JP2008267968A - Measurement target characteristic measuring apparatus - Google Patents

Measurement target characteristic measuring apparatus Download PDF

Info

Publication number
JP2008267968A
JP2008267968A JP2007110678A JP2007110678A JP2008267968A JP 2008267968 A JP2008267968 A JP 2008267968A JP 2007110678 A JP2007110678 A JP 2007110678A JP 2007110678 A JP2007110678 A JP 2007110678A JP 2008267968 A JP2008267968 A JP 2008267968A
Authority
JP
Japan
Prior art keywords
propagation path
measured
electrode
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007110678A
Other languages
Japanese (ja)
Inventor
Takashi Kogai
崇 小貝
Hiromi Yatsuda
博美 谷津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007110678A priority Critical patent/JP2008267968A/en
Publication of JP2008267968A publication Critical patent/JP2008267968A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement target characteristic measuring apparatus miniaturized, and preventing a crosstalk from occurring independent of an aperture length of an input electrode. <P>SOLUTION: The measurement target characteristic measuring apparatus 10 is provided with a surface acoustic wave element 12 including: a first propagation path 20 formed between the input electrode 14 and a first output electrode 16; and a second propagation path 22 formed between the input electrode 14 and a second output electrode 18. While a measurement target 40 is a load between the first and second propagation paths 20, 22, a signal is input to the input electrode 14, and a physical characteristic of the measurement target 40 can be derived from output signals of the first and second output electrodes 16, 18. An apparatus can be miniaturized by using the measurement target characteristic measuring apparatus 10. The crosstalk can be prevented from occurring independent of the aperture length of the input electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体状の被測定物の物理的特性を測定するための弾性表面波素子を有する被測定物特性測定装置に関するものである。   The present invention relates to an object property measuring apparatus having a surface acoustic wave element for measuring a physical property of a liquid object to be measured.

一般に、弾性表面波素子は、圧電基板と、前記圧電基板上に設けられた櫛歯状電極指からなる入力電極及び出力電極を備えている。弾性表面波素子では、入力電極に電気信号が入力されると、電極指間に電界が発生し、圧電効果により弾性表面波が励振され、圧電基板上を伝搬していく。この弾性表面波のうち、伝搬方向と直交する方向に変位するすべり弾性表面波(SH-SAW:Shear horizontal Surface Acoustic Wave)を利用する弾性表面波素子を用いた各種物質の検出や物性値等の測定を行うための弾性波センサが研究されている(特許文献1)。   In general, a surface acoustic wave element includes a piezoelectric substrate, and an input electrode and an output electrode composed of comb-like electrode fingers provided on the piezoelectric substrate. In the surface acoustic wave element, when an electric signal is input to the input electrode, an electric field is generated between the electrode fingers, and the surface acoustic wave is excited by the piezoelectric effect and propagates on the piezoelectric substrate. Among these surface acoustic waves, detection of various substances and physical property values using surface acoustic wave elements that use a shear surface acoustic wave (SH-SAW) that is displaced in a direction perpendicular to the propagation direction An elastic wave sensor for performing measurement has been studied (Patent Document 1).

弾性波センサでは、圧電基板上に負荷された測定対象である液体状の被測定物の領域が電気的に開放されている場合と、短絡されている場合とでは、出力電極から出力される出力信号の特性に差異があることを利用して被測定物の物理的特性として誘電率、導電率を求めることができる。また、弾性表面波素子の入力電極と出力電極の間の伝搬路上に凹凸構造を形成し、その凹部に被測定物を負荷すると、負荷された被測定物は擬似的に膜を形成する。この膜は圧電基板とともに励振し、膜の質量に基づいて共振周波数が変化する質量負荷効果を利用して、被測定物の密度を求めることができる。   In the acoustic wave sensor, the output output from the output electrode is either when the area of the liquid object to be measured loaded on the piezoelectric substrate is electrically open or short-circuited. By utilizing the difference in signal characteristics, the dielectric constant and conductivity can be obtained as physical characteristics of the object to be measured. Further, when a concavo-convex structure is formed on the propagation path between the input electrode and the output electrode of the surface acoustic wave element and the object to be measured is loaded in the concave portion, the loaded object to be measured forms a pseudo film. This film is excited together with the piezoelectric substrate, and the density of the object to be measured can be obtained using the mass load effect in which the resonance frequency changes based on the mass of the film.

図12は、上述した被測定物の物理的特性として比誘電率や導電率を測定する被測定物特性測定装置100の説明図である。被測定物特性測定装置100は、圧電基板130に形成された第1弾性表面波素子110と第2弾性表面波素子120とを備える。第1弾性表面波素子110は、入力電極112及び出力電極114を備え、入力電極112と出力電極114の間には、短絡伝搬路116が形成されている。第2弾性表面波素子120は、入力電極122及び出力電極124を備え、入力電極122と出力電極124の間には、開放伝搬路126が形成されている。短絡伝搬路116は、圧電基板130の表面に形成された金属膜118上に設けられ、開放伝搬路126は圧電基板130の表面に形成され、電気的に開放された開放領域を有する金属膜128上に設けられている。   FIG. 12 is an explanatory diagram of the device characteristic measuring apparatus 100 that measures the relative dielectric constant and the electrical conductivity as the physical properties of the object to be measured. The measured object property measuring apparatus 100 includes a first surface acoustic wave element 110 and a second surface acoustic wave element 120 formed on a piezoelectric substrate 130. The first surface acoustic wave element 110 includes an input electrode 112 and an output electrode 114, and a short-circuit propagation path 116 is formed between the input electrode 112 and the output electrode 114. The second surface acoustic wave element 120 includes an input electrode 122 and an output electrode 124, and an open propagation path 126 is formed between the input electrode 122 and the output electrode 124. The short-circuit propagation path 116 is provided on the metal film 118 formed on the surface of the piezoelectric substrate 130, and the open propagation path 126 is formed on the surface of the piezoelectric substrate 130 and has a metal film 128 having an open area that is electrically opened. It is provided above.

被測定物特性測定装置100における被測定物の比誘電率や導電率の測定は、測定対象となる被測定物を、短絡伝搬路116及び開放伝搬路126に負荷した状態で、入力電極112及び122に同一の信号を入力し、出力電極114及び124から出力される信号の振幅比、位相差を振幅比位相差検出器144で測定することにより、被測定物の比誘電率や導電率を求めている。   The measurement of the relative permittivity and conductivity of the measurement object in the measurement object property measuring apparatus 100 is performed by loading the measurement object to be measured on the short-circuit propagation path 116 and the open propagation path 126 with the input electrode 112 and 122, the same signal is input, and the amplitude ratio and phase difference of the signals output from the output electrodes 114 and 124 are measured by the amplitude ratio phase difference detector 144, so that the relative permittivity and conductivity of the object to be measured can be determined. Looking for.

特許第3488554号公報Japanese Patent No. 3488554

しかしながら、上記の被測定物特性測定装置100では、短絡伝搬路116及び開放伝搬路126の表面を、弾性表面波の伝搬方向に対して垂直な方向に被測定物を流して測定を行うために、弾性表面波の伝搬方向と平行な方向に第1弾性表面波素子110及び第2弾性表面波素子120を配置する必要があり、装置が大きくなってしまう。   However, in the measurement object characteristic measuring apparatus 100 described above, in order to perform measurement by flowing the measurement object on the surfaces of the short-circuit propagation path 116 and the open propagation path 126 in a direction perpendicular to the propagation direction of the surface acoustic wave. The first surface acoustic wave element 110 and the second surface acoustic wave element 120 need to be arranged in a direction parallel to the propagation direction of the surface acoustic wave, and the apparatus becomes large.

また、被測定物特性測定装置100では、発振器142からの電気信号を分配器143で分配して入力電極112、122に対して入力しているために完全に同一の信号であることが保証されず、その結果、測定精度の低下を招く場合がある。この課題に対しては、図13のように入力電極112と122とを一体にした入力電極132とすることもできるが、金属膜118の開口長が狭い場合には、励振された弾性表面波が回折により矢印で示す方向に伝搬して出力電極114及び出力電極124で受信され、いわゆるクロストークにより測定誤差が生じる場合がある。   In the DUT characteristic measuring apparatus 100, since the electric signal from the oscillator 142 is distributed by the distributor 143 and inputted to the input electrodes 112 and 122, it is guaranteed that they are completely the same signal. As a result, the measurement accuracy may be reduced. To deal with this problem, the input electrode 132 may be formed by integrating the input electrodes 112 and 122 as shown in FIG. 13, but when the opening length of the metal film 118 is narrow, an excited surface acoustic wave is used. Propagates in the direction indicated by the arrow due to diffraction and is received by the output electrode 114 and the output electrode 124, and so-called crosstalk may cause a measurement error.

本発明は、上記の課題を考慮してなされたものであって、装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことが可能な被測定物特性測定装置を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned problems. The present invention reduces the size of the apparatus and does not depend on the diffraction phenomenon caused by the opening length of the input electrode or the propagation path length between the input and output electrodes. An object of the present invention is to provide an object characteristic measuring apparatus capable of preventing the occurrence of talk.

本発明に係る被測定物特性測定装置は、入力電極と第1出力電極との間に形成された第1伝搬路と、前記入力電極と第2出力電極との間に形成され前記第1伝搬路と異なる振幅・位相特性の第2伝搬路とを有する弾性表面波素子を備え、前記第1伝搬路及び前記第2伝搬路に液体状の被測定物を負荷した状態において、前記入力電極から信号を入力し、前記第1出力電極及び前記第2出力電極から出力された各出力信号に基づいて前記被測定物の物理的特性を求めることを特徴とする。   An object property measuring apparatus according to the present invention includes a first propagation path formed between an input electrode and a first output electrode, and the first propagation formed between the input electrode and the second output electrode. A surface acoustic wave element having a second propagation path with different amplitude and phase characteristics from the path, and in a state where a liquid object to be measured is loaded on the first propagation path and the second propagation path, A signal is input, and physical characteristics of the object to be measured are obtained based on output signals output from the first output electrode and the second output electrode.

本発明によれば、入力電極と第1出力電極との間に第1伝搬路を形成し、前記入力電極と第2出力電極との間に第2伝搬路形成することにより、被測定物特性測定装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことできる。   According to the present invention, the first propagation path is formed between the input electrode and the first output electrode, and the second propagation path is formed between the input electrode and the second output electrode. It is possible to reduce the size of the measuring apparatus and prevent the occurrence of crosstalk regardless of the diffraction phenomenon caused by the opening length of the input electrode and the propagation path length between the input and output electrodes.

前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、前記第2伝搬路は、電気的に開放した開放伝搬路であってもよい。また、前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、前記第2伝搬路は、格子状の凹凸構造が形成され電気的に短絡した格子状伝搬路であってもよい。さらに、前記第1伝搬路は、電気的に開放した開放伝搬路であり、前記第2伝搬路は、格子状の凹凸構造が形成され電気的に開放した格子状伝搬路であってもよい。   The first propagation path may be a short-circuit propagation path that is electrically short-circuited, and the second propagation path may be an open propagation path that is electrically open. The first propagation path may be a short-circuit propagation path that is electrically short-circuited, and the second propagation path may be a lattice-shaped propagation path that is electrically short-circuited by forming a lattice-shaped uneven structure. Furthermore, the first propagation path may be an open propagation path that is electrically open, and the second propagation path may be a lattice propagation path that is electrically open with a lattice-shaped uneven structure formed thereon.

前記入力電極及び前記各出力電極の各々は、前記被測定物の付着を防ぐ封止部材によって封止されていることにより被測定物特性測定装置全体を被測定物に浸漬した状態で被測定物の物理的特性を測定することができる。   Each of the input electrode and each of the output electrodes is sealed by a sealing member that prevents adhesion of the object to be measured, so that the object to be measured is immersed in the object to be measured. Can be measured.

本発明によれば、入力電極と第1出力電極との間に第1伝搬路を形成し、前記入力電極と第2出力電極との間に第2伝搬路形成することにより、被測定物特性測定装置を小型化にするとともに、入力電極の開口長や入出力電極間の伝搬路長を起因とする回折現象によらずクロストークの発生を防ぐことできる。また、前記入力電極及び前記各出力電極の各々は、被測定物の付着を防ぐ封止部材によって封止されていることにより被測定物特性測定装置全体を被測定物に浸漬した状態で被測定物の物理的特性を測定することができる。   According to the present invention, the first propagation path is formed between the input electrode and the first output electrode, and the second propagation path is formed between the input electrode and the second output electrode. It is possible to reduce the size of the measuring apparatus and prevent the occurrence of crosstalk regardless of the diffraction phenomenon caused by the opening length of the input electrode and the propagation path length between the input and output electrodes. Further, each of the input electrode and each of the output electrodes is sealed by a sealing member that prevents adhesion of the object to be measured, so that the entire object to be measured is immersed in the object to be measured. Physical properties of objects can be measured.

以下、本発明の第1実施形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る被測定物物性測定装置10の構成の説明図である。また、図2A、図2Bは、図1のIIA−IIA端面図であって、図2Aは、液体状の被測定物を負荷する前の状態を示す図であり、図2Bは、被測定物を負荷した後の状態を示す図である。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a configuration of a measured physical property measuring apparatus 10 according to the first embodiment of the present invention. 2A and FIG. 2B are end views of IIA-IIA in FIG. 1, FIG. 2A is a diagram showing a state before loading a liquid object to be measured, and FIG. 2B is a object to be measured. It is a figure which shows the state after loading.

図1に示すように、被測定物物性測定装置10は、弾性表面波素子12と、高周波の電気信号を発生する発振器42と、弾性表面波に対応した出力信号の振幅比及び位相差を測定する振幅比位相差検出器44とを備える。   As shown in FIG. 1, a physical property measuring apparatus 10 to be measured measures a surface acoustic wave element 12, an oscillator 42 that generates a high-frequency electric signal, and an amplitude ratio and a phase difference of an output signal corresponding to the surface acoustic wave. An amplitude ratio phase difference detector 44 is provided.

弾性表面波素子12は、入力電極14と、第1出力電極16と、第2出力電極18とを備え、入力電極14と第1出力電極16との間には、第1伝搬路20が形成され、入力電極14と第2出力電極18との間には、第2伝搬路22が形成されている。   The surface acoustic wave element 12 includes an input electrode 14, a first output electrode 16, and a second output electrode 18, and a first propagation path 20 is formed between the input electrode 14 and the first output electrode 16. A second propagation path 22 is formed between the input electrode 14 and the second output electrode 18.

入力電極14は、発振器42から入力された電気信号によって、弾性表面波を励振させるために櫛形電極で構成されている。また、第1出力電極16及び第2出力電極18は、入力電極14で励振され伝搬してきた弾性表面波を受信するために櫛形電極で構成されている。   The input electrode 14 is composed of a comb-shaped electrode for exciting a surface acoustic wave by an electric signal input from the oscillator 42. The first output electrode 16 and the second output electrode 18 are composed of comb-shaped electrodes in order to receive surface acoustic waves excited and propagated by the input electrode 14.

入力電極14、第1出力電極16及び第2出力電極18は、被測定物40の物理的特性を測定する際に被測定物40が櫛形電極に付着するのを防ぐために、各々が第1封止部材24、第2封止部材26、第3封止部材28によって封止されている。   The input electrode 14, the first output electrode 16, and the second output electrode 18 are each first sealed to prevent the device under test 40 from adhering to the comb-shaped electrode when measuring the physical characteristics of the device under test 40. The sealing member 24, the second sealing member 26, and the third sealing member 28 are sealed.

第1封止部材24は、側壁部24aと蓋部24bから構成され、側壁部24aは、入力電極14の周辺を覆い、蓋部24bは、入力電極14の上部を覆うことにより入力電極14の全体を封止し、被測定物40が櫛形電極に付着するのを防止する(図2B参照)。第2封止部材26、第3封止部材28も第1封止部材24と同様に構成され、第2封止部材26は、側壁部26aと蓋部26b、第3封止部材28は、側壁部28aと蓋部28bから構成されている。第1封止部材24、第2封止部材26、第3封止部材28は、被測定物40が櫛形電極に付着するのを防ぐことができれば、特に形状が限定されるものではない。また、材質についても特に限定されるものではなく、例えば、樹脂、ゴム等であってもよい。   The first sealing member 24 includes a side wall portion 24 a and a lid portion 24 b. The side wall portion 24 a covers the periphery of the input electrode 14, and the lid portion 24 b covers the upper portion of the input electrode 14. The whole is sealed to prevent the DUT 40 from adhering to the comb-shaped electrode (see FIG. 2B). The second sealing member 26 and the third sealing member 28 are configured in the same manner as the first sealing member 24. The second sealing member 26 includes a side wall portion 26a and a lid portion 26b, and the third sealing member 28 includes It is comprised from the side wall part 28a and the cover part 28b. The shapes of the first sealing member 24, the second sealing member 26, and the third sealing member 28 are not particularly limited as long as the object to be measured 40 can be prevented from adhering to the comb-shaped electrode. Further, the material is not particularly limited, and may be, for example, resin, rubber or the like.

第1伝搬路20及び第2伝搬路22は、各々圧電基板30上に蒸着された金属膜32、34で形成され、金属膜32、34は電気的に短絡されている(図1参照)。特に、第1伝搬路20は、全面が金属膜32で形成されているために、電気的に短絡した短絡伝搬路を構成している。また、金属膜32、34は、被測定物40の物理的特性の測定精度を向上させるために接地されている。金属膜32、34の材料は特に限られないが、被測定物40に対して、化学的に安定している金で形成することが好ましい。   The first propagation path 20 and the second propagation path 22 are respectively formed of metal films 32 and 34 deposited on the piezoelectric substrate 30, and the metal films 32 and 34 are electrically short-circuited (see FIG. 1). In particular, since the entire first propagation path 20 is formed of the metal film 32, the first propagation path 20 constitutes a short-circuit propagation path that is electrically short-circuited. Further, the metal films 32 and 34 are grounded in order to improve the measurement accuracy of the physical characteristics of the object 40 to be measured. The material of the metal films 32 and 34 is not particularly limited, but it is preferable that the metal films 32 and 34 are formed of gold that is chemically stable with respect to the object 40 to be measured.

第2伝搬路22には、金属膜34の一部が剥離され、圧電基板30が露出するように開放領域36が形成されている。従って、圧電基板30が露出している開放領域36は電気的に開放状態となっていることから、第2伝搬路22は開放伝搬路を形成している。なお、金属膜32が残る部分については、第1伝搬路20と同様に電気的に短絡状態となっている。   An open region 36 is formed in the second propagation path 22 so that a part of the metal film 34 is peeled off and the piezoelectric substrate 30 is exposed. Therefore, since the open region 36 where the piezoelectric substrate 30 is exposed is electrically open, the second propagation path 22 forms an open propagation path. The portion where the metal film 32 remains is electrically short-circuited as in the first propagation path 20.

圧電基板30は、すべり弾性表面波を伝搬することができれば、特に限られないが、36度回転Y板X伝搬LiTaO3であることが好ましい。 The piezoelectric substrate 30 is not particularly limited as long as it can propagate a sliding surface acoustic wave, but is preferably a 36-degree rotated Y-plate X-propagating LiTaO 3 .

次に、被測定物物性測定装置10を用いた被測定物40の比誘電率、導電率の測定について説明する。   Next, measurement of the relative permittivity and conductivity of the device under test 40 using the device under test physical property measuring apparatus 10 will be described.

まず、測定の対象である被測定物40に弾性表面波素子12を浸漬した状態で発振器42から電気信号を入力電極14へ入力する(図2B参照)。入力電極14では、入力された信号に基づいて入力電極14の両側から同一の弾性表面波が励振され、第1伝搬路20上を伝搬し第1出力電極16で受信されるとともに、第2伝搬路22上を伝搬し第2出力電極18で受信される。   First, an electric signal is input from the oscillator 42 to the input electrode 14 in a state where the surface acoustic wave element 12 is immersed in the measurement object 40 to be measured (see FIG. 2B). In the input electrode 14, the same surface acoustic wave is excited from both sides of the input electrode 14 based on the input signal, propagates on the first propagation path 20, is received by the first output electrode 16, and is transmitted in the second propagation. It propagates on the path 22 and is received by the second output electrode 18.

第1出力電極16と第2出力電極18で受信した弾性表面波から取り出された両出力信号を振幅比位相差検出器44で比較し振幅比及び位相差を検出する。   Both output signals extracted from the surface acoustic waves received by the first output electrode 16 and the second output electrode 18 are compared by the amplitude ratio phase difference detector 44 to detect the amplitude ratio and the phase difference.

第1伝搬路20と第2伝搬路22は、構成が異なることにより、第1出力電極16、第2出力電極18からの出力信号は異なる振幅、位相を有する信号である。すなわち、第1出力電極16からの出力信号には、力学的相互作用を示す信号成分が含まれ、第2出力電極18からの出力信号には、電気的相互作用及び力学的相互作用を示す信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、力学的相互作用が相殺され、電気的相互作用にのみ対応する信号であり、この信号から検出した振幅比及び位相差に基づいて、被測定物40の物理的特性として比誘電率、導電率を算出することができる。   Since the first propagation path 20 and the second propagation path 22 are different in configuration, the output signals from the first output electrode 16 and the second output electrode 18 are signals having different amplitudes and phases. That is, the output signal from the first output electrode 16 includes a signal component indicating a mechanical interaction, and the output signal from the second output electrode 18 is a signal indicating an electrical interaction and a mechanical interaction. Contains ingredients. Therefore, the difference signal detected from both the output signals is a signal that cancels the mechanical interaction and corresponds only to the electrical interaction. Based on the amplitude ratio and the phase difference detected from this signal, the signal to be measured The relative dielectric constant and conductivity can be calculated as physical characteristics of the object 40.

以上説明したように、この実施態様に係る被測定物物性測定装置10は、入力電極14と第1出力電極16との間に形成された第1伝搬路20と、入力電極14と第2出力電極18との間に形成された第2伝搬路22とを有する弾性表面波素子12を備えている。第1伝搬路20と第2伝搬路22に被測定物40を負荷した状態において、入力電極14から信号を入力し、第1出力電極16及び第2出力電極18から出力された各出力信号に基づいて被測定物40の物理的特性を求めることができる。   As described above, the measured physical property measurement apparatus 10 according to this embodiment includes the first propagation path 20 formed between the input electrode 14 and the first output electrode 16, the input electrode 14, and the second output. A surface acoustic wave element 12 having a second propagation path 22 formed between the electrodes 18 is provided. In a state where the DUT 40 is loaded on the first propagation path 20 and the second propagation path 22, a signal is input from the input electrode 14, and each output signal output from the first output electrode 16 and the second output electrode 18 is output to each output signal. Based on this, the physical characteristics of the DUT 40 can be determined.

従来の被測定物特性測定装置100では、入力電極112、118と2つの入力電極が必要であったが、被測定物物性測定装置10によれば、第1伝搬路20と第2伝搬路22との間に入力電極14を形成することにより、入力電極を1つにすることが可能となり、また、分配器143も不要となり、装置の小型化を図ることができる。さらに、分配器143を用いずに、発振器42から電気信号を入力することから同一の信号を確実に入力電極14に入力することが可能となり、測定精度の低下を防ぐことができる。さらにまた、入力電極14の開口長や入出力電極間の伝搬路長を起因とする回折現象によらず第1出力電極16、第2出力電極18におけるクロストークの発生を防ぐことができる。   In the conventional measured object property measuring apparatus 100, the input electrodes 112 and 118 and two input electrodes are necessary. However, according to the measured physical property measuring apparatus 10, the first propagation path 20 and the second propagation path 22 are used. By forming the input electrode 14 between the two, the number of input electrodes can be reduced to one, the distributor 143 is not required, and the apparatus can be downsized. Furthermore, since an electrical signal is input from the oscillator 42 without using the distributor 143, the same signal can be reliably input to the input electrode 14, and a decrease in measurement accuracy can be prevented. Furthermore, the occurrence of crosstalk in the first output electrode 16 and the second output electrode 18 can be prevented regardless of the diffraction phenomenon caused by the opening length of the input electrode 14 and the propagation path length between the input and output electrodes.

また、被測定物物性測定装置10を用いて被測定物40の比誘電率、導電率を測定する場合には、第1伝搬路20は、電気的に短絡した短絡伝搬路であり、第2伝搬路22は、電気的に開放した開放伝搬路である。さらに、被測定物40の付着を防ぐ第1封止部材24、第2封止部材26、第3封止部材28によって、入力電極14、第1出力電極16及び第2出力電極18を封止することにより、弾性表面波素子12を被測定物40に浸漬した状態で被測定物40の物理的特性を測定することができる。   Further, when measuring the relative permittivity and conductivity of the device under test 40 using the device under test physical property measuring apparatus 10, the first propagation path 20 is a short-circuit propagation path that is electrically short-circuited. The propagation path 22 is an open propagation path that is electrically open. Further, the input electrode 14, the first output electrode 16, and the second output electrode 18 are sealed by the first sealing member 24, the second sealing member 26, and the third sealing member 28 that prevent adhesion of the DUT 40. By doing so, the physical characteristics of the DUT 40 can be measured while the surface acoustic wave element 12 is immersed in the DUT 40.

なお、図1に示す第2伝搬路22は、開放伝搬路を形成しているが、第2出力電極18からの出力信号から、電気的相互作用及び力学的相互作用を示す信号成分が得られれば、この伝搬路に限定されるものではなく、図3Aに示すように格子状伝搬路でもよい。この格子状伝搬路は、弾性表面波の伝搬方向(矢印X方向)に対して垂直な方向に金属膜34の一部を剥離し、圧電基板30が露出するように形成された凹部50AがX方向に等間隔で設けられ、隣接する凹部50Aの間に形成され金属膜34の一部である凸部52Aとから構成される凹凸構造54Aを備えている。   Although the second propagation path 22 shown in FIG. 1 forms an open propagation path, a signal component indicating an electrical interaction and a mechanical interaction can be obtained from the output signal from the second output electrode 18. For example, it is not limited to this propagation path, but may be a lattice propagation path as shown in FIG. 3A. In this lattice-shaped propagation path, a recess 50A formed so that a part of the metal film 34 is peeled off in a direction perpendicular to the propagation direction of the surface acoustic wave (arrow X direction) and the piezoelectric substrate 30 is exposed is X An uneven structure 54A is provided that is provided at equal intervals in the direction and is formed between adjacent recesses 50A and is formed of a protrusion 52A that is a part of the metal film 34.

また、図3Bに示すように、第2伝搬路22としてX方向に対して斜めの方向に金属膜34の一部を剥離した凹部50Bと、隣接する凹部50Bの間に形成され金属膜34の一部である凸部52Bとから構成される凹凸構造54Bが形成された格子状伝搬路としてもよい。   Further, as shown in FIG. 3B, the second propagation path 22 is formed between a recess 50B from which a part of the metal film 34 is peeled in a direction oblique to the X direction and the adjacent recess 50B. It is good also as a grid | lattice-like propagation path in which the uneven structure 54B comprised from the convex part 52B which is a part was formed.

さらに、図3Cに示すように、第2伝搬路22として市松格子状伝搬路を形成してもよい。この市松格子状伝搬路には、金属膜34の一部を剥離した凹部50Cと、隣接する凹部50Cの間に形成され金属膜34の一部である凸部52Cとから構成される凹凸構造54Cによって市松格子が形成されている。   Furthermore, as shown in FIG. 3C, a checkered lattice-shaped propagation path may be formed as the second propagation path 22. In this checkered lattice-shaped propagation path, a concavo-convex structure 54 </ b> C composed of a concave portion 50 </ b> C from which a part of the metal film 34 is peeled and a convex portion 52 </ b> C formed between the adjacent concave portions 50 </ b> C. A checkered lattice is formed.

次に、本発明の第2実施形態について図面を参照して説明する。図4は、本発明の第2実施形態に係る被測定物物性測定装置10Aの構成の説明図である。図5A、図5Bは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Bは、被測定物を負荷した後の状態を示す図である。なお、被測定物物性測定装置10と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is an explanatory diagram of a configuration of a physical property measurement apparatus 10A according to the second embodiment of the present invention. 5A and 5B are end views of the VA-VA in FIG. 4, and FIG. 5A is a diagram illustrating a state before loading the object to be measured, and FIG. 5B is a diagram after loading the object to be measured. It is a figure which shows a state. The same components as those of the physical property measuring apparatus 10 to be measured are denoted by the same reference numerals, and detailed description thereof is omitted.

被測定物物性測定装置10Aでは、被測定物物性測定装置10の第2伝搬路22として格子状伝搬路22Aが設けられている。格子状伝搬路22Aは、金属膜34A上にX方向に凸部56及び凹部58から構成される凹凸構造60が形成されている。凹凸構造60を形成し、凹部58に被測定物40を負荷して閉じこめることにより質量負荷効果に基づく出力信号を得ることが可能となる。なお、第1伝搬路20は、被測定物物性測定装置10と同様に金属膜32Aで形成された短絡伝搬路である。   In the measured physical property measurement apparatus 10 </ b> A, a lattice-shaped propagation path 22 </ b> A is provided as the second propagation path 22 of the measured physical property measurement apparatus 10. In the lattice-shaped propagation path 22A, a concavo-convex structure 60 composed of convex portions 56 and concave portions 58 in the X direction is formed on the metal film 34A. An output signal based on the mass load effect can be obtained by forming the concavo-convex structure 60 and loading and confining the object 40 to be measured in the recess 58. The first propagation path 20 is a short-circuit propagation path formed of the metal film 32 </ b> A in the same manner as the measured physical property measuring apparatus 10.

上述した被測定物40の比誘電率、導電率の測定と同様に発振器42から電気信号を入力電極14へ入力し、第1出力電極16と第2出力電極18で受信した弾性表面波から取り出された両出力信号を振幅比位相差検出器44で比較し位相差を検出する。   Similar to the measurement of the relative permittivity and conductivity of the DUT 40 described above, an electrical signal is input from the oscillator 42 to the input electrode 14 and is extracted from the surface acoustic waves received by the first output electrode 16 and the second output electrode 18. The two output signals are compared by an amplitude ratio phase difference detector 44 to detect a phase difference.

第1出力電極16からの出力信号には、密度粘度積に基づく信号成分が含まれ、第2出力電極18からの出力信号には、密度粘度積及び質量負荷効果に基づく信号成分が含まれている。従って、この両出力信号から検出した差分の信号は、質量負荷効果に基づく信号であり、この信号から検出した位相差に基づいて、被測定物40の物理的特性として密度を算出することができる。   The output signal from the first output electrode 16 includes a signal component based on the density viscosity product, and the output signal from the second output electrode 18 includes a signal component based on the density viscosity product and the mass load effect. Yes. Therefore, the difference signal detected from both output signals is a signal based on the mass load effect, and the density can be calculated as a physical characteristic of the DUT 40 based on the phase difference detected from this signal. .

また、被測定物40の密度の測定では、格子状伝搬路22Aは、X方向に凹凸構造60が形成された格子状伝搬路であるが、第2出力電極18からの出力信号から、密度粘度積及び質量負荷効果に基づく信号成分が得られれば、この伝搬路に限定されるものではなく、図6Aに示すような格子状伝搬路でもよい。この格子状伝搬路は、X方向に対して垂直な方向に凸部56A及び凹部58Aから構成される凹凸構造60Aを備えている。   In the measurement of the density of the DUT 40, the lattice propagation path 22 </ b> A is a lattice propagation path in which the concavo-convex structure 60 is formed in the X direction. From the output signal from the second output electrode 18, the density viscosity If a signal component based on the product and the mass load effect is obtained, the propagation path is not limited to this propagation path, and a lattice propagation path as shown in FIG. 6A may be used. This lattice-shaped propagation path is provided with a concavo-convex structure 60A composed of convex portions 56A and concave portions 58A in a direction perpendicular to the X direction.

さらに、格子状伝搬路22Aとしては、図6Aに対して、図6B〜図6Dに示すようにX方向に凹凸構造を追加した市松格子状伝搬路としてもよい。図6Bに示すように格子状伝搬路22Aの金属膜34Aに平行な断面を四角形状にし、凸部56Bと凹部58Bから構成される凹凸構造60Bとしてもよい。また、図6Cに示すように金属膜34Aに平行な断面を円形状にし、凸部56Cと凹部58Cから構成される凹凸構造60Cとしてもよく、図6Dに示すように金属膜34Aに平行な断面を菱形状にし、凸部56Dと凹部58Dから構成される凹凸構造60Dとしてもよい。なお、金属膜34Aに平行な凹部の断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。   Furthermore, the lattice-shaped propagation path 22A may be a checkered lattice-shaped propagation path in which an uneven structure is added in the X direction as shown in FIGS. 6B to 6D with respect to FIG. 6A. As shown in FIG. 6B, a cross section parallel to the metal film 34A of the lattice-shaped propagation path 22A may be a quadrangular shape to form a concavo-convex structure 60B composed of convex portions 56B and concave portions 58B. Further, as shown in FIG. 6C, a cross section parallel to the metal film 34A may be formed into a circular shape to form a concavo-convex structure 60C composed of a convex portion 56C and a concave portion 58C, and a cross section parallel to the metal film 34A as shown in FIG. May be formed in a rhombus shape to form a concavo-convex structure 60D composed of a convex portion 56D and a concave portion 58D. Note that the shape of the cross section of the recess parallel to the metal film 34A is not limited to these shapes as long as a checkered lattice-shaped propagation path can be formed.

また、第1出力電極16、第2出力電極18の各出力信号から検出した差分の信号が、質量負荷効果に基づく信号であれば、第1伝搬路20と格子状伝搬路22Aの構成は特に限定されるものではない。上記の第2実施形態では、第1伝搬路20としての電気的に短絡した短絡伝搬路と、電気的に短絡した格子状伝搬路22Aを備えるが、第1伝搬路20を電気的に開放した開放伝搬路20Bとし、格子状伝搬路22Aを電気的に開放した格子状伝搬路22Bとしてもよい。   In addition, if the difference signal detected from each output signal of the first output electrode 16 and the second output electrode 18 is a signal based on the mass load effect, the configuration of the first propagation path 20 and the lattice propagation path 22A is particularly It is not limited. In the second embodiment, the first propagation path 20 includes the electrically short-circuited short-circuit propagation path and the electrically short-circuited lattice-shaped propagation path 22A, but the first propagation path 20 is electrically opened. The open propagation path 20B may be used, and the lattice propagation path 22A may be electrically opened to form a lattice propagation path 22B.

図7は、本発明の第2実施形態の変形例である被測定物物性測定装置10Bの構成の説明図である。また、図8Aは、図7のVIIIA−VIIIA端面図である。   FIG. 7 is an explanatory diagram of a configuration of a measured physical property measuring apparatus 10B that is a modified example of the second embodiment of the present invention. 8A is an end view of VIIIA-VIIIA in FIG.

被測定物物性測定装置10Bは、開放伝搬路20B(第1伝搬路)と、格子状伝搬路22B(第2伝搬路)とを備える。なお、被測定物物性測定装置10Aと同一の構成要素には同一の符号を付している。   The physical property measurement apparatus 10B to be measured includes an open propagation path 20B (first propagation path) and a lattice-shaped propagation path 22B (second propagation path). In addition, the same code | symbol is attached | subjected to the component same as the to-be-measured physical property measuring apparatus 10A.

開放伝搬路20Bは、開放領域70と凸部72を備え、開放領域70は金属膜32Bを剥離した領域であり、凸部72は金属膜32Bで剥離せずに残存する部分である。   The open propagation path 20B includes an open region 70 and a convex portion 72. The open region 70 is a region where the metal film 32B is peeled off, and the convex portion 72 is a portion that remains without being peeled off by the metal film 32B.

格子状伝搬路22Bには、X方向に対して垂直な方向に金属膜34Bの一部を剥離して圧電基板30が露出するように形成された凹部74がX方向に等間隔に設けられ、隣接する凹部74の間に凸部76が形成されている。つまり、格子状伝搬路22Bには、X方向に凹部74及び凸部76から構成される凹凸構造78が形成されて、金属膜34Bが露出している凹部74は電気的に開放状態となっている。   In the lattice-shaped propagation path 22B, recesses 74 formed so as to expose a part of the metal film 34B in a direction perpendicular to the X direction to expose the piezoelectric substrate 30 are provided at equal intervals in the X direction. A convex portion 76 is formed between adjacent concave portions 74. In other words, the lattice-shaped propagation path 22B is formed with a concavo-convex structure 78 composed of the concave portions 74 and the convex portions 76 in the X direction, and the concave portions 74 where the metal film 34B is exposed are electrically opened. Yes.

開放領域70を構成する領域70aと領域70bとの面積の和は、凸部76中のすべての凹部74の底面積の総和に等しくなるように形成されている。   The sum of the areas of the region 70 a and the region 70 b constituting the open region 70 is formed to be equal to the sum of the bottom areas of all the concave portions 74 in the convex portion 76.

凸部76は、金属膜34Bの一部として形成されているが、金属に限定されるものではなく、SiO2のような樹脂であってもよい。 The convex portion 76 is formed as a part of the metal film 34B, but is not limited to metal, and may be a resin such as SiO 2 .

また、第2出力電極18からの出力信号から、密度粘度積及び質量負荷効果に基づく信号成分が得られれば、この伝搬路に限定されるものではなく、また、格子状伝搬路22Bは、図9Aに示すような格子状伝搬路でもよい。この格子状伝搬路は、X方向に対して垂直な方向に凹部74A及び凸部76Aから構成される凹凸構造78Aを備えている。   Further, if a signal component based on the density-viscosity product and the mass load effect can be obtained from the output signal from the second output electrode 18, the propagation path is not limited to this propagation path. A lattice-like propagation path as shown in 9A may be used. This lattice-shaped propagation path includes a concavo-convex structure 78A composed of a concave portion 74A and a convex portion 76A in a direction perpendicular to the X direction.

さらに、格子状伝搬路22Bとしては、図9Aに対して、図9B〜図9Dに示すようにX方向に凹凸構造を追加した市松格子状伝搬路としてもよい。図9Bに示すように格子状伝搬路22Bの圧電基板30に平行な断面を四角形状にし、凹部74Bと凸部76Bから構成される凹凸構造78Bとしてもよい。また、図9Cに示すように圧電基板30に平行な断面を円形状にし、凹部74Cと凸部76Cから構成される凹凸構造78Cとしてもよく、図9Dに示すように圧電基板30に平行な断面を菱形状にし、凹部74Dと凸部76Dから構成される凹凸構造78Dとしてもよい。なお、圧電基板30に平行な凹部の断面の形状は、市松格子状伝搬路を形成することができれば、これらの形状に限定されるものではない。   Furthermore, the lattice-shaped propagation path 22B may be a checkered lattice-shaped propagation path in which an uneven structure is added in the X direction as shown in FIGS. 9B to 9D with respect to FIG. 9A. As shown in FIG. 9B, the cross section of the lattice-shaped propagation path 22B parallel to the piezoelectric substrate 30 may be a quadrangular shape to form a concavo-convex structure 78B composed of a concave portion 74B and a convex portion 76B. Further, as shown in FIG. 9C, a cross section parallel to the piezoelectric substrate 30 may be formed into a circular shape to form a concavo-convex structure 78C including a concave portion 74C and a convex portion 76C. May be formed in a rhombus shape and may be a concavo-convex structure 78D constituted by the concave portion 74D and the convex portion 76D. The shape of the cross section of the recess parallel to the piezoelectric substrate 30 is not limited to these shapes as long as a checkered lattice propagation path can be formed.

さらにまた、図9Aに示すように、金属膜34Bの一部を剥離して凹凸構造78Aを形成する場合に限定されるものではない。図10は、本発明の第2実施形態に係る被測定物物性測定装置10Bの変形例の構成の説明図である。また、図11A、図11Bは、図10のXIA−XIA端面図であって、図11Aは、被測定物を負荷する前の状態を示す図であり、図11Bは、被測定物を負荷した後の状態を示す図である。   Furthermore, as shown in FIG. 9A, the present invention is not limited to the case where the concavo-convex structure 78A is formed by peeling a part of the metal film 34B. FIG. 10 is an explanatory diagram of a configuration of a modified example of the physical property measurement apparatus 10B to be measured according to the second embodiment of the present invention. 11A and 11B are XIA-XIA end views of FIG. 10, and FIG. 11A is a diagram showing a state before the object to be measured is loaded, and FIG. 11B is a state in which the object to be measured is loaded. It is a figure which shows a back state.

図10に示すように、開放伝搬路20Cは、圧電基板30が露出した平坦な開放領域80を備える。また、格子状伝搬路22Cは、図10に示すように、X方向に対して垂直な方向に形成された凹部82をX方向に等間隔に設け、隣接する凹部82の間に凸部84を形成し、凹部82と凸部84から構成される凹凸構造86を備える。   As shown in FIG. 10, the open propagation path 20 </ b> C includes a flat open region 80 where the piezoelectric substrate 30 is exposed. In addition, as shown in FIG. 10, the lattice-shaped propagation path 22 </ b> C is provided with concave portions 82 formed in the direction perpendicular to the X direction at equal intervals, and the convex portions 84 are provided between adjacent concave portions 82. The concavo-convex structure 86 is formed and includes the concave portion 82 and the convex portion 84.

なお、上記第1、第2実施態様では、弾性表面波素子12を被測定物40に浸漬して第1伝搬路20、第2伝搬路22に被測定物40を負荷しているが、被測定物40の物理的特性を測定することができれば、被測定物40が第1伝搬路20、第2伝搬路22に負荷される状態は特に限定されるものではない。例えば、第1伝搬路20、第2伝搬路22に被測定物40を滴下することによる負荷や、第1伝搬路20、第2伝搬路22上で被測定物40を流すことによる負荷であってもよい。   In the first and second embodiments, the surface acoustic wave element 12 is immersed in the device under test 40 and the device under test 40 is loaded on the first propagation path 20 and the second propagation path 22. The state in which the DUT 40 is loaded on the first propagation path 20 and the second propagation path 22 is not particularly limited as long as the physical characteristics of the measurement object 40 can be measured. For example, a load caused by dropping the object to be measured 40 on the first propagation path 20 and the second propagation path 22 or a load caused by flowing the object 40 to be measured on the first propagation path 20 and the second propagation path 22. May be.

また、被測定物物性測定装置10を用いて測定できる被測定物の物理的特性としては、上述した比誘電率、導電率、密度に限られるものではない。例えば、被測定物の粘性を測定することも可能である。   In addition, the physical properties of the object to be measured that can be measured using the object property measuring apparatus 10 are not limited to the above-described relative dielectric constant, conductivity, and density. For example, it is possible to measure the viscosity of the object to be measured.

さらに、測定対象の液体状の被測定物としては、特に限定されるものではなく、純液、混合液のいずれであってもよく、メタノール、エタノール等のアルコールの物理的特性を測定する場合に特に有効である。さらにまた、被測定物に抗原、抗体、バクテリア等が含まれる状態においても、物理的特性を測定できることは言うまでもない。   Furthermore, the liquid object to be measured is not particularly limited, and may be either a pure liquid or a mixed liquid. When measuring physical properties of alcohol such as methanol and ethanol, It is particularly effective. Furthermore, it goes without saying that physical characteristics can be measured even in a state in which an object to be measured contains antigens, antibodies, bacteria, and the like.

この場合、例えば、被測定物の中に帯電しているバクテリアが含まれている場合には、被測定物の導電率を測定することにより、バクテリアの含有率を測定することができる。また、異なる極性で帯電しているバクテリアが含まれている場合には、被測定物の導電率を測定することにより、被測定物に最も多く含まれるバクテリアの種類を特定することもできる。さらに、被測定物が負荷された伝搬路にバクテリアが付着している場合には、質量負荷効果により変化した被測定物の密度、粘性を測定することにより、バクテリアの付着量や付着した伝搬路の特定をすることができる。   In this case, for example, when charged bacteria are contained in the object to be measured, the content of bacteria can be measured by measuring the conductivity of the object to be measured. In addition, when bacteria charged with different polarities are included, it is possible to specify the type of bacteria most contained in the measurement object by measuring the conductivity of the measurement object. Furthermore, when bacteria are attached to the propagation path loaded with the object to be measured, by measuring the density and viscosity of the object to be measured that has changed due to the mass load effect, Can be specified.

なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

本発明の第1実施形態に係る被測定物特性測定装置の構成の説明図である。It is explanatory drawing of a structure of the to-be-measured object characteristic measuring apparatus which concerns on 1st Embodiment of this invention. 図2A、図2Bは、図1のIIA−IIA端面図であって、図2Aは、被測定物を負荷する前の状態を示す図であり、図2Bは、被測定物を負荷した後の状態を示す図である。2A and FIG. 2B are end views of IIA-IIA in FIG. 1, FIG. 2A is a diagram showing a state before loading the object to be measured, and FIG. 2B is a diagram after loading the object to be measured. It is a figure which shows a state. 図3A〜図3Cは、第1実施形態に係る被測定物特性測定装置における第2伝搬路の他の構成の説明図である。3A to 3C are explanatory diagrams of other configurations of the second propagation path in the device property measuring apparatus according to the first embodiment. 本発明の第2実施形態に係る被測定物特性測定装置の構成の説明図である。It is explanatory drawing of a structure of the to-be-measured object characteristic measuring apparatus which concerns on 2nd Embodiment of this invention. 図5A、図5Bは、図4のVA−VA端面図であって、図5Aは、被測定物を負荷する前の状態を示す図であり、図5Bは、被測定物を負荷した後の状態を示す図である。5A and 5B are end views of the VA-VA in FIG. 4, and FIG. 5A is a diagram illustrating a state before loading the object to be measured, and FIG. 5B is a diagram after loading the object to be measured. It is a figure which shows a state. 図6A〜図6Dは、第2実施形態に係る被測定物特性測定装置における格子状伝搬路の他の構成の説明図である。6A to 6D are explanatory diagrams of other configurations of the lattice-shaped propagation path in the device property measuring apparatus according to the second embodiment. 図7は、本発明の第2実施形態に係る被測定物特性測定装置の変形例の構成の説明図である。FIG. 7 is an explanatory diagram of a configuration of a modified example of the device property measuring apparatus according to the second embodiment of the present invention. 図8A、図8Bは、図7のVIIIA−VIIIA端面図であって、図8Aは、被測定物を負荷する前の状態を示す図であり、図8Bは、被測定物を負荷した後の状態を示す図である。8A and 8B are end views of VIIIA-VIIIA in FIG. 7, in which FIG. 8A is a diagram showing a state before loading the object to be measured, and FIG. 8B is a diagram after loading the object to be measured. It is a figure which shows a state. 図9A〜図9Dは、第2実施形態に係る変形例における格子状伝搬路の他の構成の説明図である。9A to 9D are explanatory diagrams of other configurations of the lattice-shaped propagation path in the modification according to the second embodiment. 図10は、本発明の第2実施形態に係る被測定物特性測定装置の変形例の構成の説明図である。FIG. 10 is an explanatory diagram of a configuration of a modified example of the device property measuring apparatus according to the second embodiment of the present invention. 図11A、図11Bは、図10のXIA−XIA端面図であって、図11Aは、被測定物を負荷する前の状態を示す図であり、図11Bは、被測定物を負荷した後の状態を示す図である。11A and 11B are XIA-XIA end views of FIG. 10, in which FIG. 11A is a diagram showing a state before loading the object to be measured, and FIG. 11B is a diagram after loading the object to be measured. It is a figure which shows a state. 従来の被測定物特性測定装置の説明図である。It is explanatory drawing of the conventional to-be-measured object characteristic measuring apparatus. 従来の被測定物特性測定装置において、入力電極を1つにした場合の説明図である。In the conventional to-be-measured object characteristic measuring apparatus, it is explanatory drawing at the time of using one input electrode.

符号の説明Explanation of symbols

10、10A、10B、100…被測定物特性測定装置
12…弾性表面波素子
14、112、122、132…入力電極 16…第1出力電極
18…第2出力電極 20…第1伝搬路
20B、20C…開放伝搬路 22…第2伝搬路
22A、22B、22C…格子状伝搬路 24…第1封止部材
24a、26a、28a…側壁部 24b、26b、28b…蓋部
26…第2封止部材 28…第3封止部材
30、130…圧電基板
32、32A、32B、34、34A、34B、118、128、…金属膜
36、70、80…開放領域 40…被測定物
42、142…発振器 44、144…振幅比位相差検出器
50A〜50C、58、58A〜58D、74、74A〜74D、82…凹部
52A〜52C、56、56A〜56D、72、76、76A〜76D、84…凸部
54A〜54C、60、60A〜60D、78、78A〜78D、86…凹凸構造
110…第1弾性表面波素子 114、124…出力電極
116…短絡伝搬路 120…第2弾性表面波素子
126…開放伝搬路 143…分配器
DESCRIPTION OF SYMBOLS 10, 10A, 10B, 100 ... Device-to-be-measured characteristic measuring apparatus 12 ... Surface acoustic wave element 14, 112, 122, 132 ... Input electrode 16 ... First output electrode 18 ... Second output electrode 20 ... First propagation path 20B, 20C ... Open propagation path 22 ... Second propagation paths 22A, 22B, 22C ... Lattice-like propagation path 24 ... First sealing members 24a, 26a, 28a ... Side wall parts 24b, 26b, 28b ... Lid part 26 ... Second sealing Member 28 ... Third sealing member 30, 130 ... Piezoelectric substrate 32, 32A, 32B, 34, 34A, 34B, 118, 128, ... Metal film 36, 70, 80 ... Open region 40 ... DUT 42, 142 ... Oscillators 44, 144... Amplitude ratio phase difference detectors 50A-50C, 58, 58A-58D, 74, 74A-74D, 82 ... Recesses 52A-52C, 56, 56A-56D, 72, 76, 76A- 6D, 84 ... convex portions 54A to 54C, 60, 60A to 60D, 78, 78A to 78D, 86 ... uneven structure 110 ... first surface acoustic wave element 114, 124 ... output electrode 116 ... short-circuit propagation path 120 ... second elasticity Surface wave element 126 ... Open propagation path 143 ... Distributor

Claims (5)

入力電極と第1出力電極との間に形成された第1伝搬路と、前記入力電極と第2出力電極との間に形成され前記第1伝搬路と異なる振幅・位相特性の第2伝搬路とを有する弾性表面波素子を備え、
前記第1伝搬路及び前記第2伝搬路に液体状の被測定物を負荷した状態において、
前記入力電極から信号を入力し、前記第1出力電極及び前記第2出力電極から出力された各出力信号に基づいて前記被測定物の物理的特性を求める
ことを特徴とする被測定物特性測定装置。
A first propagation path formed between the input electrode and the first output electrode, and a second propagation path formed between the input electrode and the second output electrode and having different amplitude and phase characteristics from the first propagation path. A surface acoustic wave element having
In a state where a liquid object to be measured is loaded on the first propagation path and the second propagation path,
Measuring a characteristic of an object to be measured, wherein a signal is input from the input electrode and a physical characteristic of the object to be measured is obtained based on each output signal output from the first output electrode and the second output electrode apparatus.
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、
前記第2伝搬路は、電気的に開放した開放伝搬路であることを特徴とする被測定物特性測定装置。
In the to-be-measured object characteristic measuring device according to claim 1,
The first propagation path is a short-circuit propagation path that is electrically short-circuited;
The measured object property measuring apparatus, wherein the second propagation path is an open propagation path that is electrically opened.
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に短絡した短絡伝搬路であり、
前記第2伝搬路は、格子状の凹凸構造が形成され電気的に短絡した格子状伝搬路であることを特徴とする被測定物特性測定装置。
In the to-be-measured object characteristic measuring device according to claim 1,
The first propagation path is a short-circuit propagation path that is electrically short-circuited;
The device for measuring characteristics of an object to be measured is characterized in that the second propagation path is a grid-like propagation path in which a lattice-shaped uneven structure is formed and electrically short-circuited.
請求項1記載の被測定物特性測定装置において、
前記第1伝搬路は、電気的に開放した開放伝搬路であり、
前記第2伝搬路は、格子状の凹凸構造が形成され電気的に開放した格子状伝搬路であることを特徴とする被測定物特性測定装置。
In the to-be-measured object characteristic measuring device according to claim 1,
The first propagation path is an open propagation path that is electrically open,
The device for measuring characteristics of an object to be measured is characterized in that the second propagation path is a lattice-shaped propagation path in which a lattice-shaped uneven structure is formed and electrically opened.
請求項1〜4のいずれか1項に記載の被測定物特性測定装置において、
前記入力電極及び前記各出力電極の各々は、前記被測定物の付着を防ぐ封止部材によって封止されていることを特徴とする被測定物特性測定装置。
In the to-be-measured object characteristic measuring apparatus of any one of Claims 1-4,
Each of the input electrode and each of the output electrodes is sealed with a sealing member that prevents adhesion of the device to be measured.
JP2007110678A 2007-04-19 2007-04-19 Measurement target characteristic measuring apparatus Pending JP2008267968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110678A JP2008267968A (en) 2007-04-19 2007-04-19 Measurement target characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110678A JP2008267968A (en) 2007-04-19 2007-04-19 Measurement target characteristic measuring apparatus

Publications (1)

Publication Number Publication Date
JP2008267968A true JP2008267968A (en) 2008-11-06

Family

ID=40047671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110678A Pending JP2008267968A (en) 2007-04-19 2007-04-19 Measurement target characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JP2008267968A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066640A1 (en) * 2007-11-20 2009-05-28 Japan Radio Co., Ltd. Surface acoustic wave element and equipment for measuring characteristics of liquid material
JP2011232231A (en) * 2010-04-28 2011-11-17 Japan Radio Co Ltd Surface acoustic wave sensor device
JP2014112109A (en) * 2014-03-06 2014-06-19 Japan Radio Co Ltd Surface acoustic wave sensor
JP2015059878A (en) * 2013-09-20 2015-03-30 日本無線株式会社 Surface acoustic wave sensor
JP2017215345A (en) * 2014-09-30 2017-12-07 京セラ株式会社 Sensor device
JP2017223699A (en) * 2014-10-30 2017-12-21 京セラ株式会社 Sensor device
WO2021044031A1 (en) * 2019-09-04 2021-03-11 Frec'n'sys Differential acoustic wave sensors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device
JPH0382952A (en) * 1989-08-28 1991-04-08 Toru Nomura Measuring method and apparatus of sound velocity and viscosity of liquid by surface wave
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JPH05172795A (en) * 1991-12-25 1993-07-09 Sanyo Electric Co Ltd Piezoelectric gas sensor and its production method
JPH05322736A (en) * 1992-05-15 1993-12-07 Koji Toda Plate wave ultrasonic device and viscosity sensor with it
JPH0618496A (en) * 1992-02-28 1994-01-25 Hewlett Packard Co <Hp> Fruid sensor
JPH11211705A (en) * 1998-01-20 1999-08-06 Fuji Kogyo Kk Method and apparatus for separately measuring density and viscosity of liquid
JP3488554B2 (en) * 1995-09-13 2004-01-19 富士工業株式会社 Solution sensor system
JP2005331326A (en) * 2004-05-19 2005-12-02 Japan Radio Co Ltd Elastic wave sensor
JP2006184011A (en) * 2004-12-24 2006-07-13 Seiko Epson Corp Surface acoustic wave sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190905A (en) * 1986-02-18 1987-08-21 Matsushita Electric Ind Co Ltd Surface acoustic wave device
JPH0382952A (en) * 1989-08-28 1991-04-08 Toru Nomura Measuring method and apparatus of sound velocity and viscosity of liquid by surface wave
JPH03209157A (en) * 1990-01-10 1991-09-12 Sachiko Shiokawa Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JPH05172795A (en) * 1991-12-25 1993-07-09 Sanyo Electric Co Ltd Piezoelectric gas sensor and its production method
JPH0618496A (en) * 1992-02-28 1994-01-25 Hewlett Packard Co <Hp> Fruid sensor
JPH05322736A (en) * 1992-05-15 1993-12-07 Koji Toda Plate wave ultrasonic device and viscosity sensor with it
JP3488554B2 (en) * 1995-09-13 2004-01-19 富士工業株式会社 Solution sensor system
JPH11211705A (en) * 1998-01-20 1999-08-06 Fuji Kogyo Kk Method and apparatus for separately measuring density and viscosity of liquid
JP2005331326A (en) * 2004-05-19 2005-12-02 Japan Radio Co Ltd Elastic wave sensor
JP2006184011A (en) * 2004-12-24 2006-07-13 Seiko Epson Corp Surface acoustic wave sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066640A1 (en) * 2007-11-20 2009-05-28 Japan Radio Co., Ltd. Surface acoustic wave element and equipment for measuring characteristics of liquid material
US8322218B2 (en) 2007-11-20 2012-12-04 Japan Radio Co., Ltd. Surface acoustic wave element and equipment for measuring characteristics of liquid material
JP2011232231A (en) * 2010-04-28 2011-11-17 Japan Radio Co Ltd Surface acoustic wave sensor device
JP2015059878A (en) * 2013-09-20 2015-03-30 日本無線株式会社 Surface acoustic wave sensor
JP2014112109A (en) * 2014-03-06 2014-06-19 Japan Radio Co Ltd Surface acoustic wave sensor
JP2017215345A (en) * 2014-09-30 2017-12-07 京セラ株式会社 Sensor device
JP2017223699A (en) * 2014-10-30 2017-12-21 京セラ株式会社 Sensor device
WO2021044031A1 (en) * 2019-09-04 2021-03-11 Frec'n'sys Differential acoustic wave sensors

Similar Documents

Publication Publication Date Title
JP6568126B2 (en) Sample sensor and sample sensing method
JP2008267968A (en) Measurement target characteristic measuring apparatus
JP5363991B2 (en) Surface acoustic wave device and liquid property measuring apparatus
US6293136B1 (en) Multiple mode operated surface acoustic wave sensor for temperature compensation
JP5956901B2 (en) Device measurement device
WO2014192393A1 (en) Specimen sensor and specimen sensing method
JP6604238B2 (en) Elastic wave sensor
JP5431687B2 (en) Device measurement device
JP2006003267A (en) Elastic wave element and biosensor device equipped therewith
EP2905616A1 (en) Elastic wave element and elastic wave sensor using same
US8636953B2 (en) Surface acoustic wave sensing device
JP4628075B2 (en) Sensor
JP4950752B2 (en) Density measuring device
JP2008298768A (en) Device for measuring relative permittivity
JP2009031233A (en) Multi-channel qcm sensor
JP2010032245A (en) Relative permittivity/conductivity measuring apparatus
JP5154304B2 (en) Device measurement device
JP6466533B2 (en) Sample sensor and sample sensing method
Kustanovich et al. Design and characterization of surface acoustic wave resonance (SAR) system for in-liquid sensing
JP6300145B2 (en) Surface acoustic wave sensor and measuring apparatus
JP2008180668A (en) Lamb wave type high-frequency sensor device
JP2010107485A (en) Relative permittivity-conductivity measuring device
Nomura et al. Liquid sensor probe using reflecting SH-SAW delay line
Seidel et al. Multimode and multifrequency gigahertz surface acoustic wave sensors
JP2013096867A (en) Surface acoustic wave sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710