向に沿って断面積が小さくなる形状を有する、請求項1記載の弾性波変調素子。 1. Elastic wave modulation element. 前記集磁部は、前記圧電部材の厚み方向の投影面において、前記第1電極部と第2電極部との間に配置される、請求項1または2に記載の弾性波変調素子。 The elastic wave modulation element according to claim 1 or 2, wherein the magnetic collecting portion is arranged between the first electrode portion and the second electrode portion on a projection surface in the thickness direction of the piezoelectric member. 前記集磁部における磁束が、前記弾性波の伝搬方向に垂直な方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部は、前記圧電部材の前記一方の主面上に配置されるか、または前記圧電部材の他方の主面上に配置される、請求項3に記載の弾性波変調素子。
The magnetic flux in the magnetic collecting portion is formed along the direction perpendicular to the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The third aspect of the present invention, wherein the first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member or on the other main surface of the piezoelectric member. Elastic wave modulation element.
前記集磁部における磁束が、前記弾性波の伝搬方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部は、前記一方の主面上であって前記一対の磁束伝搬部に設けられた一対の開口部に対応する位置に配置されるか、前記一方の主面上であって前記一対の磁束伝搬部の下に配置されるか、または、前記圧電部材の他方の主面上に配置される、請求項3に記載の弾性波変調素子。
The magnetic flux in the magnetic collecting portion is formed along the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged at positions on the one main surface corresponding to the pair of openings provided in the pair of magnetic flux propagation portions, or the one main electrode portion is arranged. The elastic wave modulation element according to claim 3, which is on a surface and is arranged below the pair of magnetic flux propagation portions or on the other main surface of the piezoelectric member.
前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記第1電極部及び前記第2電極部を包含する位置に配置される、請求項1または2に記載の弾性波変調素子。 The elastic wave modulation according to claim 1 or 2, wherein the magnetic collecting portion is arranged at a position including the first electrode portion and the second electrode portion on a projection surface projected in the thickness direction of the piezoelectric member. element. 前記集磁部における磁束が、前記弾性波の伝搬方向に垂直な方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置されるか、または前記圧電部材の他方の主面上に配置される、請求項6に記載の弾性波変調素子。
The magnetic flux in the magnetic collecting portion is formed along the direction perpendicular to the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion, or are arranged on the other main surface of the piezoelectric member. The elastic wave modulation element according to claim 6.
前記集磁部における磁束が、前記弾性波の伝搬方向に沿って形成され、
前記一対の磁束伝搬部及び前記集磁部は、前記圧電部材の一方の主面上に配置され、
前記第1電極部及び前記第2電極部が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置されるか、または、前記圧電部材の他方の主面上に配置される、請求項6に記載の弾性波変調素子。
The magnetic flux in the magnetic collecting portion is formed along the propagation direction of the elastic wave.
The pair of magnetic flux propagating portions and the magnetic collecting portion are arranged on one main surface of the piezoelectric member.
The first electrode portion and the second electrode portion are arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion, or on the other main surface of the piezoelectric member. The elastic wave modulation element according to claim 6, which is arranged.
前記第1電極部が、互いの歯が交互に並ぶように対向して配置された一対の櫛歯電極で構成され、
前記第2電極部が、互いの歯が交互に並ぶように対向して配置された他の一対の櫛歯電極で構成される、請求項1〜8のいずれか1項に記載の弾性波変調素子。
The first electrode portion is composed of a pair of comb tooth electrodes arranged so as to face each other so that the teeth are alternately arranged.
The elastic wave modulation according to any one of claims 1 to 8, wherein the second electrode portion is composed of another pair of comb tooth electrodes arranged so as to face each other so that the teeth are alternately arranged. element.
前記第1電極部および前記第2電極部が、前記圧電部材に弾性波を励起または受信する一対の櫛歯電極である、請求項1〜8のいずれか1項に記載の弾性波変調素子。 The elastic wave modulation element according to any one of claims 1 to 8, wherein the first electrode portion and the second electrode portion are a pair of comb tooth electrodes that excite or receive elastic waves in the piezoelectric member. 前記圧電部材に取り付けられ、前記集磁部の一方側に配置された一の反射器を更に備え、
前記第1電極部及び前記第2電極部が、前記圧電部材の一方の主面上であって前記集磁部の他方側に配置されるか、または前記圧電部材の一方の主面上であって前記集磁部の下に配置される、請求項1〜10のいずれか1項に記載の弾性波変調素子。
A single reflector attached to the piezoelectric member and arranged on one side of the magnetic collector is further provided.
The first electrode portion and the second electrode portion are arranged on one main surface of the piezoelectric member and on the other side of the magnetic collecting portion, or on one main surface of the piezoelectric member. The elastic wave modulation element according to any one of claims 1 to 10, which is arranged below the magnetic collecting portion.
前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記一の反射器を包含する位置に配置され、
前記一の反射器が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置される、請求項11に記載の弾性波変調素子。
The magnetic collecting portion is arranged at a position including the one reflector on the projection surface projected in the thickness direction of the piezoelectric member.
The elastic wave modulation element according to claim 11, wherein the one reflector is arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion.
前記圧電部材に取り付けられ、前記第1電極部及び前記第2電極部の両側に配置された一対の反射器を更に備える、請求項1〜10のいずれか1項に記載の弾性波変調素子。 The elastic wave modulation element according to any one of claims 1 to 10, further comprising a pair of reflectors attached to the piezoelectric member and arranged on both sides of the first electrode portion and the second electrode portion. 前記集磁部は、前記圧電部材の厚み方向に投影した投影面において、前記一対の反射器を包含する位置に配置され、
前記一対の反射器が、前記圧電部材の前記一方の主面上であって前記集磁部の下に配置される、請求項13に記載の弾性波変調素子。
The magnetic collecting portion is arranged at a position including the pair of reflectors on the projection surface projected in the thickness direction of the piezoelectric member.
The elastic wave modulation element according to claim 13, wherein the pair of reflectors are arranged on the one main surface of the piezoelectric member and below the magnetic collecting portion.
前記集磁部の前記磁束伝搬部に対向する側の端部の断面積が、前記磁束伝搬部の前記集磁部に対向する側の端部の断面積よりも大きい、請求項1〜14のいずれか1項に記載の弾性波変調素子。 Claims 1 to 14, wherein the cross-sectional area of the end of the magnetic flux propagating portion facing the magnetic flux propagating portion is larger than the cross-sectional area of the end of the magnetic flux propagating portion facing the magnetic flux propagating portion. The elastic wave modulation element according to any one item. 請求項1〜15のいずれか1項に記載の弾性波変調素子と、前記弾性波変調素子の変調を検出する回路部と、を備える物理量センサ。 A physical quantity sensor comprising the elastic wave modulation element according to any one of claims 1 to 15 and a circuit unit for detecting modulation of the elastic wave modulation element.
JP2020562273A 2018-12-28 2018-12-28 Elastic wave modulation element and physical quantity sensor Active JP6885520B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048486 WO2020136876A1 (en) 2018-12-28 2018-12-28 Acoustic wave modulation element and physical quantity sensor

Publications (2)

Publication Number Publication Date
JP6885520B2 JP6885520B2 (en) 2021-06-16
JPWO2020136876A1 true JPWO2020136876A1 (en) 2021-09-09

Family

ID=71126225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562273A Active JP6885520B2 (en) 2018-12-28 2018-12-28 Elastic wave modulation element and physical quantity sensor

Country Status (2)

Country Link
JP (1) JP6885520B2 (en)
WO (1) WO2020136876A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047229A (en) * 2004-08-06 2006-02-16 River Eletec Kk Surface acoustic wave device sensor
CN101504446A (en) * 2009-03-06 2009-08-12 华南理工大学 Thin film type structural magnetofluid-sonic surface wave integrated magnetic transducer
CN101504445A (en) * 2009-03-06 2009-08-12 华南理工大学 Back-trough type structural magnetofluid-sonic surface wave integrated magnetic transducer
CN102435959A (en) * 2011-10-11 2012-05-02 电子科技大学 Magnetic-acoustic surface wave magnetic field sensor and preparation method thereof
US8269490B2 (en) * 2009-04-03 2012-09-18 Honeywell International Inc. Magnetic surface acoustic wave sensor apparatus and method
JP5080811B2 (en) * 2003-12-24 2012-11-21 アイメック Method and apparatus for ultra-high speed control of a magnetic cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080811B2 (en) * 2003-12-24 2012-11-21 アイメック Method and apparatus for ultra-high speed control of a magnetic cell
JP2006047229A (en) * 2004-08-06 2006-02-16 River Eletec Kk Surface acoustic wave device sensor
CN101504446A (en) * 2009-03-06 2009-08-12 华南理工大学 Thin film type structural magnetofluid-sonic surface wave integrated magnetic transducer
CN101504445A (en) * 2009-03-06 2009-08-12 华南理工大学 Back-trough type structural magnetofluid-sonic surface wave integrated magnetic transducer
US8269490B2 (en) * 2009-04-03 2012-09-18 Honeywell International Inc. Magnetic surface acoustic wave sensor apparatus and method
CN102435959A (en) * 2011-10-11 2012-05-02 电子科技大学 Magnetic-acoustic surface wave magnetic field sensor and preparation method thereof

Also Published As

Publication number Publication date
WO2020136876A1 (en) 2020-07-02
JP6885520B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Dong et al. Characterization of magnetomechanical properties in FeGaB thin films
JP5080811B2 (en) Method and apparatus for ultra-high speed control of a magnetic cell
Polewczyk et al. Unipolar and bipolar high-magnetic-field sensors based on surface acoustic wave resonators
US9322809B2 (en) Elastic wave sensor
US4078186A (en) Magnetically tuned, surface acoustic wave device
US20240062739A1 (en) Magnetic field sensor using acoustically driven ferromagnetic resonance
US8258674B2 (en) Surface acoustic wave sensor and system
JP2007524853A (en) Layered surface acoustic wave sensor
JP5087964B2 (en) Wireless surface acoustic wave sensor
WO2011077942A1 (en) Magnetic sensor element, method for producing same, and magnetic sensor device
Li et al. Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder
Mazzamurro et al. Giant Magnetoelastic Coupling in a Love Acoustic Waveguide Based on Tb Co 2/Fe Co Nanostructured Film on ST-Cut Quartz
US5959388A (en) Magnetically tunable surface acoustic wave devices
JP5170311B2 (en) Surface acoustic wave sensor
JP2020112411A (en) Acoustic wave modulation element and physical quantity sensor system
Yang et al. Sensing mechanism of surface acoustic wave magnetic field sensors based on ferromagnetic films
JP2006047229A (en) Surface acoustic wave device sensor
JP6885520B2 (en) Elastic wave modulation element and physical quantity sensor
CN107449955B (en) Surface acoustic wave current sensor based on graphical magnetostrictive film
JP6801832B2 (en) Elastic wave modulation element and physical quantity sensor
Huang et al. Theoretical investigation of magnetoelectric surface acoustic wave characteristics of ZnO/Metglas layered composite
US7053522B1 (en) Surface acoustic wave sensor
CN115436686A (en) Delay line type surface acoustic wave voltage sensor and voltage detection method
Huang et al. MEMS Surface Acoustic Wave Resonator Based on AlN/Si/Fe–Co–Si–B Structure for Magnetic Field Sensing
JP2020118492A (en) Magnetic sensor element and magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150